

Using Multicore Navigator

Multicore Applications

Agenda

1. Multicore Navigator Architecture Overview
a. Queue Manager Subsystem (QMSS)

b. Packet DMA (PKTDMA)

2. Working Together

3. Configuration

What is Multicore Navigator?

• Multicore Navigator is a hardware mechanism that facilitates
data movement and multicore co-working

• Supports multiple users (players)
– Each core in a multicore system

– High bit-rate peripherals including Serial Rapid I/O (SRIO), Antennae
Interface (AIF2), Network Coprocessor (NETCP), and FFTC

• Users can think of the Navigator as a mailbox mechanism with
many additional and improved functions.

• Designed to be a “fire and forget” system; Load the data and
the system handles the rest, without CPU intervention
– Configuration effort is performed during initialization

– Enables short and fast run-time operation

Preliminary Information under NDA - subject to change

Queue 1..x

Hardware Queue
• Producer writes ‘jobs’ into a Queue.

• Consumer reads ‘jobs’ from the Queue

• Supports Multiple In – Multiple Out

– Multiple Producers can write to the same Queue

 Used to share common Hardware

– Multiple Consumers can read from the same Queue

 Used for Load Balancing

– Example: A master CPU writes ‘Process AMR channel’

into the queue and the next free DSP core (one of many)

or an accelerator can read the job and process it

• Abstracts the Consumer

– Consumer can be a Hardware IP (accelerator,

peripheral) or a software (ie a CPU core)

– Transparent for the Producer

–  ‘Easy’ to upgrade to new hardware. The ‘job gets

done’.

–  Minimize changes to Host software, Easy

maintenance

CPU1

CPU2

CPU3

Packet

Acc.

RapidIO

....

Producer Queue

Manager

CPUx

Acc 1

Acc 2

RapidIO

Peri x

…

Queue

Controller

DMA

Consumer

Send a ‘job’ Retrieve a ‘job’

Multicore Navigator: Typical Use Cases

• Exchanging messages between cores
– Synchronize execution of multiple cores

– Move parameters or arguments from one core to another

• Transferring data between cores
– Output of one core as input to the second

– Allocate memory in one core, free memory from another, without leakage

• Sending data to peripherals

• Receiving data from peripherals

• Load Balancing and Traffic Shaping
• Enables dynamic optimization of system performance

Preliminary Information under NDA - subject to change

Resource Sharing Example

• typical cases for resource sharing is multiple masters request same service,

for example, multiple masters transfer packets through Ethernet, that is,

multiple masters push packets to same TX queue.

Peripheral

Master 1

Master 2
TX

queue

Preliminary Information under NDA - subject to change

Load Balancing Example

• typical case for load balancing is multiple masters process same type of

services, for example, multiple masters process received packets from

Ethernet, that is, multiple masters pop packets from same RX queue.

• If all masters try their best to get packets from the same RX queue, the

loading between masters is balanced automatically.

Peripheral

Master 1

Master 2

RX

queue

Navigator Components

• Hardware-based Queue Manager Sub-System (QMSS)

• Specialized Packet DMAs (PKTDMA)
– NOTE: PKTDMA is commonly referenced in commands and code as CPPI

(Communication Peripheral Port Interface)

– Multiple PKTDMA instances reside within qualified Keystone peripherals
(QMSS, SRIO, NETCP, AIF2, BCP)

Multicore Navigator architecture

DSP coreDSP core

Queue Manage Subsystem

DSP core

Packet

DMA

(SRIO)

Packet

DMA

(NetCP)

Packet

DMA

(FFTC)

Packet

DMA

(BCP)

TeraNet

Accumulation

Memory

Buffer

Memory

.

.

.

Link

RAM
Descriptor

RAM
Queue

Manager

Q1

IF

Q0

IF

Qx

IF

Queue Events

Queue Event Queue Event Queue Event Queue Event

Packet

DMA

(Internal)

APDSP

APDSP

Queue Interrupt

Queue

Interrupts

Packet

DMA

(AIF2)

Queue Event

Queue

Managerqueue

pend

QMSS

Config RAM

Register I/F

VBUS

PKTDMA
(internal)

Timer

Queue Interrupts

APDSP
(Accum)

APDSP
(Monitor)

que pend

Timer

Link RAM
(internal)

Interrupt Distributor

PKTDMA

QMSS: Components Overview
Major HW components of the QMSS:
• Queue Manager

• Two PDSPs (Packed Data Structure
Processors):

– Descriptor Accumulation / Queue
Monitoring

– Load Balancing and Traffic Shaping

• Interrupt Distributor (INTD) module

• Two timers

• Internal RAM for descriptor memory

• PKTDMA that supports all cores

TeraNet

Infrastructure Packet DMA
• The Rx and Tx Streaming I/F of the QMSS

PKTDMA are wired together to enable
loopback.

• Data packets sent out the Tx side are
immediately received by the Rx side.

• This PKTDMA is used for core-to-core
transfers and peripheral-to-DSP transfers.

• Because the DSP is often the recipient, a
descriptor accumulator can be used to
gather (pop) descriptors and interrupt the
host with a list of descriptor addresses.
The host must recycle them.

Queue

Manager

Queue Manager Sub-System

PktDMA

(internal)

APDSP
(Accum)

APDSP
(Monitor)

Streaming

Interface

Rx Tx

Que

Interrupts

que pend

Interrupt Distributor

QMSS: Queues
• Queues are like a mailbox. Descriptors are pushed and popped to

and from queues.

• Navigator transactions typically involve two queues:

– The TX queue of the source

– The RX queue of the destination

• There are 8192 queues within the QMSS (see mapping on next
slide).

• Each queue can be either general purpose queue or associated
with functionality.

• Queues associated with queue pending signals should not be
used for general use, such as free descriptor queues (FDQs).
Others can be used for any purpose.

QMSS: Queue Mapping
Queue Range Count Hardware

Type

Purpose

0 to 511 512 pdsp/firmware Low Priority Accumulation queues

512 to 639 128 queue pend AIF2 Tx queues

640 to 651 12 queue pend PA Tx queues (PA PKTDMA uses the first 9 only)

652 to 671 20 queue pend CPintC0/intC1 auto-notification queues

672 to 687 16 queue pend SRIO Tx queues

688 to 695 8 queue pend FFTC_A and FFTC_B Tx queues (688..691 for FFTC_A)

696 to 703 8 General purpose

704 to 735 32 pdsp/firmware High Priority Accumulation queues

736 to 799 64 Starvation counter queues

800 to 831 32 queue pend QMSS Tx queues

832 to 863 32 Queues for traffic shaping (supported by specific firmware)

864 to 895 32 queue pend vUSR queues for external chip connections

896 to 8191 7296 General Purpose

QMSS: Descriptors
• Descriptors are messages that move between queues and carry

information and data.

• Descriptors are allocated in the memory region (see next slide).

• 20 memory regions are provided for descriptor storage (LL2,
MSMC, DDR).

• 1 or 2 linking RAMs that (link list) index the descriptors (internal
memory to QMSS or other memory)

• Up to 16K descriptors can be handled by internal Link RAM (Link
RAM 0)

• Up to 512K descriptors can be supported in total.

QMSS: Descriptor Memory Regions

All Navigator descriptor memory regions are divided into equal-
sized descriptors. For example:

 Region 1

Region 2

10 desc. x

64 bytes @

5 desc. x

128 bytes @

Memory regions are

always aligned to

16-byte boundaries and

descriptors are always

multiples of 16 bytes.

Linking RAM
• Linking RAM contains 1 entry for each descriptor . Linking

RAM entry is effectively an extension of the descriptor
• Linking RAM stores Forward data pointer that is critical for

the PUSH / POP operations performed by the Queue
Manager

• Linkage between physical address of descriptor and physical
address of Linking RAM is performed inside the QM using
information provided in the Queue Management
configuration registers

• Linking RAM is typically placed in local memory for speed.
This allows data elements to be linked and unlinked in a
queue very quickly, even though the buffers themselves may
be in external memory

• There is no limit to the length of a single queue, only a limit
on the total number of data elements in the system.

• 2 configurable Linking RAM regions

Queue Contents

Linking RAM

0

17

Forward Pointer Table

- - -

- x - -

- - - -

- - - -

- 5 19 x

Queue 0 Queue 1

17

5

19

18

QMSS: Descriptor Types
• Two descriptor types are

used within Navigator:
– Host type provide flexibility, but

are more difficult to use:
• Contains a header with a pointer

to the payload.

• Can be linked together (packet
length is the sum of payload
(buffer) sizes).

– Monolithic type are less
flexible, but easier to use:
• Descriptor contains the header

and payload.

• Cannot be linked together.

• All payload buffers are equally
sized (per region).

Host Packet

Descriptor

payload ptr

buffer link
payload

Host Buffer

Descriptor

payload ptr

buffer link

payload

Monolithic

Descriptor

payload

Descriptor
Queuing

This diagram shows several
descriptors queued together.
Things to note:

• Only the Host Packet is
queued in a linked Host
Descriptor.

• A Host Packet is always
used at SOP, followed by
zero or more Host Buffer
types.

• Multiple descriptor types
may be queued together,
though not commonly
done in practice.

Queue Manager

(N = 0 to 8191)

Queue Packet

De-queue Packet

Host

Packet

Descriptor

(SOP)

Host

Buffer

Descriptor

(MOP)

Host

Buffer

Descriptor

(MOP)

Queue N

Head Pointer

Link

Link

Link

Packet 1

SOP Data

Buffer

Packet 1

MOP Data

Buffer

Packet 1

MOP Data

Buffer

Host

Packet

Descriptor

(SOP)

Packet 3

SOP Data

Buffer

NULL

Monolithic

Packet

Descriptor

Packet 2

Data

Buffer

Pointer

Queue

Link

Host

Buffer

Descriptor

(EOP)

NULL

Packet 1

EOP Data

Buffer

NULL

Descriptor Accumulators
• Accumulators keep polling queues.

• Run in background, interrupts core with list of popped
descriptor addresses.

• Core software must recycle.

• High-Priority Accumulator:

– 32 channels, one queue per channel

– All channels scanned each timer tick (25us)

– Each channel/event maps to 1 core

– Programmable list size and options

• Low-Priority Accumulator:

– 16 channels, up to 32 queues per channel

– 1 channel scanned each timer tick (25 us)

– Each channel/event maps to all cores

– Programmable list size and options

Queue

Manager

mRISC A

(hi acc.)

core

0

core

1

core

2

core

3

Q 705

list

Queue

Manager

mRISC B

(lo acc.)

core

0

core

1

core

2

core

3

list

Q 0..31

Packet DMA (PKTDMA)

Major components for each instance:

• Multiple RX DMA channels

• Multiple TX DMA channels

• Multiple RX flow channels. RX flow defines behavior of the receive side of
the navigator.

Packet DMA (PKTDMA) Features
• Independent Rx and Tx modules:

– Tx module:

• Tx channel triggering via hardware qpend signals from QM.

• Tx control is programmed via descriptors.

• 4 level priority (round robin) Tx Scheduler
– Additional Tx Scheduler Interface for AIF2 (wireless applications only)

– Rx module:

• Rx channel triggering via Rx Streaming I/F.

• Rx control is programmed via an “Rx Flow” (more later)

• 2x128 bit symmetrical Streaming I/F for Tx output and Rx input
– Wired together for loopback within the QMSS PKTDMA instance.

– Connects to matching streaming I/F (Tx->Rx, Rx->Tx) of peripheral

• Packet-based, so neither the Rx or Tx care about payload
format.

Agenda

1. Multicore Navigator Architecture Overview
a. Queue Manager Subsystem (QMSS)

b. Packet DMA (PKTDMA)

2. Working Together

3. Configuration

Packet DMA Control

Understanding
how the
PKTDMAs are
triggered and
controlled is
critical.

tx queue

buffer

buffer

buffer

buffer

tx free queue

Queue Manager

Memory

Switch

push

pop

Peripheral

stream i/f

control

Rx DMA

re
a

d

Tx DMA

The transmit (Tx) DMA is

triggered by a DSP task or

other hardware pushing to a Tx

queue.

The Tx DMA’s actions are

controlled by the fields of the

descriptor.

The receive (Rx) DMA is

triggered by the Streaming I/F.

The Rx DMA’s actions are

controlled by the fields of the

Rx Flow registers used for the

packet being sent.

In Infrastructure (loopback)

mode, certain fields in the Tx

descriptor drive the Rx DMA.

TeraNet

Receive Example
• Rx PKTDMA receives packet data from Rx Streaming I/F.

• Using an Rx Flow, the Rx PKTDMA pops an Rx FDQ.

• Data packets are written out to the descriptor buffer.

• When complete, Rx PKTDMA pushes the finished descriptor to the indicated Rx queue.

• The core that receives the descriptor must recycle the descriptor back to an Rx FDQ.

Queue Manager (QMSS)

buffer

buffer

buffer

buffer

Rx Free Desc Queue

Rx queue

Rx

PKTDMA

pop

push

w
 r i

 t e

Memory

Peripheral

TeraNet SCR

push

pop

Core-to-Core (Infrastructure) Example 1/2
• The DSP (or a peripheral) pushes a descriptor onto a Tx queue of the QMSS PKTDMA.

• The Tx PKTDMA pops the descriptor, sends the data out the Streaming I/F, and
recycles the descriptor.

• The Rx PKTDMA is triggered by the incoming Streaming I/F data and pops an Rx FDQ.

Tx Queue

buffer

buffer

buffer

buffer

Tx

PKTDMA

Tx Free Desc Queue

Queue Manager (QMSS)

Memory

TeraNet SCR

buffer

buffer

buffer

buffer

Rx Free Desc Queue

Rx Queue

Rx

PKTDMA

r e
 a
 d

pop push

pop push

w
 r i

 t e

Memory

Core-to-Core (Infrastructure) Example 2/2
• The Rx PKTDMA then pushes the finished descriptor to an Rx queue.

• If the Rx queue is an Accumulation queue, the accumulator pops queue and
eventually interrupts the DSP with the accumulated list.

• The destination DSP consumes the descriptors and pushes them back to an Rx FDQ.

Tx Queue

buffer

buffer

buffer

buffer

Tx

PKTDMA

Tx Free Desc Queue

Queue Manager (QMSS)

Memory

TeraNet SCR

buffer

buffer

buffer

buffer

Rx Free Desc Queue

Rx Queue

Rx

PKTDMA

r e
 a
 d

pop push

pop push

w
 r i

 t e

Memory

How Does it Work During Run Time?
For example, Core A wants to send a message to Core B.

• Core A picks available descriptor (e.g., message structure) that is
either partially or completely pre-built.
– As needed, Core A adds missing information.

• Core A pushes the descriptor into a queue.
– At this point, Core A is done.

• The Navigator processes the message and sends it to a queue in
the receive side of Core B where it follows a set of pre-defined
instructions (Rx flow), such as:
– Interrupt Core B and tell it to process the message.

– Set a flag so Core B can pull and change a flag value on which Core B
synchronizes.

– Move buffer into Core B memory space and interrupt the core.

• After usage, the receive core recycles the descriptors (and any
buffer associated with) to prevent memory leaks.

Agenda

1. Multicore Navigator Architecture Overview
a. Queue Manager Subsystem (QMSS)

b. Packet DMA (PKTDMA)

2. Working Together

3. Configuration

What Needs to Be Configured?

• Link Ram - Up to two LINK-RAM
– One internal, Region 0, address 0x0008 0000, size up to 16K

– One External, global memory, size up to 512K

• Memory Regions - Where descriptors actually reside
– Up to 20 regions, 16 byte alignment

– Descriptor size is multiple of 16 bytes, minimum 32

– Descriptor count (per region) is power of 2, minimum 32

– Configuration – base address, start index in the LINK RAM, size and
number of descriptors

– The way the region is managed

• Loading PDSP firmware

What Needs to Be Configured?

• Descriptors
– Create and initialize.

– Allocate data buffers and associate them with descriptors.

• Queues
– Initialize FDQ.

– Configure transmit and receive queues.

• PKTDMA
– Configure all PKTDMA in the system.

– Define receive flows.

– Special configuration information used for PKTDMA.

