

CCSv5.5中 DSP/BIOS的搭建

说明：鉴于目前网络上关于如何在 CCS5.5中怎么运用 DSP/BIOS的详细指导十分

不全面，本人在搜索过程中也是一头雾水，故写此文档，第一便于大家互相学习

交流，第二方便本单位后续技术积累。文中截图系本人亲自操作截取。

1：创建常规 CCS5.5工程

1） 打开 CCS，选择 File > New > CCS Project。

2） 在 Project name 栏输入要创建的工程名字，以 test为例。

3） 在 Family栏选定你所使用的 DSP的家族系列，以 C6000为例。

4） 在 Variant栏选定你所使用的 DSP系列，以 C674x Floating-point DSP为例，在

后面的选框中选中具体的 DSP型号。以 TMS320C6748为例。

5） 在 Connection栏选择你所使用的仿真器型号。

6） Advanced settings高级选项，主要时选择芯片的大小端，编译器版本，一般

情况下这里不需要设置。

7）在 Project templates and examples栏选中带 main.c的空白工程。

8）点击 Finish按钮，完成。

至此一个普通的 CCS5.5工程就创建完毕，剩下的就 BIOS如何引用过来的问题了。

2：引入 DSP/BIOS系统

注 1：因为刚才在创建工程的时候已经产生了一个名为 C6748.cmd的链接命令文

件，在这里需要删除这个链接命令文件，因为 DSP/BIOS 在创建的过程中会产生

一份新的链接命令文件。并且新的链接命令文件会把一些用到的应用库包含进来，

例如 bios.a62,rtdx.lib,rts64plus.lib等程序库。大多数 DSP/BIOS生成的链接命令文

件会满足所有的存储段分配，也可以后续再通过MEM管理器进行控制。

注 2：假如你的工程之前有包含 vectors.asm 源文件，同样需要移除这个文件，

因为 DSP/BIOS会自动定义硬件中断向量表。就是说假如你使用了 DSP/BIOS系统，

中断向量的管理权也就交给了 DSP/BIOS。

好的，做好以上准备工作后，下面我们就开始一步一步的创建 DSP/BIOS的应用，

我们这里以一个最简单的应用例程进行说明，在这里会带领大家创建一个包含有

两个任务的应用程序，第一个任务执行把 LED 点亮的工作，第二个任务执行把

LED点灭的工作。

添加 DSP/BIOS配置到当前工程

1） 选择 File > New > DSP/BIOS v5.x Configuration File。

2） 检查 Filename栏的 tcf文件名是否和你的工程名一致。这里名为 test.tcf。点

击 Next按钮。

3） 选择所属的器件型号平台，我的是 ti.platforms.evm6748，点击 Next按钮。

4） 将默认选中三个 DSP/BIOS特性选中，点击 Finish按钮。

Real-Time Analysis 若禁止，则 LOG、STS不可用。

RTDX 若禁止，则实时分析数据不可实现。

TSK Manager 允许你使用信号量和任务让出功能。

注：在这里会有一个叫做“指定 xdc 工具安装的”对话框弹出，我目前也不

清楚在这里不指定会有什么影响，点击 ok跳过貌似也没有什么影响，不知道

是不是我的 CCS安装引起的这个问题，有待研究，总之你先点击 ok就行了，

接着点击 yes按钮。创建 tcf文件完毕。

在这里你可以先编译一下你所创建的工程，如果你是按照我所描述的步骤进

行创建的话，编译应该是没有错误可以通过编译的。

注：编译通过后你可以在左侧工程导航栏的 Debug 文件夹下看到一系列

DSP/BIOS所创建的文件，如

testcfg_c.c文件： 定义 DSP/BIOS结构体和内容。

testcfg.cmd文件 链接命令文件

testcfg.h文件 包含 DSP/BIOS模块头文件、声明对象的外部变量。

testcfg.s62文件 DSP/BIOS配置的汇编文件

testcfg.h62 汇编语言头文件

不好意思这一步忘记截图了，过程比较简单，照着做就行了。

3：添加任务和信号量

这一步就是创建 DSP/BIOS 各个管理模块的对象，首先对全局属性进行一下必要

的设置，在左侧的工程导航栏双击 test.tcf打开管理器。

3.1：全局属性设置

选中 System 栏下的 Global Settings，右键，选择属性按钮，进行如下设置，这

里主要是设置 CPU 运行的时钟，因为我将来要把我的 DSP 运行在 300MHz 的频

率，外部接的晶振是 25MHz，所以设置如下。

3.2：LOG模块的设置

LOG模块可以帮助我们调试将来的代码，可以利用模块本身的 LOG_printf函数在

CCS 环境里面打印信息，对我们调试代码十分有用。而且占用的 CPU资源很小，

几乎不影响 CPU的性能。下面说说具体的配置方法。

选择 Instrumentation子目录下的 LOG-Event Log Manager，右键选择 Insert LOG，

在打开的对话框中为你要创建的模块起个名字，一般以 trace命名。如图：

生成 LOG对象之后如图所示

这样 LOG模块就设置好了，下面说一下使用举例，很简单

LOG_printf(&trace,”Task1 LED on”);

就可以在 CCS的相应窗口中看到打印信息。

3.3：PRD对象的创建

PRD又叫周期函数管理器，它使用系统时钟 CLK进行驱动，为任务的睡眠提供依

据。很多 DSP/BIOS 函数都有一个超时参数 timeout，例如你在任务中使用

TSK_sleep()的函数，这个函数是一个具有超时参数的函数，被调用之后，当系统

时钟的变化次数达到超时参数的值时，任务将会推出被阻塞状态。

假如你的系统时钟配置分辨率设置为 1ms，并且希望当前任务阻塞 1s 的时间，

那么应该这样调用 TSK_sleep();

TSK_sleep(1000); 任务将被阻塞 1s钟。

这里使用 C6748的定时器 0来做为 CLK模块的驱动源，使用低分辨率时钟指定输

入时钟源为 25MHz。设置时间精度为 1ms一次，具体配置如图所示。

选择 Scheduling子目录下的 CLK-Manager，右键选择属性按钮。

3.4：任务创建

注：每个任务都拥有自己独立的堆栈，任务共有四种状态

运行态(Running)

就绪态(Ready) 已被调度，等待执行

挂起态(Block) 也叫阻塞态，等待某个事件发生或某些资源可用

终止态(Terminated) 被终止，不会再执行

其中相同优先级的任务，任务调度器会根据它们在配置工具里列出的顺序进行调

度。空闲任务属于 DSP/BIOS 系统的后台线程，有限地最低，其它任何任务线程

都可以抢占它，空闲任务用来监测系统状态或执行其它后台操作。

创建步骤

选择 TSK – Task Manager ，右键选择插入，并为每个任务起个名字，这里我命

名了两个名称分别为 TSK_ledon、TSK_ledoff的任务。优先级分别为 2和 3。两个

任务一个用来点亮 led，一个用来灭掉 led。这样程序运行起来就会看到 led在闪

烁。

创建的任务后如图：

上述只是创建了任务，接下来还要在为每个任务指定一个函数入口名称。

选中 TSK_ledon，右键选择属性，进行设置，在弹出的对话框中选择 Function选

项，在 Task function：栏输入要调用的函数入口名称，这里我命名为 taskledon。

注：taskledon前面要加上一个下划线，这一点一定不能忘记。

同样为 TSK_ledoff任务指定入口函数名称为 taskledoff。

再此先将代码部分贴出来：

首先在主函数开始前需要包含几个必要的头文件过来

#include <std.h>

#include <log.h>

#include <tsk.h>

#include "testcfg.h"

#include "hw_types.h"

#include "psc.h"

#include "soc_C6748.h"

#include "gpio.h"

void Delay(unsigned int delay)

{

 while(delay--);

}

//主函数，我手里的板子在 GP2_1上接的是一只 Led。对应管脚号为 34，主函数

再此小工程里主要完成 GPIO的初始化工作。

int main(void) {

 PSCModuleControl(SOC_PSC_1_REGS, HW_PSC_GPIO, PSC_POWERDOMAIN_ALWAYS_ON,

 PSC_MDCTL_NEXT_ENABLE);

 HWREG(0x01C14138) = 0x08000000u;

 GPIODirModeSet(SOC_GPIO_0_REGS, 34, GPIO_DIR_OUTPUT);

 GPIOPinWrite(SOC_GPIO_0_REGS, 34,GPIO_PIN_LOW);

 Delay(5000000);

 GPIOPinWrite(SOC_GPIO_0_REGS, 34,GPIO_PIN_HIGH);

 SEM_post(&SEM0);

 return 0;

}

void taskledon()

{

 while(1)

 {

 SEM_pend(&SEM0, SYS_FOREVER);

 GPIOPinWrite(SOC_GPIO_0_REGS, 34,GPIO_PIN_LOW);

 TSK_sleep(500); //Delay(5000000);

 SEM_post(&SEM1);

 LOG_printf(&trace, "Task ledon DONE");

 }

}

void taskledoff()

{

 while(1)

 {

 SEM_pend(&SEM1, SYS_FOREVER);

 GPIOPinWrite(SOC_GPIO_0_REGS, 34,GPIO_PIN_HIGH);

 TSK_sleep(500); //Delay(5000000);

 SEM_post(&SEM0);

 LOG_printf(&trace, "Task ledoff DONE");

 }

}

3.5：创建信号灯

上述代码两个任务之间依赖信号灯来触发任务进入就绪状态，实现任务之间的同

步和通信。信号灯有一个内部计数器，计有效的资源数，若信号灯大于 0，任务

请求该信号灯不会被阻塞。

SEM_pend(sem,timeout)：等待一个信号灯，如果信号灯值大于 0，则对计数值做

简单的减 1并返回，否则等待 SEM_post发布信号。超时参数允许任务等待直到

超时，或无限等待(SYS_FOREVER)，或者不等待(取值 0)，返回值代表请求信号灯

是否成功。

SEM_post(sem)：发布信号灯。若有任务等待该信号灯，SEM_post会从等待队列

中将该任务删除并将其放入就绪队列等待调度。如果没有任务等待这个信号，

SEM_post则简单将计数值加 1并返回。

细心的你可能已经发现上述贴出来的示例代码用到了两个信号灯，分别为 SEM0，

SEM1。其中 SEM0用来调度点亮 LED的任务 taskledon，SEM1用来调度灭掉 LED

的任务 taskledoff。

创建方法

选择 Synchronization子目录的 SEM-Semaphore Manager，右键选择插入选项。

如上图所示，创建两个信号灯，创建好后如下图所示：

这样就可以在程序里面使用信号灯了。

4：运行

4.1：编译

编译没有错误。

4.2：运行

运行过程中可以看到 LED在不停的闪烁。

暂停后可以看到的 CCS界面的 LOG模块的打印信息如下图：

到此，恭喜你已经可以搭建简单的 DSP/BIOS应用工程了。

 china_fpga@163.com

	1：创建常规 CCS5.5 工程
	2：引入 DSP/BIOS 系统
	3：添加任务和信号量
	3.1：全局属性设置
	3.2：LOG 模块的设置
	3.3：PRD 对象的创建
	3.4：任务创建
	3.5：创建信号灯

	4：运行

