OpenCL: Utilizing DSP Accelerator from the ARM Processor
[bookmark: _Toc357707369]I. Purpose
The goals of this lab are as follows:
· Demonstrate how to utilize DSP accelerators using a standard Linux programming.
· Demonstrate how OpenCL distributes an algorithm between multiple DSP cores.
[bookmark: _Toc357707370]II. Hardware and software requirements
Ubuntu Laptop with the following attributes:
· Processor SDK release
· Linaro cross compiler
· DHCP server
· NFS server
· SCP server (sudo apt-get install ssh)
· Picocom or other terminal program
· Pre-configured SDcard with boot partition and file system partition
III. Lab Setup
Each student station has an AM57X EVM (X15) connected to an Ubuntu laptop. In addition, each EVM is connected using an FTDI cable to a laptop running a terminal emulator such as Tera Term (for Windows) or Picocom (for Linux machines).
SD boot card with all Processor SDK kernel files and complete file system is inserted into the EVM, as shown.

IV. Lab Sequence
1. Run the pre-built openCL examples in the release.
2. Create a new example program on the Ubuntu server and build it using cross compiler tools.
3. SCP the new program to the EVM.
4. Run the new program on the EVM and observe the results.
5. Change some of the parameters of the new example program, then build, copy and run the program again. Observe the new results.

Task 1.1: Run the Pre-built openCl Examples in the Release
NOTE: You can connect to the EVM using either a Windows or Ubuntu laptop. The Windows laptop connection to the EVM uses Tera Term. The Ubuntu connection to the EVM uses Picocom. Depending on your settings, you have to choose ONLY one of the following: Tera Term on Windows or Picocom on Ubuntu.
1.1A: Using Picocom on Ubuntu Laptop
1. Connect the FTDI cable to a USB port on the laptop.
2. If this is an Ubuntu laptop, use follow the following steps
a. To discover devices to which the board is connected, use the command ls /dev | grep US
b. The above command displays a list of devices connected to the USB. If you repeat the instruction before and after connecting the FTDI-USB cable, you will see to which port it is connected. Assume that the port is ttyUSB0.
c. Start the Picocom terminal. Enter the command sudo picocom /dev/ttyUSB0 –b 115200. See the screen shot below.
[image:]
1.1B: Using Tera Term on Windows Laptop
1. Connect the FTDI cable to a USB port on the laptop.

2. For Tera Term running on Windows, do the following:
a. Start the Tera Term session.
b. Configure the serial setup as shown (Choose the correct COM number. If more than one COM number is available for the serial port, try all of them.).
[image:]
c. Click OK.
1.2 Prepare the Device
1. Make sure that the SD card is correctly inserted.
2. Power up the EVM
3. Push the blue button next to the power jack to start U-BOOT. The console shows the boot process:
[image:]

4. It takes few seconds for the kernel to start. When the login prompt appears, login as root.
[image:]
5. Build a new directory and use the following commands to move all openCL examples into the new directory:
a. OpenCL examples are part of the release in the directory: /usr/share/ti/examples/opencl/
b. Make a new directory: mkdir opencl-examples
c. Copy the examples: cp -R /usr/share/ti/examples/opencl/* opencl-examples
[image:]

1.3 Run the Simple Example: Pure C++ Code
1. Go to the /simple directory and observe the files: cd opencl-examples/simple
2. Notice that there is only one source file: simple.cpp. Look at the file and see how the kernel is defined. Notice that even though the kernel operation runs on the accelerators (DSP), no DSP code needs to be developed.
3. Run the example ./simple
4. Observe the printout (Done!), as shown[image:]

The ccode Example: Using C File to Build Kernel
1. Go to ccode directory and observe the files there: cd ../ccode
2. Notice that there are three source files: main.cpp, ocwrapper.cl and ccode.c. Look at the ccode.c file and see how the kernel is defined. Look at the oclwrapper.cl and see how the kernel is called. Last look at main.cpp and see how the kernel is built. Developing c code enables DSP engineer to optimize the code using DSP intrinsic and pragmas.
3. Run the example ./ccode
4. Observe the printout (Success!).
5. On the screen shot shown, the top portion is part of oclwrapper.cl, and the bottom portion is the ccode run.
[image:]

Task 2: Build and Run the Example Code (Embedded Accelerator Case)
At the time of developing this lab, there is no native openCL compiler on the target. Thus, the cross compiler is used in this lab. On the Ubuntu server, a version of processor SDK is installed.
2.1: Build the OpenCL Examples using Cross Compiler on the Ubuntu Laptop

Note – Base address of the opencl Lab is /home/sitara/opencl
User name is sitara, the password is sitara.
Note: The processor SDK directory name may be different (depends on the release) so in this document we will refer to it as ti-processor-sdk.
1. Go to student account cd /home/sitara/opencl or cd ~/opencl
2. Use the command ls –ltr to display the Processor SDK directory
3. Go to the SDK directory (cd ti-processor-sdk) and look at the file Rules.make
a. Make sure that the DEFCONFIG is set to tisdk_am57xx-evm_defconfig
b. Set the DESTDIR to /opt/filesys directory
c. For vi users use sudo vi Rules.make
d. The following table describes these parameters:
	Item to Verify/Modify
	Description
	Settings

	DEFCONFIG
	Describes the actual architecture for which the applications are built. The directory board-support/linux-3.14.35-gb60f54e/arch/arm/configs/ has a list of supported architectures.
	For AM57X
tisdk_am57xx-evm_defconfig

For Keystone: keystone_defconfig

	DESTDIR
	Tells the make utility where to copy the build results. If NFS is used, then put the result binaries in a directory of the file system that is mounted onto your EVM.
	/opt/filesys

4. Build the OpenCL examples of the release:
a. Clean previous builds: sudo make clean
b. Build the new release: sudo make opencl-examples
5. Verify that the examples were built:
a. Use the command ls example-applications/opencl-examples-1.1.1/simple and verify that there are four files:
· simple.cpp
· Makefile
· simple.o
· simple
b. Use the command ls example-applications/opencl-examples-1.1.1/ccode and verify that there are seven files:
· Makefile
· main.cpp
· main.o
· ccode.c
· ccode.obj
· oclwrapper.cl
· ccode
2.2: Create a New Example and Build It
1. Go to the examples directory: cd example-applications/opencl-examples-1.1.1
2. Make a new directory: sudo mkdir random1
3. Move to the new directory: cd random1
4. Copy source file main.cpp from the project directory:
 sudo cp ~/opencl/projects/random1/main.cpp .
5. Copy the Makefile from the /simple directory: sudo cp ../simple/Makefile .
6. Find the kernel definition in main.cpp. The kernel writes random numbers between uniformly distributed between 0 and 1000, and adds the core number multiplied by 10000. Thus, the value of the output tells us if it was generated by Core 0 or Core 1.
7. Edit the Makefile that you just copied:
a. Enable write (modify) of all files: sudo chmod 777 *
b. Use an editor (the following instructions are for vi): sudo vi Makefile
i. Change the EXE (executable) name from simple to random1
ii. Change the EXE dependency to main.o
c. A screen shot of the Makefile is shown:
[image:]
8. Return back to the SDK directory: cd ../../../
9. Build the examples again: sudo make opencl-examples Notice that random1 is built.
[image:]

10. Use the command ls example-applications/opencl-examples-1.1.1/random1and verify that random1 was built, as shown.
[image:]

2.3: Copy Random1 to the EVM and Run it

11. Next the random1 executable that was just built need to be copied to the EVM. This will be done following these steps:
a. On the EVM make a new directory random1
cd ~/opencl-examples
mkdir random1
cd ~

12. Push the file random1 from the Ubuntu laptop to the EVM using Secure Copy (scp):
a. Find the IP address of the EVM do ifconfig
b. Record the value of ipaddress of evm to be used in the next step
c. scp random1 root@<ipaddress of evm>: .
d. If scp asks you to confirm, write yes
e. This will copy random1 to the /home/root/ directory on the EVM
f. Move random1 from the home directory of the EVM to the random1 directory
g. On the EVM do mv ~/random1 ~/ opencl-examples/random1/.
13. cd ~/opencl-examples/random1
14. Use the command ls –ltr and verify that random1 executable was copied.
15. Run the code: ./random1
16. The output will appear on the display. Notice that different cores generated different numbers at the middle of the output sequence.
[image:]

Task 3: Build and Run Example Code (C Code Accelerator)
At the time of developing this lab, there is no native openCL compiler on the target. Thus, the cross compiler is used in this lab. On the Ubuntu server, a version of processor SDK is installed.
2.1: Build the OpenCL Examples using Cross Compiler on the Ubuntu Laptop
NOTE: If you successfully built the OpenCL examples in the previous task, skip to the Step 2.2
Note – Base address of the opencl Lab is /home/sitara/opencl
User name is sitara, the password is sitara.
Note: The processor SDK directory name may be different (depends on the release) so in this document we will refer to it as ti-processor-sdk.

6. Go to student account cd /home/sitara/opencl or cd ~/opencl
7. Use the command ls –ltr to display the Processor SDK directory
8. Go to the SDK directory (cd ti-processor-sdk) and look at the file Rules.make
a. Make sure that the DEFCONFIG is set to tisdk_am57xx-evm_defconfig
b. Set the DESTDIR to /opt/filesys directory
c. For vi users use sudo vi Rules.make
d. The following table describes these parameters:
	Item to Verify/Modify
	Description
	Settings

	DEFCONFIG
	Describes the actual architecture for which the applications are built. The directory board-support/linux-3.14.35-gb60f54e/arch/arm/configs/ has a list of supported architectures.
	For AM57X
tisdk_am57xx-evm_defconfig

For Keystone: keystone_defconfig

	DESTDIR
	Tells the make utility where to copy the build results. If NFS is used, then put the result binaries in a directory of the file system that is mounted onto your EVM.
	/opt/filesys

9. Build the OpenCL examples of the release:
a. Clean previous builds: sudo make clean
b. Build the new release: sudo make opencl-examples
10. Verify that the examples were built:
a. Use the command ls example-applications/opencl-examples-1.1.1/simple and verify that there are four files:
· simple.cpp
· Makefile
· simple.o
· simple
b. Use the command ls example-applications/opencl-examples-1.1.1/ccode and verify that there are seven files:
· Makefile
· main.cpp
· main.o
· ccode.c
· ccode.obj
· oclwrapper.cl
· ccode

3.2: Create a New Example and Build It
1. On the Ubuntu server, go to the examples directory: cd example-applications/opencl-examples-1.1.1
2. Make a new directory: sudo mkdir random2
3. Move to the new directory: cd random2
4. Copy source file main.cpp from the project directory: sudo cp ~/projects/random2/main.cpp .
5. Copy source file ccode.c from the project directory: sudo cp ~/projects/random2/ccode.c .
6. Copy the Makefile from the /ccode directory: sudo cp ../ccode/Makefile .
7. Copy the oclwrapper.cl from the /ccode directory: sudo cp ../ccode/oclwrapper.cl .
8. Find the kernel definition in ccode.c. The kernel writes random numbers between uniformly distributed between 0 and 1000, and adds the core number multiplied by 10000. Thus, the value of the output tells us if it was generated by Core 0 or Core 1.
[image:]

9. Enable write (modify) of all files: sudo chmod 777 *
10. Look at the oclwrapper.cl file. It calls two functions: ccode1 and ccode2. Each function has two parameters: 1) A pointer to the buffer and 2) The number of elements.
11. Use an editor to modify oclwrapper.cl (these instructions are for vi): sudo vi oclwrapper.cl
a. Change oclwrapper1 to call generateRandomInt instead of ccode1
b. Delete oclwrapper2
c. A screen shot of oclwrapper1.cl is shown. Notice that when oclwrapper1 is called, it is called with a parameter to the buf-based address.
[image:]
17. Edit the Makefile that you just copied:
a. Open the editor (these instructions are for vi): sudo vi Makefile
b. Change the EXE (executable) name from ccode to random2
c. A screen shot of the Makefile is shown:
[image:]

18. Return back to the SDK directory: cd ../../../
19. Build the examples again: sudo make opencl-examples Notice that random2 is built.
[image:]
20. Use the command ls example-applications/opencl-examples-1.1.1/random2 and verify that random2 was built, as shown.
[image:]
2.3: Copy Random1 to the EVM and Run it

1. Next the executables that were just built and the oclwrapper.cl file need to be copied to the EVM. This will be done following these steps:
a. On the EVM make a new directory random1
cd ~/opencl-examples
mkdir random2
cd ~

2. Push the file random2 from the Ubuntu laptop to the EVM using Secure Copy (scp):
a. Find the IP address of the EVM do ifconfig
b. Record the value of ipaddress of evm to be used in the next step
c. scp random2 root@<ipaddress of evm>: .
d. If scp asks you to confirm, write yes
e. This will copy random2 to the /home/root/ directory on the EVM
f. Move random2 from the home directory of the EVM to the random2 directory
g. On the EVM do mv ~/random2 ~/ opencl-examples/random2/.
3. Repeat step 2 for ccode.obj and oclwrapper.cl from the Ubuntu laptop to the EVM using Secure Copy (scp):
a. scp random2 root@<ipaddress of evm>: .
b. scp ccode.obj root@<ipaddress of evm>:
c. scp oclwrapper.cl root@<ipaddress of evm>: .
d. If scp asks you to confirm, write yes
e. This will copy the above files to the /home/root/ directory on the EVM
f. Move ccode.obj and oclwrapper.cl from the home directory of the EVM to the random2 directory
g. On the EVM do mv ~/ccode.obj ~/ opencl-examples/random2/.
h. On the EVM do mv ~/oclwrapper.cl ~/ opencl-examples/random2/.

4. cd ~/opencl-examples/random2
5. Use the command ls –ltr and verify that random2 executable was copied.
6. Run the code: ./random2

[image:]

7. The output data is in the file dataOut.txt
Use the utilities more, cat, or any editor to look at the results.
a. The first value is the output index.
b. The second value in each row is a random number between 0 and 999, plus the core number multiplied by 10000. Thus, the most significant digit tells what DSP core generated the random number.
c. In the example shown, the first 8192 values were generated by Core 0. The next 8192 variables were generated by Core 1.
[image:]

Linux Instructions Used in this Lab

	Instruction
	Meaning
	Usage Example

	ls
	list elements in directory
	ls –ltr list files details in reverse order in the current directory
ls *.ext list all files with ext extension
ls ../ list files in one directory above the current one

	cp
	Copy file
	cp random1 random2 copy file random1 to random2
cp –R copy directory

	mv
	Move file
	mv random1 random2 move file random1 to random2
[bookmark: _GoBack]mv –R move directory

	sudo
	Get super user permission
	sudo cp use super-user permission to copy

	mkdir
	Make directory
	mkdir dir1

	pwd
	Print working directory
	pwd

	whoami
	Who am I? Displays the current user name
	whoami

	chmod
	Change permission on a file or directory
	chmod 777 file let anyone read/write and execute file
chmod 777 –R dir change permission of a directory and all files and sub-directories

	make
	Run Makefile script
	make runs a script named Makefile in the directory
make –f filename make the script named filename

	hostname
	Identifies the computer name (needed for scp protocol)
	hostname

	scp
	Getting file using secure protcol
	scp userName@hostName:/absoluteAddress/random1 .
Copy the file random1 in directory with absolute address on the computer with host name to the current directory

	gedit
	Gnome graphical text editor on the Ubuntu machine
	For instructions how to use gedit: https://help.gnome.org/users/gedit/stable/

	vi
	Unix visual editor text editor on the Ubuntu machine
	For instructions how to use vi: http://www.atmos.albany.edu/daes/atmclasses/atm350/vi_cheat_sheet.pdf

OpenCL Lab	Page 18

image2.png
©© @ student1@ULA0270985: /

File Edit View Search Terminal Help

Student1@ULAO270985: /$ 1s /dev |grep US

ttyUsBo

Student1ULAO270985: /$ sudo ptcocon /dev/ttyUSBO -b 115200
[sudo] password for studentl

picocom vi.4

port s /dev/ttyUsBo
Flowcontrol none

baudrate s 115200

partty is none

databits are 8

escape s C-a

notntt is no

noreset is no

nolock s no

send_cnd s ascii_xfr -s -v -110

recetve_cnd is © rz -vv

Terntnal ready

image3.png
Flow control:

Transmit delay

0 msecchar 0 mseclline

image4.png
B0 H PL 2014.07-gad54h78
oot SPL 2014.87-ga354h70 CApr 22 2815 - 10:16:45)

RA75Z ESI.1
eading args o
pl_load_image_fat_os: error reading image args, err —
eading u-boot - ing

eading u-boot ing

~Boot 2014.87-9a354h70 CApr 22 2615 - 10:

DRA752 ES1.1
BeagleBoard x15

ready

2 Gif

OMAP SD/MMC: @, OMAP SD/MMC: 1
eading uboot .env

bex Unahle to read “uboot.enu” from mmc@:l xx
sing default environment

ATA Link @ timeout.
HCI 8091.9360 32 siots 1 ports 3 Gbps Bxi impl SATA mode

lags: 64bit ncg stag pm led clo only pmp pio slum part cce apst

canning bus for devices.-.

ound 0 device(s).

CSI: Net: <ethaddr> not set. Ualidating first E-fuse MAC

psu

Y nu keuw to ston autohoot: @ |

image5.png
NOTICE: This file systen contains the followin GPLU3 packages

autoconf
binutils
cpp-synlinks

cop

g++-synlinks

e

gec-synlinks

gee

gdbserver
gstreanert.B-libav
Libgnpi®

1ibnpc3

1ibnpfrd

make

parted

If you do not wish to distribute GPLu3 components please remove
the ahove packages prior to distribution. This can be done using
the opky remove command. i.e.:

opkg remove <package>
here <package> is the name printed in the list above

NOTE: 1f the package is a dependency of another package you
will be notified of the dependent packages. You should
uge the —force-removal-of-dependent-packages option to
also remove the dependent packages as well

topping Bootlog daemon: bootlogd.

Arago Project HEEDI//arago=project.ory an5?xx—evn /dev/tty02
Arago 2615.84 anS7xx-evn /dev/tty02

n57xx-eun login: root

00t Bans 7xx—eun:

image6.png
~# nkdir opencl-examples
~# cp —R Jusr/share/tiexanples/opencl/x .
00tBan5Pxoc-eun:H 1o —Ltr

ruxroxeox 2 root root 4896 Apr opencl-exanples

puxroxeox 2 root root 4896 Apr vecadd
puxroxeox 2 root root 4896 Apr simple
puxroxeox 2 root root 4896 Apr platforns
puxroxeox 2 root root 4896 Apr 000_map.
puxroxeox 2 root root 4896 Apr 000 _callback
puxroxeox 2 root root 4896 Apr 00

puxroxeox 2 root root 4896 Apr offline_embed
puxroxeox 2 root root 4896 Apr offline
puxroxeox 2 root root 4896 Apr null
puxroxeox 2 root root 4896 Apr matnpy
ruxroxeox 1 root root 1837 Apr make. inc
puxroxeox 2 root root 4896 Apr ednangr
puxroxeox 2 root root 4896 Apr dsplib_£fe
puxroxeox 2 root root 4896 Apr ccode
puxroxeox 2 root root 4896 Apr Buffer
ruxpoxe-x 1 poot root 548 Apr Makefile

00tBan57xx-eun: i

image7.png
ARE DISCLATMED. IN NO EVENT SHALL THE COPYRIGHT OUNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT. INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY. OR
CONSEQUENTIAL DAMAGES” CINCLUDING, BUT NOT LIMITED T0. PROCUREMENT OF
SUBSTITUTE GOODS OR SERUICES; LOSS OF USE. DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOVEUER CAUSED AND ON ANY THEORY OF LIABILITY. WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT CINCLUDING NEGLIGENCE OR OTHERVISE>
ARISING TN ANY WY OUT 'OF THE USE OF THIS SOFTWARE, EUEN IF ADUISED OF
THE POSSIBILITY OF SUCH DAMAGE.

KRXAAKK K

ftdef ine _CL_ENABLE_EXCEPTIONS
Jitinc lude <CL7c1.hpp>

Jtinclude <iostreans
j#tinclude <cstdliby
ftinclude <cassert>
Jtinclude <signal.h>
Jusing namespace 613
jconst char x kernStr ernel void devset(global charx buf> \n"

ern

buf [get_global id<@>1 = *x’3 \n"
n®

lconst int size 1 << 23;

fconst int wgsize = 1 << 14:

[c1_char ary [sizel;
int mainCint arge, char xargul1)
i<

o
* Catch ctrl-c so we ensure that we call dtors and the dsp is reset properly

v
signal(SIGABRT, exit:

signal¢SIGTERM, exit
memsetCary, O, sized;

xt context(CL_DEVICE_TYPE_ACCELERATORY;

ectordDevice> devices = context_getInfo(CL CONTEXT _DEVICES>O:
buf Ccontext, CL_HEM_WRITE_ONLY, size);

source(, std:imake pairckernStr, strlenCkernStrd)>;

program = Program(context, source:

progran.build(devices);

CommandQueue Q (context, devices[81>
Kernel K (progran. “devset
KernelFunctor devset - K.bind<Q, NDRange(size), NDRangeCugsize>>;

devset(huf>.uaitO>; ¢/ call the kernel and wait for completion

, @-enqueucReadBuf erchuf . CL_TRUE, 8, size, ary)
catch CError err)

Csta <<VERROR: " <<err.uhat(> <<

Cerr.errC> <<

end1; >

:%/sinplett
“sinplett ./sinple
[13475.6575411 NET: Registered protocol family 41

IDone?
bro0tBan5 7xx—eun:~/sinplett I

image8.png
Copyright (c> 2013-2814, Texas Instruments Incorporated - http://uww.ti.con/
A1l rights reserved.

Redistribution and use in source and hinary forms, with or without
modification, are permitted provided that the foliowing conditions are met:

* Redistributions of source cede must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in hinary forn must reproduce the above copyright
notice, this list of conditions and the following disclaimex in the
docunentation and/or other materials provided with the distribution.

= Neither the name of Texas Instruments Incorporated nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROUIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS"
AND ANY EXPRESS OR IMPLIED UARRANTIES. INCLUDING, BUT NOT LIMITED TO. THE
IMPLIED UARRANTIES OF MERCHANTABILITY AND FITNESS FOR @ PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OUNER OR CONTRIEUTORS BE
LIABLE FOR ANY DIRECT. INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY. OR
CONSEQUENTIAL DAMAGES” CINCLUDING, BUT NOT LIMITED T0. PROCUREMENT OF
SUBSTITUTE GOODS OR SERUICES; LOSS OF USE. DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOVEUER CAUSED AND ON ANY THEORY OF LIABILITY. WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT CINCLUDING NEGLIGENCE OR OTHERVISE>
ARISING TN ANY WY OUT 'OF THE USE OF THIS SOFTWARE, EUEN IF ADUISED OF

THE POSSIBILITY OF SUCH DAMAGE.

KRXAKKKKRXAKKARRXARKARR AR

fiornel void oclurappert (global char *huf>

int wg_sz
int wglid

get_local_sizeC®);
get group_id<®>;

ccoded (Bbuf [ug_id * wg_sz1, wg_sz>;

fiornel void oclurapper2(global char *huf>

int wg_sz
int wglid

get_local_sizeC®);
get group_id<®>;

ccode2(Bbuf ug_id * wg_sz1, wg_sz>;

froot@ansx-oun:/coodelt -/ccode
o0t Banb Zx—eun:~/ccodett Il

image9.png
randoml
-03

include .. /make. tnc

main.o
@ -0

image10.png
000
000_nap
platforns
randonl

Entering directory °/home/student1/AMS7_releases/SDK_208/exanple-applic|

make[2]

attons/opencl-examples-1.1.1/randon1
Comptling main.cpp

make[2]: Leaving directory °/home/student1/AMS7_releases/SDK_208/example-applical
tions/opencl-examples-1.1.1/random1’

- stmple
vecadd

Leaving directory '/home/studentl/ANS7_releases/SDK_208/example-applical

make[1]
tions/opencl-examples-1.11'

image11.png
tions/opencl-examples-1.1.1"
student1ULAO270985 ~/AMS7_releases/SDk_208% 1s RTINS

lakefile randonl

image12.png
jroo-Cans exx—eul

Jopent mexanp_es/rancon: s

/opencl-examples/randonit

/opencl-examples/randonit

/opencl-examples/randonit

“opencl-exanples/randonilt 1 -ltr

Cruaorox 1 peot. root 17494 Apr 22 17:81 randonl
/opencl-examples/randonit

“opencl-examples /randoni# _/randont

:~/openc1-examples /randoni

image13.png
generateRandonInt *buf size)

value
X, *pl
pl = (HE *)buf
interval = HIGH_VALUE - LOW_VALUE
addition = LOW_VALUE i
core = DNUM * CORE_MULTIPLY

I random, interval, addtition, 1, core

randon = rand() % tnterval + additton ;
value = random + core ;

x = ([) value
x

*pLe+

image14.png
THE POSSIBILITY OF SUCH
B L LT m—

int wg_sz & get_local_stizefil}
int wg_td g get_group_tdfil

generateRandomIntflebuf[wg_id § wg_sz], wg_sz[ill

image15.png
student1@ULA0270985: ~/AM57_releases/SDK_208/example-applications/opencl-ex
Terminal H:
random2
-9
-9

/make inc

BUEXERN rain o ccode obj
5(CPP)IiS(CPP_FLAGS) IEHNGNS (LD_FLAGS) IS (L1eS) IEBlse

image16.png
cdmangr
matmpy =
null
offline_enbed
of fline
000_callback
000
000_map
platforns
random
random2
Inake[2]: Entering directory ' /home/student1/AMS7_releases/SDK_208/exanple-applic|
lattons/opencl -examples-1.1.1/randon2

IComptling matn.cpp

Icomptling ccode. c

Inake[2]: Leaving directory °/home/student1/AMS7_releases/SDK_208/example-applica
[tions/opencl-examples-1.1.1/random2

simple
- vecadd =
make[1]: Leaving directory

[tions/opencl-examples-1.1.1'
(- -OTIS/OPEIR L TE RGP FES T 2

/hone/student1/AMS7_releases/SDK_208/example -applicy|

P

image17.png
student1@ULAO270985: ~/AMS7_releases/SDK_208% ls -ltr example-applications/opencl]
-examples-1.1.1/randon2

total 628

-rwxr-xr-x 1 root root 7262 May 20 08:09 Ratmscpp
-rw-r--r-- 1 root root 2017 May 20 09:03 oclwrapper. cl
-rwxr-xr-x 1 root root 2707 May 20 09:09

-rw-r--r-- 1 root root 173 May 20 09:42 Makefile
-rw-r--r-- 1 root root 377060 May 20 09:43 matn.o
-rw-r--r-- 1 root root 14092 May 20 09:43 ccode.ob]

-ruxr-xr-x 1 root root 224761 May 20 09:43
Student1@ULA0270985 ~/AMS7_releases/SDK_208%

image18.png
xanples /randon2
xanples/randon2t
“opencl-examples/randon2# ./randon2
tart TRY step 1

[10773677961 NET: Registered protocol family 41
tart TRY context definition step 2

tart TRY queue definition step 3

tart TRY build kernel step 4

tart TRY dispatch kernel step 5

tart TRY after dispatch kernel step 6

tart TRY after read step 7

00t Ban57xx-eun: ~/opencl-examples /randon2it |

image19.png
datal:
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal
datal

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

datalil value

1567
1485
1349
1628
1335
1919
1135
1257
1749
1494
1891
1746
11945
11479
11983
11751
11894
11678
11259
11248
11757
11629

image1.emf
Station Ubuntu Laptop

Server

Laptop connected to the

EVM by Ethernet. Laptop

runs DHCP server and has

processor SDK installed

Teraterm or Picocom

terminal into the EVM (can

be the same laptop as the

Ubuntu server)

EVM

SD Card

Boot Kernel and

file system

Microsoft_Visio_Drawing1.vsdx
Station Ubuntu Laptop Server
Laptop connected to the EVM by Ethernet. Laptop runs DHCP server and has processor SDK installed
Teraterm or Picocom terminal into the EVM (can be the same laptop as the Ubuntu server)
EVM
SD Card
Boot Kernel and file system

