问题描述：两片TMS320C6678利用PCIE传递256M数据，数据可以发送但是中断不能产生。我参考的是 Brighton Feng 在2013年10月23日编写的PCIE例程。我没有用例程的地址映射，自己在keystone_PCIE_Init这个函数修改的。我要实现的操作是RC端从DDR为0x80000000地址处制造256M字节的递增数据（unsigned int 型），通过outbound发送给EP端。EP端采用查询的方式查询数据的最后一位，当收到数据最后一位的时候，再次将数据返回给RC端。并且发送完数据之后，以中断的方式告诉RC可以进行数据校验。两次outbound地址是不一样的。具体的发送和接收如图所示：

	RC端制造数据地址
	RC接收数据地址
	RC发送outbound偏移地址
	RC接收数据BAR1的地址
	EP端接收数据地址
	EP端outboun的发送地址
	EP端接收BAR1的地址

	DDR3里0x80000000
	DDR3里0xa0000000
	0x70000001
	0x90000000
	DDR3里0xb0000000
	0x90000001
	0x70000000


我没有用prefetch memory ，cache 也是关着的。我自己配置地址如下:

int i ,count;

Uint32 dest_address = 0xa0000000;

Uint32 dest_address1 = 0xb0000000;

unsigned int address[32];

unsigned int address1[32];

address[0] = 0x70000001;

for(count = 0;count<32;count++)

{


address[count] = address[0] + count*(0x800000);

}

address1[0] = 0x90000001;

for(count = 0;count<32;count++)

{


address1[count] = address1[0] + count*(0x800000);

}

if(0==KeyStone_Get_DSP_Number())

{


/*RC端自我配置*/


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;


gpPCIE_RC_regs ->BAR[0] = 0xFFFFFFF;


gpPCIE_RC_regs ->BAR[1] = 0xFFFFFFF;


gpPCIE_app_regs->CMD_STATUS &= ~CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;


gpPCIE_RC_regs->STATUS_COMMAND |= 0x146;


gpPCIE_RC_regs->DEV_STAT_CTRL |= 0xF;


gpPCIE_RC_regs->PCIE_ACCR |= 0x1E0;


gpPCIE_app_regs->OB_SIZE = PCIE_OB_SIZE_8MB;


for(i = 0;i<32;i++)


{



gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_INDEX = address[i];



gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_HI = 0;


}


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_OB_XLT_EN_MASK;


gpPCIE_RC_regs->BAR[1] = 0x90000000;//配置收端


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_BAR= 1;//改用region0试试,原来是region1


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_LO = 0x90000000;


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_HI = 0;


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_OFFSET = dest_address;//RC端收到的目的地址.


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_IB_XLT_EN_MASK;//先不去使能inbound传输。

}

else

{


/*EP端自我配置*/


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;


gpPCIE_EP_regs->BAR[0] = 0x000FFFFF;


gpPCIE_EP_regs->BAR[1] = 0x0FFFFFFF;//BAR1 256M


gpPCIE_EP_regs->BAR[2] = 0x007FFFFF;


gpPCIE_EP_regs->BAR[3] = 0x03FFFFFF;


gpPCIE_EP_regs->BAR[4] = 0x0FFFFFFF;


gpPCIE_EP_regs->BAR[5] = 0x0;


gpPCIE_app_regs->CMD_STATUS &= ~CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;


gpPCIE_EP_regs->STATUS_COMMAND |= 0x146;


gpPCIE_EP_regs->DEV_STAT_CTRL |= 0xF;


gpPCIE_EP_regs->PCIE_ACCR |= 0x1E0;


gpPCIE_app_regs->OB_SIZE = PCIE_OB_SIZE_8MB;


for(i = 0;i<32;i++)


{



gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_INDEX = address1[i];



gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_HI = 0;


}


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_OB_XLT_EN_MASK;//先不去使能outbound传输。


gpPCIE_EP_regs->BAR[1] = 0x70000000;//EP端就用BAR1


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_BAR= 1;


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_LO = 0x70000000;


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_HI = 0;


gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_OFFSET = dest_address1;//RC端收到的目的地址.


gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_IB_XLT_EN_MASK;//先不去使能inbound传输。

}

我的地址配置不像例程那么繁琐。只是针对于我的这种情况来自己写的配置。结果按照我的配置来进行通信，发现中断不能产生中断，也就是EP端不能产生中断给RC。但是例程却可以。我看了例程是一开始EP是以中断的方式告诉RC可以发送数据了，然后EP和RC都是通过查询的方式进行数据传递的。而我修改完之后数据确实是可以进行传递了。RC端的数据可以发送到EP端，EP端通过查询最后一位的方式确定收到数据。然后将数据原封不动的返回给RC，传完之后加上8号MSI中断。但是RC端程序死在了等中断的位置上。如果RC端也改成查询最后一位的方式这个程序是可以跑通的。截图如下：
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0x80000000 50560635 0000200 000002 02000003 000G0204 500005
6x80000015 00000005 00002007 00000 0200B00 0D0C020A GB00006
6x80000030  2000000C 0000202D G0B00GE 0000B0OF|00000B1G 000011
6x80000045 00000012 00002013 0000014 0G00BLS 0DOG0DLS 000017
6x80000060 20000018 00002019 00OOLA 0G0GBOL 0DOGOTLC 500010
6x80000075  0000001E 0000001F]6GG0G20 0000B021 00000022 08000023
x800000%0 00000024 00002025 000026 0G00B02 0D0G0023 080002
x80000045 00000024 00002025 00002 0300002 0DOG0G2E 000002
6x800000C0 60060035 00002031 0000032 0000B033 00000034 0000035
6x80000005 00000035 00000037 0000038 02000039 00000234 00000035
6x80000070  2000003C 0000203 00B0003E 000003 00000646 000041
x80000105 00000042 00000043 00004 0G0GE045 0D0C004G 0B000L7
x80000120 00000043 00000049 000004 0G00B045 0DOG0BAC 500D
6x80000135  000B0B4E 0000004F]0G0T50 0G00BOS1 0000052 0000053
6x80000150 00000054 0000205 000056 0G00B0S7 0D0G0D53 00005
OXBO0DO1EE  00BOOSA DDDOORSE GOBOODSC OOREOOSD DODOORSE GODODDSE





这个是RC端自己制造数据
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这个是EP端收到数据
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这个是RC端收到EP发回来的数据，都是采用查询标志位的方式。但是如果采用发完数据送中断的方式中断是加不上的，RC端的那个接收中断状态寄存器也是没有反应的。MSI0_IRQ_STATUS。
我分析如下：与MSI中断有关的语句是：

在KeyStone_PCIE_Init(&PCIE_cfg)这里面有KeyStone_PCIE_Interrupt_Init(pcie_cfg->interrupt_cfg, pcie_cfg->address_width);

这个函数就是中断的初始化。这个函数的作用是使能gpPCIE_app_regs->MSIX_IRQ[i].MSI_IRQ_ENABLE_SET（i从0到7），这个寄存器的作用是使能32个可用中断。还有EP端MSI_CAP的使能。

KeyStone_PCIE_RC_MSI_allocate((PCIE_MSI_Regs*)&(gpPCIE_remote_EP_regs->MSI_CAP),PCIE_RC_BAR0_ADDRESS+((Uint32)&gpPCIE_app_regs->MSI_IRQ)-(Uint32)gpPCIE_app_regs);

这个函数应该是RC分配MSI中断。其中的第二个入参PCIE_RC_BAR0_ADDRESS，注释的意思是RC端的PCIE地址，因此按照我的修改，应该0x90000000。因为我RC端接收EP端的BAR地址是0x90000000。用的是BAR1.
然后EP端将会发送中断给RC，中断号和发送的地址
KeyStone_PCIE_generate_MSI(8,(Uint32*)(CSL_PCIE_REGS+((Uint32)&gpPCIE_app_regs->MSI_IRQ)-(Uint32)gpPCIE_app_regs)); EP端将发送的数据放到PCIE缓冲区地址里面。我看到的现象是映射过去的位置已经有数据写入了。但是中断状态标志位没被置位。所以没有产生中断。也就是我的0xa0000054这个位置被我的中断的MSI_DATA数据覆盖。这个现象应该说中断采用的是OUTBOUND的方式已经发送成功了。但是为什么没有进入我的中断服务函数呢？
