1 案例描述
在调试过程中，当MPC8377把所要加载的程序通过PCIE加载到C6678相应的内存地址时，发现6678没有启动。可是按照以往的经验，只要向C6678的MAGIC_ADDR写上程序入口地址时，C6678应该就会根据写入的程序入口地址，从该地址运行程序。
首先我们怀疑的是MPC 8377没有正确的把代码拷贝到C6678的相应位置，我们随机挑选了几个内存地址存放的值，然后用仿真器连接C6678，查看相应位置的值，发现和所存放的值反了，后来想到MPC8377是PPC架构，所用的是大端数据，而6678用的是小端数据，发现错误后，在MPC 8377端改写了PCIE加载程序，改完以后加载C6678，可是加载完以后程序还是没有执行，再用仿真器查看内存地址，这下内存地址所放的值和所要加载的值一模一样了，可是为什么程序还是没有运行呢！为了进一步验证代码加载的没有错误，我们用PCIE加载C6678代码，用仿真器连接C6678，通过仿真器强行把PC指针指向程序入口地址，运行C6678，程序运行起来了。这下可以断定PCIE加载程序没有错误，到底哪里出了错？
调试到这里想到了一开始熟悉C6678资料时，文档中有提到过IBL的存在，当时产生过怀疑，但是后来在C6678研讨会上，TI技术支持回答说在使用PCIE加载时不需要IBL。可是调试到现在确实出现了问题，发邮件给TI技术支持，他们答复说PCIE加载启动不需要IBL的参与，这下又晕了。调试了几天后来实在没办法了（调试不出来，资料上明明有IBL的存在）。在E2E网站上，询问了TI的工程师，他们解释说他们的PG1.0芯片存在PLL BUG，必须要在PCIE加载之前运行一段初始化程序（IBL）。这下好了，果真需要 IBL，什么是IBL，它到底有什么作用？
2 案例分析
这里我们首先介绍一下IBL的相关知识。
2.1 IBL简介
IBL: 1st stage and 2nd stage Bootloader for booting an application from the NOR/NAND flash or Ethernet over I2C EEPROM.
在TI的EVM板上，IBL被存放在地址为0x51的EEPROM中，因为PG1.0芯片存在PLL BUG(refer to C6678 errata document, February 2011, advisory 8),IBL 做了一个PLL复位的规避程序。
我们的APU2板子，设计使用PCIE启动方式，因为芯片PG1.0存在PLL BUG，所以当PCIE把代码拷到C6678指定位置并且把代码的启动地址写入幻象地址，C6678没法自己运行代码。所以用PCIE启动时，C6678的幻象要用IBL来检测。
2.2 IBL运行流程
在EVM板上面，C6678的bootmode PIN是有FPGA控制的。用户配置启动方式的开关是连接到FPGA上的，有FPGA采集bootmode PIN的配置。

IBL流程：（这边主要介绍针对PCIE启动方式）
1. FPAG采样bootmode pins。
2. FPGA 强制 DSP 从地址为0x51的EEPROM启动。
3. PLL通过EEPROM中的IBL正确初始化。
4. IBL从FPGA的寄存器中读取采集来的启动模式。
5. IBL判断启动模式，如果它不是I2C启动或是从地址为0X50的I2C启动，IBL写bootmode值到DEVSTAT。
6. 然后IBL判断bootmode，如果是PCIE启动，IBL执行一些PCIE规避程序去配置PCIE寄存器，然后进入while（1）循环，侦测幻象地址。
2.3 IBL代码解读
IBL被设计为2段bootloader，iblinit.c和iblmain.c，两个文件中都有mian函数。iblinit.c主要用来进行PLL初始化，版本1.0芯片的PLL BUG规避（我们PCIE启动的话主要在这个阶段完成）。Iblmain.c主要是处理NAND/NOR/TFTP启动（The ibl main is the main bootlaoder that does pulls ELF data from the boot device (NAND/NOR/TFTP ..) and launches it.）
1.在iblinit.c中的mian（）
根据makefile的编译参数进行SPINor或I2C的初试化，然后进行C6678 PLL配置等。
然后进入iblEnterRom ()函数：
2. 在c66xinit.c中的iblEnterRom ()
这个函数主要进行C6678的DEVSTAT寄存器的设置，程序读取FPGA采集到的bootmode来对DEVSTAT寄存器（描述启动方式的寄存器）的设置，并且判断是否为PCIE启动，如果是进行PCIE BUG规避程序iblPCIeWorkaround();
3.在 c66xinit.c中的iblPCIeWorkaround（）
这个函数主要配置一些PCIE寄存器，并对PCIE BAR寄存器进行配置，配置完以后，IBL等待PCIE的boot启动：
 /* Wait for the Boot from Host */

 DEVICE_REG32_W(MAGIC_ADDR, 0);

waitForBoot(MAGIC_ADDR);

4.在c66xinit.c中的waitForBoot（）函数；
void waitForBoot(UINT32 MAGIC_ADDR)

{
void (*exit)();

 UINT32 i, entry_addr;

 while(1)

 {

 entry_addr = DEVICE_REG32_R(MAGIC_ADDR);

 if (entry_addr != 0)

 {

 /* jump to the exit point, which will be the entry point for the full IBL */

 exit = (void (*)())entry_addr;

 (*exit)();

 }

 for (i=0; i < 100; i++)

 asm("nop");

}

}
IBL在进行while（1）死循环等待MAGIC_ADDR被PCIE写上entry_addr。一旦PCIE把程序加载完成，并把程序的entry_addr写到MAGIC_ADDR上，c6678就跳转到entry_addr的地址，执行PCIE加载的程序，PCIE boot 完成。
这里对IBL的解读只是针对PCIE启动没有涉及Nand，Tftp等启动方式（没有运行iblmain.c的boot程序）。
3 解决过程
通过上面对IBL的介绍，我们可以清楚的了解C6678是怎样通过PCIE来加载程序的，有了这些了解，对于解决PCIE加载无法自启动就简单多了，我们和EVM板的区别在于EVM板上面有FPGA，它要支持多种启动方式，而我们的单板上面没有FPGA，但是我们不需要支持多种启动方式。
现在摆在我们面前的有两种方案：
1. 自己编写类似IBL的程序，然后烧写到EEPROM，通过I2C加载。
2. 修改TI提供的IBL，然后烧写到EEPROM，通过I2C加载。
我们选择了2方案，如果使用TI提供的IBL，调试会相对简单，TI提供了烧写EEPROM和编译IBL的方法和工具，而且IBL也不是太复杂，修改起来也比较方便。我们只需要IBL来引导PCIE加载，所以我们不需要FPGA来采集C6678的启动方式，我们可以根据板子具体的要求修改c66xinit.c中的iblEnterRom ()函数，把FPGA采集启动方式的代码去掉，把它强制设成从PCIE启动，并根据要求修改EVSTAT寄存器的值。
4 解决结果
把修改完的IBL烧写到EEPROM中，然后通过PCIE加载C6678，当代码加载完毕，把代码的启动地址写入幻象地址，C6678运行正常。
