TI C6727 没有提供专门的外部中断引脚，使用McASP AMUTEIN引脚作为外部中断引脚，利用McASP的AMUTEiN事件触发dMAX，使dMAX产生相应的中断递交给CPU (可用中断：INT9,INT10,INT11,INT12,INT13,INT15)。
详细步骤如下：
1， 配置CFGMCASPx寄存器，选择AMUTEINx引脚
可选引脚：
000 = Select the input to be a constant '0'

001 = Select the input from AXR0[7]/SPI1_CLK

010 = Select the input from AXR0[8]/AXR1[5]/SPI1_SOMI

011 = Select the input from AXR0[9]/AXR1[4]/SPI1_SIMO

100 = Select the input from AHCLKR2

101 = Select the input from SPI0_SIMO
110 = Select the input from SPI0_SCS/I2C1_SCL

111 = Select the input from SPI0_ENA/I2C1_SDA

2， 将上一步选择的相应管脚配置为GPIO 输入引脚
3， 在相应McASP模块中，禁止AMUTEIN信号驱动AMUTE输出，通过将AMUTE寄存器的INEN位清“0”来实现。
4， 配置dMAX (SPRU795d)
1） 配置DEPR寄存器，选择上升沿或下降沿触发
2） 配置DEHPR或DELPR寄存器，选择高优先级或低优先级
3） 配置EVENT ENTRY，选择中断号，将其保存在对应的Param位置
4） 配置DEER寄存器，使能相应的dMAX事件
5， 配置中断(SPRU733A)
修改中断向量表，将相应中断的跳转地址改为对应的中断服务程序（也可通过程序实现），然后使能相应中断：
1） 禁止全局中断 CSR.GIE = 0
2） 使能相应中断 IER.IEn = 1
3） 使能NMI中断 IER.NMIE=1
4） 使能全局中断 CSR.GIE=1
6， 加入C6727补丁（非常重要！！）
在CMD文件或编译选择的LINKER配置中加入以下两句：
-l "c672xSystemPatchV2_00_00.lib"
-l "applySystemPatch.obj"
7，编译，运行
测试，AMUTEN0/1/2均可成功触发所有dMAX支持的中断，三个中断同时工作也正常。
配置代码：
void ExtIRQInit(){
/* step1：configure the CFGMCASPx register to select the external pin to be used as AMUTEINx*/
CFGMCASP0 = 0x2; /* Select the input from AXR0[8]/AXR1[5]/SPI1_SOMI */
CFGMCASP1 = 0x3; /* Select the input from AXR0[9]/AXR1[4]/SPI1_SIMO */
CFGMCASP2 = 0x1; /* Select the input from AXR0[7]/SPI1_CLK */
/* step2: configure the specific pins function as GPIO input */
McASP_regSet(0,PFUNC,0x00000380); /* set AXR0(7),AXR0(8),AXR0(9)as GPIO*/
McASP_regSet(0,PDIR,0x00000000); /* set AXR0(7),AXR0(8),AXR0(9)as INPUT*/
McASP_regSet(0,AMUTE,0);
/* step3: configure dMAX to generate a CPU interrupt */
dMAX_init();
/* step4: plug the ISR the the interrupt and enable the interrupt */
IRQ_setVecs(vectors); /* point to the IRQ vector table */
IRQ_globalDisable(); /* Disable global interrupts */
IRQ_plug(IRQ_10,hopisr1); /* Plug the ISR to INT */
IRQ_enable(IRQ_10); /* Enable individual interrupt */
IRQ_plug(IRQ_11,hopisr2); /* Plug the ISR to INT */
IRQ_enable(IRQ_11); /* Enable individual interrupt */
IRQ_nmiEnable(); /* Enable NMI interrupt */
IRQ_globalEnable(); /* Enable global interrupts */
}
void dMAX_init(){
volatile Uint32 *hdMAX;
/* first disable all event */
dMAX_regSet(DEDR,0xFFFFFFFF);
dMAX_regSet(DEFR,0xFFFFFFFF);
/* trigger an event on rising edge */
dMAX_regSet(DEPR,(0x1<<26)|(0x1<<27)|(0x1<<28));
/* put event into high-priority guoup */
dMAX_regSet(DEHPR,(0x1<<26)|(0x1<<27)|(0x1<<28));
/* define event entry */
hdMAX = (volatile Uint32*)dMAX_EE_ADDR_HIMAX;
hdMAX[26] = dMAX_EE_INT_RMK(dMAX_EE_INT_INT9,dMAX_EE_ETYPE_INT);
hdMAX[27] = dMAX_EE_INT_RMK(dMAX_EE_INT_INT10,dMAX_EE_ETYPE_INT);
hdMAX[28] = dMAX_EE_INT_RMK(dMAX_EE_INT_INT11,dMAX_EE_ETYPE_INT);
/* enable dMAX event */
dMAX_regSet(DEER,(0x1<<26)|(0x1<<27)|(0x1<<28));
}
