C6000 Optimization Basic

Optimization Fields

¢ Optimization Is a system project,
there are many fields should be
considered:

+ Framework optimization
+ Algorithm optimization
+ Code optimization

+ Memory optimization

® 6 6 ¢ o

Agenda

Basic Optimization methods
Software Pipeline

Memory/Cache Optimization
Other optimization tips and tricks

Optimization Procedure

3

After decide the optimization goal, current runtime
characteristics should be determined to decide whether
the implementation can meet the goal.

After getting the benchmark data, the DSP capability
need to be analyzed. Then the optimization direction can
be determined.

For each optimization field, relative optimization methods
can be applied to do optimization. This is a multi-loop
procedure between profile and optimization.

If the goal is met, current procedure can terminate. If not,
other optimization methods should be used or the goal
should be adjusted accordingly.

Profiling

¢ Manually measure the cycles for a function

#include <c6x.h>

preTSC= TSCL,;
[[function under test

foo();

cycles= ((unsigned int)((OXFFFFFFFFI+TSCL)- (unsigned long long) preTSC)+ 1);

¢ Profiling with function hook of cgtools
¢ CCS Profiler

Address EBxecuteTimes InclusiveCycles BExclusiveCycles AverageCycles Percentage FunctionName

c001eh8
c009a40
c001300
000000
c001604
c001744
c005360

9
34
9
125
34
1

1

8383166
7331505
6041932
3721869
7955610
8364938

257305

8383166
7331505
6041932
3721869
6524105
405328
257305

931462
215632
671325

29774

18356
409328
257305

0. 3108577 LDDWTest

0. 27186087 MemCopvs

0. 22404198 STDOWTest

2. 1380113 edma_Throughput Test
0. 02314255 MenCopv2Test

0. 01517E3Y MemCopvTest

0. 00954117 edma_Init

 Two (almost independent) sides, A and B
8 functional units, M, L, S, D

* Up to 8 instructions sustained dispatch rate

C66x DSP VLIW Architecture

Memory

!

AO :
—.D1

BO

.D2—

—.S1

S2 —

MACs

-.M1

M2—

-.L1

A31 |

L2 —

B31

Controller/Decoder

w3 TEXAS INSTRUMENTS

Multicore Training

Basic capabilities of C64x+ core

Operation | Precision Operations per cycle | Function Units | Notes
MAC Real 8 x 8 2Xx4=8 M1, M2 1
Real 16 x 16 2X2=4
Real 32 x 32 2x1=2

Complex (16,16)x(16,16) | 2x 1 =2
Complex (32,32)x(32,32) | N/A

Memory 8 bit 2x1=2 D1, D2 2,3
Access 16 bit

32 bit

64 bit
Arithmetic | 8 bit 4x4=16 L1, L2, S1, S2
Logical 16 bit 4x2=8

32 bit 4x1=4
Notes

1, if no multiplication, M1, M2 may be used for some other operations.
2, 1f no memory read/write, D1, D2 may be used for other operations.
3, try to used 64 bit read/write as much as possible.

4, division and module is not supported with single instruction, try to avoid it in your
algorithm

Basic capabilities of C66x core

Operation | Precision Operations per cycle | Function Units | Notes
MAC Real 8 x 8 2X8=16 M1, M2 1
Real 16 x 16 2x8=16
Real 32 x 32 2x4=8
Complex (16,16)x(16,16) | 2x 4 =8
Complex (32,32)x(32,32) | 2x1=2
Memory 8 bit 2x1=2 D1, D2 2,3
Access 16 bit
32 bit
64 bit
Arithmetic | 8 bit 4x8=32 L1, L2, S1, S2
Logical 16 bit 4x4=16
32 bit 4x2=8
Notes

1, if no multiplication, M1, M2 may be used for some other operations.

2, 1f no memory read/write, D1, D2 may be used for other operations.

3, try to used 64 bit read/write as much as possible.

4, division is supported by floating point instruction

5, single precision floating point operation capabilities is same as 32 bit fixed point operation

How do we determine the Optimum

¢ Analysis is specific to the algorithm.

¢ Raw performance for a given computation loop depends
on:

a) Number of loads and stores needed.

b) Number of multiply operations needed.

c) Number of Arithmetic and logical operations needed.

d) Size of the data that is being worked upon (shorts, bytes).

¢ Given ‘this’ many operations and the capabilities of the
architecture how long should it take to perform this
algorithm?

Operations Required by an loop

¢ Key loops of algorithms need be analyzed to
Identify the operations required

¢ For example:

short a|[BUF_SIZE], b[BUF_SIZE];

int i, sum;
for (i=0; | <count; i++)
{
sum =sum + aJi] * b[i];
}
Operation Operations per loop Function
Units
Multiplication 1 (16 bit) M1, M2
Memory Read/Write | 2 (16 bit: a[i], b[i]) D1, D2
Other operations 1 (32 bit: sum) L1, L2, S1, S2

Estimate cycles for the loop on C64x+

¢ Without optimization, the cycles for the loop is 1

Operation Operations per loop Cycle
Multiplication 1 (16 bit) 1
Memory Read/Write 2 (16 bit) 1
Other operations 1 (32 bit) 1

¢ To fully utilized the DSP core capabilities, the
cycle can be optimized to Y, I.e. execute 4
loops in a cycle.

Operation Operations Operations Cycle per loop
per loop per cycle

Multiplication 1 (16 bit) 4 (16 bit) Ya

Memory Read/Write 2 (16 bit) 2 (64 bit) Ya

Other operations 1 (32 bit) 4 (32 bit) Ya

Create small project for optimization

\ 4

4

-l

Small project should be created for key
functions to verify the optimized code
easily and quickly.

The small project should:

Prepare input

Use original correct code to generate test results
Call optimized code

Compare the results of optimized code with original
results

Example of Optimization Verification

#include <c6x.h>

#define TSC_getDelay(preTSC) ((unsigned int)((OXFFFFFFFFATSCL)-\
(unsigned long long)preTSC)+ 1)

TSCL=0; /lenable TSC

tl = TSCL;

tsc_overhead= TSC getDelay(tl);

tl = TSCL;

ref result =foo();

tl= TSC getDelay(tl)-tsc_overhead;

printf("%8d cycle for foo\n", t1);

tl = TSCL;
result = foo_opt();
tl= TSC getDelay(tl)-tsc_overhead;
printf("%8d cycle for foo_opt\n", tl);
If (result!=ref_result)
printf("error with optimization, result = %d, expected result = %d \n",
result, ref_result);

® 6 6 ¢ o

Agenda

Optimization preparation

Software Pipeline
Memory/Cache Optimization
Other optimization tips and tricks

Basic Optimization Directions

¢ Use compiler option correctly
¢ Tell compiler more information

¢ Manually optimize C code
+ Intrinsic
+ SIMD (Single Instruction Multiple Data)
+ Manually unroll loop

Optimization Example

¢ The following example code will be used to
Illustrate the optimization effect of each
optimization method (count = 40)

Int dotp_c(short *a, short *b, int count)

{
Int 1;
int sum =0;

for (i=0; i < count; i++)

{

sum = sum + a[i] * b[i];
}
return(sum);

Choosing the “Right” Build Options

« —mv6600 enables 6600 ISA
 —0[2]3] = Optimization level. Critical!
= —02/-03 enables SPLOOP (c66 hardware loop buffer).
= —03, file-level optimization is performed.
= —02, function-level optimization is performed.
= —01, high-level optimization is minimal

e —ms[0-3]is used if codesize is a concern:
= Use in conjunction with —o02 or —03.
= Try —msO0 or —ms1 with performance critical code.
= Consider —-ms2 or —-ms3 for seldom executed code.

= NOTE: Improved codesize may mean better cache
performance.

w3 TEXAS INSTRUMENTS Multicore Training

Cycles

Compiler Optimization

Theoretical_Codesize Limit
"""""""""" Optlr " T

Opt3

Theoretical Performance Limit

Codesize

— » Codesize

— Cycle number
The balance point is decided by the
application integration goal.

Build Options for Optimization

* Select the “best” build options.

= More than just “turn on —o03

III
.

* DO NOT use —g

= W ol
«» Properties for SRIO_LoopbackDiclsrexampleproject [| C
type filter text Basic Options =T
- Resource
General
4 Build Configuration: |Debug [Active] ,J IMEHEQE e

4 €000 Compiler
Basic COptions
Symbolic Debug Options
Language Cptions
Language Cptions: MISEA
Parser Preprocessing Optin
Predefined Symbols
Include Cptions
Diagnostic Options
Runtime Model Options
Optimizations

Target processor version (--silicon_version, -mv] 6500

Debugging model lSuppress all symbelic debug generation (--symdebug:none)

Optimization level (--opt_level, -0) IS

Optimize for code size (--opt_for_space, -ms) ll:l

#i3 TEXAS INSTRUMENTS

Multicore Training

Build Options to Avoid

e —g generates full symbolic debug. While it is great for
debugging, it should not be used in production code.

" |nhibits code reordering across source line boundaries
" Limits optimizations around function boundaries

= Can cause a 30-50% performance degradation for control
code

= Basic function-level profiling support now provided by
default

e —ss generates interlist source code into assembly file.
= As with —g, this option can negatively impact performance.

w3 TEXAS INSTRUMENTS Multicore Training

Optimization Result

Optimization Method Cycles for Cycles for total
Loop codes | Function

No optimization 1360 1397

-03 option 35 93

No debug 35 83

Tell Compiler more information

4

\ 4

Memory Disambiguation
+ Restrict Keyword: Int32 * restrict ipDataAddr

Knowing minimum/maximum loop
iterations:

« #pragma MUST_ITERATE(Z, 8, 1);

Aligning pointers on boundaries:
#pragma DATA_ALIGN(variable, 2" alignment);

+ _nassert(((int)ipBuf & 7) == 0);

Tell Compiler more information

int dotp_c(short *restrict a, short b[restrict], int count)

{ . o
int i;
int sum = 0;
_nassert(((int)a % 8) == 0);
_nassert(((int)b % 8) == 0);

#pragma MUST_ITERATE(8, 1000, 8);
for (i=0; i < count; i++)

{
}

return (sum);

sum = sum + aJ[i] * b[i];

iter i

multiply jload
add multiply | load

add multiply
add

Optimization Result

Optimization Method Cycles for Cycles for total
Loop codes | Function

No optimization 1360 1397

-03 option 35 93

No debug 35 83

Memory Alignment 35 75

MUST ITERATE 28 41

Manually optimize C code

¢ Using intrinsic to do SIMD (Single
Instruction Multiple Data)
processing

+ Double word load/store

+ Packed data operation intrinsic:
_dotp2, add2, shr2...

¢ Manually unroll loop If speed Is
most critical

#pragma UNROLL(4);

Intrinsic

¢ C code can directly use instructions by
calling intrinsic function

+ Think of intrinsic functions as a specialized
function library written by TI

+ Compiler will instantiates an instruction directly
+ Direct control over instruction selection

¢ Allinstructions that is not directly |
represented by C operator can be used in
this way.

¢ #include <c6x.h>
+ has prototypes for all the intrinsic functions

Intrinsic Example

Intrinsics

Int _add?2 (int srcl, int src2);
Int _dotp2 (int srcl, int src2);
unsigned norm (int src2);

INt X:
unsigned int y;
y = _norm(X);

Refer to C Compiler User’s Guide for more information

Data Access Intrinsic

Data Access Assembly
Instruction

unsigned & amem4 (void *ptr); LDW, STW
unsigned & _mem4 (void * ptr); LDNW, STNW
const unsigned & _amem4_const (const void *ptr); | LDW
long long & _amem8 (void *ptr); LDDW, STDW
long long & _mem8 (void * ptr); LDNDW, STNDW
const long long & amem8_const (const void *ptr); | LDDW
double & amemd8 (void *ptr); LDDW, STDW
double & memd8 (void * ptr); LDNDW, STNDW
const double & _amemd8_const (const void *ptr); | LDDW

Refer to C Compiler User’s Guide for more information

32 € 64

Intrinsic Description

unsigned _loll (long long src); | Returns the low (even) register of a long long register pair

unsigned _hill (long long src); Returns the high (odd) register of a long long register pair

Builds a new long long register pair by reinterpreting two
unsigned values, where src2 is the high (odd) register and
src1 is the low (even) register

long long _itoll (unsigned src2,
unsigned src1);

float _lof (double src); Returns the low (even) register of a double register pair
float _hif (double src); Returns the high (odd) register of a double register pair
double _fod (float src2, float Builds a new double register pair by reinterpreting two

float values, where src2 is the high (odd) register and src1

src); is the low (even) register

Example: Using Intrinsics with DOTP2

. . . SUB
for (1 = 0; 1 < len; i += 4) Il B
{
a3 a2 al a0 = amem8 const(&a[i]) | | LDDW
b3 b2 bl b0 = amem8 const(&b[i]); | | LDDW
sum _high += dotp2(_hill(a3_a2 al a0, || DOTP2
_hill(b3 b2 bl bo); |l APP
| | DOTP2
sum low += dotp2(loll(a3 a2 al a0, || ADD

_1loll (b3 b2 bl bO);

Optimization Result

Optimization Method Cycles for Cycles for total
Loop codes | Function

No optimization 1360 1397

-03 option 35 93

No debug 35 83

Memory Alignment 35 75

MUST ITERATE 28 41

Single Instruction 19 37

Multiple Data

¢ Other optimization method, such as UNROLL
doesn’t help for this loop code. But for other more
complex code, you can try it to use them to
balance resources usage.

® 6 6 ¢ o

Agenda

Optimization preparation
Basic Optimization methods

Memory/Cache Optimization
Other optimization tips and tricks

Software Pipeline

How many cycles would
it take to perform this
loop 5times?

(Disregard delay-slots).
bx3=15

cycles

Let's examine hardware (functional units) usage ...

Cycle

1

2
3

o O b

<

Non-Pipelined Code

l1dh 1dh

l1dh 1dh

1dh 1dh

.M1

mpy

mpy

mpy

M2 L1 .L2 .S1

add

add

add

.S2

Pipelining Code

1 ldh 1dh .M1 .M2 .11 .L2 .S1 .S2

2 l1dh 1dh mpy

3 l1dh 1dh mpy add
4 l1dh 1dh mpy add
5 l1dh 1dh mpy add
6 NoLDH’S? mpy add
7 add

Pipelining these instructions took 1/2 the cycles!

Pipelining Code

Prolog
Staging for loop

Loop Kernel
Single-cycle “loop”
iterated three times

Epilog

Completing final
operations

1 ldh 1dh .M1 .11
2 ldh 1dh mpy

3 ldh 1dh mpy add
4 l1dh 1dh mpy add
5 l1dh 1dh mpy add
6 mpy add
7 add

L R 4

Compiler Feedback

Compiler Gives important feedbacks for optimization in the
assembly file generated with —k option

Always compile with —s and —mw, as they extra information
to the resulting assembly file

It is very helpful to determine your optimization direction.
Take following simple code as example:
int dotp_c(short *a, short *b, int count)

{
Int i;
int sum =0;

for (i=0; 1 < count; i++)

{

sum =sum + aJi] * b[i];
}
return(sum);

-

«» Properties for vlfft_evmcBE78|_Bcores

Assembler Options

type filter text

- Resource

General

a Build

4 06000 Compiler

Basic Options

Symbalic Debug Options
Language Options

Parser Preprocessing Options
Predefined Symbuols

Include Options

Diagnostic Options

Runtime Model Options
Optimizations

Entry/Exit Hook Options
Feedback Options

Library Function Assumption
Assernbler Options

File Type Specifier

Directory Specifier

Default File Extensions
Dynamic Linking Support Op
Cormmand Files
MISRA-C:2004

» CBO000 Linker
» KDCtools

Debug

Task Tags

o

I k

3 -
@J Show advanced settings

Assembler Options

Configuration: |core 0 [Active]

V] [Manage Configurations..,

Keep the generated assembly language (.asm) file (--keep_asm, -k)

Source interlist

[7] Generate listing file (--asm_listing, -al]
| Keep local symbols in output file (--output_all_syms, -as)

[De net generate .clink for .const sections (--no_const_clink]

Simulate source '.copy filename' (--copy_file, -ahc)

| Symbol names are not case-significant (--syms_ignore_case, -ac)

Undefine assembly symbol MAME (--asm_undefine, -au)

Pre-define assembly symbol MAME (--asm_define, -ad)

[7] Generate first-level assembly include file list (--asm_includes, -api)
Generate assembly dependency information (--asm_dependency, -apd)
[T Aid for transiticning hand-coded assembly from COFF to ELF (--strip_coff_underscore)

Simulate source "include filename' (--include_file, -ahi)

[7] Generate cross reference file (--cross_reference, -ax)

&)

0K] [Cancel

— I a1

-S and -MW Setting

s

»+ Properties for SRIO_LoopbackDiclsrexampleproject

EE)

type filter text

> Resource
General
4 Build
a CB000 Compiler

Basic Opticns

Symbolic Debug Options
Language Options
Language Options: MISRA
Parser Preprocessing Optin
Predefined Symbols
Include Options
Diagnostic Options
Runtime Maodel Options
Optimizations

Entry/Exit Hook Options
Feedback Options

Likrary Function Assumpt
Azcembler Options

File Type Specifier
Directory Specifier
Default File Extensions
Dynamic Linking Support
Command Files

4 CB000 Linker

Basic Options

Command File Preprocess
Diagnostics

File Search Path

Linker Output

Symbol Management
Runtime Environment

»

m

Assembler Options

{'::Iv *

Configuration: |Debug [Active]

"] ’ Manage Configurations..,

Keep the generated assembly language (.asm) file (--keep_asm, -k)

Source interlist | Generate interlisted assembly file (--src_interlist, -s)

[] Generate listii

Generate interlisted assernbly file (--src_interlist, -5)
[] Keep local Syl Generate C source interlisted assemnbly file (--c_src_interlist, -ss)

[] Do not generate .clink for .const sections (--no_const_clink)

Simulate source '.copy filename' (--copy_file, -ahc)

I Syrbol names are not case-significant (--syms_ignore_case, -ac)

Undefine assembly symbol NAME (--asm_undefine, -au)

Pre-define assembly symbol NAME (--asm_define, -ad)

[] Generate first-level assernbly include file list (--asm_includes, -api)
[] Generate assembly dependency information (--asm_dependency, -apd)
[] Aid for transitioning hand-coded assembly from COFF to ELF (--strip_coff_underscore)

Simulate source "include filename' (--include_file, -ahi)

£ w) F §l 2

€ 8 3 4l ¢

£ w) F §l 2

€ 1) & Gl &

Software Pipeline Feedback

Loop source line

Loop opening brace source line
Loop closing brace source line
Known Minimum Trip Count

Known Max Trip Count Factor
Loop Carried Dependency Bound (")
Unpartitioned Resource Bound
Partitioned Resource Bound (¥*)
Resource Partition:

PR ORRFWO-do

A-side B-side

.L units 0 0

.S units 0 0

.D units 1* 1*

.M units 1= 0

.X cross paths 1* 0

.T address paths 1~* 1*

Long read paths 0 0

Long write paths 0 0

Logical ops (.LS) 0 0 (.L or .S unit)
Addition ops (.LSD) 1 0 (.L or .S or .D unit)
Bound(.L .S .LS) 0 0

Bound(.L .S .D .LS .LSD) 1~* 1*

Searching for software pipeline schedule at
ii = 1 Schedule found with 8 iterations in parallel
Done

Loop will be splooped
Collapsed epilog stages
Collapsed prolog stages
Minimum required memory pad

O O O

bytes

Optimize the example with basic methods

int dotp_c(short * restrict a, short * restrict b, int count)

{
Inti;
Int sum = 0;

_nassert((int) a % 8 == 0);
_nassert((int) b % 8 == 0);

#pragma MUST _ITERATE(S, 400, 8);
#pragma UNROLL(4)

for (i=0; i < count; i++)

{
}

return(sum);

sum =sum + a[i] * bJ[i];

Compiler feedback for the optimized code

; Loop source line : 10
; Loop opening brace source line 11
; Loop closing brace source line : 13
; Loop Unroll Multiple : 4x
; Known Minimum Trip Count : 2

; Known Maximum Trip Count : 100
; Known Max Trip Count Factor : 2

Loop Carried Dependency Bound (")
Unpartitioned Resource Bound
Partitioned Resource Bound (*)
Resource Partition:

~e

~e
PR S R T . N . . . S . S S R iR S S R S N S, S, S T S S

\.
== o

~e

A-side B-side

~e

; .L units 0 0
; .S units 0 0
; .D units 1* 1=
; .M units 1* 1=
; .X cross paths 1~* 1*
; .T address paths 1~* 1~*
; Long read paths 0 0

Long write paths 0
Logical ops (.LS) 0
Addition ops (.LSD) 1
0
1

~e

(.L or .S unit)
(.L or .S or .D unit)

~e

~e

Bound(.L .S .LS)
Bound(.L .S .D .LS .LSD)

~e

P ORrr OO

*

~e

~e

Searching for software pipeline schedule at
ii = 1 Schedule found with 10 iterations in parallel
Done

Ne Ne N

~e

Loop will be splooped

Collapsed epilog stages Y
Collapsed prolog stages Y
Minimum required memory pad 0

Ne N

~e

bytes

~e

~e

Minimum safe trip count : 1 (after unrolling)

~e

The —mh Compiler Option

* —mh<num>. Speculative loads. Permits compiler to fetch (but not store) array elements beyond
either end of an array by <num> bytes. Can lead to:

— Better performance, especially for “while” loops
— Smaller code size for both “while” loops and “for” loops
— Not needed if SPLOOP buffer is used

* Software-pipelined loop information in the compiler-generated assembly file suggests the value of
<num>

;*¥ Minimum required memory pad : 0 bytes

. %

’

;¥ For further improvement on this loop, try option -mh56

* Indicates compiler is fetching 0 bytes beyond the end of an array.

— If loop is rebuilt with —-mh56 (or greater), there may be better performance and/or smaller code
size.

— NOTE: Need to pad buffer of <num> bytes on both ends of sections that contain array data

MEMORY {
/* pad (reserved): origin = 1000, length

myregion: origin = 1056, length = 3888
/* pad (reserved): origin = 3944, length

* Alternatively, other memory areas (code or independent data) can be used as pad regions.

#i3 TEXAS INSTRUMENTS Multicore Training

And if You Don’t Find the GUI?

e

] Properties for vifft_evmc6678I M
type filter text €6000 Compiler Ao
[» Resource
General
4 Build Configuration: |Debug [Active] "’] ’Manage Configuratiens...

4 CB000 Compiler
Basic Options
Symbelic Debug Options

Language Options SR ‘MG TOOLCLY

Parser Preprocessing Options Command-line pattern: ${command} 5{flags} ${inputs}

Predefined Symbols

Include Options Summary of flags set:

Diagnestic Options -mvBB00 --symdebuginone -03 --include_path="C/tifinclude"” --diag_warning=225 --abi=eabi *

Runtime Model Options

I T

, :
% Set Additional Flags =

Debug =
Task T
ask 1ags | Set Additional Flags...|
4 m | b See 'General' for changing tool versions and device settings
@ Show advanced settings i OK i ’ Cancel]

® 6 6 ¢ o

Agenda

Optimization preparation
Basic Optimization methods
Software Pipeline

Other optimization tips and tricks

Memory Optimization

¢ If Possible, Put all code / data on-
chip
+ Best performance, Easiest to
Implement

+ Shared L2 is the best for code and
read-only data

¢ Use Multiple Sections
+ Keep critical code and data on-chip

+ Put non-critical code and data off-chip
« #pragma CODE_SECTION(dotp, “critical”);
« #pragma DATA_SECTION (x, “myVar”);

¢ o

Cache Optimization

maximize line reuse before eviction

Reduce the number of cache misses
+ Reduce amount of memory accessed during algorithm
+ Improve spatial locality of memory accesses
+ Improve temporal locality of memory accesses

Reduce the penalty (DSP core stall) cycles associated
with misses

+ Making use of miss pipelining

+ use touch loop, that is, read one word from each line
continuously

Avoid L1D bank conflict

contiguous allocation

L1P
32 Bytes

set (=line)

0

1

£

3: conflict,
line will be evicted

5

511

L1P cache set

//

1: alloacted in L1P

2: alloacted in L1P

function_1 2

| 3

[N0,
LA AR o
Sy 6
"y 7
] 8
@

function_2 5
NG 6
8

9

511

4: Solution: Allocate
functions contiguously
in memory

L1D Memory Banks

#pragma DATA_MEM_ BANK(x, 4);

31302928
63626160

912x32

27262524
59585756

912x32

23222120
55545352

912x32

19181716
51504948

512x32

15141312
47464544

912x32

11109 8
43424140

512x32

7654
39383736

912x32

#pragma DATA_MEM_BANK(a, 0);

¢ Only one access allowed per bank per cycle
¢ Use DATA_MEM BANK to make sure that arrays that

will be accessed in parallel start in different banks

DATA MEM BANK (var, Oor2or 4 or 6)

#pragma DATA MEM BANK(a, 0);
short a[256] = {1, 2, 3,
#pragma DATA MEM BANK (x, 4);
short x[256] = {256, 255, 254,
#pragma UNROLL (2) ;
#pragma MUST ITERATE (10, 100, 2);
for(i = 0; 1 < count ; i++) {

sum += a[i] * x[i];

}

¢ An internal memory specialized Data Align

¢ Optimizes variable placement to account for the way
Internal memory is organized

Avoid memory bank issue 1in code

Potential bank conflict with below code
LDDW x[i]
|| LDDW a[i]

No bank conflict with below code
LDDW a[i]
| | LDDW a[i+4]
LDDW x[i]
| | LDDW x[i+4]
Original code must be unrolled x8 to generate above code
#pragma UNROLL (8)
for(i = 0; 1 < count ; i++) {

sum += a[i] * x[1];

® 6 6 ¢ o

Agenda

Optimization preparation
Basic Optimization methods
Software Pipeline
Memory/Cache Optimization

Generic Optimization Advice

No “printf” in your key code!
No “if”, branch, and call in key loop!

Use peripherals (and coprocessors) to offload unnecessary

tasks from the CorePacs.

Make sure the loop trip counters are (unsigned) int or long

(32 bit) ... and not short (16 bit).

w3 TEXAS INSTRUMENTS

Multicore Training

Golden Rule of Software Pipeline

The larger the loop,

the less efficient the optimizer.

If your application code contains very long loops ... break the
loop into multiple loops ... even if it means storing intermediate

results in L1

#i3 TEXAS INSTRUMENTS Multicore Training

Volatile

int *ctrl;
while (*ctrl == 0);

This code may be eliminated by optimizer

Add volatile qualifier to keep it

volatile int *ctrl;
while (*ctrl == 0);

volatile qualifier will disable
optimization on corresponding data

Array and structure

¢ keep array dimensions to no more than 2
X[][] Is enough

¢ Try to keep structure depths as small as
possible

+ X->y->7[I]->w is very inefficient to access

¢ structure of arrays struct->a[i] are better
than arrays of structure struct[i]->a

Pointers In Structures

Create local pointers at top-level of function and restrict
gualify pointers instead.

Use local pointers in function/loop instead of original
pointers.

typedef struct {int *p} str;

myfunc(_str * restrict s)

{

// create local pointers at top-level of function
int * restrict sp = s->p;
// use sp instead of s->p
*sp = ..
= *sp

Writing Efficient Code with Structure References

General Tips: Original loop:
while (g->y < 25)
¢ Avoid dereferencing { |
structure elements in g->p->afi++] = ...
loop control and loops. }

Hand-optimized Loop:

¢ Instead create/use local int 'y =g->y;
copies of pointers and short *a = g->p->a;
variables when possible.
while (y < 25)
{
ali++] = ...

}

If Statements

¢ Compiler will if-convert loops with
small If statements:

Original C code:

if (p)

x =5
else

x =77

After iIf conversion:
[P] x =5
Il ['p]l x =7

L 4

¢

If Statements (cont.)

Compiler will not if convert large if
statements.

Compiler will not software pipeline loops
with If statements that are not if-converted.

SOFTWARE PIPELINE INFORMATION
Disqualified loop: Loop contains control code

For software pipelinability, user must
transform large if statements because
compiler does not know if this is profitable.

Structural Improvements

¢ Some program and data structures are
better than others

+ If-for is better than for-if
+ one software pipelines, one doesn’t

for (i=0; i < N; i++) if (case0)
{ for (i=0; 1 < N; i++)
if (case0) do execO[i];
do_execO[i]; else if (casel)
else if (casel) for (i=0; i < N; i++)
do execl|[i]; do execl[i];
else_ else
do exec2[i]; for (i=0; i < N; i++)
} B do exec2[i];

+Complex control blocks or compromises pipelining

asm(“ ”’)

®asm() function can be used to execute an assembly statement
in C language.

€ Normally, it is not recommended to be used. It will break many
optimization methods of compiler.

®Below are several special cases:

for(i=0; i<Ox100000; i++) /*delay*/
{/* without asm(), this loop may be eliminated by optimizer?*/
asm(" nop 5");

}

asm(" IDLE"); /*make the DSP core idle to save power?*/

asm(" dint"); /*disable interrupt*/

asm(" rint"); /*restore interrupt*/

€ Pay attention to the space between the “ and instructions, it is
compulsory

Optimization Literature

¢ SPRU187, “TMS320C6000 Optimizing
Compiler User’s Guide”, provides a
complete description of the C/C++
compiler option and how to tune
compiler to generate optimized code.

¢ SPRU198, “TMS320C6000 Programmer’s
Guide”, provides step by step
procedures to tune code performance
using compiler options and manually
optimization technology on C6000 DSPs.

¢ SPRAG666, “Hand-Tuning Loops and
Control Code on the TMS320C6000”,
provides useful tips and to tune loop and
control code manually.

