

Digitally Controlled HV Solar MPPT

DC-DC Converter

Using

C2000 Piccolo Microcontroller

CCS User Guide

Version 1.0
October 2011

2 TMS320C2000™ Systems Applications Collateral

Abstract

This document presents the implementation details of a digitally controlled DC-DC
converter that is used as a front end converter for solar inverter (DC-AC) application. It
implements an isolated DC-DC stage with maximum power point tracking (MPPT)
algorithm in order to utilize the full capacity of a 500W solar panel. It maintains its input
voltage at the reference set point generated by the MPPT algorithm and delivers power
to a downstream DC-AC inverter when connected across its output. The DC-AC inverter
transfers the power from the DC-DC stage to an emulated grid connected across its own
output. A C2000 Piccolo-B control card and a 500W isolated DC-DC stage EVM are
used to implement the complete DC-DC system.

This EVM comes with a Piccolo-B control card and not the Piccolo-A card. However, a
Picocolo-A control card can also be used to implement full control of the EVM.

1 Introduction

Photovoltaic (PV) systems based on solar energy offer an environmentally friendly
source of electricity. A key feature of such PV system is the efficiency of conversion at
which the power converter stage can extract the energy from the PV arrays and deliver
to the load. The maximum power point tracking (MPPT) of the PV output for all sunshine
conditions allows reduction of the cost of installation and maximizes the power output
from the PV panel. Therefore, a DC-DC converter employing some MPPT algorithm is
generally used as a front-end converter to efficiently extract the PV output power and
convert the PV output voltage to a high voltage DC bus. The DC-DC converter,
depending on the system requirement, can use either an isolated power stage or a non-
isolated stage. The high voltage bus from the DC-DC converter is then fed to power the
DC-AC inverter that eventually supplies the load and connects to the grid.

This C2000 MPPT DC-DC EVM uses an isolated DC-DC stage as is shown in Fig 1. It
consists of two DC-DC stages. These are, (1) a 2-ph interleaved boost converter and,
(2) an isolated half bridge LLC resonant converter.

Figure 1. Isolated DC-DC Converter Block Diagram

3 TMS320C2000™ Systems Applications Collateral

The DC-DC converter draws dc current from the PV panel such that the panel operates
at its maximum power transfer point. This requires maintaining the panel output, i.e., the
DC-DC converter input at a level determined by the MPPT algorithm. This is
implemented in the 2-ph interleaved boost converter stage. The isolated LLC resonant
converter simply provides high frequency isolation for the DC-DC stage.

A C2000 piccolo microcontroller with its on-chip PWM, ADC and analog comparator
modules is able to implement complete digital control of such MPPT DC-DC system.

1.1. DC-DC Stage Implementation

Fig 1.1 illustrates a C2000 based MPPT DC-DC converter control system. The PV panel
output voltage, Vpv, is applied to the 2-ph interleaved boost stage.

S
ig

n
a
l
I/

F

C
o

n
d
it
io

n
in

g

D
ri

v
e
rs

Figure 1.1 MPPT DC-DC Converter Control using C2000 Micro-controller

Inductor L1, MOSFET Q1, and diode D1 together form one of the boost stages while, L2,
Q2, and D2 form the other. A capacitor C2 at the boost converter output acts as an
energy reservoir and provides boost voltage to the resonant LLC stage.

The H bridge LLC resonant stage consists of MOSFETs Q3~Q4, input capacitors
C3~C4, resonant inductor Lr, resonant capacitor Cr, transformer T1, output rectifiers
D3~D6 and output capacitor C5. This stage has a voltage ratio of 1 and provides the
isolation between the primary and secondary side.

4 TMS320C2000™ Systems Applications Collateral

Figure 1.1 indicates all the interface signals needed for full control of this DC-DC
converter using a C2000 micro-controller (MCU). The MCU controls the hardware using
three feedback signals and four PWM outputs. The signals that are sensed and fed back
to the MCU include the panel output voltage (Vpv) and the boost output voltage (Vboost)
and the total boost inductor currents (Iind). These sensed signals are used to implement
the voltage and current control loops for the DC-DC boost stage. The interleaved boost
DC/DC topology is chosen to boost the variable DC output to a fixed DC bus voltage.
The main reason for using this topology is the wide input voltage variation. The PWM
signals for the power switches Q1 and Q2 is phase-shifted by 180 degrees. This helps
reduce the ripple in the PV panel current.

The LLC stage runs at open loop with its PWM frequency set to be the same as the
resonant frequency. The Piccolo controller shares the common ground with the primary
side of the LLC stage and there is no isolated feedback to the controller from the LLC
secondary output terminals. Thus the LLC is run under open loop and, therefore, it is
necessary to maintain a voltage conversion factor of 1. This is achieved by making (1)
the LLC PWM frequency the same as the resonant frequency and, (2) by maintaining a
minimum load of about 10W across the LLC output.

Figure 1.2 shows the DC-DC interleaved boost converter control loops. This uses
current mode control. However, the goal is to control the PV panel output (Vpv) which is
the input to the DC-DC stage. This allows the PV panel (array) operates at its maximum
power point at all time. Input current is regulated by adjusting the duty cycles of the
power switches Q1 and Q2. Input voltage is regulated by adjusting the input current. A
Maximum Power Point Tracking algorithm described in the next section is responsible
for determining the set point (Vpv_ref) for the PV panel voltage. Notice that the input
voltage control loop works quite differently compared to conventional feedback used in
output voltage control. Under this control scheme, when the PV panel voltage (Vpv)
tends to go higher than the reference panel voltage (Vpv_ref) set by the MPPT
algorithm, the control loop increases the panel current command (reference current for
inner current loop Iind_ref) and thereby controls the panel voltage at its reference level
(Vpv_ref). When the panel voltage tends to go lower than the reference, the control loop
reduces the panel current command in order to reestablish the panel voltage to its
reference level.

Figure 1.2 MPPT DC-DC Converter Control Loops

5 TMS320C2000™ Systems Applications Collateral

The panel voltage Vpv, sensed through one of the ADC channels, is compared against
the reference voltage Vpv_ref set by the MPPT algorithm. The resulting error signal Ev is
then input the voltage loop controller Gv which regulates the panel voltage at the
reference level. The voltage controller Gv has the form of a two pole two zero (2P2Z)
compensator. The output of Gv is the reference current command for the inner inductor
current loop. The average value of the inductor current is the panel current Ipv.
Therefore, by controlling the average value of the inductor current the current controller
Gc essentially controls the panel current.

This reference current command Iind_ref for the current control loop is compared against
the feedback inductor current Iind sensed through another ADC channel. The resulting
current error signal is then input the current loop controller Gc which generates the boost
converter PWM duty ratio command d for the boost switches Q1 & Q2.

In addition to implementing the voltage and current loop controllers, C2000 MCU also
monitors the boost output voltage for over voltage protection. The ADC channel that
monitors the boost voltage has an internal analog comparator with user programmable
threshold. This threshold for the comparator is set by use of an internal 10-bit DAC.
Whenever the DC bus voltage reaches an upper limit corresponding to the user
programmable comparator threshold, the comparator initiates a pulse by pulse duty limit
for the boost PWM signals. This limits the boost inductor current and hence the boost

bus voltage to its desired upper limit.

C2000 MCU also generates two PWM outputs to drive the isolated LLC stage. This
stage is run in an open loop fashion with unity voltage conversion ratio (voltage gain).
This means the boost voltage and the LLC output voltage Vbus is almost equal.
However, this requires a small minimum load of about 10W across Vbus (16kohm at
400V). With no load connected across Vbus and the boost output voltage set to 400V,
the LLC stage gain might be higher than 1, resulting in high voltage across LLC output
(Vbus). The user must prevent this condition by always maintaining a minimum
load resistor of about 16kOhm across the LLC output (Vbus).

All the time critical functions related to the DC-DC control loops are implemented in a
fast sampling loop enabled by the C2000 Micro-controller high speed CPU, interrupts, on
chip 12-bit ADC module and high frequency PWM modules. A detailed description of the
software algorithm is provided in the following chapters.

1.2. DC-DC Electrical Specifications

Following lists the key highlights of the C2000 MPPT DC-DC EVM.

6 TMS320C2000™ Systems Applications Collateral

� Panel Voltage: 200V (Min) to 300V (Max)

� 400Vdc Output

� 500 Watts Output Power

� Full Load efficiency greater than 94%

2 Software overview

2.1 Software Control Flow

The CCS project for C2000 MPPT DC-DC mostly makes use of the “C-
background/ASM-ISR” framework. The main fast ISR (50kHz) runs in assembly
environment. However, a slower ISR (10kHz) is also run from C environment. This slow
ISR is made interruptible by the fast ISR. Also, a third ISR runs from C environment at a
much slower frequency to implement the LIN(local interconnect network) based
communication with the DC-AC inverter stage. The frequency of the LIN interrupt is set
by the inverter at 50Hz.

C Environment

Background Loop

Timer 1 Tasks:

Communications,

Inverter Interface,

Start-up.

C EnvironmentC Environment

Timer 1 Tasks: Timer 1 Tasks: Timer 2 Tasks:

Monitor & update

parameters

Timer 3 Tasks:

Not used

Assembly

ISR

ADC

Context Save

100 kHz

Assembly

ISR

ADC

100 kHz

EXIT

Context Restore

Panel Voltage Controller

PWM Drv 1, 2

EM Averaging: Panel current

& average boost voltage

calculation

Main

28x Device level

Peripheral level

System level

ISR, ADC, LIN, OVP

Background Loop

Main

28x Device level

Peripheral level

System level

Main

28x Device level

Peripheral level

System level

Initialization

28x Device level

Peripheral level

System level

ISR

MPPT, Panel Power

EINT

10 kHz

EXIT

Boost Current Controller

ISR

LIN

EINT

50Hz

EXIT

Figure 2.1.1. MPPT DC-DC Software flow diagram

The project uses C-code as the main supporting program for the application, and is
responsible for all system management tasks, decision making, intelligence, and host
interaction. The assembly code is strictly limited to the fast Interrupt Service Routine
(ISR), which runs all the critical control code. Typically this includes reading ADC values,
control calculations, and PWM updates. The slower ISRs in the C environment
implement the MPPT algorithm to calculate the reference PV panel voltage and establish
LIN communication with the inverter stage. Fig 2.1.1 depicts the general software flow
for this project.

7 TMS320C2000™ Systems Applications Collateral

The key framework C files used in this project are:

HV_Solar_DC-DC-Main.c – this file is used to initialize, run, and manage the application.

HV_Solar_DC-DC -DevInit_F2803x.c – The control card (2803x) used in the MPPT DC-
DC EVM one of these files will be in the CCS project. This file is responsible for a one
time initialization and configuration of the F280xx device, and includes functions such as
setting up the clocks, PLL, GPIO, etc.

The fast ISR consists of a single file:

HV_Solar_DC-DC-DPL-ISR.asm – this file contains all time critical “control type” code.
This file has an initialization section (one time execute) and a run-time section which
executes at half the rate (50kHz) as the PWM time-base(100kHz) used to trigger it.

The slow ISR that runs at 10kHz consists of two files. The user selects one of the two
files to implement the MPPT algorithm.

Mppt_incc.h – this file contains code for calculating the panel voltage for maximum
power point tracking using the incremental conductance method. This file has an
initialization section (one time execute) and a run-time section which executes at 10kHz
rate.

Mppt_pno.h – this file contains code for calculating the panel voltage for maximum
power point tracking using the perturb and observe method. This file has an initialization
section (one time execute) and a run-time section which executes at 10kHz rate.

The second slow ISR that runs at 50Hz consists of one file.

SolarHv_DCDC_Lin.C – this file contains code for establishing LIN communication with
the inverter stage.

The Power Library functions (modules) are “called” from the fast ISR framework.

These power library modules may have both a C and an assembly component. In this
project, five library modules are used. The C and corresponding assembly module
names are:

C configure function ASM initialization macro ASM run-time macro

PWM_1ch_UpDwnCnt_Cnf.c PWMDRV_1ch_UpDwnCnt_INIT n PWMDRV_1ch_UpDwnCnt n

ADC_SOC_Cnf.c ADCDRV_1ch_INIT m,n,p,q ADCDRV_1ch m,n,p,q

PWM_CompPairDB_Cnf.C

 MATH_EMAVG_INIT n MATH_EMAVG n

8 TMS320C2000™ Systems Applications Collateral

 CNTL_2P2Z_INIT n CNTL_2P2Z n

Table 2.1.1 Library Modules

The assembly modules can also be represented graphically as below. (Figure 2.1.2)

Figure 2.1.2 Software blocks

Note the color coding used for the modules in Fig 2.1.2. The blocks in ‘dark blue’
represent the on-chip hardware modules in C2000 controller. The blocks in ‘blue’ are the
software drivers associated with these modules. The blocks in ‘yellow’ are part of the

9 TMS320C2000™ Systems Applications Collateral

computation carried out on various signals. The controllers used for voltage and current
loops have the form of a 2-pole 2-zero compensator. However these can be of other
forms such as, PI, PID, 3-pole 3-zero or any other controller suitable for the application.
The modular library structure makes it convenient to visualize and understand the
complete system software flow as shown in Fig 2.1.3. It also allows for easy use and
additions/deletions of various functionalities. This fact is amply demonstrated in this
project by implementing an incremental build approach. This is discussed in more detail
in the next section.

Figure 2.1.3. Software Control Flow

As mentioned in section 1.1 the MPPT DC-DC system is controlled by two feedback
loops. The outer voltage loop maintains the panel voltage at the level calculated by the
MPPT algorithm, while a faster inner current loop control the average boost inductor
current. Fig 2.1.3 also gives the rate at which the software modules are executed. For
example, the current controller is executed at a rate of 50kHz (half of the PWM switching
frequency) while the voltage controller is executed at 25kHz rate.

2.2 Incremental Builds

This project is divided into three incremental builds. This approach provides the user
with a step-by-step method to get familiar with the software and understand how it
interacts with the MPPT DC-DC hardware. This approach also simplifies the task of
debugging and testing the boards.

10 TMS320C2000™ Systems Applications Collateral

The build options are shown below. To select a particular build option set INCR_BUILD,
found in the HV_Solar_DC-DC-Settings.h file, to the corresponding build selection as
shown below. Once the build option is selected, compile the complete project by
selecting rebuild-all compiler option. Next chapter provides more details to run each of
the build options.

Incremental build options

INCR_BUILD = 1 Open loop check for boost and LLC action and ADC feedback
(Check sensing circuitry)

INCR_BUILD = 2 Open voltage loop and closed current loop control of boost

INCR_BUILD = 3 Closed voltage and current loop control of boost with MPPT

Table 2.2.1 Incremental build options for MPPT DC-DC

3 Procedure for running the incremental builds

All software files related to this C2x controlled MPPT DC-DC system i.e., the main
source files, ISR assembly files and the project file for C framework, are located in the
directory …\controlSUITE\development_kits\MPPT DC-DC_v1.0\MPPT DC-DC. The
projects included with this software are targeted for CCSv4.

Caution

There are high voltages present on the board. It should only be handled by experienced
power supply professionals in a lab environment. To safely evaluate this board a PV
panel emulator with appropriate power rating should be used to power the unit. Before
power is applied to the board a voltmeter and an appropriate resistive or electronic load
should be attached to the output. This will discharge the bus capacitor quickly when the
PV power is turned off. There is no output overcurrent protection implemented on the
board and so the user should take appropriate measures for preventing any output short
circuit condition.

Follow the steps below to build and run the example included in the DC-DC software.

11 TMS320C2000™ Systems Applications Collateral

3.1 Build 1: Open loop boost with ADC measurements

� Objective

The objectives of this build are, (1) evaluate MPPT DC-DC PWM and ADC software
driver modules, (2) verify MOSFET gate driver circuit, voltage and current sensing
circuit, (3) become familiar with the operation of Code Composer Studio (CCS). Under
this build the system runs in open-loop mode and so the measured ADC values are used
for circuit verification and instrumentation purposes only. Steps required for building and
running a CCS project is explained next.

� Overview

The software in Build1 has been configured so that the user can quickly evaluate the
PWM driver module by viewing the related waveforms on a scope and observing the
effect of duty cycle change on DC-DC output voltage. The user can adjust the PWM duty
cycle from CCS watch window. The user can also evaluate the ADC driver module by
viewing the ADC sampled data in the watch window.

The PWM and ADC driver macro instantiations are executed inside the _DPL_ISR. Fig
3.1.1 shows the software blocks used in this build. The two PWM signals for the two
BOOST switches are obtained from ePWM module 1 & 2. ePWM1A drives one of the
BOOST switches while ePWM2A drives the other. The two PWM signals for the two LLC
stage switches are obtained from ePWM module 3. ePWM3A drives the upper(high side)
LLC switch while ePWM3B drives the low side switch.

The quantities that are sensed and fed back to the MCU include, (1) the panel voltage
(Vp_fb), (2) the combined BOOST inductor current (IL), and (3) the boost DC bus voltage
(Vb_fb). These quantities are read using the ADC driver module and are indicated in Fig
3.1.1. The fourth channel for the ADC driver macro is not used in this application. The
ADC driver module converts the 12-bit ADC result to a 32bit Q24 value.

Figure 3.1.1. Build 1 software blocks

12 TMS320C2000™ Systems Applications Collateral

The boost PWM signals are generated at a frequency of 100 kHz i.e. a period of 10 us.
With the controller operating at 60MHz, one count of the time base counter of ePWM1
corresponds to 16.6667ns. This implies a PWM period of 10us is equivalent to 600
counts of the time base counter (TBCNT1, TBCNT2). The ePWM1 and ePWM2 modules
are configured to operate in up-down count mode as shown in Fig 3.1.2. This means a
time base period value of 300 (period register value) will give a total PWM period value
of 600 counts (i.e. 10 us).

The LLC PWM signals are generated at a frequency of 120 kHz i.e. a period of 8.33 us.
With the controller operating at 60MHz, one count of the time base counter of ePWM3
corresponds to 16.6667ns. This implies a PWM period of 8.33us is equivalent to 500
counts of the time base counter (TBCNT3). The ePWM3 module is configured to operate
in up-down count mode. This means a time base period value of 250 (period register
value) will give a total PWM period value of 500 counts (i.e. 8.33 us).

BOOST inductor current is sampled at the midpoint of the PWM1A ON pulse since the
sampled value represents the average inductor current under CCM (continuous
conduction mode) condition. Under DCM condition this sampled current value
represents a fraction of the average inductor current.

The other two voltage signal conversions are also initiated at this time. This is indicated
in Fig 3.1.2. The flexibility of ADC and PWM modules on C2000 devices allow for
precise and flexible ADC start of conversions. In this case ePWM1 is used as a time
base to generate a start of conversion (SOC) trigger when the TBCNT1 reaches zero. A
dummy ADC conversion is performed at this point in order to ensure the integrity of the
ADC results.

ISR PRD = 1200 counts

 (50 KHz)

ePWM1

 Time base

ePWM2A

ePWM1A

ISR
ISR

TBPRD

= 300

TB
C
N
T
=
0
to
 3
00

IL, Vb_fb, & Vp_fb

Sampled here

IL

CAD CAUCAU

ePWM2

 Time base

Figure 3.1.2. PWM generation and ADC sampling

13 TMS320C2000™ Systems Applications Collateral

On a CAU event (TBCNT1 = CMPA and counting up), ePWM1A output is Reset, while
on a CAD event (TBCNT1 = CMPA and counting down), ePWM1A output is Set.
ePWM2A is also configured in a similar manner with 180 phase shift with respect to
ePWM1A.

The CMPA value is derived from the input “BOOSTDuty” (Q24 variable) command.

The ADC module is configured to use SOCA of ePWM1 such that, SOCA is triggered at
TBCNT1 = ZERO event. All conversions are completed using this SOCA trigger. These
3 ADC results are read in the ISR by executing the ADC driver module from the 50kHz
ISR labeled as _DPL_ISR.

This ISR in assembly (_DPL_ISR) is triggered by EPWM1 on a CMPB match event on
up count. CMPB is set to 80 so that the ISR is triggered only after the ADC conversions
are complete. This is where the PWMDRV_1ch_UpDwnCnt macros are executed and the
PWM compare shadow registers updated. These are loaded in to the active register at
the next TBCNT = ZERO event. Note that the ISR trigger frequency is half that of the
PWM switching frequency as shown in Fig 3.1.2.

Protection

An overvoltage protection mechanism is implemented in software for this MPPT DC-DC
EVM. This OVP applies only for the boost output and not for the LLC stage output. Since
the Piccolo controller is on the primary side of the isolation it has no knowledge of the
isolated LLC output. Therefore, the user must connect a minimum load of about
10W across the LLC output in order to make the open loop LLC output follow its
input voltage, i.e., the output voltage from the boost stage. The minimum load
across the LLC output helps maintain the LLC stage voltage conversion factor of 1. This
way the max LLC output will also be limited by the max boost output which in turn is
protected by the OVP mechanism.

The sensed boost stage DC bus output voltage from the ADC input is compared against
the overvoltage protection threshold set by the user. The default OV threshold set point

is 404V. This threshold parameter is programmed inside the file HV_SOLAR_DC_DC-
Main.h. This is done by the following initialization of the on chip DAC reference voltage.

Comp3Regs.DACVAL.bit.DACVAL = 808;

Since the 10 bit DAC full scale value represents a max voltage of 511V, the init value of
808 represents the OV threshold of 404V.

In case of an OV condition the PWM outputs are duty limited pulse by pulse using the TZ
(trip zone) registers. The flexibility of the trip mechanism on C2000 devices provides the
possibilities for taking different actions on different trip events.

� Procedure

Start CCS and Open a Project

Follow the steps below to execute this build:

1. Connect USB connector to the Piccolo controller board for emulation. Power up
the 12V bias supply at JP1. By default, the Piccolo control card jumpers (see
Piccolo control card documentation) are configured such that the device boot

14 TMS320C2000™ Systems Applications Collateral

from FLASH. Change these jumper settings to allow code execution from RAM
under CCS control.

2. Start Code Composer Studio (CCS). In CCS, a project contains all the files and
build options needed to generate an executable output file (.out) which can be
run on the MCU hardware. On the menu bar click: Project � Import Existing
CCS/CCE Eclipse Project and under Select root directory navigate to and select
..\controlSUITE\development_kits\MPPT DC-DC_v1.0\MPPT DC-DC directory.
Make sure that under the Projects tab MPPT DC-DC is checked. Click Finish.

This project will invoke all the necessary tools (compiler, assembler & linker) for
building the project.

3. In the project window on the left, click the plus sign (+) to the left of Project. Your
project window will look like the following in Figure 3.1.3:

Figure 3.1.3. CCS Project Window

Device Initialization, Main, and ISR Files

Note: DO NOT make any changes to the source files – ONLY INSPECT

4. Open and inspect SOLAR_DC_DC-DevInit_F2803x.c by double clicking on the
filename in the project window. Note that system clock, peripheral clock

15 TMS320C2000™ Systems Applications Collateral

prescale, and peripheral clock enables have been setup. Next, notice that the
shared GPIO pins have been configured.

5. Open and inspect SOLAR_DC_DC -Main.c. Notice the call made to DeviceInit()
function and other variable initialization. Also notice code for different incremental
build options, the ISR intialization and the background for(;;) loop.

6. Locate and inspect the following code in the main file under initialization code
specific for build 1. This is where the PWMDRV_1ch_UpDwnCnt and
ADCDRV_1CH blocks are connected in the control flow.

7. Locate and inspect the following code in the main file under initialization code.
This is where the PWMDRV_1ch_UpDwnCnt block is configured and initialized.
This is common for all incremental builds. This PWM driver module inputs the
total PWM period value of 600 and internally calculates the period register value
of 300.

16 TMS320C2000™ Systems Applications Collateral

Also locate and inspect the following code in the main file under initialization code.
This is where the ADCDRV_1CH block is configured and initialized. This is also
common for all incremental builds.

8. Open and inspect SOLAR_DC_DC-DPL-ISR.asm. Notice the _DPL_Init and
_DPL_ISR sections under build 1. This is where the PWM and ADC driver macro
instantiation is done for initialization and runtime, respectively.

Build and Load the Project

9. Select the incremental build option as 1 in the SOLAR_DC_DC-Settings.h file.

Note: Whenever you change the incremental build option in SOLAR_DC_DC-
Settings.h always do a “Rebuild All”.

17 TMS320C2000™ Systems Applications Collateral

10. Click Project�“Rebuild All” button and watch the tools run in the build window.

11. Click Target�”Debug Active Project”. CCS will ask you to open a new Target
configuration file if one hasn’t already been selected. If a valid target
configuration file has been created for this connection you may jump to Step 14.
In the New target Configuration Window type in the name of the .ccxml file for the
target you will be working with (Example: xds100-F28035.ccxml). Check “Use
shared location” and click Finish.

12. In the .ccxml file that open up select Connection as “Texas Instruments
XDS100v2 USB Emulator” and under the device, scroll down and select
“TMS320F28035”. Click Save.

13. Click Target�”Debug Active Project”. Select project configuration as
F2803x_FLASH. The program will be loaded into the FLASH. You should now be
at the start of Main().

Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code.
There are various methods for doing this in Code Composer Studio, such as memory
views and watch views. If a watch view did not open when the debug environment was
launched, open a new watch view and add various parameters to it by following the
procedure given below.

Click: View � Watch on the menu bar.

Click the “Watch (1)" tab at the top watch view. You may add any variables to
the watch view. In the empty box in the "Name" column, type the symbol name of
the variable you want to watch and press enter on keyboard. Be sure to modify
the “Format” as needed.

Using Real-time Emulation

Real-time emulation is a special emulation feature that allows the windows within Code
Composer Studio to be updated at a rate up to 10 Hz while the MCU is running. This not
only allows graphs and watch views to update, but also allows the user to change values
in watch or memory windows, and see the effect of these changes in the system.

14. Enable real-time mode by hovering your mouse on the buttons on the horizontal

toolbar and clicking button.

15. A message box may appear. If so, select YES to enable debug events. This will
set bit 1 (DGBM bit) of status register 1 (ST1) to a “0”. The DGBM is the debug
enable mask bit. When the DGBM bit is set to “0”, memory and register values
can be passed to the host processor for updating the debugger windows.

16. Click on Continuous Refresh buttons for the watch view.

18 TMS320C2000™ Systems Applications Collateral

Run the Code

17. Run the code by using the <F8> key, or using the Run button on the toolbar, or
using Target � Run on the menu bar.

18. In the watch view, add the variable DutyA and set it to 0.1 (=1677721 in Q24).
This variable sets the duty cycle for the boost converter.

19. Apply a resistive load to the DC-DC EVM output terminal (10~100W).

20. Use a high voltage isolated DC supply to power the DC-DC EVM. Measure and
verify the boost DC bus voltage corresponding to applied input voltage and the
duty ratio.

21. Use DutyA to slowly change the duty from the watch window. The boost
converter output voltage should change accordingly and this, in turn, will change
the EVM output.

Observe the output voltage carefully, this should not be allowed to exceed
the maximum voltage rating of the board.

22. Add the other variables such as, Vb_fb, Vp_fb and verify the different ADC
results in the watch view.

23. The following oscilloscope captures show two PWM outputs (Ch1 & Ch2), DC
source input current (Ch3) and Boost MOSFET drain to source voltage (Ch4)
when the output DC bus load is 1K ohm, input DC voltage is 250V and the set
duty ratio is about 10%. The PWM frequency is measured as 100kHz.

19 TMS320C2000™ Systems Applications Collateral

24. The following oscilloscope captures show two PWM outputs (Ch1 & Ch2) for the
LLC stage. In this figure Ch4 represents LLC stage primary switch node voltage
and Ch3 is the LLC primary current when the boost input is 250V, boost output
(LLC input) is 300V, LLC output is 307V, LLC output load is 1K ohm and the
boost duty ratio is set to about 10%.

25. Try different duty cycle values and observe the corresponding ADC results.
Increase duty cycle value in small steps. Always observe the output voltage
carefully, this should not be allowed to exceed the capabilities of the board.
Different waveforms, like the PWM gate drive signals, input voltage and current
and output voltage may also be probed and verified using an oscilloscope.
Appropriate safety measures must be taken while probing these high voltage
signals.

26. Fully halting the MCU when in real-time mode is a two-step process. With the DC
input turned off wait until the DC bus capacitor is fully discharged. First, halt the
processor by using the Halt button on the toolbar, or by using Target � Halt.
Then take the MCU out of real-time mode. Finally reset the MCU.

27. You may choose to leave Code Composer Studio running for the next exercise or
optionally close CCS.

End of Exercise

20 TMS320C2000™ Systems Applications Collateral

3.2 Build 2: MPPT DC-DC with closed current loop

� Objective

The objective of this build is to verify the operation of the MPPT DC-DC under closed
current loop and open voltage loop mode. Since the voltage loop is open, there is no
MPPT operation under this build.

� Overview

Fig 3.2.1 shows the software blocks used in this build. Notice that 1 additional software
block compared to the Build 1 diagram (Figure 3.1.1). This block is shown in Figure 3.2.1
as CNTL_2P2Z:1. It represents a two pole two zero (2p2z) controller and is used for the
current control loop. Depending on the control loop requirements other control blocks
such as a PI or a 3p3z controller can also be used.

As shown in Fig 3.2.1 the current loop control block is executed at a 50 KHz rate.
CNTL_2P2Z is a 2nd order compensator realized from an IIR filter structure. This
function is independent of any peripherals and therefore does not require a CNF function
call.

Figure 3.2.1. Build 2 software blocks

This 2p2z controller requires five control coefficients. These coefficients and the
clamped output of the controller are stored as the elements of a structure named
CNTL_2P2Z_CoefStruct1. The CNTL_2P2Z block can be instantiated multiple times if
the system needs multiple loops. Each instance can have separate set of coefficients.
The CNTL_2P2Z instance for the current loop uses the coefficients stored as the
elements of structure CNTL_2P2Z_CoefStruct1. This way a second instantiation of
CNTL_2P2Z with a different structure, CNTL_2P2Z_CoefStruct2, can be used for
voltage loop control, as we will see in next section with Build 3.

The controller coefficients can be changed directly by modifying the values for B0, B1,
B2, A1, and A2 inside the structure CNTL_2P2Z_CoefStruct1. Alternately, the 2p2z
controller can be expressed in PID form and the coefficients can be changed by
changing the PID coefficients. The equations relating the five controller coefficients to

21 TMS320C2000™ Systems Applications Collateral

the three PID gains are given below. For the current loop these P, I and D coefficients
are named as: Pgain_I, Igain_I and Dgain_I respectively. For the voltage loop, used in
Build 3, these coefficients are named as: Pgain_V, Igain_V and Dgain_V respectively.
These coefficients are used in Q26 format.

The compensator block (CNTL_2P2Z) has a reference input and a feedback input. The
feedback input labeled as, Fdbk, comes from the ADC. The reference input labeled as,
Ref, normally comes from the voltage loop controller output. But, in this build there is no
voltage loop controller and so the variable Boost_IL_cmd is used to change the
reference current under user control. The z-domain transfer function for CNTL_2P2Z is
given by:

()

()zE

zU
 =

2
2

1
1

2
2

1
10

1 −−

−−

++

++

zaza

zbzbb

The recursive form of the PID controller is given by the difference equation:

() () () () ()211 210 −+−++−= kebkebkebkuku

where:

d

dip

dip

Kb

KKKb

KKKb

=

−+−=

++=

2

1

0

2

And the z-domain transfer function of this PID is:

()

()zE

zU
 =

1

2
2

1
10

1 −

−−

−

++

z

zbzbb

Comparing this with the general form, we can see that PID is a special case of
CNTL_2P2Z control where:

 11 −=a and 02 =a

The MATH_EMAVG (Exponential Moving Average) blocks shown in Figure 3.2.1
calculate the average of the boost inductor current and the panel voltage. The average
inductor current represents the panel current and is used to implement the MPPT
algorithm.

� Procedure

Build and Load Project

Follow the steps below to execute this build:

Follow steps 1 through 7 exactly as in build 1(section 3.1) except that in step 6 select
build 2 option instead of build 1. Then complete step 6 as below:

22 TMS320C2000™ Systems Applications Collateral

Locate and inspect the following code in the main file under initialization code
specific for build 2. This is where all the software blocks related to build 2 are
connected in the control flow.

1) Open and inspect SOLAR_DC_DC-DPL-ISR.asm. Notice the _DPL_Init and
_DPL_ISR sections under build 2. This is where all the macro instantiations
under build 2 are done for initialization and runtime, respectively.

2) Select the Incremental build option as 2 in the SOLAR_DC_DC-Settings.h file.
Then follow steps 10 through 17 as in build 1 in order to run the code. When all
these steps are completed you should now be at the start of Main().

Note: Whenever you change the incremental build option in SOLAR_DC_DC-
Settings.h always do a “Rebuild All”

3) Run the code by using the <F8> key, or using the Run button on the toolbar, or
using Target � Run on the menu bar.

4) In the watch view, add the variable Boost_IL_cmd and set it to 0.05 (=838861 in
Q24). This variable sets the magnitude of the reference current command for the
current control loop.

5) Connect an appropriate resistive load across the DC-DC output. For example, an
1.0Kohm resistor of 400W rating can be used. This will provide a load of 160W at
400V bus voltage.

23 TMS320C2000™ Systems Applications Collateral

6) Slowly apply DC power to the board from an isolated DC source. Monitor the DC-
DC EVM output voltage as the input voltage is raised slowly to 300V. Slowly
adjust (in steps of 0.01) the value for Boost_IL_cmd to set the output voltage to
about 385V. Use an oscilloscope with voltage and current probes to observe the
input voltage, input current, boost MOSFET voltage, LLC primary current and the
PWM outputs. With a 300V boost input and 1.0kohm resistive load when the
boost output voltage is set to 373V you should see the LLC output voltage (EVM
output) of 385V. The following scope plot is captured under this condition. Here
Ch1 and Ch2 show the boost PWM outputs. Ch3 is the boost input current and
Ch4 is the voltage across the boost MOSFET.

7) Increase Boost_IL_cmd slightly (in steps of 0.01) and observe the bus voltage
settles to a higher value. Increasing Boost_IL_cmd increases the magnitude of
the current reference signal and the bus voltage will rise. Therefore, apply
caution and set the overvoltage protection threshold to a value less than 400V.

8) Follow steps 26 and 27 as in section 3.1 to turn off power and reset the MCU.

End of Exercise

24 TMS320C2000™ Systems Applications Collateral

3.3 Build 3: MPPT DC-DC with closed voltage and current loop

� Objective

The objective of this build is to verify the operation of the complete MPPT DC-DC project
from the CCS environment.

� Overview

Fig 3.3.1 shows the software blocks used in this build. Compared to build 2 in Figure
3.2.1 this build uses an additional 2p2z control block labeled as CNTL_2P2Z:2. This is
the 2nd instantiation of the 2p2z control block in order to implement the MPPT DC-DC
voltage loop control. This voltage loop controller is executed at 25kHz rate which is half
the rate for current loop. The output from this control block drives the input node

Boost_IL_cmd of the current controller block.

Figure 3.3.1. Build 3 software blocks

Similar to current loop controller, this voltage loop controller, CNTL_2P2Z:2, also
requires five control coefficients. These coefficients and the clamped output of the
controller are stored as the elements of a 2nd structure named CNTL_2P2Z_CoefStruct2.
The coefficients for this controller can be changed directly by modifying the values for
B0, B1, B2, A1, and A2 inside the structure CNTL_2P2Z_CoefStruct2, or by changing
the equivalent PID gains as discussed in section 3.2.

Figure 3.3.1 also shows two additional blocks implementing two different MPPT
algorithms that are used in this EVM. The default code setting uses incremental
conductance algorithm for the MPPT and so the output from this MPPT block is
connected to the feedback terminal (Fdbk) of the voltage loop controller. These MPPT
blocks are run from a 10kHz ISR.

25 TMS320C2000™ Systems Applications Collateral

� Procedure

Build and Load Project

Follow the steps below to execute this build:

Follow steps 1 through 7 exactly as in build 1(section 3.1) except that in step 6 select
build 3 option instead of build 1. Then complete step 6 as below:

Locate and inspect the following code in the main file under initialization code specific
for build 3. This is where all the software blocks related to build 3 are connected in the
control flow.

1) Open and inspect SOLAR_DC_DC-DPL-ISR.asm. Notice the _DPL_Init
and _DPL_ISR sections under build 3. This is where all the macro
instantiations under build 3 are done for initialization and runtime,
respectively.

2) Select the Incremental build option as 3 in the SOLAR_DC_DC-
Settings.h file. Then follow steps 10 through 17 as in build 1 in order to
run the code. When all these steps are completed you should now be at
the start of Main().

Note: Whenever you change the incremental build option in
SOLAR_DC_DC-Settings.h always do a “Rebuild All”

26 TMS320C2000™ Systems Applications Collateral

3) Run the code by using the <F8> key, or using the Run button on the
toolbar, or using Target � Run on the menu bar.

4) In the watch view, add four variables inverter_connected, Start_DC_DC,
Vp_fb,and Vb_fb. Set the Q-format for the last two variables (Vp_fb &
Vb_fb) to Q24. These two variables represent the boost input and output
voltages respectively. These will slowly increase as the DC-DC starts up
when PV panel emulator power is applied and the MPPT is turned on. To
start MPPT from CCS (under this build) first, the user needs to modify the
code as explained in step 6 below and reload the program to flash
memory. Then, from CCS watch window, the user will set the variables
Start_DC_DC to 1 and inverter_connected to 0.

5) Configure a solar panel emulator (200V to 300V, 500W max) to provide
input power to the EVM. Configure the panel emulator to emulate the
following solar panel characteristics, connect it to the EVM input but do
not turn on panel power at this time.

Example Panel Emulator Parameters

Voc Open circuit panel voltage 260V

Vmpp Panel voltage for max power point tracking (MPPT) 220V

Impp Panel current for max power point tracking (MPPT) 0.75A

Isc Short circuit panel current 1A

27 TMS320C2000™ Systems Applications Collateral

Connect an appropriate resistive load to the EVM output terminals (Vo-R
& GND terminals). As in the example above, if the panel emulator is
configured to supply 165W of power at MPPT point, then select a load
resistor value of 970 ohm so that the EVM output voltage is limited to
about 400V (P = 400*400/970 ≈ 165W). A smaller resistor will also work
as long as the output voltage does not fall below 350V. This means that
the smallest resistor that can be chosen for this load set up (165W) is
about 742 ohm (R = 350*350/165 = 742 ohm). A resistor value larger than
970 ohm will cause output voltage higher than 400V for this load set up.
This output overvoltage condition must be prevented by choosing
the maximum resistor value of 970 ohm for this load set up of 165W.
It is recommended that the resistor with a power rating > 200W is used for
this load setting.

6) Starting the MPPT algorithm (in build 3) from CCS watch window, with the
PV panel emulator power applied to the EVM input, will require changing
one line of code as explained below. Without this change the code
automatically starts the MPPT algorithm when (1) the minimum panel
input voltage is applied and, (2) from the GUI the user set the variable
inverter_connected to 0. When the EVM is shipped, the default code
loaded in the flash memory allows this GUI based power up in standalone
mode. Therefore, this code modification is needed only if the user wants
to start the MPPT from the CCS watch window.

Open the CCS project file HV_Solar_DC_DC-Main.c and locate the code
where the variable Start_DC_DC is set to 1 as shown below.

28 TMS320C2000™ Systems Applications Collateral

Comment out this one line of code, save the file, recompile and reload the
project in the flash memory. Follow steps 1 through 3 (as described
before) and run the code. Enable the real time mode and then Click on

Continuous Refresh buttons for the watch view. The variables
Start_DC_DC will be set to 0 and inverter_connected will be set to 1.

7) Use a voltmeter to monitor the DC bus voltage across the EVM output.
Now turn on the PV panel emulator with the setup described in step 5. At
this point the MPPT will still remain off and so the EVM input should be
around 260V and the output voltage, with a 1kohm load resistor, will also
be at the same level. From the CCS watch window now set the variables
inverter_connected to 0 and Start_DC_DC to 1. This will start the MPPT
algorithm and the EVM output will rise to around 400V. With the MPPT
turned on and the input voltage loop controller connected, the panel
output voltage (i.e., the boost input voltage) will be around 220V. The
EVM will deliver 165W of panel power (as described in step 5) at the
MPPT reference voltage of 220V.

Use an oscilloscope to capture the switch node voltage and transformer
primary current from the LLC stage under this operating condition. This is
shown in figure below where Ch2 represents the LLC primary switch node
voltage and Ch1 represents the LLC primary current.

29 TMS320C2000™ Systems Applications Collateral

Now use the scope probes to capture the boost stage MOSFET drain to
source voltage and the PV emulator current under this operating
condition. This is shown in figure below where Ch2 represents the boost
MOSFET drain to source voltage and Ch4 represents the panel current.

Observe the variables on the watch window. The variable Vp_fb should
show a value of about 0.4297 (=220/512) when the Q format is set to

30 TMS320C2000™ Systems Applications Collateral

Q24. The maximum panel voltage set by the sense resistors is about
512V that corresponds to maximum ADC input of 3.3V. Therefore, the
normalized or per unit value will be about 0.4297 when the actual panel
voltage is 220Vdc. The variable Vb_fb should show a value of about
0.7813 (=400/512) when the Q format is set to Q24. The maximum boost
output voltage set by the sense resistors is about 512V that corresponds
to maximum ADC input of 3.3V. Therefore, the normalized or per unit
value will be about 0.7813 when the actual boost output voltage is
400Vdc.

8) Follow steps 26 and 27 as in section 3.1 to turn off power and reset the
MCU. Undo the change in code performed in step (6), then recompile and
reload the code into the flash memory for standalone operation of the
EVM. Set the Piccolo control card jumpers (see Piccolo control card
documentation) appropriately such that the device can boot from FLASH.

End of Exercise

References

For more information please refer to the following guides:

• MPPT DC-DC-GUI-QSG – A quick-start guide for quick demo of the MPPT DC-DC EVM
using a GUI interface.

..\controlSUITE\development_kits\HV_SOLAR_DC_DC\~Docs\QSG_HV_SOLAR_DC_D
C_GUI_Rev1.0.pdf

• MPPT DC-DC_Rel-1.0-HWdevPkg – A folder containing various files related to the
Piccolo-B controller card schematics and the MPPT DC-DC schematic.

..\controlSUITE\development_kits\HV_SOLAR_DC-DC\HV_SOLAR_DC-DC_HWDevPkg

• F28xxx User’s Guides

 http://www.ti.com/f28xuserguides

