问题描述：两片TMS320C6678利用PCIE传递256M数据，数据可以发送但是中断不能产生。我参考的是 Brighton Feng 在2013年10月23日编写的PCIE例程。我没有用例程的地址映射，自己在keystone_PCIE_Init这个函数修改的。我要实现的操作是RC端从DDR为0x80000000地址处制造256M字节的递增数据（unsigned int 型），通过outbound发送给EP端。EP端采用查询的方式查询数据的最后一位，当收到数据最后一位的时候，再次将数据返回给RC端。并且发送完数据之后，以中断的方式告诉RC可以进行数据校验。两次outbound地址是不一样的。具体的发送和接收如图所示：

	RC端制造数据地址
	RC接收数据地址
	RC发送outbound偏移地址
	RC接收数据BAR1的地址
	EP端接收数据地址
	EP端outboun的发送地址
	EP端接收BAR1的地址

	DDR3里0x80000000
	DDR3里0xa0000000
	0x70000001
	0x90000000
	DDR3里0xb0000000
	0x90000001
	0x70000000

我没有用prefetch memory ，cache 也是关着的。我自己配置地址如下:

int i ,count;

Uint32 dest_address = 0xa0000000;

Uint32 dest_address1 = 0xb0000000;

unsigned int address[32];

unsigned int address1[32];

address[0] = 0x70000001;

for(count = 0;count<32;count++)

{

address[count] = address[0] + count*(0x800000);

}

address1[0] = 0x90000001;

for(count = 0;count<32;count++)

{

address1[count] = address1[0] + count*(0x800000);

}

if(0==KeyStone_Get_DSP_Number())

{

/*RC端自我配置*/

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;

gpPCIE_RC_regs ->BAR[0] = 0xFFFFFFF;

gpPCIE_RC_regs ->BAR[1] = 0xFFFFFFF;

gpPCIE_app_regs->CMD_STATUS &= ~CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;

gpPCIE_RC_regs->STATUS_COMMAND |= 0x146;

gpPCIE_RC_regs->DEV_STAT_CTRL |= 0xF;

gpPCIE_RC_regs->PCIE_ACCR |= 0x1E0;

gpPCIE_app_regs->OB_SIZE = PCIE_OB_SIZE_8MB;

for(i = 0;i<32;i++)

{

gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_INDEX = address[i];

gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_HI = 0;

}

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_OB_XLT_EN_MASK;

gpPCIE_RC_regs->BAR[1] = 0x90000000;//配置收端

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_BAR= 1;//改用region0试试,原来是region1

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_LO = 0x90000000;

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_HI = 0;

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_OFFSET = dest_address;//RC端收到的目的地址.

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_IB_XLT_EN_MASK;//先不去使能inbound传输。

}

else

{

/*EP端自我配置*/

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;

gpPCIE_EP_regs->BAR[0] = 0x000FFFFF;

gpPCIE_EP_regs->BAR[1] = 0x0FFFFFFF;//BAR1 256M

gpPCIE_EP_regs->BAR[2] = 0x007FFFFF;

gpPCIE_EP_regs->BAR[3] = 0x03FFFFFF;

gpPCIE_EP_regs->BAR[4] = 0x0FFFFFFF;

gpPCIE_EP_regs->BAR[5] = 0x0;

gpPCIE_app_regs->CMD_STATUS &= ~CSL_PCIESS_APP_CMD_STATUS_DBI_CS2_MASK;

gpPCIE_EP_regs->STATUS_COMMAND |= 0x146;

gpPCIE_EP_regs->DEV_STAT_CTRL |= 0xF;

gpPCIE_EP_regs->PCIE_ACCR |= 0x1E0;

gpPCIE_app_regs->OB_SIZE = PCIE_OB_SIZE_8MB;

for(i = 0;i<32;i++)

{

gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_INDEX = address1[i];

gpPCIE_app_regs->OUTBOUND_TRANSLATION[i].OB_OFFSET_HI = 0;

}

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_OB_XLT_EN_MASK;//先不去使能outbound传输。

gpPCIE_EP_regs->BAR[1] = 0x70000000;//EP端就用BAR1

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_BAR= 1;

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_LO = 0x70000000;

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_START_HI = 0;

gpPCIE_app_regs->INBOUND_TRANSLATION[0].IB_OFFSET = dest_address1;//RC端收到的目的地址.

gpPCIE_app_regs->CMD_STATUS |= CSL_PCIESS_APP_CMD_STATUS_IB_XLT_EN_MASK;//先不去使能inbound传输。

}

我的地址配置不像例程那么繁琐。只是针对于我的这种情况来自己写的配置。结果按照我的配置来进行通信，发现中断不能产生中断，也就是EP端不能产生中断给RC。但是例程却可以。我看了例程是一开始EP是以中断的方式告诉RC可以发送数据了，然后EP和RC都是通过查询的方式进行数据传递的。而我修改完之后数据确实是可以进行传递了。RC端的数据可以发送到EP端，EP端通过查询最后一位的方式确定收到数据。然后将数据原封不动的返回给RC，传完之后加上8号MSI中断。但是RC端程序死在了等中断的位置上。如果RC端也改成查询最后一位的方式这个程序是可以跑通的。截图如下：

[image: image1.png]0x80000000 <Memory Rendering 2>

Hex 32 Bit - Tl Style - 1D Cache | [|L1P Cache L2 Cache [

0x80000000 50560635 0000200 000002 02000003 000G0204 500005
6x80000015 00000005 00002007 00000 0200B00 0D0C020A GB00006
6x80000030 2000000C 0000202D G0B00GE 0000B0OF|00000B1G 000011
6x80000045 00000012 00002013 0000014 0G00BLS 0DOG0DLS 000017
6x80000060 20000018 00002019 00OOLA 0G0GBOL 0DOGOTLC 500010
6x80000075 0000001E 0000001F]6GG0G20 0000B021 00000022 08000023
x800000%0 00000024 00002025 000026 0G00B02 0D0G0023 080002
x80000045 00000024 00002025 00002 0300002 0DOG0G2E 000002
6x800000C0 60060035 00002031 0000032 0000B033 00000034 0000035
6x80000005 00000035 00000037 0000038 02000039 00000234 00000035
6x80000070 2000003C 0000203 00B0003E 000003 00000646 000041
x80000105 00000042 00000043 00004 0G0GE045 0D0C004G 0B000L7
x80000120 00000043 00000049 000004 0G00B045 0DOG0BAC 500D
6x80000135 000B0B4E 0000004F]0G0T50 0G00BOS1 0000052 0000053
6x80000150 00000054 0000205 000056 0G00B0S7 0D0G0D53 00005
OXBO0DO1EE 00BOOSA DDDOORSE GOBOODSC OOREOOSD DODOORSE GODODDSE

这个是RC端自己制造数据

[image: image2.png]50000000 MIEJIL

0xb0000000 <Memory Rendering 3> 52

ore | coe | iz

] 00000001 00000002 00000003 00000004 0000005
©x30000015 0000000 000007 0OC00OS 0GCGE09 DEDD00DS 00B00E0E
x30000030 00000GC 00GO0BED GBOCOCOE 00B00EOF| EGEETT0 00B0CE1L
0130000045 0000012 00000D13 0OCOTLE 00GOGOLS COGOTLE 00B00E17
x30000050 0000015 00000O19 0ROCOTLA 00GOGELS GOGOTLC 00B00E1D
130000075 0000001 00000017 GBG0BG20 00GOGO21 G0C0022 00000023
130000090 00000024 00000025 0OC0G26 0GOGD27 COG002 0000002
0130000045 00000024 00000025 0B0C0G2C 00G00D2D GBOCOC2E 00O00D2F
©x300000C0 6006030 00000O31 0000032 0000033 00G0034 00B0CD3S
x300000D5 0000036 0000007 00C003S 0GOGO39 DOOD0D3A 00B0CO3E
x30000070 000003C 00000O3D 00003 00O00D3F|BGEBG0 00BDCDLL
0130000105 0000042 0000003 00C004 0DBOCDSS COG003E 0BD0EET
0130000120 000004 0O00D49 0ROD003A VGOGDAE GEOG0OAC 0BOCDSD
0130000135 000004 0000007 GBGCETS0 0GODS] G0G0DS2 0000003
130000150 0000054 00OOCBSS COCODSE 0GOCDS7 COG0DSS 00B0CDST
OxBO00016E GOOOOOSA GOGCOSE DOOOODSC OOOOOSD GOGBBBSE C0000ST

这个是EP端收到数据

[image: image3.png]L2 Cache |

L1D Cache | [C]L1P Cache

Hex32Bit-TIStle v

x (] eo000001 00000002 00000003 00000004 00000005
©xAD000015 00000006 00000007 0O000OS PPPP0RS COORRROA 00000005
©xAB000030 000000OC 00000ED DODOODE PPOROOF 00OOOOLO 00000011
©xAD00004T 00000012 0000013 00000014 0PO0DRLS GOGRROLE 00000017
©xAD0000G0 00000015 0000019 00O0DLA 0PPPPRLE GOGRRRLC 0000001D
©xA0000075 00000OLE 0000OLF| 00000020 00000021 0OGRRO22 00000023
@xAP000R%0 00000024 0000025 0000026 00000027 GOGRRO2S 0000029
OxADOOORAZ 00000024 00000025 0O0002C 0P00D2D GOGRR2E 0000O2F
exapoooeco [00000030 00000031 00000032 0000033 GOGGG34 00000035
@xABOOOEDE 00000036 00000037 0000D3E 0PPP0R39 EORRR3A 00000035
©xABOOOOFD 0000003C 0000003D 0OOOD3E 0000003 00000040 0000041
©xAP000105 00000042 00000043 0000DAS DPOOPDLS 0OGRROIS 0000047
©xAD00R120 00000045 0000049 0OODDAA DPPODRAE GOGRRRIC 00000AD
©xADOOR135 000000E 0000O4F| 00000050 PPPDRS] 0OGRRRS2 00000053
©xAPOOR150 0000004 00000OSS 0000DSG PPPPPRS7 GORRRRSE 000000SS
@xAGODO163 OBOOOSA BOOBOOSE DBOOBOSC DOBOOASD BOBOOSE DBOOBOSF

这个是RC端收到EP发回来的数据，都是采用查询标志位的方式。但是如果采用发完数据送中断的方式中断是加不上的，RC端的那个接收中断状态寄存器也是没有反应的。MSI0_IRQ_STATUS。
我分析如下：与MSI中断有关的语句是：

在KeyStone_PCIE_Init(&PCIE_cfg)这里面有KeyStone_PCIE_Interrupt_Init(pcie_cfg->interrupt_cfg, pcie_cfg->address_width);

这个函数就是中断的初始化。这个函数的作用是使能gpPCIE_app_regs->MSIX_IRQ[i].MSI_IRQ_ENABLE_SET（i从0到7），这个寄存器的作用是使能32个可用中断。还有EP端MSI_CAP的使能。

KeyStone_PCIE_RC_MSI_allocate((PCIE_MSI_Regs*)&(gpPCIE_remote_EP_regs->MSI_CAP),PCIE_RC_BAR0_ADDRESS+((Uint32)&gpPCIE_app_regs->MSI_IRQ)-(Uint32)gpPCIE_app_regs);

这个函数应该是RC分配MSI中断。其中的第二个入参PCIE_RC_BAR0_ADDRESS，注释的意思是RC端的PCIE地址，因此按照我的修改，应该0x90000000。因为我RC端接收EP端的BAR地址是0x90000000。用的是BAR1.
然后EP端将会发送中断给RC，中断号和发送的地址
KeyStone_PCIE_generate_MSI(8,(Uint32*)(CSL_PCIE_REGS+((Uint32)&gpPCIE_app_regs->MSI_IRQ)-(Uint32)gpPCIE_app_regs)); EP端将发送的数据放到PCIE缓冲区地址里面。我看到的现象是映射过去的位置已经有数据写入了。但是中断状态标志位没被置位。所以没有产生中断。也就是我的0xa0000054这个位置被我的中断的MSI_DATA数据覆盖。这个现象应该说中断采用的是OUTBOUND的方式已经发送成功了。但是为什么没有进入我的中断服务函数呢？
