
KeyStone Training

Serial RapidIO (SRIO) Subsystem

SRIO Overview

• SRIO Overview

• DirectIO Operation

• Message Passing Operation

• Other RapidIO Features

• Summary

Introduction To RapidIO
• Two Basic Modes of Operation:

– DirectIO

• Read/write operations directed to specific memory address

– Transmit device has knowledge of memory map of receiving device

• Functional units:

– LSU (Load/Store Unit)

– MAU (Memory Access Unit)

– Message Passing

• Mailbox and Letter designators

– Transmit device does not need knowledge of memory map of receiving device

• Functional units:

– TXU (Message Transmit Unit)

– RXU (Message Receive Unit)

• Data communication on differential input/output ports

• Overall RapidIO architecture divided into three layers:

1. Physical Layer

• SERDES

• RapidIO Physical layer IP

2. Transport Layer

• Transports packet from physical layer to logical layer protocol units

3. Logical Layer

• Protocol Units (e.g. LSUs, TXU, etc.)

New Features Compared to C64x+
• RapidIO 2.1.1 Compliant / RapidIO 1.2 Compliant

• For ports with options show in the table below:

• Data rates up to 5 Gbaud/ Data rates up to 3.125 Gbaud

• Different ports at different baud rates (Only integer multiple different rates are allowed)

• 24 Interrupt outputs / 8 Interrupt outputs

• 1 MB LSU transaction size with queuing capability/ single 4 KB LSU transaction size

• Type 9 Packet Support (Data Streaming)

• External Type 9 and Type 11 queue management

• Strict priority scheduler / Round-robin scheduler
– Round robin interleaved on a packet basis at a given priority

– Outbound credit-aware functional blocks

• 16 Local DeviceIDs & 8 Multicast IDs / 1 Local DeviceID & 3 Multicast IDs

• Auto-promotion of response priorities by RXU and MAU can now be disabled

• Ability to set the CRF (Critical Request Flow) bit on outgoing requests and responses

P
h

y
s
ic

a
l

L
a
y
e
r

L
o

g
ic

a
l
L

a
y
e
r

SRIO in KeyStone Devices
Data Interface

Configuration Interface

SRIO_M M

SCR_3_F

CPU/3

128b

VBUSM

SCR

SRIO_M M

SRIO_CPPI M

SCR_3_A CPU/3 128b

VBUSM SCR

Wireless Applications Only

Media Applications Only

KeyStone Common

SCR_3P_B

CPU/3 32b

VBUSP SCR

SCR_3P_A

CPU/3 32b

VBUSP SCR

SRIOS

CorePac M

MPU_0

Memory

Protection Unit

Just for muxing

PCIe with SRIO

Message

Passing &

Type 9 Only

Packet Types

New Packet
Type

Supported in
KeyStone

Physical & Logical Layer Considerations
• Tx Buffers

– 16-deep shared buffer for Tx header and 16-deep shared buffer for Tx header + payload packets
– If SRIO is configured for four ports in 1x mode, then 8-deep Tx physical layer buffers are supported.
– If SRIO is configured for two ports in 2x mode, then 16-deep Tx physical layer buffers are supported.
– If SRIO is configured for one port in 4x mode, then 32-deep Tx physical layer buffers are supported.

• Tx Operation
– Getting outbound credit:

• Based on programmed Tx watermarks
• If the watermarks for a packet indicate that minimum “required buffer count” is three and if SRIO is configured for four ports in 1x mode (8-

deep physical layer), then after five buffers are filled, no credit is granted to that PRI of packets.
• If SRIO is configured for one port in 4x mode (32-deep physical layer), then after 29 buffers are filled, no credit is granted to that PRI of

packets.
– Strict priority-based scheduling:

• As illustrated by the example shown below, three protocol units -- LSU0, MAU, and TXU -- have packets to send. The priority of those packets
are 2, 1 and 2 respectively. The scheduler will round robin between LSU0 and TXU to send data. Because LSU0 and TXU have a higher priority,
the transmission of their data must be completed before the scheduler begins to send data from MAU.

• Protocol units know whether they have outbound credit or not. If a protocol unit does not have outbound credit, then it will not be part of
round robin scheduling.

– Data reaches from shared buffer memory to physical layer memory and goes out in the same order unless there is physical layer re-ordering due to
retry or any other condition.

PORT3

PORT2

PORT1

PORT0

RXU

TXU

MAU

LSUx

Shared Buffer for
Header+Payload

Packets

Shared Buffer for
Header only Packets

PBM
Buffers

4 Ports 1x Mode

Physical & Logical Layer Considerations

• Rx Buffers
– 16-deep shared buffer for Rx header and 16-deep shared buffer for Rx header+payload packets
– If SRIO is configured for four ports in 1x mode, then 8-deep physical layer Rx buffers are supported.
– If SRIO is configured for two ports in 2x mode, then 16-deep physical layer Rx buffers are supported.
– If SRIO is configured for one port in 4x mode, then 32 deep physical layer Rx buffers are supported.

• Rx Operation
– Incoming data reaches to physical Layer
– Round Robin pickup from four ports to move to shared buffer
– No priorities are considered while moving from the physical layer buffers to shared buffer

PORT3

PORT2

PORT1

PORT0

RXU

TXU

MAU

LSUx

Shared Buffer for
Payload Packets

Shared Buffer for
Header only Packets

Physical Layer

Buffers
Incoming

Data

4 Ports 1x Mode

Functional Diagram

PORT3

PORT2

PORT1

PORT0

RXU

TXU

MAU

LSUx

Shared Buffer for
Header+Payload

Packets

Shared Buffer for
Header-only Packets

PBM

Buffers

Credit
Manager

PORT3

PORT2

PORT1

PORT0

Shared Buffer for
Payload Packets

Shared Buffer for
Header-only Packets

Physical Layer

Buffers

CAU

PKTDMA

VBUSM
Master

VBUSM
Master

VBUSM
Slave

4 Ports 1x Mode

• SRIO Overview

• DirectIO Operation

• Message Passing Operation

• Other RapidIO Features

• Summary

DirectIO Operation

C66x DirectIO Operations Compared to C64x+

• 8 LSUs / 4 LSUs

• Maximum transaction size (byte_count field) of 1MB / 4KB

– Up to 4K packets of 256 bytes per LSU programming

• Shadow Registers Concept

• 128 outstanding non-posted packets in total, 16 per LSU (not
configurable)

• Auto-generation of doorbell at the end of transfer completion.

– Send doorbell after sending last packet.
OR

– Send doorbell after receiving last response.

– No doorbell is sent if there is an error.

• Restart and flush LSU transactions.

Shadow Registers Example

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

LSU0_REG0

LSU0_REG1

LSU0_REG5

LSU0_REG4

LSU0_REG3

LSU0_REG2

LSU0_REG6

SHADOW 0

SHADOW 1

SHADOW 2

SHADOW 7SHADOW 8

0x02900D00

0x02900D1B

Active Shadow
Register

Constant LSU0

Register

Addresses for

Programming

Shadow Register Combinations
• Same LSU registers, so no memory map

address change.
• Two Shadow Register groups:

– Shadow Group 0 for LSU0 to LSU3
– Shadow Group 1 for LSU4 to LSU7

• Total of 32 shadow registers with a
maximum of 16 per group

• Shadow Register group restrictions:
– Pre-defined combinations of shadow registers per

LSU. The diagram shown here identifies those
combinations.

– Each LSU will have at least one shadow register.
– Maximum of nine shadow registers per LSU

• RIO_LSU_SETUP_REG0 register used for
storing this number for each LSU.

• RIO_LSU_STAT_REG0 set to 2 stores
completion code for each shadow register
set of Shadow Group0.

• Same mechanism applies to Shadow
Group1 for LSU3 to LSU7.

LSU0 – Max 9 to

Min 4

LSU1 – Max 6 to

Min 3

LSU2 – Max 5 to

Min 1

LSU3 – Max 4 to

Min 1

Shadow Group 0

LSU0 – LSU3

Total 16 Shadow

Registers

RIO_LSU_STAT_REG0-2

4-bits

Completion

Code & Context

Bit For Each

Shadow

Register

Shadow Register Pre-defined Combinations

LSU Registers

31:0

LSU_Reg0 RapidIO Destination Address MSB

LSU_Reg1 RapidIO Destination Address LSB/Config_Offset

LSU_Reg2 DSP Source Address

LSU_Reg3
31 30:20 19:0

Drbll_val RSVD Byte_Count

LSU_Reg4

31:16 15:12 11:10 9:8 7:4 3:2 1 0

DestID SrcID_MAP ID_Size OutPortID Priority Xambs Sup_gint Int_Req

LSU_Reg5
31:16 15:8 7:4 3:0

Drbll_Info Hop Count FType TType

LSU_Reg6
(RO)

31 30 29:5 4 3:0

Busy Full RSVD LCB LTID

LSU_Reg6
(WO)

31:28 27 26:6 5:2 1 0

PrivID CBUSY RSVD SrcID_MAP Restart Flush

Doorbell Valid -
Doorbell

represented by
Drbll_Info field will
be sent out at the
end of message.

Identifies which

DeviceID out of 16

Local DeviceIDs is

to be used

LSU shadow

register

number

Context bit for

verifying validity

of completion

code

For checking

availability of

Shadow Register

Suppressing Interrupt

for good completion

and only generating

for error condition

Clearing Busy Condition – In this

example Core0 forgot to release

the LSUx, then Core1 uses

PrivID of Core0 and sets this bit.

Error response will halt the LSU.

Restart will restart LSU from

next shadow register.

Flush discards all shadow

registers with SRCID errors.

Tx Operation: Non-EDMA Mode

Write
LSUx_REG0

2. SETUP
LSUx_REG0-4

Write
LSUx_REG1

Write
LSUx_REG2

Write
LSUx_REG3

Write
LSUx_REG4

Write
LSUx_REG5

3. TRIGGER
TRANSFER

LSUx Lock will
be released &
Busy bit will
get cleared

automatically

Send Data Out

LSU is
Processing

Previous Data
so busy?

No

Wait till LSU is
available

Yes

Read
LSUx_REG6

Full bit = 1?

Busy bit = 1

No

Yes

No Shadow Register

available. Poll till you get

one.

Yes
The LSU is already locked,

so it cannot be used.

LSUx is locked
now. All other
cores will see
LSUx Busy bit
to be 1 now.

1. LOCK LSU

· LTID field indicates

which Shadow

Registers will be used.

· Store LCB bit to verify

the completion code

values in future.

Tx Operation: EDMA Mode
• In this mode, the EDMA programs the shadow registers.

– The LSUx_EDMA bit is available to program this mode in the SETUP register.

– The EDMA programs LSU registers Reg0 to Reg5.

– LSU sends the packet out and the completion generates an interrupt which
triggers the EDMA once again.

• The pre-requisite is that the LSU used by EDMA must not be used by any
other master:

– This eliminates the possibility that the LSU becomes busy by another master, so
reading the busy bit is not required.

– EDMA will be able to use only one shadow register so full-bit checking is also
not required.

– So LSU Reg6 read is not required for EDMA mode of operation.

Rx Operation: MAU
• MAU issues four outstanding VBUSM

transactions (write/read commands):
– Those four cannot be (same SrcID) && (same

DestID) && (same or lower priority).

– One of these three requirements must not be
matching

• If packet is doorbell, then complete all
outstanding transactions and post
interrupt.

• If another doorbell comes and previous
doorbell is not complete, then a RETRY is
attempted on that doorbell.

• Packet Forwarding:
– Incoming packet is moved to the MAU local

buffer first.

– The packet applies for credit. If it gets the
credit, then it will be moved to shared buffer.

– Forwarding traffic and local traffic
mechanisms are separate to avoid conflicts.

Does the
SrcID match the
SrcID of a packet

already in
process?

New packet
received

Does the
DestID match the
DestID of a packet

already in
process?

Yes

 Is the
priority less than

or equal to priority
of packet already

in process?

Yes

Wait for the
VBUSM

command of
any packet to

complete

Try Again

Pending
VBUSM

commands
< 4?

No

No

No

No

Send VBUSM
command for

the packet

End

Start

Rx Operation: MAU Example

PORT3

PORT2

PORT1

PORT0

RXU

TXU

MAU

LSUx

Shared Buffer for
Payload Packets

Shared Buffer for
Header only Packets

Physical Layer

Buffers
Incoming

Data

Incoming Data
goes to Physical
Layer Buffers in
the same order.

Round robin pickup
from all four ports
and then move to
Shared Buffers.

MAU transfers data to
the absolute address

provided in the
packet segments.

• SRIO Overview

• DirectIO Operation

• Message Passing Operation

• Other RapidIO Features

• Summary

Message Passing Operation

C66x Message Passing Operations Compared to C64x+

• 16 Transmit & 16 Receive Channels

• 20 Receive Flows

16 dedicated
Tx queues
for 16 Tx
channels

Queues for 16
Rx channels
are assigned

from this
range.

• Maximum 4 KB message size

• Maximum of 16 segments per message

• 64 receive mapping table entries / 32 in 64x+

• 16 outstanding multi-segment + single
segment non-posted messages / 4 multi-
segment & 12 single-segment in 64x+

C66x Message Passing Operations Compared to C64x+

Rx Protocol-Specific Part of Descriptor

• All fields are same as previous devices. No extra
fields have been added here.

• Message size is not part of the SRIO-specific
descriptor fields, but instead is located in one of
the general descriptor words.

• One Rx descriptor/buffer per Type 11 message

Rx Operation

RXU

RX CHANNEL 0FLOW 0

FLOW 19

RX CHANNEL 1

RX CHANNEL 2

RX CHANNEL 14

RX CHANNEL 15

DESTINATION
MEMORY

FREE
DESCRIPTOR
QUEUE

PKTDMA

SRIO

B
U

F
 0

B
U

F
 1

B
U

F
 2

B
U

F
 3

TX CHANNEL 0

TX CHANNEL 1

TX CHANNEL 2

TX CHANNEL 14

TX CHANNEL 15

TXU

TRANSMIT QUEUE # 672

TRANSMIT QUEUE # 686

TRANSMIT QUEUE # 674

TRANSMIT QUEUE # 673

TRANSMIT QUEUE # 687

GENERAL PURPOSE DEST QUEUE

GENERAL PURPOSE DEST QUEUE

GENERAL PURPOSE DEST QUEUE

FLOW 1

FLOW 18

RXU identifies Free
Channel/Segmentation
Context and sends data

along with FlowID &
Dest_QID to PKTDMA.

2

PKTDMA channel
identifies Free

Descriptor Queue from
the FlowID received

from SRIO.

3

CDMA pops descriptor
from Free Descriptor
Queue, each of which

uses different size
buffers. The CDMA

chooses based on the
message size.

4

PKTDMA pushes
used descriptor to
Destination Queue.

6

RXU identifies SrcID,
DestID, Letter & Mailbox

from incoming packet
and maps to FlowID and

Dest_QID.

1

PKTDMA writes data to
Destination Memory
pointed to by Free
Buffer Descriptor.

5

Tx Protocol-Specific Part of Descriptor

• All fields are same as previous devices. No extra
fields have been added here.

• Message size is not part of the SRIO-specific
descriptor fields, but instead is located in one of
the general descriptor words.

• One Tx descriptor/buffer per message

TX Operation

RXU

RX CHANNEL 0FLOW 0

FLOW 19

RX CHANNEL 1

RX CHANNEL 2

RX CHANNEL 14

RX CHANNEL 15

DESTINATION
MEMORY

FREE
DESCRIPTOR
QUEUE

PktDMA

SRIO

B
U

F
 0

B
U

F
 1

B
U

F
 2

B
U

F
 3

TX CHANNEL 0

TX CHANNEL 1

TX CHANNEL 2

TX CHANNEL 14

TX CHANNEL 15

TXU

TRANSMIT QUEUE # 672

TRANSMIT QUEUE # 686

TRANSMIT QUEUE # 674

TRANSMIT QUEUE # 673

TRANSMIT QUEUE # 687

GENERAL PURPOSE DEST QUEUE

GENERAL PURPOSE DEST QUEUE

GENERAL PURPOSE DEST QUEUE

FLOW 1

FLOW 18

1
Prepare Tx descriptor after

popping them from Free
Descriptor Queue

Configure the Tx channel
for Tx recycle Queue and

Priority

2

Configure SRIO for
linking Tx

Channel/Queue with
Output Port#

3

Push Descriptor on
Respective Tx Queue

4
Respective Channel will
read Descriptor & Pull

data from Memory

5

TXU Requests Protocol Specific

Descriptor Info (header) & asks Credit

Manager to assign Credit, if it does not

have credit then TXU will try another

channel’s packet

6

As soon as TXU gets credit it

reads packet data from

Channel & writes to Tx

Shared Buffers

7

TXU Scheduling
• TXU scheduling requires that a TX queue be dedicated to an outbound port

and priority.

• For example:

– Two active channels/queues

– One port 4X mode, so all queues are going to the same output port.

– Queue 1 uses Priority 1 and has something to send.

– Queue 2 uses Priority 1 + CRF bit and has something to send.

– Queue 2 is scheduled first and starts to send packets.

– During the 5th packet segment transfer when the TXU is moving data to the
physical layer, TX buffer Queue 3 becomes active and has Priority 2.

– When Queue 2 is done moving the 5th segment to the physical layer, TXU will
begin reading the header info from Queue 3 and subsequently start sending
packets from Queue 3.

– Only after TXU finishes all of the message from Queue 3 will it attempt to go back
and send the remaining packets from Queue 2, finally followed by Queue 1 if
nothing else of higher priority has shown up in the meantime.

• SRIO Overview

• DirectIO Operation

• Message Passing Operation

• Other RapidIO Features

• Summary

Other RapidIO Features

Interrupt Destinations

• 24 Interrupt
Destinations (INTDST0
to INTDST23)

• INTDST16 to INTDST23
are only for Doorbell
interrupts

• No Interrupt pacing on
INTDST16 to INTDST23

CorePac 0

CP_INTC1

CorePac 3

CorePac 2

CorePac 1

TPCC 1

INTDST 16 &
INTDST 20

(Doorbell Only)

INTDST 0 TO
INTDST 23 (i.e.
ALL INTDSTx)

TPCC 2

CP_INTC0

INTDST 19 &
INTDST 23

(Doorbell Only)

INTDST 18 &
INTDST 22

(Doorbell Only)

INTDST 17 &
INTDST 21

(Doorbell Only)

INTDST 0 TO
INTDST 15

Interrupt Registers
• Three sets of registers route events to INTDSTx:

– ICSR (Interrupt Condition Set Register)

– ICCR (Interrupt Condition Clear Register)

– ICRR (Interrupt Condition Routing Register)

• Doorbell has one special register -- RIO_INTERRUPT_CTL -- which has DBLL_ROUTE
bit to decide whether Doorbell ICRR represents (INTDST0 to INTDST15) OR (INTDST16
to INTDST23).

• Doorbell events in Doorbell ICSR are same as previous devices.

• Error events in Error ICSR is same as previous devices.

• LSU events are referenced by SrcID (non-EDMA mode). As KeyStone has 16 local
device ID registers, LSU events shows whether a transaction for a particular srcID is
complete with Success or Error. Software controlled mapping of srcID error with a
particular transaction from a particular LSU is required.

• LSU events with respect to PrivID (EDMA mode)

SRIO LLD

• DirectIO, Type 9 and Type 11 packets support

• APIs With Sequence Of Operations

– SRIO Peripheral Initialization – Srio_init ()

– SRIO Driver Instance Initialization – Srio_start ()

• Initialize Receive & Transmit memory regions for descriptors

• Creates & Enables CDMA Channels & link them with respective queues

– SRIO Socket Open – SRIO_sockOpen ()

• Specify Packet Type

• Blocking or Non-blocking during Rx Operation

– Same way SRIO_sockClose ()

– SRIO Socket Bind – SRIO_sockBind ()

• Socket Bind is applying RXU mapping entries

• So max sockets are max RXU mapping entries which is 64

– Send API – SRIO_sockSend ()

• Triggers Tx operation with input data pointer, input data size and Destination info (e.g. Mailbox, letter)

– Receive API – SRIO_sockRecv ()

• Triggers Rx operation with receive buffer pointer, receive socket

Summary
• C66x SRIO has been enhanced to deliver:
– Higher performance

– New transaction types

– Less required CPU interaction per transaction

– Better deterministic scheduling

– More flexibility and system support with increased
number of IDs

• For more information:
– Serial RapidIO (SRIO) for KeyStone Devices User

Guide

– Support forums at the TI E2E Community and Deyi
forum website

http://www.ti.com/lit/SPRUGW1
http://www.ti.com/lit/SPRUGW1
http://www.ti.com/lit/SPRUGW1
http://www.ti.com/lit/SPRUGW1
http://www.ti.com/lit/SPRUGW1
http://e3e.ti.com/
http://www.deyisupport.com/question_answer/dsp_arm/c6000_multicore/default.aspx
http://www.deyisupport.com/question_answer/dsp_arm/c6000_multicore/default.aspx

