
Copyright © 2010 Texas Instruments. All rights reserved.

Texas Instruments

TMS320C6678 (Shannon)
DSP Training

Brighton Feng

November, 2010

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

4

Shannon Functional Diagram

• Multi-Core SoC

• Fixed/Floating C66x™ Core

– Eight cores @ 1.0 GHz, 0.5 MB Local L2

– 4.0 MB shared memory

– 256 GMAC, 128 GFLOP

• Navigator

– Multicore eco system

• Packet Infrastructure

• Network Coprocessor

– IP Network solution for IP v4/6

– 1.5M packets per sec (1Gb Ethernet

wire-rate)

– IPsec, SRTP, Air Interface Encryption

fully offloaded

• 3-port GigE Switch (Layer 2)

• Low Power Consumption

– Adaptive Voltage Scaling (Smart

ReflexTM)

• Hyperlink 50

– 50G Expansion port

– Transparent to Software

• Multicore Debugging

C6678 (Shannon)

C66x core

L2
 M

e
m

o
ry

L1 D L1 P

. . . 8 C66x Cores

Peripherals and I/O

sRIO

Flash PCIe

TSIP

UART SPI, I2C

System Elements

Power Mgt

Debug EDMA

SysMon

 Memory System

D
D

R
-3

6

4
b

Shared Memory

Multicore Memory
Controller

Hyperlink50 TeraNet 2

M
u

lt
ic

o
re

N

av
ig

at
o

r

Enet
Switch

SG
M

II

SG
M

II

Packet
CoProcessor

Crypto/IPSec
CoProcessor

Copyright © 2010 Texas Instruments. All rights reserved.

100% backward object

code compatible

Increased

Fixed and floating

Point capability

Improved support for

complex arithmetic

and matrix
computation

Enhanced DSP core

Native

instructions for

IEEE 754, SP&DP

Advanced VLIW

architecture

2x registers

Enhanced

floating-point

add capabilities

Advanced fixed-

point

instructions

Four 16-bit or

eight 8-bit MACs

Two-level cache

SPLOOP and 16-

bit instructions

for smaller code

size

Flexible level one

memory

architecture

iDMA for rapid

data transfers

between local

memories

C66x

C64x+

C64x
C67x

C67x+

FLOATING-POINT VALUE FIXED-POINT VALUE

P
e
rf

o
rm

a
n

c
e
 i

m
p

ro
v
e
m

e
n

t

Copyright © 2010 Texas Instruments. All rights reserved.

C66x core block diagram

C66x Core

Data Path 1 Data Path 2

A Register File

A0 – A31

B Register File

B0 –B31

Instruction Decode

Instruction Dispatch

Instruction Fetch
Control Registers

Interrupt

Control

In-Circuit Emulation

D2 S2 L2 S1 L1

+

+

+

+

M1 D1 M2

x

x

x

x

SPLOOP Buffer

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

256 Bits

2x64 Bits

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Copyright © 2010 Texas Instruments. All rights reserved.

Key Improvements of C66x

 4x Multiply Accumulate improvement

 Enhanced complex arithmetic and matrix operations

 2x Arithmetic and Logical operations
improvement

 Support the floating point arithmetic. Single
precision floating point operation capability
same as 32 bit fixed point operation capability

 division and square root is supported by
floating point instruction

Copyright © 2010 Texas Instruments. All rights reserved.

C64x+  C66x Comparison

Operation Precision Operations
per cycle
on C64x+

Operations
per cycle
on C66x

Function Unit

MAC Real 8 x 8 2 x 4 = 8 2 x 8 = 16 M1, M2

Real 16 x 16 2 x 2 = 4 2 x 8 = 16 M1, M2

Real 32 x 32 2 x 1 = 2 2 x 4 = 8 M1, M2

Complex (16,16)
x (16,16)

2 x 1 = 2 2 x 4 = 8 M1, M2

Complex (32,32)
x (32,32)

N/A 2 x 1 = 2 M1, M2

Arithmetic

Logical

8 bit 4 x 4 = 16 4 x 8 = 32 L1, L2, S1, S2

16 bit 4 x 2 = 8 4 x 4 = 16 L1, L2, S1, S2

32 bit 4 x 1 = 4 4 x 2 = 8 L1, L2, S1, S2

Memory

Access

8 bit, 16 bit, 32
bit, 64 bit

2 x 1 = 2 2 x 1 = 2 D1, D2

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Memory Architecture Overview

 Shannon Memory Architecture
Improvement

 Programming model

 Interconnection and resource sharing

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

TCI6486 Memory Architecture

Core 0

Internal

L2 RAM

Core N

Internal

L2 RAM

DMA

SCR

(Core

speed)/3

128 bit

Shared

L2

Control

(Core

speed)/2

256 bit

Shared

L2 RAM

External

Memory

Shared

L2 ROM

EDMA

.

.

.

S

M

S

M

M

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon Memory Architecture

Core 0

Internal

L2 RAM

Core N

Internal

L2 RAM

DMA

SCR

(Core

speed)/3

128 bit

Shared

Memory

Control

(Core

speed)/2

256 bit

Shared

L2 RAM

External

Memory

EDMA

.

.

.

S

S

MEDMA M

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Memory Architecture Overview

 Shannon Memory Architecture
Improvement

 Programming model

 Interconnection and resource sharing

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Addition of XMC

 Bring over existing EMC MDMA path

 Fat pipe to external (and internal) shared memory

 Bus width: 256 instead of 128 bits

 Clock rate: CPUCLK/2 instead of CPUCLK/3

 Optimize requests for MSMC / DDR3 memory

 L2 line allocations and evictions are split into sub-lines of 64 bytes

 Memory Protection and Address Extension (MPAX) support

 16 segments of programmable size (powers of 2: 4KB to 4GB)

 Each segment maps a 32-bit address to a 36-bit address.

 Each segment controls access: supervisor/user, R/W/X, (non-)secure

 Memory protection for shared internal MSMC memory and external DDR3
memory

 Multi-stream Prefetch support

 Program prefetch buffer up to 128 bytes

 Data prefetch buffer up to 8 x 128 bytes

 Prefetch enabled/disabled on 16MB ranges defined in MAR

 Manual flush for coherence purposes

 Note: no IDMA path

Copyright © 2010 Texas Instruments. All rights reserved.

MAR Register Extension

• L2 memory controller extends the MAR registers by adding the “PFX” field,

L2 memory controller uses this bit to convey XMC whether a given address

range is prefetchable.

Copyright © 2010 Texas Instruments. All rights reserved.

MSMC Block Diagram

RAM banks,

256-bits per

bank

CGEM

Slave Port

CGEM

Slave Port

System

Slave Port

for shared

SRAM

(SMS)

System

Slave Port

for

external

memory

(SES)

MSMC System

Master Port

MSMC EMIF

Master Port

MSMC Datapath

x N CGEM cores

Arbitration for Banks

256

256

256

256

256

Memory

Protection

and

Extension

Unit

(MPAX)

256 256

VBUSM 256

events

VBUSM 256

VBUSM 256

Memory

Protection

and

Extension

Unit

(MPAX)

MSMC Core

EMIF – 64 bit

DDR3

 SCR

SCR

VBUSM 256

EDC for SRAM

 One slave interface per C66x
Megamodule (256 bits @ CPUCLK/2)

 Uses a 36 bit address extended inside
a C66x Megamodule core

 Two slave interfaces (256 bits @
CPUCLK/2) for access from system
masters

 SMS interface for accesses to MSMC
SRAM space

 SES interface for accesses to DDR3
space

 Both interfaces support memory
protection and address extension

 One master interface (256-bits @
CPUCLK/2) for access to the DDR3
EMIF

 One master interface (256 bits @
CPUCLK/2) for access to system
slaves

Copyright © 2010 Texas Instruments. All rights reserved.

MSMC Shared Memory

 4 banks x 2 sub-banks, sub-bank are 256-bit
wide.

 Reduces conflicts between C66x Megamodule cores
and system masters

 Features a dynamic fair-share bank arbitration for
each transfer

 Supports bandwidth management. Avoid
indefinite starvation for lower priority requests
due to higher priority requests

 Features Not Supported

 Cache coherency between L1/L2 caches in C66x
Megamodule cores and MSMC memory

 Cache coherency between XMC prefetch buffers and
MSMC memory

 C66x Megamodule to C66x Megamodule cache
coherency via MSMC

Copyright © 2010 Texas Instruments. All rights reserved.

MPAX Units

 MPAX stands for “Memory Protection and
Address Extension”

 There are N+2 MPAX units in a system with N
C66x Megamodules

 N MPAX units for all requests from N C66x
Megamodules to internal shared memory, external
shared memory or any system slave

 1 MPAX unit for all requests from any system master
to internal shared memory

 1 MPAX unit for all requests from any system master
to external shared memory

 Each MPAX unit operates on a number of
segments of programmable size

 Each segment maps a 32-bit address to a 36-bit
address.

 Each segment controls access.

Copyright © 2010 Texas Instruments. All rights reserved.

Number of Segments

 Each C66x Megamodule has 16 segments which
control direct (load/store) requests to internal
shared memory, external shared memory and
any other system slave.

 Any master identified by a privilege ID has

 8 segments for requests to internal shared memory

 8 segments for requests to external shared memory.

 Some masters work on behalf of other masters.
They will inherit the privilege ID of their
commanding master. As such, each C66x
Megamodule also has

 8 segments for indirect (DMA) requests to internal
shared memory

 8 segments for indirect (DMA) requests to external
shared memory

Copyright © 2010 Texas Instruments. All rights reserved.

Segment Definition

 Each segment is defined by a base address and a size

 The segment size can be set to any power of 2 from 4K to
4GB

 The segment base address is constrained to power-of-2
boundary equal to size.

 One would expect that each request should find one
matching segment, however ...

 a request may find two or more matching segments, in
which case segments with higher ID take priority over
segments with lower ID. This allows

 creating non-power of 2 segments

 creating 3 segments with just 2 segment definitions

 ...

 a request may find no matching segment, in which case an
error is reported in Memory protection fault reporting
registers (XMPFAR, XMPFSR)

Copyright © 2010 Texas Instruments. All rights reserved.

XMC Segment Registers
XMPAXH/XMPAXL[15-0]

Copyright © 2010 Texas Instruments. All rights reserved.

MPAX Default Memory Map

Segment 1

Segment 0

DisabledSegment 2

DisabledSegment 3

DisabledSegment 4

DisabledSegment 5

DisabledSegment 6

DisabledSegment 7

DisabledSegment 8

DisabledSegment 9

DisabledSegment 10

DisabledSegment 11

DisabledSegment 12

DisabledSegment 13

DisabledSegment 14

DisabledSegment 15

CGEM Logical

32-bit Memory Map

Upper 60GB

System Physical

36-bit Memory Map

Lower 4GB

0000_0000

7FFF_FFFF

8000_0000

FFFF_FFFF

(not remappable)
0BFF_FFFF

0C00_0000 0:FFFF_FFFF

0:8000_0000

0:7FFF_FFFF

0:0C00_0000

0:0BFF_FFFF

0:0000_0000

1:0000_0000

F:FFFF_FFFF

7:FFFF_FFFF
8:0000_0000

BADDR = 00000h; RADDR = 000000h; Size = 2GB

BADDR = 80000h; RADDR = 800000h; Size = 2GB

8:8000_0000

8:7FFF_FFFF

 XMC configures MPAX segments 0 and 1 so that
C66x Megamodule can access system memory.

 The power up configuration is that segment 1
remaps 8000_0000 – FFFF_FFFF in C66x
Megamodule’s address space to 8:0000_0000 –
8:7FFF_FFFF in the system address map.

 This corresponds to the first 2GB of address space
dedicated to EMIF by the MSMC controller.

Copyright © 2010 Texas Instruments. All rights reserved.

MPAX MSMC Aliasing Example

BADDR = 0C000h; RADDR = 00C000h; Size = 2MB

BADDR = 20000h; RADDR = 00C000h; Size = 2MB

CGEM 32-bit Memory Map

0000_0000

FFFF_FFFF

(not remappable)
0BFF_FFFF

0Cxx_xxxx

0:0C1F_FFFF

0:0C00_0000

BADDR = 21000h; RADDR = 00C000h; Size = 2MB

20xx_xxxx

21xx_xxxx

“Fast” MSMC RAM

MSMC RAM Alias 1

MSMC RAM Alias 2

MSMC RAM

(2MB)

 Example shows 3 segments to map the MSMC RAM address
space into C66x Megamodule’s address space as three distinct
2MB ranges. By programming the MARs accordingly, the three
segments could have different semantics.

 Accesses to MSMC RAM via this alias do not use the “fast RAM”
path and incur additional cycles of latency.

Copyright © 2010 Texas Instruments. All rights reserved.

MPAX Overlayed Segments Example

BADDR = 00000h; RADDR = 000000h; Size = 2GB

BADDR = 80000h; RADDR = 080000h; Size = 2GBSegment 1

Segment 0

BADDR = C0007h; RADDR = 050042h; Size = 4KSegment 2

DisabledSegment 3

DisabledSegment 4

DisabledSegment 5

DisabledSegment 6

DisabledSegment 7

DisabledSegment 8

DisabledSegment 9

DisabledSegment 10

DisabledSegment 11

DisabledSegment 12

DisabledSegment 13

DisabledSegment 14

DisabledSegment 15

CGEM 32-bit Memory Map

Upper 60GB

System 36-bit Memory Map

Lower 4GB

0000_0000

7FFF_FFFF

8000_0000

FFFF_FFFF

(not remappable)
0BFF_FFFF

0C00_0000

0:FFFF_FFFF

0:8000_0000

0:7FFF_FFFF

0:0C00_0000

0:0BFF_FFFF

0:0000_0000

1:0000_0000

F:FFFF_FFFF

0:5004_2xxx

0:C000_7xxx

C000_7xxx

 segment 1 matches 8000_0000 through FFFF_FFFF,
and segment 2 matches C000_7000 through C000_7FFF.

 Because segment 2 is higher priority than segment 1,
its settings take priority, effectively carving a 4K hole in
segment 1’s 2GB address space.

 Furthermore, it maps this 4K space to 0:5004_2000 -
0:5004_2FFF, which overlaps the mapping established
by segment 0. This physical address range is now
accessible by two logical address ranges.

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Memory Architecture Overview

 Shannon Memory Architecture
Improvement

 Programming model

 Interconnection and resource sharing

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

single program image

L2 memory

C6000

Core 0

L1 Prog

L1 Data

C6000

Core 1

L1 Prog

L1 Data

C6000

Core 2

L1 Prog

L1 Data

L2 memory

L2 memory

App.out App.out App.out

code

and

read/write

data

Shared L2 or

DDR memory
App.out

Shared code

and

Read only

data

Data 0

Data 1

Data 2

Data 0 Data 1 Data 2

 Same image on each DSP core

 Aliased addressing used for DSP core to access local L2

 DNUM DSP core register for:

 Global addressing when programming EDMA3, SRIO, …

 Separate buffer per DSP core in DDR: dp= bufBase+ BUF_SIZE*DNUM

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon MPAX enables easy single program image

M
P

A
X

M
P

A
X

code1

data2

data2

code2

data3

data3

MSMC RAM

internal

External memory

code1

data2

code2

data3

MSMC RAM

internal

External memory

SoC address spaceCGEM address space (1)

code1

data2

code2

data3

MSMC RAM

internal

External memory

CGEM address space (n)

virtual address space (1) virtual address space (n)SoC address space

Copyright © 2010 Texas Instruments. All rights reserved.

multiple program image

L2 memory

C6000

Core 0

L1 Prog

L1 Data

C6000

Core 1

L1 Prog

L1 Data

C6000

Core 2

L1 Prog

L1 Data

L2 memory

L2 memory

App0.out
App1.out

C6000

Core 0

L1 Prog

L1 Data

C6000

Core 1

L1 Prog

L1 Data

C6000

Core 2

L1 Prog

L1 Data

App0.out App1.out App2.out

App2.out

Shared L2 or

DDR memory

Data 0 Data 1 Data 2

Data 0
Data 1 Data 2

 Each DSP core has its image

 Static split of DDR2 per DSP core

 Global or local addressing used for L2 addressing

Copyright © 2010 Texas Instruments. All rights reserved.

43

Shannon Software
• Flexible development

environment for the customer.

• Customer can choose to develop
their application using all or any
one of the software layers.

• Will contain following software
layers

– BIOS and Linux Operating System
support

– Chip Support Library

– Platform Development Kit

– Inter Core Communication

– Optimized DSP functions library

– Optimized Audio, Video and
Speech codecs

– Voice Gateway Demonstration Kit

– Video Transcoding Demonstration
Kit

– Demonstration applications

C6678 Software

Operating System w/ Boot Loader

BIOS

Full Silicon Entitlement

Multi-core Entitlement

Linux

Chip Support Library

Platform Development Kit

Inter Core Communication

Voice Gateway

Demonstration Kit
Video

Transcoding

Demonstration Kit

Speech
Codec

DSPLIB
Audio
Codec

Video
Codec

Demo

App

Customer Application

Copyright © 2010 Texas Instruments. All rights reserved.

Data

Visualization

Shannon Debug
Best Multicore Debug and Visualization Debug enabled Multicore SoC

Debug visibility at core, across multicore and for SoC

 45

C6678 (Shannon)

C66x
core

L2
 M

e
m

o
ry

L1 D L1 P

. . . 8 C66x Cores

Peripherals and I/O

sRIO

Flash PCIe

TSIP

UART SPI, I2C

System Elements

Power Mgt

Debug EDMA

SysMon

 Memory System

D
D

R
-3

6

4
b

Shared

Memory

Multicore Memory
Controller

TeraNet 2

M
u

lt
ic

o
re

N

av
ig

at
o

r

Enet
Switch

SG
M

II

SG
M

II

Packet
CoProcessor

Crypto/IPSec
CoProcessor

E
T

B

TRACE

TR
A

C
E

Hyperlink50

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Interconnection Architecture

 Shannon Hardware queue

 Inter-core communication

 Shared Resource Management

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon Switch Fabric

MSMC_SS

CPU/2

256b

VBUSM

SCR

Shared

L2 RAM

CPU/3

128b

VBUSM

SCR

S

S

SRIO
M

PCIe

QM_SS

M

M

16ch DMA
M TC0

M TC1

M

M DDR3 S
XMC

64ch

DMA

M TC2

M TC3

M TC4

M TC5

64ch

DMA

M TC6

M TC7

M TC8

M TC9

CPU/3

32b

VBUSP

SCR

PA_SS M

VUSR M

VUSR S

TSIP 0,1 M

QM_SS

PCIe

S

S

EMIF16 S

CONFIG

M

EDMA_0

EDMA_1,2
GEM S M GEM S M GEM S M GEM S M GEM S M GEM S M GEM S M GEM S M

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Interconnection Architecture

 Shannon Hardware queue

 Inter-core communication

 Shared Resource Management

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Hardware Queue Architecture

 packetized Data transfer architecture
designed to minimize DSP core
interaction while maximizing memory
and bus efficiency

 the key communication platform for TI’s
future Infrastructure DSPs

 Used by following peripherals in
Shannon:

 Serial RapidIO, Packet Accelerator

 Each module contains its own DMA to
transfer associated data with the ‘jobs’, No
CPU resources involved

Copyright © 2010 Texas Instruments. All rights reserved.

Queue 1..x

Hardware Queue

 Producer writes ‘jobs’ into a Queue.

 Consumer reads ‘jobs’ from the
Queue

 Supports Multiple In – Multiple Out

 Multiple Producers can write to the
same Queue
 Used to share common Hardware

 Multiple Consumers can read from
the same Queue
 Used for Load Balancing

 Abstracts the Consumer

 Consumer can be a Hardware IP
(accelerator, peripheral) or a
software (ie a CPU core)

 Transparent for the Producer

  ‘Easy’ to upgrade to new
hardware. The ‘job gets done’.

  Minimize changes to Host
software, Easy maintenance

CPU1

CPU2

CPU3

Packet

Acc.

RapidIO

....

Producer Queue

Manager

CPUx

Acc 1

Acc 2

RapidIO

Peri x

…

Queue

Controller

DMA

Consumer

Send a ‘job’ Retrieve a ‘job’

Copyright © 2010 Texas Instruments. All rights reserved.

Packet Queuing Data Structure Diagram

Copyright © 2010 Texas Instruments. All rights reserved.

Hardware Queue Operation

 Push to a queue

 Host write pointer of new descriptor to a queue register.

 Queue manager links (modify the link RAM) the new
descriptor to the tail (or header) of the queue.

 Tail (or header) pointer points to the new descriptor.

 Pop from a queue

 Host read a descriptor pointer from a queue register.

 Queue manager returns the descriptor pointed by the header
pointer

 Header pointer points to the next descriptor.

 Monitor queue

 Queue manager generates events when queue changes: not
empty, entry count, exceed threshold, starvation…

 Queue Diversion

 Entire queue contents can be cleared or moved to another
queue destination using a single register write

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon Hardware queue architecture

DSP coreDSP core

Queue Manage Subsystem

DSP core
Packet DMA

(SRIO)

Packet DMA

(PA)

VBUS

Accumulation

Buffer

Buffer

Memory

.

.

.

Link

RAM
Descriptor

RAM
Queue

Manager

Q1

IF

Q0

IF

Qx

IF

Queue Events

Queue Event Queue Event

Packet

DMA

(Internal)

APDSP

APDSP

Queue Interrupt

Queue

Interrupts

Copyright © 2010 Texas Instruments. All rights reserved.

Queue Manager Subsystem

 Support 8192 queues

 HW queues are multi-core safe without mutual
exclusion, multiple senders can use a destination
queue without restrictions

 Can Notify Packet DMA when transfer is pending

 Can notify DSP core when packet is pending, can
copy descriptor pointers of transferred data to
destination core’s local memory to reduce access
latency

 Internal Packet DMA

 Transfer packet from one queue to another queue. Good for
core to core data transfer.

Copyright © 2010 Texas Instruments. All rights reserved.

Descriptor RAM

 Data elements (buffers) to
be passed on queues are
first described to a
descriptor region manager
built into the QM.

 Although technically called
descriptors, these memory
elements can hold any
arbitrary data.
The size of the data
elements must be a power of
2, from 32 bytes to 8192
bytes in length.

 20 configurable memory
regions (for descriptor
storage)

 The number of elements in
the region must be a power
of 2, from 32 buffers to 4096
buffers in the region.

32 byte

buffers

256 byte

buffers

Memory Descriptor Region

Registers

16

0 0x1000

0x2000

0x1000

0 16

Region 0

Region 1

Region 19

…

32

16 4 256

0x2000

15

19

Copyright © 2010 Texas Instruments. All rights reserved.

Linking RAM

 Linking RAM contains 1 entry for each
descriptor . Linking RAM entry is effectively
an extension of the descriptor

 Linking RAM stores Forward data pointer
that is critical for the PUSH / POP operations
performed by the Queue Manager

 Linkage between physical address of
descriptor and physical address of Linking
RAM is performed inside the QM using
information provided in the Queue
Management configuration registers

 Linking RAM is typically placed in local
memory for speed. This allows data
elements to be linked and unlinked in a
queue very quickly, even though the buffers
themselves may be in external memory

 There is no limit to the length of a single
queue, only a limit on the total number of
data elements in the system.

 2 configurable Linking RAM regions

Queue Contents

Linking RAM

0

17

Forward Pointer Table

- - -

- x - -

- - - -

- - - -

- 5 19 x

Queue 0 Queue 1

17

5

19

18

Copyright © 2010 Texas Instruments. All rights reserved.

Queue Data Flow Example, Transmit

Host Processor

Queue Manager
Rx
Queue

Rx Port

INIT : Host Allocates
Rx Free Descriptors
and initializes queues

Interrupt Generator

Free
Descriptor
Queue

Tx
Queue

TX 2 Processor
 Queues a packet

 to a Tx Queue

TX 3 Port transmits
the buffer being
pointed to by
the descriptor

TX 4 Port Posts
Packet Descriptor
 to return Queue

Tx Port

TX 1 Processor
fetches a descriptor
to fill with the data
to transmit

Copyright © 2010 Texas Instruments. All rights reserved.

Queue Data Flow Example, Receive

Host Processor

Queue Manager

Rx
Queue

Rx Port

INIT : Host Allocates
Rx Free Descriptors
and initializes queues

RX 1 Port Fetches a
Free Descriptor
 and transfers the
data to the buffer
pointed to by the
descriptor

RX 2 Port Posts
 Packet to

Rx Queue

RX 4

 Interrupt according to pacing rules or poll

Interrupt Generator
RX 3 Not Empty
 Level Status

 Free
Descriptor
Queue

Tx
Queue

Tx Port

Optionally prefetches the descriptor
to L2 prior to interrupting

Copyright © 2010 Texas Instruments. All rights reserved.

Accumulator (A Programmable DSP)

 Accumulator is used to help
DSP core efficiently POP
descriptor pointers from
queue.

 Accumulator pop descriptor
pointer from queue and write
to accumulation memory
(normally in DSP local
memory).

 Accumulator generates
interrupt to DSP core
according to interrupt pacing
configuration.

 Two Accumulator (PDSP)

 One generate 32 interrupts,
each for one queue.

 The other generate 16
interrupts, each is combined
event for 32 queues. Totally
monitor 16x32 queues.

DSP core
Accumulation Memory

(Descriptor Pointer Array)

Queue Manager

Monitor Queue

Changes

APDSP

Queue Events

Queue

Interrupts

Descriptor

RAM

Timer for

Interrupt

Pacing

Copyright © 2010 Texas Instruments. All rights reserved.

Hardware queue Performance Consideration

 Push Operation

 1~4 words write. Since it is post operation, normally,
do not stall DSP core.

 Pop Operation

 1~4 words read. Stall DSP core about 80~100 cycles.

 Accumulator (PDSP) can pop the descriptors to DSP
local memory which will save DSP cycles dramatically.

 Descriptor Access

 Write/read full descriptor may consume many cycles.

 For most applications, DSP core can initialize all
descriptors during initialization, and only write/read
few fields of the descriptor during run time.

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Interconnection Architecture

 Shannon Hardware queue

 Inter-core communication

 Shared Resource Management

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Shared Data in the L2 SRAM of transmitter

 If cache is enabled, Core Y needs invalidate cache before
read

Data Switch

Fabric Center

DDR2 SDRAM

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

Copyright © 2010 Texas Instruments. All rights reserved.

Shared Data in the L2 SRAM of receiver

Data Switch

Fabric Center

DDR2 SDRAM

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

 If cache is enabled, Core X needs write back cache after
write

Copyright © 2010 Texas Instruments. All rights reserved.

Shared Data in the shared memory

Data Switch

Fabric Center

Shared L2 or DDR

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

 If cache is enabled, Core X needs write back cache after
write; core Y needs invalidate cache before read

Copyright © 2010 Texas Instruments. All rights reserved.

Use IPC register for inter-core communication

Configuration

Switch Fabric

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

IPC

 Interrupt is generated for Core Y

 No cache coherency issue

Copyright © 2010 Texas Instruments. All rights reserved.

Inter-core Data Block exchange with EDMA

Data Switch

Fabric Center

EDMA

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

Data Data

 Interrupt is generated for Core Y

 No cache coherency issue

Copyright © 2010 Texas Instruments. All rights reserved.

Inter-core data exchange through hardware queue
(Packet DMA copy)

Data Switch

Fabric Center

Packet

DMA

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

Src

Que

Dst

Que

 Core X simply push data to Source Queue

 Packet DMA transfer the data Dest Queue

 Core Y simply pop data from Dest Queue

 If Queue buffers are in L2 RAM, Software on both cores do not
need maintenance the cache coherency.

Copyright © 2010 Texas Instruments. All rights reserved.

Inter-core data exchange through hardware queue
(Zero Copy)

 Core X push data to Shared Queue, Core Y pop data from Shared
Queue

 Multi-core can access Shared Queue simultaneously without mutual
exclusion

 Software need maintenance the cache coherency.

Data Switch

Fabric Center

Queue

Manager

L2 RAM

L2 Cache

DSP

Core X

L1 Cache

L2 RAM

L2 Cache

DSP

Core Y

L1 Cache

Shared

Queue

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Interconnection Architecture

 Shannon Hardware queue

 Inter-core communication

 Shared Resource Management

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Shared resources

 Internal shared L2 and External Shared memory (DDR)

 Each core access shared memory independently. Arbitration
handled by switch fabric and end-point arbiters.

 Shared on-chip Peripherals

 Configuration: Typically done at startup to set the operating
mode of a particular logic block (e.g. DDR settings). Should be
done by a single core as part of the boot process.

 Use:

 Peripherals with Hardware queue, Each core access hardware
queue independently. Arbitration handled by queue manager.

 Ethernet, SRIO on Shannon…

 Multi-channel peripherals can be split amongst the cores for
concurrent, orthogonal control

 EDMA, TSIP, Timer…

 Single-channel peripherals can be controlled by a single master,
servicing the other cores if needed. Or mutual exclusively used by
multi-masters through semaphore.

 I2C, SPI…

Copyright © 2010 Texas Instruments. All rights reserved.

System-level prioritization for arbitration

 A user-specified priority may be assigned to:

 Any DSP core accesses

 Any EDMA, sRIO, Ethernet, … on-chip transfers

 Each of the master ports are assigned a priority (8
levels) configurable

Copyright © 2010 Texas Instruments. All rights reserved.

Hardware Semaphores on Shannon for atomic accesses

 What function does the Semaphore module provide?

 A method to control who accesses a shared resource

 Provides accesses for shared resources in an atomic manner

 Read-modify-write sequence is not broken

 Features of the Semaphore module

 Binary Semaphore

 Contains 64 semaphores to be used within the system

 Two methods of accessing a semaphore resource

 Direct Access

 A core directly accesses a semaphore resource. If free, the semaphore
will be granted. If not, the semaphore is not granted

 Useful if the system can afford to poll for the semaphore

 Indirect access

 A core indirectly accesses a semaphore resource by writing to it. Once it
is free an interrupt will notify the DSP core that it is available.

Copyright © 2010 Texas Instruments. All rights reserved.

Outline

 C6678 DSP Overview

 Multi-core DSP programming

 Interconnection and resource sharing

 Peripherals overview

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon RapidIO Gen 2 Features and Enhancements

4 lanes – options include 2x

Baud rates: 5 Gbaud per
lane in addition to 1.25, 2.5,
3.125 Gbaud per lane

DeviceID Support

 16 Local DeviceIDs (up
from 1)

 8 Multicast IDs (up from 3)

24 Interrupt outputs (up
from 8)

 Messaging

 Type 9 Packets Support (Data
Streaming)

 Type 11 Message –
classification improvements

 DirectIO

 8 Load/Store (DirectIO) Units
(up from 4)

 Shadow register sets for LSUs
to simplify management and
minimize overhead

 Provide up to 1MB block
transfers (up from 4KB)

 Packet Forwarding with Reset
Isolation

88

Copyright © 2010 Texas Instruments. All rights reserved.

89

RapidIO – Topology Examples

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

Mesh

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

Chain

SRIO
Switch

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

Switch

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

C6678

DSP

Ring

Copyright © 2010 Texas Instruments. All rights reserved.

Packet Accelerator Subsystem On Shannon

 3 Port Ethernet Switch
 Port 0: Internal hardware queue port

 Port 1: SGMII 0 Port, 1Gbps

 Port 2: SGMII 1 Port, 1Gbps

 Packet Accelerator (PA)

 L2, L3, and L4 packet processing

 1.5M packets per sec

 Security Accelerator (SA)

 Encryption/Decryption

 IPSEC ESP

 IPSEC AH

 SRTP

 3GPP

91

Copyright © 2010 Texas Instruments. All rights reserved.

IEEE 1588 support

 EMAC hardware supports classifying at the physical level
ingress and egress frames as timing synchronization
frames and the timestamp is recorded.

 A software algorithm running on DSP core would then run
the algorithm to calculate the delay and adjust local time
accordingly.

Device A is the master device
Device B is the slave device

Message B is used to send the actual
transmit time (tA) of Message A
Message D is used to send the actual
receive time (rC) of Message C

wire time in one direction
((rC - tA)-(tC - rA))/2

Copyright © 2010 Texas Instruments. All rights reserved.

TSIP Overview

 1024 8-bit timeslots receive and transmit.

 8 links of 128 timeslots at 8.192 Mbps.

 4 links of 256 timeslots at 16.384 Mbps.

 2 links of 512 timeslots at 32.768 Mbps.

 Two clock and frame sync inputs.

 Independent clocking – 1 receive clock and 1 transmit
clock.

 Redundant/common clocking – 1 receive/transmit clock
with second clock as backup.

Copyright © 2010 Texas Instruments. All rights reserved.

Shannon PCIe Interface

Nyquist/Shannon incorporates PCIe interface with
the following characteristics:

 Two SERDES lanes running at 5 GBaud/2.5GBaud

 Gen2 compliant

 Three different operational modes (default defined by pin
inputs at power up; can be overwritten by software):

 Root Complex (RC)

 End Point (EP)

 Legacy End Point

 Single Virtual Channel (VC)

 Single Traffic Class (TC)

 Maximum Payloads

 Egress – 128 bytes

 Ingress – 256 bytes

 Configurable BAR filtering, IO filtering and configuration
filtering

94

Copyright © 2010 Texas Instruments. All rights reserved.

Remaining Peripherals & System Elements (1/2)

EMIF16

 Supports NAND flash memory, up to 256MB

 Supports NOR flash up to 16MB

 Supports asynchronous SRAM mode, up to 1MB

 Used for booting, logging, announcement, etc.

64-Bit Timers

 Total of 16 64-bit timers

 One 64-bit timer per core is dedicated to serve as a watchdog (or may be used
as a general purpose timer)

 Eight 64-bit timers are shared for general purpose timers

 Each 64-bit timer can be configured as two individual 32-bit timers

 Timer Input/Output pins

 Two timer Input pins

 Two timer Output pins

 Timer input pins can be used as GPI

 Timer output pins can be used as GPO

Copyright © 2010 Texas Instruments. All rights reserved.

Remaining Peripherals & System Elements (2/2)

UART Interface – Operates at up to 128,000 baud

 I2C Interface

 Supports 400Kbps throughput

 Supports full 7-bit address field

 Supports EEPROM size of 4 Mbit

SPI Interface

 Operates at up to 66MHz

 Supports two chip selects

 Support master mode

GPIO Interface

 16 GPIO pins

 Can be configured as interrupt pins

 Interrupt can select either rising edge or falling edge

Copyright © 2010 Texas Instruments. All rights reserved.

Q&A

