
C6000 Optimization Basic

Optimization Fields

 Optimization is a system project,
there are many fields should be
considered:

 Framework optimization

 Algorithm optimization

 Code optimization

 Memory optimization

Framework and Algorithm optimization
are application dependent. They are not

covered here.

Agenda

 Optimization preparation

 Basic Optimization methods

 Software Pipeline

 Memory/Cache Optimization

 Other optimization tips and tricks

Optimization Procedure

1. After decide the optimization goal, current runtime
characteristics should be determined to decide whether
the implementation can meet the goal.

2. After getting the benchmark data, the DSP capability
need to be analyzed. Then the optimization direction can
be determined.

3. For each optimization field, relative optimization methods
can be applied to do optimization. This is a multi-loop
procedure between profile and optimization.

4. If the goal is met, current procedure can terminate. If not,
other optimization methods should be used or the goal
should be adjusted accordingly.

Setup Goal Profile Optimization1 2 4

3

Profiling

 Manually measure the cycles for a function

 Profiling with function hook of cgtools

 CCS Profiler

#include <c6x.h>

……

preTSC= TSCL;

foo(); //function under test

cycles= ((unsigned int)((0xFFFFFFFFl+TSCL)- (unsigned long long) preTSC)+ 1);

C66x DSP VLIW Architecture

A0

A31

. . .

.S1

.D1

.L1

.S2

.M1 .M2

.D2

.L2

B0

B31

. . .

Controller/Decoder

MACs

Memory

• Two (almost independent) sides, A and B

• 8 functional units, M, L, S, D

• Up to 8 instructions sustained dispatch rate

Basic capabilities of C64x+ core

Operation Precision Operations per cycle Function Units Notes

MAC Real 8 x 8 2 x 4 = 8 M1, M2

1

 Real 16 x 16 2 x 2 = 4

Real 32 x 32 2 x 1 = 2

Complex (16,16)x(16,16) 2 x 1 = 2

Complex (32,32)x(32,32) N/A

Memory

Access

8 bit

16 bit

32 bit

64 bit

2 x 1 = 2 D1, D2 2, 3

Arithmetic

Logical

8 bit 4 x 4 = 16 L1, L2, S1, S2

16 bit 4 x 2 = 8

32 bit 4 x 1 = 4

1, if no multiplication, M1, M2 may be used for some other operations.

2, if no memory read/write, D1, D2 may be used for other operations.

3, try to used 64 bit read/write as much as possible.

4, division and module is not supported with single instruction, try to avoid it in your
algorithm

Notes

Basic capabilities of C66x core

Operation Precision Operations per cycle Function Units Notes

MAC Real 8 x 8 2 x 8 = 16 M1, M2

1

 Real 16 x 16 2 x 8 = 16

Real 32 x 32 2 x 4 = 8

Complex (16,16)x(16,16) 2 x 4 = 8

Complex (32,32)x(32,32) 2 x 1 = 2

Memory

Access

8 bit

16 bit

32 bit

64 bit

2 x 1 = 2 D1, D2 2, 3

Arithmetic

Logical

8 bit 4 x 8 = 32 L1, L2, S1, S2

16 bit 4 x 4 = 16

32 bit 4 x 2 = 8

1, if no multiplication, M1, M2 may be used for some other operations.

2, if no memory read/write, D1, D2 may be used for other operations.

3, try to used 64 bit read/write as much as possible.

4, division is supported by floating point instruction

5, single precision floating point operation capabilities is same as 32 bit fixed point operation

Notes

How do we determine the Optimum

 Analysis is specific to the algorithm.

 Raw performance for a given computation loop depends
on:

a) Number of loads and stores needed.

b) Number of multiply operations needed.

c) Number of Arithmetic and logical operations needed.

d) Size of the data that is being worked upon (shorts, bytes).

 Given ‘this’ many operations and the capabilities of the
architecture how long should it take to perform this
algorithm?

Operations Required by an loop

short a[BUF_SIZE], b[BUF_SIZE];

int i, sum;

for (i=0; i < count; i++)

 {

 sum = sum + a[i] * b[i];

 }

 Key loops of algorithms need be analyzed to
identify the operations required

 For example:

Operation Operations per loop Function
Units

Multiplication 1 (16 bit) M1, M2

Memory Read/Write 2 (16 bit: a[i], b[i]) D1, D2

Other operations 1 (32 bit: sum) L1, L2, S1, S2

Estimate cycles for the loop on C64x+

Operation Operations per loop Cycle

Multiplication 1 (16 bit) 1

Memory Read/Write 2 (16 bit) 1

Other operations 1 (32 bit) 1

 To fully utilized the DSP core capabilities, the
cycle can be optimized to ¼ , i.e. execute 4
loops in a cycle.

Operation Operations
per loop

Operations
per cycle

Cycle per loop

Multiplication 1 (16 bit) 4 (16 bit) ¼

Memory Read/Write 2 (16 bit) 2 (64 bit) ¼

Other operations 1 (32 bit) 4 (32 bit) ¼

 Without optimization, the cycles for the loop is 1

Create small project for optimization

 Small project should be created for key
functions to verify the optimized code
easily and quickly.

 The small project should:
1. Prepare input

2. Use original correct code to generate test results

3. Call optimized code

4. Compare the results of optimized code with original
results

Example of Optimization Verification
#include <c6x.h>

#define TSC_getDelay(preTSC) ((unsigned int)((0xFFFFFFFFl+TSCL)-\

 (unsigned long long)preTSC)+ 1)

……

TSCL= 0; //enable TSC

t1 = TSCL;

tsc_overhead= TSC_getDelay(t1);

……

t1 = TSCL;

ref_result = foo();

t1= TSC_getDelay(t1)-tsc_overhead;

printf("%8d cycle for foo\n", t1);

t1 = TSCL;

result = foo_opt();

t1= TSC_getDelay(t1)-tsc_overhead;

printf("%8d cycle for foo_opt\n", t1);

if (result!=ref_result)

 printf("error with optimization, result = %d, expected result = %d \n",

 result, ref_result);

Agenda

 Optimization preparation

 Basic Optimization methods

 Software Pipeline

 Memory/Cache Optimization

 Other optimization tips and tricks

Basic Optimization Directions

 Use compiler option correctly

 Tell compiler more information

 Manually optimize C code

 Intrinsic

 SIMD (Single Instruction Multiple Data)

 Manually unroll loop

Optimization Example

 The following example code will be used to

illustrate the optimization effect of each

optimization method (count = 40)

int dotp_c(short *a, short *b, int count)

{
 int i;

 int sum = 0;

 for (i=0; i < count; i++)

 {

 sum = sum + a[i] * b[i];

 }

 return(sum);

}

Choosing the “Right” Build Options
• –mv6600 enables 6600 ISA
• –o[2|3] = Optimization level. Critical!
 –o2/-o3 enables SPLOOP (c66 hardware loop buffer).
 –o3, file-level optimization is performed.
 –o2, function-level optimization is performed.
 –o1, high-level optimization is minimal

• –ms[0-3] is used if codesize is a concern:
 Use in conjunction with –o2 or –o3.
 Try –ms0 or –ms1 with performance critical code.
 Consider –ms2 or –ms3 for seldom executed code.
 NOTE: Improved codesize may mean better cache

performance.

Compiler Optimization

No Opt

Opt0

Opt1

Opt2

Opt3 C
y
cl

es

C
o

d
es

iz
e

Theoretical Performance Limit

Theoretical Codesize Limit

Acceptable Codesize Limit

The balance point is decided by the

application integration goal.

Code size

Cycle number

Build Options for Optimization
• Select the “best” build options.
 More than just “turn on –o3”!

• DO NOT use –g

Build Options to Avoid
• –g generates full symbolic debug. While it is great for

debugging, it should not be used in production code.
 Inhibits code reordering across source line boundaries
 Limits optimizations around function boundaries
 Can cause a 30-50% performance degradation for control

code
 Basic function-level profiling support now provided by

default

• –ss generates interlist source code into assembly file.
 As with –g, this option can negatively impact performance.

Optimization Result

Optimization Method Cycles for
Loop codes

Cycles for total
Function

No optimization 1360 1397

-o3 option 35 93

No debug 35 83

Tell Compiler more information

 Memory Disambiguation
 Restrict Keyword: Int32 * restrict ipDataAddr

 Knowing minimum/maximum loop
iterations:
 #pragma MUST_ITERATE(1, 8, 1);

 Aligning pointers on boundaries:
 #pragma DATA_ALIGN(variable, 2n alignment);

 _nassert(((int)ipBuf & 7) == 0);

int dotp_c(short *restrict a, short b[restrict], int count)

{

 int i;

 int sum = 0;

 _nassert(((int)a % 8) == 0);

 _nassert(((int)b % 8) == 0);

 #pragma MUST_ITERATE(8, 1000, 8);

 for (i=0; i < count; i++)

 {

 sum = sum + a[i] * b[i];

 }

 return (sum);

}

Tell Compiler more information

load

multiply

add

load

multiply

add

load

multiply

add

i+1
i+2

iter i

ii

Optimization Result

Optimization Method Cycles for
Loop codes

Cycles for total
Function

No optimization 1360 1397

-o3 option 35 93

No debug 35 83

Memory Alignment 35 75

MUST_ITERATE 28 41

Manually optimize C code

 Using intrinsic to do SIMD (Single
Instruction Multiple Data)
processing

 Double word load/store

 Packed data operation intrinsic:
_dotp2, _add2, _shr2…

 Manually unroll loop if speed is
most critical

#pragma UNROLL(4);

Intrinsic

 C code can directly use instructions by
calling intrinsic function

 Think of intrinsic functions as a specialized
function library written by TI

 Compiler will instantiates an instruction directly

 Direct control over instruction selection

 All instructions that is not directly
represented by C operator can be used in
this way.

 #include <c6x.h>

 has prototypes for all the intrinsic functions

Intrinsics

int _add2 (int src1, int src2);

int _dotp2 (int src1 , int src2);

unsigned _norm (int src2);

Intrinsic Example

Refer to C Compiler User’s Guide for more information

int x;

unsigned int y;

y = _norm(x);

Data Access Intrinsic

Refer to C Compiler User’s Guide for more information

Data Access Assembly

Instruction

unsigned & _amem4 (void *ptr); LDW, STW

unsigned & _mem4 (void * ptr); LDNW, STNW

const unsigned & _amem4_const (const void *ptr); LDW

long long & _amem8 (void *ptr); LDDW, STDW

long long & _mem8 (void * ptr); LDNDW, STNDW

const long long & _amem8_const (const void *ptr); LDDW

double & _amemd8 (void *ptr); LDDW, STDW

double & _memd8 (void * ptr); LDNDW, STNDW

const double & _amemd8_const (const void *ptr); LDDW

32  64

Intrinsic Description

unsigned _loll (long long src); Returns the low (even) register of a long long register pair

unsigned _hill (long long src); Returns the high (odd) register of a long long register pair

long long _itoll (unsigned src2,
unsigned src1);

Builds a new long long register pair by reinterpreting two
unsigned values, where src2 is the high (odd) register and
src1 is the low (even) register

float _lof (double src); Returns the low (even) register of a double register pair

float _hif (double src); Returns the high (odd) register of a double register pair

double _fod (float src2, float
src1);

Builds a new double register pair by reinterpreting two
float values, where src2 is the high (odd) register and src1
is the low (even) register

for (i = 0; i < len; i += 4)

{

 a3_a2_a1_a0 = _amem8_const(&a[i]);

 b3_b2_b1_b0 = _amem8_const(&b[i]);

 sum_high += _dotp2(_hill(a3_a2_a1_a0,

 _hill(b3_b2_b1_b0);

 sum_low += _dotp2(_loll(a3_a2_a1_a0,

 _loll(b3_b2_b1_b0);

}

Example: Using Intrinsics with DOTP2

 SUB
|| B

|| LDDW

|| LDDW

|| DOTP2

|| ADD

|| DOTP2

|| ADD

Optimization Result

Optimization Method Cycles for
Loop codes

Cycles for total
Function

No optimization 1360 1397

-o3 option 35 93

No debug 35 83

Memory Alignment 35 75

MUST_ITERATE 28 41

Single Instruction
Multiple Data

19 37

 Other optimization method, such as UNROLL
doesn’t help for this loop code. But for other more
complex code, you can try it to use them to
balance resources usage.

Agenda

 Optimization preparation

 Basic Optimization methods

 Software Pipeline

 Memory/Cache Optimization

 Other optimization tips and tricks

Software Pipeline

 LDH

 || LDH

 MPY

 ADD

How many cycles would
it take to perform this
loop 5 times?

(Disregard delay-slots).

______________ cycles
5 x 3 = 15

Let’s examine hardware (functional units) usage ...

Non-Pipelined Code

.M1 .M2 .L1 .L2 .S1 .S2 .D1 .D2 1

Cycle

ldh ldh

2 mpy

3 add

4 ldh ldh

5 mpy

6 add

7 ldh ldh

8 mpy

9 add

Pipelining Code

.M1 .M2 .L1 .L2 .S1 .S2 .D1 .D2 1

Cycle

ldh ldh

2 mpy ldh ldh

3 add mpy ldh ldh

4 add mpy ldh ldh

5 add mpy ldh ldh

6 add mpy

7 add

Pipelining these instructions took 1/2 the cycles!

Loop Kernel

Single-cycle “loop”
iterated three times

Pipelining Code

.M1 .L1 .D1 .D2 ldh ldh 1

mpy 2 ldh ldh

add 3 mpy ldh ldh

mpy add ldh ldh 4

add mpy 5 ldh ldh

add 6 mpy

7 add

Prolog

Staging for loop

Epilog

Completing final
operations

Compiler Feedback

 Compiler Gives important feedbacks for optimization in the
assembly file generated with –k option

 Always compile with –s and –mw, as they extra information
to the resulting assembly file

 It is very helpful to determine your optimization direction.

 Take following simple code as example:

int dotp_c(short *a, short *b, int count)

{

 int i;

 int sum = 0;

 for (i=0; i < count; i++)

 {

 sum = sum + a[i] * b[i];

 }

 return(sum);

}

Assembler Options

 -S and -MW Setting

;*--*

;* SOFTWARE PIPELINE INFORMATION

;*

;* Loop source line : 6

;* Loop opening brace source line : 7

;* Loop closing brace source line : 9

;* Known Minimum Trip Count : 1

;* Known Max Trip Count Factor : 1

;* Loop Carried Dependency Bound(^) : 0

;* Unpartitioned Resource Bound : 1

;* Partitioned Resource Bound(*) : 1

;* Resource Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 0 0

;* .D units 1* 1*

;* .M units 1* 0

;* .X cross paths 1* 0

;* .T address paths 1* 1*

;* Long read paths 0 0

;* Long write paths 0 0

;* Logical ops (.LS) 0 0 (.L or .S unit)

;* Addition ops (.LSD) 1 0 (.L or .S or .D unit)

;* Bound(.L .S .LS) 0 0

;* Bound(.L .S .D .LS .LSD) 1* 1*

;*

;* Searching for software pipeline schedule at ...

;* ii = 1 Schedule found with 8 iterations in parallel

;* Done

;*

;* Loop will be splooped

;* Collapsed epilog stages : 0

;* Collapsed prolog stages : 0

;* Minimum required memory pad : 0 bytes

Software Pipeline Feedback

Optimize the example with basic methods

int dotp_c(short * restrict a, short * restrict b, int count)

{

 int i;

 int sum = 0;

 _nassert((int) a % 8 == 0);

 _nassert((int) b % 8 == 0);

 #pragma MUST_ITERATE(8, 400, 8);

 #pragma UNROLL(4)

 for (i=0; i < count; i++)

 {

 sum = sum + a[i] * b[i];

 }

 return(sum);

}

;* Loop source line : 10

;* Loop opening brace source line : 11

;* Loop closing brace source line : 13

;* Loop Unroll Multiple : 4x

;* Known Minimum Trip Count : 2

;* Known Maximum Trip Count : 100

;* Known Max Trip Count Factor : 2

;* Loop Carried Dependency Bound(^) : 0

;* Unpartitioned Resource Bound : 1

;* Partitioned Resource Bound(*) : 1

;* Resource Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 0 0

;* .D units 1* 1*

;* .M units 1* 1*

;* .X cross paths 1* 1*

;* .T address paths 1* 1*

;* Long read paths 0 0

;* Long write paths 0 0

;* Logical ops (.LS) 0 0 (.L or .S unit)

;* Addition ops (.LSD) 1 1 (.L or .S or .D unit)

;* Bound(.L .S .LS) 0 0

;* Bound(.L .S .D .LS .LSD) 1* 1*

;*

;* Searching for software pipeline schedule at ...

;* ii = 1 Schedule found with 10 iterations in parallel

;* Done

;*

;* Loop will be splooped

;* Collapsed epilog stages : 0

;* Collapsed prolog stages : 0

;* Minimum required memory pad : 0 bytes

;*

;* Minimum safe trip count : 1 (after unrolling)

Compiler feedback for the optimized code

The –mh Compiler Option
• –mh<num>. Speculative loads. Permits compiler to fetch (but not store) array elements beyond

either end of an array by <num> bytes. Can lead to:
– Better performance, especially for “while” loops
– Smaller code size for both “while” loops and “for” loops
– Not needed if SPLOOP buffer is used

• Software-pipelined loop information in the compiler-generated assembly file suggests the value of
<num>

• Indicates compiler is fetching 0 bytes beyond the end of an array.
– If loop is rebuilt with –mh56 (or greater), there may be better performance and/or smaller code

size.
– NOTE: Need to pad buffer of <num> bytes on both ends of sections that contain array data

• Alternatively, other memory areas (code or independent data) can be used as pad regions.

;* Minimum required memory pad : 0 bytes

;*

;* For further improvement on this loop, try option -mh56

MEMORY {

 /* pad (reserved): origin = 1000, length = 56 */

 myregion: origin = 1056, length = 3888

 /* pad (reserved): origin = 3944, length = 56 */

}

And if You Don’t Find the GUI?

Agenda

 Optimization preparation

 Basic Optimization methods

 Software Pipeline

 Memory/Cache Optimization

 Other optimization tips and tricks

Memory Optimization

 If Possible, Put all code / data on-
chip

 Best performance, Easiest to
implement

 Shared L2 is the best for code and
read-only data

 Use Multiple Sections

 Keep critical code and data on-chip

 Put non-critical code and data off-chip
• #pragma CODE_SECTION(dotp, “critical”);

• #pragma DATA_SECTION (x, “myVar”);

Cache Optimization

 maximize line reuse before eviction

 Reduce the number of cache misses

 Reduce amount of memory accessed during algorithm

 Improve spatial locality of memory accesses

 Improve temporal locality of memory accesses

 Reduce the penalty (DSP core stall) cycles associated
with misses

 Making use of miss pipelining

 use touch loop, that is, read one word from each line
continuously

 Avoid L1D bank conflict

...

function_1

function_2

...

function_2

...

set (=line)32 Bytes

L1P

L2 SRAM

0

L1P cache set

3: conflict,
line will be evicted

1

2

3

4

5

6

7

8

9

511

0

1

2

3

4

5

6

7

8

9

511

0

1

2

3

4

5

6

7

8

9

511

1: alloacted in L1P

2: alloacted in L1P

4: Solution: Allocate
functions contiguously
in memory

contiguous allocation

L1D Memory Banks

512x32

28 29 30 31

60 61 62 63

512x32

24 25 26 27

56 57 58 59

512x32

20 21 22 23

52 53 54 55

512x32

16 17 18 19

48 49 50 51

512x32

12 13 14 15

44 45 46 47

512x32

8 9 10 11

40 41 42 43

512x32

4 5 6 7

36 37 38 39

512x32

0 1 2 3

32 33 34 35

#pragma DATA_MEM_BANK(a, 0);

#pragma DATA_MEM_BANK(x, 4);

 Only one access allowed per bank per cycle

 Use DATA_MEM_BANK to make sure that arrays that
will be accessed in parallel start in different banks

DATA_MEM_BANK(var, 0 or 2 or 4 or 6)

#pragma DATA_MEM_BANK(a, 0);

short a[256] = {1, 2, 3, …

#pragma DATA_MEM_BANK(x, 4);

short x[256] = {256, 255, 254, …

#pragma UNROLL(2);

#pragma MUST_ITERATE(10, 100, 2);

for(i = 0; i < count ; i++) {

 sum += a[i] * x[i];

}

 An internal memory specialized Data Align

 Optimizes variable placement to account for the way
internal memory is organized

Avoid memory bank issue in code

Potential bank conflict with below code

 LDDW x[i]

|| LDDW a[i]

No bank conflict with below code

 LDDW a[i]

|| LDDW a[i+4]

 LDDW x[i]

|| LDDW x[i+4]

Original code must be unrolled x8 to generate above code

#pragma UNROLL(8)

for(i = 0; i < count ; i++) {

 sum += a[i] * x[i];

}

Agenda

 Optimization preparation

 Basic Optimization methods

 Software Pipeline

 Memory/Cache Optimization

 Other optimization tips and tricks

Generic Optimization Advice

• No “printf” in your key code!

• No “if”, branch, and call in key loop!

• Use peripherals (and coprocessors) to offload unnecessary
tasks from the CorePacs.

• Make sure the loop trip counters are (unsigned) int or long
(32 bit) … and not short (16 bit).

Golden Rule of Software Pipeline

The larger the loop,

the less efficient the optimizer.
If your application code contains very long loops … break the

loop into multiple loops … even if it means storing intermediate

results in L1

Volatile

int *ctrl;

while (*ctrl == 0);

This code may be eliminated by optimizer

Add volatile qualifier to keep it

volatile int *ctrl;

while (*ctrl == 0);

volatile qualifier will disable

optimization on corresponding data

Array and structure

 keep array dimensions to no more than 2
x[][] is enough

 Try to keep structure depths as small as
possible

 x->y->z[i]->w is very inefficient to access

 structure of arrays struct->a[i] are better
than arrays of structure struct[i]->a

Pointers in Structures

 Create local pointers at top-level of function and restrict
qualify pointers instead.

 Use local pointers in function/loop instead of original
pointers.

typedef struct {int *p} _str;

myfunc(_str * restrict s)

{

 // create local pointers at top-level of function

 int * restrict sp = s->p;

 // use sp instead of s->p

 *sp = …

 = *sp

}

int y = g->y;
short *a = g->p->a;

while (y < 25)
{
 a[i++] = …
}

while (g->y < 25)
{
 g->p->a[i++] = …
}

Writing Efficient Code with Structure References

General Tips:

 Avoid dereferencing
structure elements in
loop control and loops.

 Instead create/use local
copies of pointers and
variables when possible.

Original loop:

Hand-optimized Loop:

If Statements

 Compiler will if-convert loops with
small if statements:

Original C code:
if (p)

 x = 5

else

 x = 7

After if conversion:
 [p] x = 5

|| [!p] x = 7

If Statements (cont.)

 Compiler will not if convert large if
statements.

 Compiler will not software pipeline loops
with if statements that are not if-converted.

 For software pipelinability, user must
transform large if statements because
compiler does not know if this is profitable.

;*---

;* SOFTWARE PIPELINE INFORMATION

;* Disqualified loop: Loop contains control code

;*---

Structural Improvements

 Some program and data structures are
better than others

 if-for is better than for-if

 one software pipelines, one doesn’t
for (i=0; i < N; i++)

{

 if (case0)

 do_exec0[i];

 else if (case1)

 do_exec1[i];

 else

 do_exec2[i];

}

if (case0)

 for (i=0; i < N; i++)

 do_exec0[i];

else if (case1)

 for (i=0; i < N; i++)

 do_exec1[i];

else

 for (i=0; i < N; i++)

 do_exec2[i];

Complex control blocks or compromises pipelining

asm(“ ”)

asm() function can be used to execute an assembly statement

in C language.

Normally, it is not recommended to be used. It will break many

optimization methods of compiler.

Below are several special cases:

 for(i=0; i<0x100000; i++) /*delay*/

 {/* without asm(), this loop may be eliminated by optimizer*/

 asm(" nop 5");

 }

 asm(" IDLE"); /*make the DSP core idle to save power*/

 asm(" dint"); /*disable interrupt*/

 asm(" rint"); /*restore interrupt*/

Pay attention to the space between the “ and instructions, it is
compulsory

Optimization Literature

 SPRU187, “TMS320C6000 Optimizing
Compiler User’s Guide”, provides a
complete description of the C/C++
compiler option and how to tune
compiler to generate optimized code.

 SPRU198, “TMS320C6000 Programmer’s
Guide”, provides step by step
procedures to tune code performance
using compiler options and manually
optimization technology on C6000 DSPs.

 SPRA666, “Hand-Tuning Loops and
Control Code on the TMS320C6000”,
provides useful tips and to tune loop and
control code manually.

