{? TEXAS Application Report
INSTRUMENTS SPRAG33 - March 2000

TMS320C6000 McBSP: UART

Todd Hiers Digital Signal Processing Solutions
Rebecca Ma
Philippe Malleth

ABSTRACT

This document describes how to use the multichannel buffered serial port (McBSP) in the Texas
Instruments (TIO) TMS320C6000 digital signal processors (DSP) to interface to a universal
asynchronous receiver/transmitter (UART). Descriptions of the hardware configuration and
software routines necessary for proper functionality are included.

The McBSP is not capable of supporting UART standards natively. However, by simple
modification of the serial control registers, there are two methods in which the McBSP can be
configured to receive and transmit data that is understandable to an UART. The McBSP can
be used in either the serial port mode or the general purpose input/output mode. This
application report discusses both methods. In addition, this application report demonstrates
the hardware interface between the McBSP and a UART.

Contents
DESIgN ProblemM o e 2
OV IV W . .ottt e e e 2
UART Interface Method 1: McBSP in Serial Port Mode 3.
3.1 MCcBSP Setup: Serial Port Implementation i 3
3.2 Receiving/Transmitting UART Datat e 7
4 UART Interface Method 2: MCBSP in GPIO Mode i e 8
4.1 McBSP Setup: GPIO Implementationttt e e e 8
4.2 GPIO UART SOftWarttt e e e e e e e et 9
4.2.1 SoftUartSpeedDetect—Subroutine for Auto-Baud Detection 9
4.2.2 SoftUartinchar—Subroutine for UART Data Receive 10
4.2.3 SoftUartOutchar—Subroutine for UART Data Transmit 11
5 Hardware UART Adapter for the C6000 ProCeSSOrsviiiiii ittt 11
B CONCIUSION .. 12
T REIEIBNCES ..o e e 12
Appendix A Sample C Code: Serial Port Mode 13
Appendix B Sample C/Assembly Code: GPIO Mode i 23

Tl is a trademark of Texas Instruments Incorporated.

{'? TEXAS

SPRA633 INSTRUMENTS
List of Figures
Figure 1. UART TiMINg . ..ottt e e e e e e e e e e e e e e e e 2
Figure 2. UART Connection—Serial Port Implementation 3
Figure 3. McBSP Transfer in UART 8NL MOOEot e 4
Figure 4. Pin Control Register (PCR)ot e e e e e e e e e e 4
Figure 5. Pin Control Register (PCR) i e e e e e e e 5
Figure 6. Transmit Control Register (XCR) i e 5
Figure 7. Sample Rate Generator Register (SRGR) i e 5
Figure 8. Block Data Processing Transmit Buffer i i 7
Figure 9. UART Connection — GPIO Implementation 9
Figure 10. Serial Port Control Register i e e e 9
Figure 11. Pin Control RegiSter e e e 9
Figure 12. UART Auto-Baud Detection i e et et e e e 10
Figure 13. SoftUartinchar UART Data Fetch i 10
Figure 14. UART Adapter Boardt e e 12
List of Tables
Table 1. Bit-Field Values for MCBSP RegiSters i e 6
Table 2. Configuration of MCBSP Pins as GPIOt e 8

1 Design Problem

How can the multichannel buffered serial port (McBSP) in a TMS320C6000 digital signal
processor be used for transmitting data to and receiving data from an UART?

2 Overview

The Universal Asynchronous Receiver/Transmitter (UART) standard is a well-established
protocol for the exchange of serial data. Since it is asynchronous, the communications link
requires no clock signal to be transmitted. Instead, the receiver and transmitter each have their
own serial clocks that run at a preset frequency. The UART transmission protocol includes start
and stop bits to help the receiver synchronize to the incoming data. The UART timing
specification is shown in Figure 1. A high-to-low transition on the data line signifies the beginning
of a transmission. After this Start condition, the data bits are sent serially with the LSB (Least
Significant Bit) first. The parity bit is optional, depending on the UART format. Each data frame
ends with the Stop bit (logic high).

Data

16 Cycles

CLK

Figure 1. UART Timing

2 TMS320C6000 McBSP: UART

{f’ TEXAS

INSTRUMENTS

SPRA633

3.1

To interface an UART to the RS-232 Port of the computer, the data signal needs to go through a
RS-232 level converter to translate from the CMOS logic levels to the RS-232 logic levels. The
RS-232 logic levels use +3 to +25 volts to signify a “Space” (logic 0) and -3 to —25 volts for a “Mark”
(logic 1). Any voltage in between these regions (i.e. between +3 and —3 Volts) is undefined.

The McBSPs on the C6000 devices are synchronous serial ports, and are not capable of
interfacing to an UART natively. UART functionality can be implemented in software, however.
This application report discusses two methods to interface an UART to the McBSP. The first
method uses the McBSP in normal serial port mode. The second method uses the McBSP in
general purpose input/output mode.

UART Interface Method 1: McBSP in Serial Port Mode

To interface an UART to the McBSP in serial port mode, the UART’s transmit data line is
connected to both the data input and the frame synchronization input on the McBSP. This is
because the UART serial data line contains both framing and data information. The UART's
receive data line is connected to the data output of the McBSP. Figure 2 illustrates the UART to
McBSP connection.

By using the McBSP’s internal sample rate generator to clock itself, the McBSP can be
configured to receive and transmit each UART bit as a 16-bit word. Software must expand each
bit to be transmitted to a 16-bit word and compress each 16-bit word received to a single bit, as
well as handle the necessary framing data.

UART McBSP
TXT DR
FSR
Rx|— DX

Figure 2. UART Connection—Serial Port Implementation

McBSP Setup: Serial Port Implementation

The C6000 McBSP treats each UART bit as a 16-bit word. The sample rate generator is
configured to create an internal serial clock of 16 times the serial baud rate, thus duplicating the
UART’s internal timing. Since each UART word starts with a falling edge to indicate the start bit,
this edge can be used as the active-low frame sync input. This is why both the data and frame
sync inputs are connected to the UART’s output.

To send a byte to an UART in 8N1 mode (eight data bits, no parity bit, and one stop bit), the
transfer should be in two phases, one consisting of 9 16-bit words and the other of two 8-bit
words. Figure 3 shows the McBSP in 8N1 mode. The first half of the frame corresponds to the
start bit and the eight data bits, and the second half of the frame is the stop bit. Other UART
modes can be accommodated by adjusting the frame word counts. When transmitting single
UART bits as 16-bit words, ‘1’ UART bits are encoded as 0xffff and ‘0’ UART bits are encoded
as 0x0000. The stop bit should be encoded in 8 bit words to allow for easy modification to the
1.5 stop bits setting in other UART modes, if desired.

TMS320C6000 McBSP: UART 3

{'? TEXAS

SPRA633 INSTRUMENTS
Phase 1 Phase 2

9 x 16-bit words 2 x 8-bit words

16 Baud Rate Clocks

CLKR / CLKX *

* CLKR and CLKX pins are generated internally by the sample rate generator, but are not used for UART interface.

Figure 3. McBSP Transfer in UART 8N1 Mode

Several McBSP parameters have to be configured for the UART connection. Figure 4 through
Figure 7 show the McBSP registers setup. The values in the shaded bit-fields are “don’t cares”.
Table 1 summarizes the McBSP setup.

e Pin Control Register (PCR)

— FSXM = 1. This allows the sample rate generator to control the beginning of transmit frames.
— FSRM =0 and FSRP = 1. The active-low start bit is the frame sync input to the McBSP.
— CLKRM = CLKXM = 1. Internal sample rate generator generates the serial clock.

31 16
| 0x0000 |
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o JoJojJsfof s+ |+ Jof o | o | o JofJzrfo o |
rsv XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS STAT DX STAT DR_STAT FSXP FSRP CLKXP CLKRP

Figure 4. Pin Control Register (PCR)

* Receive/Transmit Control Registers (RCR/XCR)
— R/XPHASE = 1. Enable dual-phase frame mode.
— R/XFRLENL1 = 8. Nine elements in the first phase of the frame.
— R/XFRLEN2 = 1. Two elements in the second phase of the frame.
— R/XWDLEN1 = 2. 16-bit words in the first phase (Start bit, data bits).
— R/XWDLENZ2 = 0. 8-bit words in the second phase (Stop bit).

— RI/XFIG = 1. For reception, since data line transitions are seen on the FSR pin,
unexpected frame sync signals must be ignored. For transmission, since the transmit
frame sync signal FSX is generated on every DXR-to-XSR copy (see SRGR setup
below), it occurs more frequently than desired for an UART frame. Unexpected frame
syncs are ignored.

4 TMS320C6000 McBSP: UART

{f’ TEXAS

INSTRUMENTS SPRA633
31 30 24 23 21 20 19 18 17 16
| 1 1 | 000 | 00 1 0 |
RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY
15 14 8 7 5 4 0
| 0 1000 | 010 | 0 |
Reserved RFRLEN1 RWDLEN1 Reserved
Figure 5. Pin Control Register (PCR)

31 30 24 23 21 20 19 18 17 16
| 1 1 | 000 | 00 1 0 |
XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

15 14 8 7 5 4 0
| 0 1000 | 010 | 0 |
Reserved RFRLEN1 RWDLEN1 Reserved

31

Figure 6. Transmit Control Register (XCR)

e Sample Rate Generator Register (SRGR)

30

FSGM = 0. The transmit frame sync signal (FSX) is generated on every DXR-t0-XSR

copy.

CLKSM = 0 if the sample rate generator clock is derived from an external clock on the
CLKS pin. CLKSM = 1 if the sample rate generator clock is derived from the internal CPU

clock.

CLKGDV = (CPU Clock frequency) / (16 * baud rate) — 1.

The clock divide ratio must be appropriately set so that the rate generated is 16 times the

baud rate. For example, a CPU clock frequency of 200 MHz and a desired baud rate of
115,200 bps would result in an approximate CLKGDV value of 108. Note that when the

sample rate generator clock is derived from the internal clock source, you may not be able

to get a serial clock that is exactly 16 times the desired baud rate. In addition, the limited
size of the CLKGDV field creates a minimum baud rate that the serial port is capable of

clocking. If a baud rate slower than the minimum or an exact baud rate is desired, you
should use an external clock on the CLKS pin to drive the sample rate generator.

29

28

27

16

0

0

1

| o

GSYNC CLKSP CLKSM

15

FSGM

FPER

0

108

FWID

CLKGDV

Figure 7. Sample Rate Generator Register (SRGR)

TMS320C6000 McBSP: UART

{'.f TEXAS

SPRA633 INSTRUMENTS
Table 1. Bit-Field Values for McBSP Registers

Register Value

[Bit-Field No.] Bit-Field Name (in Binary) Function

RCR[31] RPHASE 1 Dual Phase Receive

RCR[30-24] RFRLEN2 1 2 word Receive Frame Length (Phase 2)
RCR[23-21] RWDLEN2 000 8 bits Receive Word Length (Phase 2)
RCR[18] RFIG 1 Unexpected FSR ignored

RCR[14-8] RFRLEN1 1000 9 word Receive Frame Length (Phase 1)
RCR[7-5] RWDLEN1 010 16 bits Receive Word Length (Phase 1)
XCR[31] XPHASE 1 Dual Phase Transmit

XCR[30-24] XFRLEN2 1 2 word Transmit Frame Length (Phase 2)
XCR[23-21] XWDLEN2 000 8 bits Transmit Word Length (Phase 2)
XCR[18] XFIG 1 Unexpected FSX ignored

XCR[14-8] XFRLEN1 1000 9 word Transmit Frame Length (Phase 1)
XCR[7-5] XWDLEN1 010 16 bits Transmit Word Length (Phase 1)
SRGR[28] FSGM 0 FSX generated on DXR-to-XSR copy
SRGR[7-0] CLKGDV 1101100 (108) CLKX = CPU clock divided by 109
PCR[11] FSXM 1 FSX is output pin

PCR[9] CLKXM 1 CLKX is output pin

PCR[8] CLKRM 1 CLKR is output pin

6 TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

3.2 Receiving/Transmitting UART Data

Once the serial port has been configured to interface to an UART, the software routines that do
the necessary data conversions must be implemented. When using the McBSP in serial port
mode, there are two possible software implementations. You can either process the UART data
word-by-word or in blocks. This application report discusses the more efficient implementation of
the two—UART data processing in blocks. With simple modification, the software can handle
word-by-word data processing.

The sample C program in Appendix A shows block UART data processing. In this
implementation, the DMA services the McBSP by transferring data between the McBSP and the
receive and transmit buffers. For the ‘C6211/6711 device, replace the subroutine run_dma() with
run_edma() to set up the EDMA instead of the DMA to service the McBSP.

For transmits, a transmit conversion subroutine converts a block of data into UART transmission
words by expanding each data bit into a 16-bit word. The transmit conversion subroutine places
this block of transmission words in a transmit buffer, along with the framing Start (0x0000) and
Stop (Oxffff) bits in the proper locations. Figure 8 shows an example transmit buffer. Afterward,
the DMA is setup to transfer the data from the transmit buffer to the McBSP. Since the data in
the transmit buffer is already in the proper UART format, the McBSP frame sync generator can
be used to continuously shift out this data.

Example 8-Bit Word
Before Conversion Transmit Buffer

0x0000 (Start)
[£[ofofo][o]2 [0} T 00000 00)
‘ ‘ P 0xFFFF (D1)
P{ 0x0000 (D2)
P| OxFFFF (D3)
P{ 0x0000 (D4)
P| 0x0000 (D5)
| 0x0000 (D6) Inserts framing
| OXEFFF (D7) Start and Stop
OXEEFFE (Stop) / bits
Each bit of the 8-bit Word is 0x0000 (Start)
expanded to 16 bits in the .
Transmit Buffer, ready for .
McBSP transmits. OXEEEE (Stop)
Bit 0 —# 0x0000
Bit 1 —% OxFFFF

Figure 8. Block Data Processing Transmit Buffer

For receives, the DMA reads the expanded data from the McBSP receiver and writes this data to
a receive buffer. The software holds off data processing until the DMA has finished moving a
block of data, including the framing Start and Stop bits, to the receive buffer. A receive
compression subroutine is then called to compress the received data into UART bytes.

TMS320C6000 McBSP: UART 7

{i’ TEXAS

SPRA633 INSTRUMENTS

4

UART Interface Method 2: McBSP in GPIO Mode

The C6000 DSP can also interface to an UART using its general purpose input/output pins. The
McBSP pins CLKX, FSX, DX, CLKR, FSR, DR, and CLKS can be used as general purpose 1/O
pins when the following two conditions are true:

* The related portion (transmitter or receiver) of the serial port is in reset: /(R/X)RST = 0 in the
serial port control register SPCR

e General-purpose /O is enabled for the related portion of the serial port: (R/X)IOEN=1 in the
pin control register PCR.

Table 2 shows how to setup the McBSP pins as general purpose 1/O pins.

Table 2. Configuration of McBSP Pins as GPIO

Pin GPIO Enabled Selected as Output Value Selected as Input Value
When... Output When ... Driven From Input When ... Readable on
CLKX IXRST =0 CLKXM =1 CLKXP CLKXM =0 CLKXP
XIOEN =1
FSX IXRST =0 FSXM =1 FSXP FSXM =0 FSXP
XIOEN =1
DX IXRST =0 Always DX_STAT Never N/A
XIOEN =1
CLKR /IRRST =0 CLKRM =1 CLKRP CLKRM =0 CLKRP
RIOEN =1
FSR /IRRST =0 FSRM =1 FSRP FSRM =0 FSRP
RIOEN =1
DR /RRST =0 Never N/A Always DR_STAT
RIOEN =1
CLKS IRRST = /XRST =0 Never N/A Always CLKS_STAT
RIOEN = XIOEN = 1
4.1 McBSP Setup: GPIO Implementation
Although different GPIO pins on the C6000 DSP can be used as GPIO pins, this application
report discusses an example UART implementation when the McBSP DX and DR pin are used
as general purpose output and input pins, respectively. Figure 9 illustrates the McBSP to UART
connection. All other McBSP pin connections are don’t cares in this example.
Figure 10 and Figure 11 show the SPCR and PCR setup specific to this example. The setup of
all other McBSP registers are don't cares because the McBSP is in general purpose I/O mode.
The values in shaded bit fields are don’t cares and are left at default.
8 TMS320C6000 McBSP: UART

{f’ TEXAS

INSTRUMENTS SPRA633
UART McBSP
Tx DR
RX DX

Figure 9. UART Connection — GPIO Implementation

31 24 23 22 21 20 19 18 17 16
| 000000000 | 0 | 0 | 00 | 0 | 0 | 0 | 0 |
Reserved JFRST /GRST XINTM XSYNCERR XEMPTY XRDY /XRST
15 14 13 12 1 10 8 7 6 5 4 3 2 1 0
| 0 | 00 00 | 000 | 0 | 0 | 00 | 0 | 0 | 0 | 0 |
DLB RJUST CLKSTP Rsvd DXENA Rsvd RINTM RSYNCERR RFULL RRDY /RRST

Figure 10. Serial Port Control Register

31 16
| 0x0000 |
Reserved

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o [oo foJofJo o fof o J| o | o Jofo]J]o o]
sy XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

Figure 11. Pin Control Register

4.2 GPIO UART Software

Appendix B contains three low level routines that can be called by higher level programs to
perform UART data transmit and receive. The three functions are:

unsigned int SoftUartSpeedDetect(void);
void SoftUartOutchar(int, char);

char SoftUartinchar(int);

Function SoftUartSpeedDetect() sets the McBSP in GPIO mode and detects the UART
transmission rate. Function SoftUartOutchar(int, char) transmits UART data from the McBSP to
the UART. Function SoftUartInchar(int) receives UART data that comes from the UART to the
McBSP. The following sections discuss these functions in detail.

4.2.1 SoftUartSpeedDetect—Subroutine for Auto-Baud Detection

The subroutine SoftUartSpeedDetect sets the McBSP in GPIO mode with the SPCR and PCR
registers. It performs Auto-Baud detection by measuring the length of the Start bit, plus the
length of the first data bit (logic high) in the character <cr> (carriage return). Users need to
ensure (in software) that the first character sent is <cr> because the first data bit has to be a
logical one. This is shown as ‘T’ in Figure 12.

TMS320C6000 McBSP: UART 9

{'? TEXAS

SPRA633 INSTRUMENTS

4.2.2

10

T = UartSpeed x 2

I S

DR —
\ Start DO

\ /

Carriage Return Character <CR>

Figure 12. UART Auto-Baud Detection

The time T is determined by a software counter incremented by one until the second transition
from high to low is detected by reading the DRSTAT bit in the PCR Register. T represents twice
the time of a bit length.

This measurement is required because the RX signal from UART is not always very clean.
Simply measuring the length of the Start bit to determine the baud rate is not accurate enough.

The time reference value UartSpeed = T >>1 (i.e. T/ 2) is returned from SoftUartSpeedDetect()
and used in the character input detection and character output send routines, SoftUartinchar
and SoftUartOutchar.

This software UART is a basic emulation and can be customized in several ways by using timers
and interrupts.

Current implementations of software UART are used for debugging purpose or application
monitoring in places where a VT100 or an ANSI terminal is mandatory.

SoftUartinchar—Subroutine for UART Data Receive

Subroutine SoftUartinchar takes the input argument UartSpeed—the UART speed output
returned from function SoftUartSpeedDetect.

This subroutine parses bit-by-bit the UART data on the DR line. It detects the Start bit by polling
for the first DR line transition from inactive (logic 1) to active (logic 0) state. The 8 data bits are
transmitted by the UART device immediately after the Start bit. The best time to fetch the right
value of each data bit is in the middle of the data bit waveform. Figure 13 shows how subroutine
SoftUartInchar achieves this. It waits for half of the UartSpeed time value (P/2 in) during the
Start bit. Then for each of the eight valid data bits, it samples the DR line status (DR_STAT bit in
the PCR) in the middle of the data bit waveform. The subroutine shifts each binary bit result into
a single register value to retrieve the original 8-bit character. All the delays are generated with
polling loops to minimize the use of resources in the DSP.

DR

Start DO D1
i‘PIZV‘ P N P P where P = UartSpeed
e N o
Wait Sample Data

Figure 13. SoftUartinchar UART Data Fetch

TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

4.2.3 SoftUartOutchar—Subroutine for UART Data Transmit

Subroutine SoftUartOutchar is based on the same mechanism as the SoftUartinchar subroutine.
It takes the input argument UartSpeed—the UART speed output returned from function
SoftUartSpeedDetect.

This subroutine drives the transmit data on the DX line through writing the DX_STAT bit in the
PCR. At the beginning of a transfer, SoftUartOutchar writes a ‘0’ to the DX line (Start bit).
Subsequently, it transmits each data bit on the DX line. The time spend on the each bit is
derived from the UartSpeed input, processed by a polling loop.

The transmit character is first placed into the least significant 8 bits in a register padded with
three Stop bits (0x00000700). For example, the character ‘A’ (ASCII character 0x41) will be
placed in the padded register to become 0x00000741. Each time through the for loop, the least
significant bit (LSB) of the padded register is driven on the DX line, and the padded register is
right-shifted to be ready for the next bit transmit. In the character ‘A’ example, after the first bit ‘1’
is driven on the DX line, the padded register is right-shifted by one to 0x000003A0.

5 Hardware UART Adapter for the C6000 Processors

The hardware adapter for the Software UART support consists of a single SN75LV4737A
multichannel RS232 line driver/receiver which transmit/receives the binary stream from/to the
McBSP lines.

The SN75LV4737A consists of three line drivers, five line receivers, and a charge-pump circuit.
It provides the electrical interface between an asynchronous communication controller and the
serial port connector and meets the requirements of EIA/TIA-232-E. This combination of drivers
and receivers matches those needed for the typical serial port used in an IBM PC/AT or
compatibles.

The device has flexible control options for power management when the serial port is inactive. A
common disable for all of the drivers and receivers is provided with the active-high STBY input.
The active-low EN input is an enable for one receiver to implement a wake-up feature for the
serial port. All the logic inputs can accept signals from controllers operating from a 5-V supply
even though the SN75LV4737A is operating from 3.3 V.

Figure 14 presents an adapter board for the C6000 DSP. The connection in this figure
demonstrates the GPIO mode implementation. For serial port mode implementation described in
this application report, pin DRO needs to be tied to pin FSRO.

TMS320C6000 McBSP: UART 11

{i’ TEXAS

SPRA633 INSTRUMENTS
7 1us B3
g‘:csq_w |{ "
1 Clsz\g J__I— vz LFE
Tz
2 02 (5 BN
A ez- ¢l
= B a3+
I STEY O3
@ oo pourl E:
= 3 DH: poora (20 °
m—}% g&?’{é RING i "
14 500%8 Rams A5 o
TERTSINGTITE 2
SO DBS male
Figure 14. UART Adapter Board
6 Conclusion

12

The Multichannel Buffered Serial Port on the TMS320C6000 Digital Signal Processor is not
natively capable of interfacing to a universal asynchronous receiver/transmitter. However, with
software control, communication between a McBSP and an UART is possible. The McBSP is
easy to configure, and the compression/expansion software routines are straightforward for this

purpose.

References

o g hswhNE

TMS320C6000 McBSP: UART

TMS320C6201 Digital Signal Processor Data Sheet, SPRS051.

TMS320C6000 Peripherals Reference Guide, SPRU190.

TMS320C6000 Peripheral Support Library Programmer’s Reference, SPRU273.
TMS320C62x/67x CPU and Instruction Set, SPRU1809.

Lammert Bies, RS232 general info, http://www.lammertbies.nl/comm/info/RS-232.html.

SN75LV4737A 3.3-V/5-V Multichannel RS-232 Line Driver/Receiver Datasheet, SLLS178.

{9 TEXAS
INSTRUMENTS SPRA633

Appendix A Sample C Code: Serial Port Mode

This program demonstrates McBSP and DMA initialization to implement UART functionality.
Function process_transmit_data() expands a block of data, adds framing bits, and stores the data
in the transmit buffer. DMA channel O transfers the data from the transmit buffer to the McBSP
Data Transmit Register DXR. DMA Channel 1 services the McBSP by transferring received data
to the receive buffer. Upon DMA Channel 1 completion, function process_receive_data() is called
to compress the UART data into ASCII data. The result is stored in recvmsg].

McBSP 0 is configured to transmit UART data in 8N1 format at 115,200 bps, assuming a
200Mhz CPU clock. This program applies the 2—phase McBSP frame format discussed in this
application report.

This code also contains function run_edma() that can be used for TMS320C6x1x devices.

/***/

/* uart.c */

[rEFRRRkkkkk ok ok koo Rk kkkkkkkkkckdkkekkokock |
#include <mcbsp.h>

#include <dma.h>

#include <edma.h>

#include <stdlib.h>

/* Definitions */

#define XMITBUFADDR 0x80000000

#define RECVBUFADDR 0x80004000

#define NUMTXDATA 20 /* total number of UART data words */

/* Global variables */

volatile int DMA_done[4]={0, 0, 0, 0};

char xmitmsg[NUMTXDATA] = "McBSP can do UARTI\n";
char recvmsg[NUMTXDATA];

/* Prototypes */

extern void set_interrupts(void);

void start_mcbsp(void);

void process_transmit_data(void);

void run_dma(void); /* for TMS320C6x0x devices */
void run_edma(void); /* for TMS320C6x1x devices */
void set_mcbsp(void);

void process_receive_data(void);

short vote_logic(unsigned short);

/***

void run_dma(void)
This function sets up DMA channel 0 to service the
McBSP 0 transmitter. It sets up DMA channel 1 to
service the McBSP 0 receiver.

* *% * * *% * * *% * * *% * /
void
run_dma (void)

{

TMS320C6000 McBSP: UART 13

SPRA633

{'.f TEXAS

INSTRUMENTS

14

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

dma_acr
dma_gcra
dma_gcrb =0;
dma _gndxa =0;
dma_gndxb =0;
dma _gaddra =0;
dma_gaddrb =0;
dma_gaddrc =0;
dma_gaddrd
dma_pri_ctrl =0;
dma_sec _ctrl =0;
dma_src_addr =0;
dma_dst_addr =0

:0,
:(:)7

dma_tcnt
frame_cnt
element_cnt

=0
=1
:O7

/* Reset DMA Control Registers */
dma_reset();

[* Set up Global Configuration Registers for the DMA */
dma_global_init(dma_acr,dma_gcra,dma_gcrb,dma_gndxa,dma_gndxb,

dma_gaddra,dma_gaddrb,dma_gaddrc,dma_gaddrd);

[* Set up DMA Primary Control Register */
LOAD_FIELD(&dma_pri_ctrl, DMA_DMA PRI, PRI , 1);

SET_BIT(&dma_pri_ctrl, TCINT);
SET_BIT(&dma_pri_ctrl, EMOD);

/* Allow Ch to interrupt CPU */
/* Halt DMA with emu halt ~ */

LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR , DST_DIR_SZ);
LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC , SRC DIR ,SRC_DIR_SZ);

LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE16 ,ESIZE ,ESIZE_SZ);
LOAD_FIELD(&dma_pri_ctrl, SEN_XEVTO , WSYNC ,WSYNC_SZ):
LOAD_FIELD(&dma_pri_ctr, SEN_NONE ~ ,RSYNC ,RSYNC_SZ);

/* Set up DMA Secondary Control Register */

LOAD_FIELD(&dma_sec_ctrl, DMAC_FRAME_COND, DMAC_EN

,DMAC_EN_SZ);

SET_BIT(&dma_sec_ctrl, BLOCK_IE);

[* Set up Source and Destination Address Registers */
dma_src_addr = (unsigned int)XMITBUFADDR,;
dma_dst_addr = (unsigned int)MCBSP_DXR_ADDR(0);

[* Calculate DMA element count based on total number of UART words */
[* Each UART word is equivalent to 11 DMA elements:

Start bit

: 1 element

UART data : 8 elements

Stop bit

. 2 elements

(Stop bit is transmitted in Phase 2 of the

McBSP frame. The DMA transfers two 16-bit
0xffff to the McBSP for the Stop bit, although
each of these two 16-hit Oxffff are shifted

out as 8-hit elements from the McBSP DX pin

TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

*/
element_cnt = NUMTXDATA * 11;

/* Set up DMA Tranfer Count Register */
LOAD_FIELD(&dma_tcnt, frame_cnt , FRAME_COUNT , FRAME_COUNT_SZ);
LOAD_FIELD(&dma_tcnt, element_cnt, ELEMENT_COUNT, ELEMENT_COUNT_SZ2);

/* Store DMA Control registers (channel 0—service McBSP transmitter)*/
dma_init(0, dma_pri_ctrl, dma_sec_ctrl, dma_src_addr, dma_dst_addr,
dma_tcnt);

/* Modify register fields for DMA channel 1 */

LOAD_FIELD(&dma_pri_ctrl, SEN_NONE , WSYNC ,WSYNC_SzZ);
LOAD_FIELD(&dma_pri_ctrl, SEN_REVTO ,RSYNC ,RSYNC_SzZ);
LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC ,DST_DIR ,DST_DIR_SZ);
LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_NO_MOD, SRC_DIR , SRC_DIR_SZ),
dma_src_addr = (unsigned intfMCBSP_DRR_ADDR(0);

dma_dst_addr = (unsigned int)RECVBUFADDR,;

/* Store DMA Control registers (channel 1—service McBSP receiver)*/
dma_init(1, dma_pri_ctrl, dma_sec_ctrl, dma_src_addr, dma_dst_addr,
dma_tcnt);

[* Start DMA */

DMA_START(1);

DMA_START(0);
} /¥ end run_dma */

/***

void run_edma(void)

This function sets up EDMA channel 12 to service the
McBSP 0 transmitter. It sets up EDMA channel 13 to

service the McBSP 0 receiver.
***/

void

run_edma(void)

{

int ch = 12; [* XEVTO synchronized channel */

int pri = 1; [* EDMA high priority */

int esize = DMA_ESIZEL16;

int ds = 0; /* non 2D src */

int sum = 1; * src addr increment (XMITBUFADDR) */

intdd = 0; /* non 2D dst */

int dum = 0; [* dst addr no update (DXR) */

int interrupt_enable =1; /* transfer complete interrupt enabled */
int report = ch; /* CIPR[report] bit set when channel complete */
int xfer_link =0; /* no linking */

int fs = 0; /* fs needs to be disabled */

int element_cnt=0; /*initialize element_cnt variable */
unsigned int *edmaptr;

TMS320C6000 McBSP: UART 15

{'f TEXAS
SPRA633 INSTRUMENTS

/* Calculate EDMA element count based on total number of UART words */
/* Each UART word is equivalent to 11 EDMA elements:
Start bit : 1 element
UART data : 8 elements
Stop bit : 2 elements
(Stop bit is transmitted in Phase 2 of the
McBSP frame. The EDMA transfers two 16-bit
Oxffff to the McBSP for the Stop bit, although
each of these two 16-bit Oxffff are shifted
out as 8-hit elements from the McBSP DX pin
*/
element_cnt = NUMTXDATA * 11;

/* Clear completion flag DMA_done */

DMA_done[0] = 0;

DMA_done[1] = 0;

/* Clear all pending EDMA syncs for McBSP channels */
EDMA_EER =0;
EDMA_ECR = OXFFFFFFFF; /* clear all EDMA events in ECR */
EDMA_CIER =0; /* clear interrupt enable */

/* Set up EDMA channel to transfer from XMITBUFADDR to DXR*/
EDMA_OPTIONS(ch)= (unsigned int)((pri << PRI)
| (esize << ESIZE) | (ds << DS)
| (sum << SUM) | (dd << DD)
| (dum << DUM) | (interrupt_enable << TCINT)
| (report << TCC) | (xfer_link << LINK)
| (fs << FS));
EDMA_SRC_ADDR(ch) = XMITBUFADDR,;
EDMA_DST_ADDR(ch) = MCBSP_DXR_ADDR(0);
EDMA_COUNT(ch) = element_cnt;
EDMA_INDEX(ch) = 0;
EDMA_REL_LNK(ch) = 0;

/* set EDMA channel for Receive */

/* value modification */

ch=13; /[*REVTO?*

sum =0; /* src addr no update (DRRO) */

dum=1; /*dstaddrincrement (RECVBUFADDR) */
report = ch; /* CIPR[report] bit set when channel complete */

EDMA_OPTIONS(ch)= (unsigned int)((pri << PRI)
| (esize << ESIZE) | (ds << DS)
| (sum << SUM) | (dd << DD)
| (dum << DUM) | (interrupt_enable << TCINT)
| (report << TCC) | (xfer_link << LINK)
| (fs << F9));
EDMA_SRC_ADDR(ch) = MCBSP_DRR_ADDR(0);
EDMA_DST_ADDR(ch) = RECVBUFADDR,;
EDMA_COUNT(ch) = element_cnt;
EDMA_INDEX(ch) = 0;
EDMA_REL_LNK(ch) = 0;

16 TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

[* enable EDMA interrupt */

EDMA_CIER = (1 << 13); /*enable 13 */
/* enable EDMA channel 12 and 13 */
EDMA_EER |= (unsigned int)((1 << 12) | (1 << 13));

} /¥ end run_edma() */

void
set_mcbsp(void)

{

unsigned int spcr = 0;
unsigned int rcr = 0;
unsigned int xcr = 0;
unsigned int srgr = 0;
unsigned int mecr = 0;
unsigned int rcer = 0;
unsigned int xcer = 0;
unsigned int pcr = 0;
int fsx_period =0;
int extra_time =0;

/* Set up Pin Control Register */

LOAD_FIELD(&pcr, FSYNC_MODE_INT , FSXM, 1);
LOAD_FIELD(&pcr, FSYNC_MODE_EXT , FSRM, 1);
LOAD_FIELD(&pcr, CLK_MODE_INT , CLKXM, 1);
LOAD_FIELD(&pcr, CLK_MODE_INT , CLKRM, 1);
LOAD_FIELD(&pcr, FSYNC_POL_LOW , FSXP, 1);
LOAD_FIELD(&pcr, FSYNC_POL_LOW , FSRP , 1);
LOAD_FIELD(&pcr, CLKX_POL_RISING , CLKXP, 1);
LOAD_FIELD(&pcr, CLKR_POL_RISING, CLKRP, 1);

/* Set up Receive Control Register */

LOAD_FIELD(&rcr, DUAL_PHASE |, RPHASE, 1);

LOAD_FIELD(&rcr, FRAME_IGNORE |, RFIG, 1);

LOAD_FIELD(&rcr, DATA_DELAYO , RDATDLY, RDATDLY_SZ);
LOAD_FIELD(&rcr, 8 , RFRLEN1, RFRLEN1_SZ);

LOAD_FIELD(&rcr, 1 , RFRLEN2, RFRLEN2_SZ);

LOAD_FIELD(&rcr, WORD_LENGTH_16 , RWDLEN1, RWDLEN1_SZ);
LOAD_FIELD(&rcr, WORD_LENGTH_8 , RWDLEN2, RWDLEN2_SZ);
LOAD_FIELD(&rcr, NO_COMPAND_MSB_1ST , RCOMPAND, RCOMPAND_SZ);

/* Set up Transmit Control Register */

LOAD_FIELD(&xcr, DUAL_PHASE , XPHASE, 1);

LOAD_FIELD(&xcr, FRAME_IGNORE |, XFIG, 1);

LOAD_FIELD(&xcr, DATA_DELAYO , XDATDLY, XDATDLY_SZ);
LOAD_FIELD(&xcr, 8 , XFRLEN1, XFRLEN1_SZ);

LOAD_FIELD(&xcr, 1 , XFRLEN2, XFRLEN2_SZ);

LOAD_FIELD(&xcr, WORD_LENGTH_16 , XWDLEN1, XWDLEN1_SZ);
LOAD_FIELD(&xcr, WORD_LENGTH_8 , XWDLEN2, XWDLEN2_SZ);
LOAD_FIELD(&xcr, NO_COMPAND_MSB_1ST, XCOMPAND, XCOMPAND_SZ);

TMS320C6000 McBSP: UART 17

{'.f TEXAS

SPRA633 INSTRUMENTS

18

[* Set up Sample Rate Generator Register */
extra_time = 16;
fsx_period = 10*16 + extra_time — 1; /* start + 8bit_data + stop = 10 */

SET_BIT(&srgr, CLKSM); /* CLKG derived from CPU clock */
LOAD_FIELD(&srgr, FSX_FSG ,FSGM , 1);
LOAD_FIELD(&srgr, 108 , CLKGDV , CLKGDV_SZ);

LOAD_FIELD(&srgr, fsx_period , FPER , FPER_SZ);

[* Store McBSP 0 registers */
mcbsp_init(0, spcr, rcr, Xcr, srgr, mcr, rcer, Xcer, pcr);

} I* end set_mcbsp */

void

start_mchbsp(void)

{
/* Bring McBSP out of reset */
MCBSP_SAMPLE_RATE_ENABLE(0); /* Start Sample Rate Generator */
MCBSP_ENABLE(0, MCBSP_RX); /* Bring Receive out of reset */
MCBSP_ENABLE(0, MCBSP_TX); /* Bring Transmit out of reset */
MCBSP_FRAME_SYNC_ENABLE(0); /* Enable Frame Sync pulse */

} I* End start_mcbsp */

/***

void process_transmit_data(void)

This function expands each of the 8—bit ASCII character

in the message "McBSP can do UARTN\n” into UART transmission
16-bit words and places them in the Transmit Buffer.

In addition, 16—bit Start and Stop framing words, respectively,
are inserted before and after each of the ASCII character

in the Transmit Buffer.
***/

void

process_transmit_data(void)

{

inti;

short cnt = —-1;

unsigned char xmit_char;

unsigned short *xmitbufptr; /* transmit buffer pointer */

[* Point to Transmit Buffer */
xmitbufptr = (unsigned short *)XMITBUFADDR;

* Process data bytes in xmitmsg[] and put in xmit buffer */
for (i=0; i < NUMTXDATA,; i++){

/* Get transmit character (one byte) from xmitmsg[] */
Xmit_char = xmitmsg([i];

TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

[* Process each byte of transmit character */
for (cnt=—1; cnt < 10; cnt++){
if (cnt == -1){
/* Put Start bit in xmit buffer */
*xmitbufptr++ = 0x0000;
} else if (cnt == 8 || cnt==9) {
[* Put Stop bit in xmit buffer */
*xmitbufptr++ = Oxffff;
} else if (xmit_char & (1 << cnt)) {
[* data bit is one */
*xmitbufptr++ = Oxffff;
}else {
[* data bit is zero */
*xmitbufptr++ = 0x0000;
}

} /* end for cnt */
}/* end fori*/

} I* end process_transmit_data */

/***

void process_receive_data(void)

This function decodes the received data in the
Receive Buffer. It strips the framing Start (0x0000)
and Stop (Oxffff) words. It calls the subroutine
vote_logic() to determine each bit of the

ASCII character. It puts the results in global
recvmsg(].
***/
void

process_receive_data(void)

L

int i;

unsigned char recv_char=0;

short cnt = -1,

short recv_val,

unsigned short raw_data;

unsigned short *recvbufptr; /* receive buffer pointer */

/* Point to Receive Buffer */
recvbufptr = (unsigned short *)RECVBUFADDR,;

/* Process all data in Receive Buffer */
for (i=0; i < NUMTXDATA, i++){

recv_char = 0;

/* Process each UART frame */
for (cnt=—1; cnt < 10; cnt++){

TMS320C6000 McBSP: UART 19

{'f TEXAS
SPRA633 INSTRUMENTS

if (cnt == -1 || cnt==8 || cnt==9){
/* Ignore Start and Stop bits */
recvbufptr +=1;

}else {
/* Get 16—bit data from Receive Buffer */
raw_data = *recvbufptr;
recvbufptr +=1;
[* Get the value of the majority of bits */
recv_val = vote_logic(raw_data);
/* Put received bit into proper place */
recv_char +=recv_val << cnt;

}

} /* end for cnt */

[* A full byte is decoded. Put in result: recvmsg]i] */
recvmsg(i] = recv_char;

} /¥ end for i */

} I* end process_receive_data */

/*****************)\'*************)\'***********************

short vote_logic(unsigned short value)

Data is decoded by testing the center 4 bits of
the baud. A majority rule is used for the decode.
B R s s s e S e L e e e s e e e e e e e e e e e *k%k n/
short
vote_logic(unsigned short value) {
switch ((value >> 6) & 0xf) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 8:
case 9:
case 10:

return O;
case 7.
case 11:
case 12:
case 13:
case 14:
case 15:
return 1;

} /* end vote_logic */

20 TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS

SPRA633

/***

For TMS320C6x1x devices, make the following changes:
- Replace run_dma() with run_edmay);

**/

void main (void)

set_interrupts();
process_transmit_data();
run_dma();

set_mcbsp();
start_mcbsp();

[* wait for end of UART transmit and receive */
while (\DMA_done[0] || 'DMA_donel[1]);

/* Process received data */
process_receive_data();

} /¥ end main */

/***/

/¥ dma_int.c */

/***/

#include <intr.h>
#include <mcbsp.h>
#incldue <dma.h>
#include <edma.h>

/* Definitions */

[* Global variables */
extern volatile int DMA_done[4];

/* Prototypes */

interrupt void DMA_ChO_ISR(void);
interrupt void DMA_Ch1_ISR(void);
interrupt void EDMA_ISR(void);
void set_interrupts(void);

/* DMA ChO ISR used to clear block condition and flag when the ~ */
/* transfer has completed. */

interrupt void

DMA_CHO_ISR(void)

{

unsigned int sec_ctrl = 0x50000;

sec_ctrl = REG_READ(DMAO_SECONDARY_CTRL_ADDR);
RESET_BIT(&sec_ctrl, FRAME_COND);
if (GET_BIT(&sec_ctrl, BLOCK_COND);
DMA_done[0] = 1;
RESET_BIT(&sec_ctrl, BLOCK_COND);

}

else SET_BIT (&sec_ctrl, RSYNC_STAT);

REG_WRITE(DMAO_SECONDARY_CTRL_ADDR_sec_ctrl);
} /* End DMA_CHO_ISR */

TMS320C6000 McBSP: UART 21

{'f TEXAS
SPRA633 INSTRUMENTS

/* DMA CHL1 ISR used to clear block condition and flag when the */
[* transfer has completed. */

interrupt void

DMA_Chl_ISR(void)

{

unsigned int sec_ctrl = 0;

sec_ctrl = REG_READ(DMA1_SECONDARY_CTRL_ADDRY);
RESET_BIT(&sec_ctrl, FRAME_COND);
if (GET_BIT(&sec_ctrl, BLOCK COND)){

DMA_done[l] = 1;

RESET_BIT(&sec_ctrl, BLOCK_COND);

}
else SET_BIT(&sec_ctrl, RSYNC_STAT);
REG_WRITE(DMA1_SECONDARY_CTRL_ADDR, sec_ctrl);

}/* End DMA_Ch1_ISR */

/* EDMA ISR used to clear block condition and flag when the */
/* transfer has completed. *

interrupt void

EDMA_ISR(void)

{
if(EDMA_CIPR & 1<<15){

DMA_done[0] = 1; /* Set completion flag */
DMA_done[1] = 1;

EDMA_CIPR = 1<<15; [* clear CIP from CIPR */
}

if EDMA)CIPR & 1<<13){

DMA_done[0] = 1; /* Set completion flag */
DMA_done[1] = 1;

EDMA_CIPR = 1<<13; [* clear COP from CIPR */

}
} I+ End EDMA_ISR */

/***

Routine to enable DMA interrupt service routines
For TMS320C6x1x devices, make the following changes:
1. do not set INT9 interrupt
2. Replace DMA_CHO_ISR with EDMA_ISR
* *% * *% *% * *% *% * *% *% * *% /
void
set_interrupts(void)

{

intr_init();

intr_map(CPU_INT8, ISN_DMA_INTO);
intr_hook(DMA_ChO_ISR, CPU_INT8);
intr_map(CPU_INT9, ISN_DMA_INT1);
intr_hook(DMA_Ch1_ISR, CPU_INT9);

INTR_GLOBAL_ENABLE();
INTR_ENABLE(CPU_INT_NMI);
INTR_ENABLE(CPU_INT8);
INTR_ENABLE(CPU_INTO);

} I* End set_interrupts */

22 TMS320C6000 McBSP: UART

b TEXAS

INSTRUMENTS SPRA633

Appendix B Sample C/Assembly Code: GPIO Mode

*% *% * *% * *% *% * *% *% * *% *% * *%

* TEXAS INSTRUMENTS, INC. *

* SOFTWARE UART EMULATION FOR TMS320C6000 *
* Revision Date: 18/5/99

* Author : Philippe Malleth *

-*

* USAGE *
These routines are C—callable and can be called as: *
*
unsigned int SoftUartSpeedDetect(void); *
void SoftUartOutchar(int, char); *
char SoftUartInchar(int); *
*
If the routine is not to be used as a C—callable function, *
then all instructions relating to the stack should be removed. *
See comments of individual instructions to determine if they are *
related to the stack. You also need to initialize all passed *
parameters since these are assumed to be in registers as defined by *
the calling convention of the compiler, (See the C comp|ler *
reference guide.)
*
DESCRIPTION *
These routines are used to emulate the RX/TX behavior of a RS232 UART. *
The RX and TX waveforms are generated with the McBSP pins put in *
GPIO mode. See the Application report for further details. *
*

C CODE *
This is the C equivalent of the assembly code without restrictions: *
Note that the assembly code is hand optlmlzed and restrictions may *

apply.

Calling convention : *

*
This is a very basic example that first gets the right baudrate from *
subroutine SoftUartSpeedDetect(), then forever waits for a character *
and send it out as soon as received. *

main() *

unsigned int UartSpeed; *
char c; *

UartSpeed = SoftUartSpeedDetect(); *
for(;;) { *
¢ = SoftUartinchar(UartSpeed); *
SoftUartOutchar(UartSpeed,c); *

* ok ok ok % ¥

TMS320C6000 McBSP: UART 23

b TEXAS

SPRA633 lNSTRUMENTS
“k *
;¥ Subroutine details : *
* *
;* unsigned int SoftUartSpeedDetect(void) *
;* { *
;* volatile unsigned int speedcounter, i; *
% *
;* MCBSP_IO_ENABLE(1); *
;¥ speedcounter = 0; *
;¥ while((int)MCBSP_DRSTAT(1)); *
¥ while(I(int)MCBSP_DRSTAT(1)){ /* counts START bit *o*
7 speedcounter++;
;* } *
¥ while((in)MCBSP_DRSTAT(1)){ /* counts DR h|gh (from<cr>) * *
¥ speedcounter++;
;* } *
¥ MCBSP_DX_IO_H(1); *
;¥ for(i=11*speedcounter;i>0;i—); /* wait long enough for one char */ *
;¥ speedcounter >>= 2; [* speedcounter divide by 2 */ *
;¥ return(speedcounter); *
;* } *
-k *
:* *
:* *
:* *
* x
;* char SoftUartInchar(int speedcnt) *
* { *
* volatile unsigned int incomingChar,speedcounter, tmpcounter *
* volatile unsigned int tmpreg,dxstat;
* unsigned int Isb; *
.* *
;¥ incomingChar=0; *
;¥ speedcounter = speedcnt; *
;¥ tmpcounter = speedcounter>>1; *
; while((int)MCBSP_DRSTAT(1)); *
; while(—tmpcounter != 0) *

24

B P T N A S

tmpreg = (unsigned int)yMCBSP_DRSTAT(1); /* counts half bit time */*
for(tmpreg = 9;tmpreg!=0;—tmpreg) {
tmpcounter = speedcounter ; *
while(—tmpcounter != 0) *
dxstat = (unsigned int)MCBSP_DRSTAT(1); /* counts bit time */*
if(dxstat==1) incomingChar++;

Isb = incomingCharé&1; *
incomingChar >>=1; *
if (Isb) incomingChar+=0x80000000; *
} *
incomingChar >>=23; *
return((char)incomingChar); *
} *
*
*
*
*

TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS

SPRA633

;* void SoftUartOutchar(int speedcnt, char outgoingChar)
;* { *

;* unsigned int c,carry; *
;* volatile unsigned int paddedChar,bitcounter,tmpcounter;

-k

MCBSP_DX_10_L(1); *
carry = 0; *
paddedChar = ((unsigned int) outgoingChar) | 0x00000700;
for(bitcounter=11;bitcounter>0;bitcounter—) { *
tmpcounter = speedcnt; *
while(—tmpcounter != 0) (int)yMCBSP_DRSTAT(1);
c = calrry; *
carry = paddedChar&1; *
paddedChar >>=1; *
if (carry) MCBSP_DX_10_H(1); *
else MCBSP_DX_IO_L(1); *

FTETETETETE TR TR TR TR TR TR TR

}
MCBSP_DX_IO_H(1); *

*

%
—

-k *

’
shkkkkkkkkkkkkkhkkhhhhhhhhhhrrkkhkkhkhkhhhhhhhhhhhrrkkkkhkhkhkhhhhhhhhhhrrrkrkkrkkrrik
’

.global _SoftUartSpeedDetect
.global _SoftUartInchar
.global _SoftUartOutchar

.sect ".text”

skkkkkkkkkkkkkkkkhkkkkkkkkkkhhkkhkkkkkkhkkkhhkhhkkkkkhhkkkhkkkkhkkkhkkkhkkkhkhkkkkkkkk

;* FUNCTION NAME: _SoftUartSpeedDetect
ok *

* USAGE *

This routines are C—callable and can be called as: *
*

unsigned int SoftUartSpeedDetect(void); *

*

*

%

’

-k *
’

“*

*

*

The McBSP1 at address 0x1900000 is used here.

;¥ Argument1 : None. *

* Return Value : ASCII coded character read from a terminal.
ok

*

’
skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhhhkkkhkkkhkkkhhkhkhkkkkhkkhkkhkkkkhkkkkkkkk
1

_SoftUartSpeedDetect:

*

*

; function prolog
;** preserve "save—on—call” registers
SuUB B15, 4, AO
STW .D2 A10,*B15—[2] ;f
I STW .D1 B10, *A0—[2] ;f
STW .D2 All,*B15—[2] ;f
I STW .D1 BI11,*A0—[2] ;f
STW D2 A12,*B15—[2] ;f
I STW .D1 B12,*A0—[2] ;f
STW .D2 A13,*B15—[2] ;f
(| STW .D1 B13,*A0—[2] ;f
(| MVC .S2 CSR,B13 ;) f
STW .D2 A14,*B15—[2] ;f

TMS320C6000 McBSP: UART

25

{'.f TEXAS

SPRA633 INSTRUMENTS
| STW .D1 B14,*A0—[2] ;f
I AND .12 -2B13,B13 f
STW .D2 A15,*B15—[2] ;f
[l STW .D1 B3,*A0—[2] ;f
[l MVC .S2 B13,CSR ; f disable global interrupts
k% *
MVK .S1 0x8,A0 ; set offset to SPCR register
MVKH .S1 0x1900000,A0 ; takes McBSP1 port address
LDW .D1T1 *A0,A3 ; load SPCR register
NOP 4
CLR .S1 A3,0x10,0x10,A3 ;
AND .L1 Oxfffffffe,A3,A3 ;
STW .D1T1 A3,*A0 ; store new SPCR config value
Il MVK .S1 0x24,A0 ; set offset for PCR register
MVKH .S1 0x1900000,A0 ; takes McBSP1 port address
LDW .D1T1 *A0,A3 ; load PCR register
NOP 4
SET .S1 A3,0xc,0xd,A3 ; sethit 12&13 for I/O mode
STW .D1T1 A3,*A0 ; store new PCR config value
NOP 5
LDW .D1T1 *A0,A3 ;
NOP 4
EXTU .S1 A3,0x1b,0x1f,A1 ; wait while DRSTAT is high
“kk *
.align 32
L1:JAl] B S2 L1 ;
[|[[Al] LDW .D1T1 *A0,A3 ;
[l EXTU .S1 A3,0x1b,0x1f, Al ; wait while DRSTAT is high
|| ['A1] ZERO .L2 B4 ; initialize counter
NOP 5 ; for StartBit measurement
“kk *
.align 32
L3:[Al] B S2 L3 ;
|[[A1] LDW .D1T1 *A0,A3 ;
[l EXTU .S1 A3,0x1lb,0x1fAl ;
|| ['/A1] ADD .L2 0x1,B4,B4 ; increment counter while
NOP 5 ; DRSTAT bit is low
;** *
.align 32
L31B:[Al]B .S2 L31B ;
[[[Al] LDW .D1T1 *A0,A3 ;
Il EXTU .S1 A3,0x1lb,0x1f Al ;
[[[Al] ADD .L2 0x1,B4,B4 ; increment counter while
NOP 5 ; DRSTAT bit is low
;** *
.align 32
SHRU .S2 B4,0x1,B4 ;
MVK .S2 0x0b,BO ;
SET .S1 A3,0x5,0x5,A3 ; set DXSTAT hitto 1
Il MV L1X BO,A4 ;
MPYLHU .M1X A4,B4,A3 ;
[l STW .D1T1 A3,*A0 ; store new PCR config value
MPYU .M2 BO0,B4,BO ;
SHL .S1 A3,0x10,A3 ;
ADD .L2X BO0,A3,B0 ;

26

k%

TMS320C6000 McBSP: UART

b TEXAS

INSTRUMENTS SPRA633

.align 32
waitcnt: [BO] B.S1 waitcnt ;
| [BOJSUB .L2 BO0,0x1,BO ;
|| [BOJLDW .D1T1 *AO0,A3 ; Dummy load
NOP 5
; BRANCH OCCURS ;
ek function epilog *
** restore preserved by call registers
SUB B15, 4, AO
LDW D1 *++A0[2], B3 ;f
I LDW .D2 *++B15[2], A15 ;f
I MVC .S2 CSR,B13 f
LDW .D1 *++A0[2], B14 ;f
I LDW .D2 *++B15[2], Al4 ;f
I OR L2 B13,1,B13 i f
LDW .D1 *++A0[2],B13 ;f
I LDW .D2 *++B15[2], A13 ;f
Il MVC .S2 B13,CSR ; f enable global interrupts
LDW .D1 *++A0[2],B12 ;f
I LDW .D2 *++B15[2], A12 ;f
LDW .D1 *++A0[2], B11 ;f
I LDW .D2 *++B15[2], A1l ;f
[l B .S2 B3 ; freturn();
I MV L1X B4,A4 ;
LDW .D2 *++B15[2], A10 ;f
I LDW .D1 *++A0Q[2], B10 ;f
NOP 4) f

k% *

skkkkkkkkkkkkkkkkhkkkkkkkkkkhhkkhkkkkkkhkkkhhkhhkkkkkhhkkkhkkkkhkkkhkkkhkkkhkhkkkkkkkk
’

;* FUNCTION NAME: _SoftUartinchar *
ok

* USAGE *
This routines are C—callable and can be called as: *
*

char SoftUartInchar(int speedcnt); *
*
The McBSP1 at address 0x1900000 is used here. *
Argument 1 : Speed counter value returned by SoftUartSpeedDetect()
Return Value : ASCII coded character read from a terminal.

*

N B

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhhhkkkhkkkhkkkhhkhkhkkkkhkkhkkhkkkkhkkkkkkkk

_SoftUartInchar:

; function prolog *
;** preserve "save—on—call” registers
SuUB B15, 4, AO

STW .D2 Al0,*B15—2] ;f
I STW .D1 B10,*A0—[2] :f
STW .D2 All,*B15—2] ;f
I STW .D1 B11,*A0—[2] :f
STW .D2 Al2,*B15—2] ;f
I STW .D1 B12,*A0—[2] ;f
STW .D2 A13,*B15—2] ;f
I STW .D1 B13,*A0—[2] ;f
I MVC .S2 CSR,B13 f
STW .D2 Al4,*B15—2] ;f

TMS320C6000 McBSP: UART 27

SPRA633

{'f TEXAS
INSTRUMENTS

28

STW .D1 B14,*A0—[2] ;f
AND L2 -2,B13,B13) f
STW .D2 Al5,*B15—[2] ;f
I STW .D1 B3, *A0—[2] ;f
[l MVC .S2 B13,CSR ; f disable global interrupts
k%
MVK .S2 0x24,B4 ; set offset to SPCR register
I MV L1 A4,A0 ;
MVKH .S2 0x1900000,B4 ; takes McBSP1 port address
SHRU .S1 AO0,0x2,Al1 ;
ZERO L1 A4 ;
LDW .D2T2 *B4,B5 ;
NOP 4
EXTU .S2 B5,0x1b,0x1f,BO ; wait while DRSTAT bit is high
k%
.align 32

L2:[B0] B .S1

L2 ;

|[[BO] LDW .D2T2 *B4,B5 ;

I EXTU .S2
NOP

B5,0x1b,0x1f,BO ; wait while DRSTAT bit is high
5

: BRANCH OCCURS :; |16]

k%

’ .align 32
L4 [Al] B S1
[[TA1] SuB .L1

L4 :

Al1,0x1,Al ; while (—tmpcounter !=0)

[[[A1] LDW .D2T2 *B4,BO ; dummy load
NOP 5
MVK .S2 0x8,B1 ;
Il MV L1 AOQA1 ;
;**
.align 32
L8:[Al1] B .S1 L8 ;
[[[Al] SUB .L1 A1,0x1,Al ; while (—tmpcounter !=0)
[[[A1] LDW .D2T2 *B4,BO ; do read DRSTAT bit
I EXTU .S2 BO0,0x1b,0x1f,BO ;
NOP 5
; BRANCH OCCURS ; |33]
k%
.align 32
[B1] B S1 L8 ;
[[[BO] ADD .L1 Ox1,A4,A4 :
AND L1 O0x1,A4Al ; Isb = incomingChar&1
[l SHRU .S1 A4,0x1,A4 ; incomingChar >>=1

[A1] SET .S1

I[B1] MV L1
II[B1] SuB .L2
NOP 3

A4,0x1f,0x1f,A4 ; if (Isb) incomingChar
; +=0x80000000

AO0,Al ;

B1,0x1,B1 ;

: BRANCH OCCURS ; |42

k%

function epilog

;** restore preserved by call registers

SUB
LDW .D1
I LDW .D2
I MVC .S2
LDW .D1
Il LDW .D2

B15, 4, A0
*++A0[2], B3 o f
*++B15[2], A15 ;f
CSR, B13 i f
*++A0[2], B14 ;f
*++B15[2], Al4 ;f

TMS320C6000 McBSP: UART

{9 TEXAS
INSTRUMENTS SPRA633

I OR L2 B13,1,B13) f
LDW .D1 *++A0[2], B13 ;f

I LDW .D2 *++B15[2], A13 ;f

Il MvC .S2 B13,CSR ; f enable global interrupts
LDW .D1 *++A0Q[2],B12 ;f

I LDW .D2 *++B15[2], A12 ;f
LDW .D1 *++A0[2],B11 ;f

I LDW .D2 *++B15[2], A1l ;f

[l B .52 B3 ; freturn();

I SHRU .S1 A4,0x17,A4 ; incomingChar >>= 23
LDW .D2 *++B15[2], A10 ;f

I LDW .D1 *++A0[2],B10 ;f

NOP 4 ; f
;** *
;* FUNCTION NAME: _SoftUartOutchar *
-k *
;* USAGE *
:* This routine are C—callable and can be called as: *
ok *
;¥ void SoftUartOutchar(int speedcnt, char rl); *
-k *
;* The McBSP1 at address 0x1900000 is used here. *
;* Argument 1 : Speed counter value returned by SoftUartSpeedDetect(). *
;* Argument 2 : ASCII coded character to be send out to a terminal. *
;* Return Value : None *
ok *
x
_SoftUartOutchar:
i function prolog *
;** preserve "save—on—call” registers
SUB B15, 4, AO
STW .D2 A10,*B15—[2] ;f
I STW .D1 B10, *A0—[2] ;f
STW .D2 A11,*B15—[2] ;f
Il STW .D1 B11,*A0—[2] ;f
STW .D2 A12,*B15—[2] ;f
I STW .D1 B12,*A0—[2] ;f
STW .D2 A13,*B15—[2] ;f
Il STW .D1 B13,*A0—[2] ;f
Il MVC .S2 CSR,B13 f
STW D2 A14,*B15—[2] ;f
STW .D1 Bi14,*A0—[2] ;f
AND L2 -2,B13,B13 i f
STW .D2 A15,*B15—[2] ;f
I STW .D1 B3, *A0—[2] ;f
[l MVC .S2 B13,CSR ; f disable global interrupts
*% *
MVK .S1 0x24,A0
MVKH .S1 0x1900000,A0 ; takes McBSP1 port address
LDW .D1T1 *AO0,A3 ;
ZERO L2 B1 ; carry =0
MVK .S2 0xb,B2 ; bitcounter = 11 bit
; (1st,8dt,2stp)

TMS320C6000 McBSP: UART 29

{'f TEXAS
SPRA633 INSTRUMENTS

SET .S2 B4,0x8,0xA,B4 ; paddedChar = outgoingChar
; | 0x00000700

MV L2X A4,BO ;
CLR .S1 A3,0x5,0x6,A3 ; set DXSTAT bitto 0

STW .D1T1 A3,*A0 ; store new PCR config value
k% *
.align 32
loopcnt4: [BO] B .S1 loopcntd
[[[BO] LDW .D1T1 *AO0,A3 ; Dummy load
MV L1X B1l,Al ; C=carry
[[[BO] SuB .L2 BO0,0x1,BO ; while (—tmpcounter !=0)
NOP 5
;** *
.align 32
[B2] B .S1 loopcnt4 ; wait 11 bits released
[l AND L2 0x1,B4,B1 ; carry = paddedChar&1
NOP 2
[B2] SuB .L2 B2,0x1,B2 ; bitcounter—

I SHRU .S2 B4,0x1,B4 ; paddedChar >>=1
[[[B1] SET .S1 A3,0x5,0x6,A3 ; set DXSTAT bitto 1

['B1] CLR .S1 AS3,0x5,0x6,A3 ; set DXSTAT bitto 0
I MV L2X A4,BO ;

STW .D1T1 A3,*A0 ; store new PCR config value
; BRANCH OCCURS ;
;** *
LDW .D1T1 *AO0,A3 ;
NOP 4
SET .S1 A3,0x5,0x6,A3 ; set DXSTAT bitto 1
STW .D1T1 A3,*A0 ; store new PCR config value
ke function epilog *
;*¥* restore preserved by call registers
SUB B15, 4, AO

LDW .D1 *++A0[2], B3 ;f
Il LDW .D2 *++B15[2], Al5 ;f
Il MVC .S2 CSR,B13 i f
LDW .D1 *++A0[2], B14 ;f
Il LDW .D2 *++B15[2], Al4 ;f
Il OR L2 BI13,1,B13 i f
LDW .D1 *++A0Q[2], B13 ;f
LDW .D2 *++B15[2], A13 ;f
MVC .S2 B13,CSR ; f enable global interrupts
LDW .D1 *++A0Q[2], B12 ;f
Il LDW .D2 *++B15[2], A12 ;f
LDW .D1 *++A0[2],B11 ;f
[l LDW .D2 *++B15[2], Al1 ;f
[l B .S2 B3 ; freturn();
LDW .D2 *++B15[2], A10 ;f
[l LDW .D1 *++A0[2], B10 ;f
NOP 4 i f

30 TMS320C6000 McBSP: UART

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

