软件流水反馈的理解
	编译器能够提供一些默认的反馈，另外的反馈则由编译选项-mw选项产生，反馈位于编译器生成的 .asm文件中，为了查看反馈，必须使能 –k 选项以在编译器输出中保留.asm文件。
编译器对一个循环进行软件流水处理时经历3个基本的步骤，第一是限定循环使之适合软件流水；第二是搜集循环资源和相关图的信息；第三是对循环进行软件流水。

第一步：限定循环使之适合软件流水。
	只要编译器用适当的关键字休息循环以进行软件流水，这一步的结果将在反馈信息中显示为前3行或者前4行，如下：
Known Minimum Trip Count : 2
Known Maximum Trip Count :2
Known Max Trip Count Factor :2
· Trip Count: 循环迭代的次数
· Minimum Trip Count：在给定可用信息量的情况下，编译器可能执行的循环的最小次数；
· Maximum Trip Count：在给定可用信息量的情况下，编译器可能执行的循环的最大次数；
· [bookmark: _GoBack]Max Trip Count Factor: 可以除尽循环次数的最大整数（相当于是循环次数的最大公约数），即使无法确定循环次数的确切值，依然可以知道这个因子是2的整数倍，如4等，这样可以允许进行更加有效的数据打包和循环展开优化。
从编译器的角度来看，允许进行软件流水处理必须满足一些条件：
· 循环中不能有太多的指令，过大的循环需要多于可用个数的寄存器，也要求更长的编译时间。
· 不能再循环内部调用另一个函数，除非被调用的函数是在线函数，认可控制流程的中断都将破坏流水的实现。

第二步：收集循环资源和相关图信息
Loop Carried Dependency Bound(^) :4
Unpartitioned Resource Bound :4
Partitioned Resource Bound(*) :5
Resource Parrtition:
 A-side B-side
.L units 2 3
.S units 4 4
.D units 1 0
.M units 0 0
.X cross paths 1 3
.T address paths 1 0
Long read paths 0 0
Long write paths 0 0
Logical ops (.LS) 0 1 (.L or .S unit)
Addition ops(.LSD) 6 3 (.L or .S or .D unit)
Bound(.L, .S .LS) 3 4
Bound(.L .S .D .LS .LSD) 5* 4
· Loop Carried Dependency Bound 循环执行相关限，如果该最大循环存在的话，最大循环执行路径的距离，循环执行路径出现在某个循环的一次迭代写一个数时，这个数必须在未来的迭代中被读取，在编译器输出的asm文件中，属于循环执行路径的一部分的那些指令用^符号标记，表示循环执行相关限的数字是最小迭代间隔，通常，这个循环执行相关限是由于编译器对某些指针变量的信息缺乏了解造成的。当指针的确切值无法得知时，编译器必须假定任何两个指针都可能指向相同的位置，因此，从一个指针进行加载暗含了其与另外一个指针执行存储操作的相关，反之亦然，这样可产生不必要的相关路径，当循环指向相关限大于资源限时，这经常是元凶。
· Unpartitioned Resource Bound 未分配资源限，在编译器将每条指令分配到A、B两侧之前，使循环迭代间隔达到最小这一最小情况下的资源限。

· Partitioned Resource Bound 已分配资源限，指令后面的mii被分配到A、B两侧。

· Resource Partition 资源分配表，总结指令如何被安排到不同的机器资源，以及它们如何被分配到A、B两侧，用一个星号在让入口处做一个标记用以确定资源限的数值，换句话说就是mii的最大值，因为在C6000结构体系中，资源是完全正交的，许多指令可以操作两个或者更多不同的功能单元，表格的入口描述如下
· 独立的功能单元（L S D M）表示明确要求L、S、 D或者M功能单元的指令总数，操作多个不同功能单元上的指令不包括在此，分别在下面的逻辑操作LS和加法操作LSD中加以描述；
· X交叉通道，表示从A到B和从B到A的所有通道个数，当这一特殊行包含一个星号时，说明有一个资源瓶颈，这时分配可能成为一个难题；
· T地址通道，表示在循环中加载和存储操作所需要的地址通道的总数，事实上不同于D功能单元被需求的次数，以为其他指令也可能用到D单元，另外，可能有这种情况，当D单元被平均分配到A、B两侧而T地址通道没有时，在特定的一侧T地址通道的使用次数可能大于D单元的次数；
· 长型数据读通道：表示长型数据读端口通道的总数，所有需要长型资源的长型操作使用这一端口读取扩展宽度40比特的数据，存储操作也共享此端口，所有它们的计数也包括在此列，长型写通道表示长型写端口通道的总数，所有以长型数据位结果的指令都包含在此列。
· 逻辑操作 LS： 表示可以使用L和S单元的指令总数；
· 加法操作 LSD：表示可以使用L、S和D单元的指令总数；
· 限（L、S、LS）：表示由同时使用L和S单元的指令数所确定资源限的数值，由公式：限（L、S、LS）=ceil(（L+S+LS）/2)。
· 限（L、S、D、LS、LSD）表示同时使用D、L和S单元的指令数所确定资源限的数值，公式为：限（L、S、D、LS、LSD）=ceil（（L+S+D+LS+LSD）/3）进行计算。
第三步：对循环进行软件流水
	一旦编译器完成了对循环的资源分配，别且对必要的循环执行及资源需求信息进行分析之后，编译器就可以尝试进行软件流水操作了，下面是反馈信息的部分示例：
Searching for software pipeline schedule at…
 ii =5 Register is live too long
 ii= 6 Did not find schedule
 ii=7 Schedule found with 3 iterations in parallel
done
Epilog not entirely removed
Collapsed epilog stages : 1
Prolog not removed
Collapsed prolog stages : 0
Minimum required memory pad: 2 bytes
Minimum safe trip count : 2
· 迭代间隔（ii）是在连续启动两次循环迭代之间所用的始终周期数，迭代间隔越小，执行一次循环所需的时钟周期数越少，在反馈的每一行中所显示的所有数据都隐含着与最小迭代间隔（mii）是多少有关，这个最小迭代间隔作为编译器尝试进行最初软件流水的目标。
在这一步中，编译器尝试做的第一件事就是按迭代间隔（ii）来确定循环的时间，迭代间隔等于mii，其值在第2步确定手机循环资源和相关图信息，上面的例子中，A侧的限（.L .S .D .LS .LSD）是mii的瓶颈，例子就以下面所示的开始：
 Searching for software pipeline schedule at…
 ii=5 Register is live too long
如果尝试失败，编译器将提供附加的反馈帮助解释为什么，在这种情况下，编译器无法找到一个11周期的时间表，因为寄存器的生命太长。有时，编译器找到了一个有效的软件流水时间表，但是有一个或者多个数据生命太长，寄存器的生命是有某个数据被写入的时钟周期，以及该数据最后一次被另一条指令读取的始终周期所决定的，根据定义，一个变量的生命不可能长于循环的循环的迭代间隔（ii），因为下一个循环迭代将在该数据被读之前将其覆盖。

然后编译器继续如下： ii=6 Did not find schedule，有时由于循环或者安排很复杂，编译器完全无法再一个特定的迭代间隔下找到一个有效的软件流水进程。
	Regs Live Always :1/5 (A/B-side)
Max Regs Live : 14/19
Max Cond Regs Live: 1/0
· Regs Live Always: 表示在一个循环的每个时钟周期里都存在的变量所需要的寄存器个数，从循环外面加载数据至寄存器，以及在循环内部读取数据均属于这一范畴。
· Max Regs Live: 表示在一个循环的任意一个时钟周期中变量存在的最大个数，如果在一个循环内部的某个时钟周期里同时存在33个变量，那么至少需要33个寄存器，这一要求对于只有32个可用寄存器的C62X和C67X处理核来说是不可能实现的，另外，它们将被分到A、B两侧，所以如果把30个数据不均匀的分配为一侧17个而另一侧13个的话，也会存在同样的问题。
· Max Cond Regs Live:在某个给定的时钟周期是否需要太多的条件值，C6x和C67x处理核在A、B两侧分别有两个和3个可用的条件寄存器。
对ii=6进行尝试失败后，编译器继续对ii=7进行尝试：
	ii=7 Schedule found with 3 iterations in parallel
这表明此次尝试成功了，并且找到了一个有效地具有3次迭代平均执行的进程表，这意味着流水深度为3，也就是说在第n次迭代完成之前，第n+1次和第n+2次迭代已经开始了。
	每当对一个特定的迭代间隔进行的尝试失败后，该迭代间隔ii将增值并重新尝试，这样的操作将持续到ii等于未经软件流水的循环长度。
	当成功地找到对应于某个特定的迭代间隔的进程表之后，更多的信息将会显示出来，这些信息可能涉及到加载的门限、循环填充、排空崩溃以及计划的存储器冲突。

Speculative Load Threshold : 12
如果去掉循环排空，循环将多运行几次以完成最后一次迭代，这时，循环的新的迭代里的额外加载将猜测性地执行（即使它们的结果并不被使用）。为了确保这些存储器的访问不会指向不可用的存储器位置，加载的门限值告诉用户超出输入数组的多少字节的额外数据必须处于存储器的有效位置（不包括存储器映射的I/O等），以确保程序的正确执行。

Epilog not entirely removed. Collapsed epilog stages : 1
这表示的是循环排空的数量，或者说被去掉的循环迭代次数，这可以大大较小代码的尺寸，-mh选项使能推测地执行并且提高编译器去掉循环排空和循环填充的能力，在某些情况下，循环排空和循环填充可以部分地或者全部的去掉而不需要推测地执行。

Prolog not removed. Collapsed prolog stages: 0
这意味着循环填充没有去掉，由于各种各样的技术原因，循环填充和循环排空或许不可以部分或完全的去掉。

Minimum required memory pad : 2 bytes
	使用-mh选项所需要的的存储器填充的最小值是2字节。

Minimum safe trip count ： 2
这意味着循环必须至少执行两次，才能安全地使用软件流水处理过的循环版本，如果这个值小于已知的最小循环次数，编译器将生成循环的两个版本。
