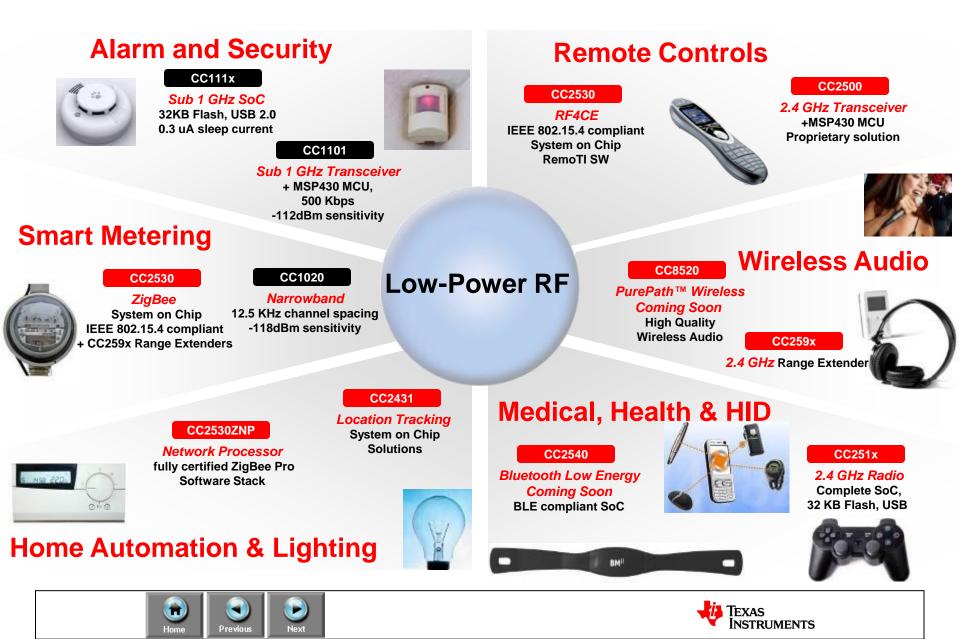
# **TI Low Power RF**


# **Designer's Guide to LPRF**





### **TI Low-Power RF** at a glance...





### **TI Low-Power RF**

**Technology Solutions** 

| DEFINE                 | SELECT                     | DESIGN               | TEST               | PRODUCE                |
|------------------------|----------------------------|----------------------|--------------------|------------------------|
| Network<br>Topology    | Proprietary or<br>Standard | Products             | Certification      | Obsolescence<br>Policy |
| Range and<br>Data rate | Protocol SW                | Antenna<br>Design    | Coexistence        | Quality                |
| Power<br>Consumption   | Regulations                | PCB Layout           | Production<br>Test |                        |
|                        | Make or Buy                | Development<br>Tools |                    |                        |
|                        |                            | Design<br>Support    |                    |                        |



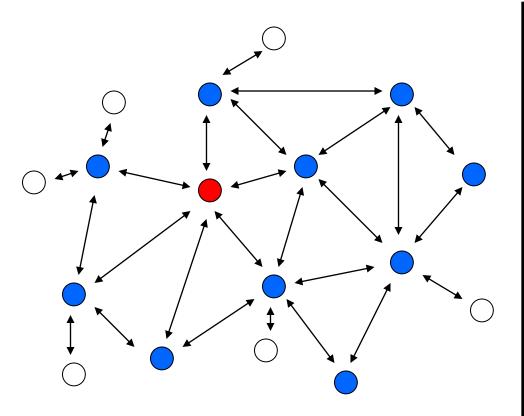
### **Define** RF Design Requirements

### **Considerations when starting an RF design:**

- How many members/nodes will participate the wireless network?
- What is the required **range** between the devices?
- Is there a special need for low power consumption?
- Are there common standards that have to be met?







### **Define** Network Topology

#### Star network with multiple nodes:

- Host device with hub function
- simple end devices



#### Network Topology: <u>ZigBee</u> Mesh



- Devices are pre-programmed for their network function
- Coordinator can be removed



ZigBee Coordinator Starts the Network Routes packets Manages security Associates Routers and End Devices Example: Heating Central

ZigBee Router Routes packets Associates Routers and End Devices Example: Light

ZigBee End Device Sleeps most of the time Can be battery powered Does not route Example: Light switch





|            | Any Radio HW<br>+<br>Proprietary SW | SimpliciTI                           | 802.15.4<br>TIMAC | RF4CE           | ZigBee    |
|------------|-------------------------------------|--------------------------------------|-------------------|-----------------|-----------|
| Topology   | Any<br>Topology                     | Point to<br>Point<br>Star<br>Network | Star<br>Network   | Star<br>Network | Mesh      |
| Code Size  | variable                            | < 8 KByte                            | <32 KByte         | <64 KByte       | >64 KByte |
| Complexity | variable                            | Low                                  | Low               | Low             | Medium    |





#### Range and Data rate: Range propagation

- How far can TX and RX be apart from each other?
- Friis' transmission equation for free space propagation:

$$P_r = P_t + G_t + G_r + 20\log\left(\frac{\lambda}{4\pi}\right) - 20\log d$$
 or  $P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2}$ 

$$d = \frac{\lambda}{4\pi} \sqrt{\frac{P_t G_t G_r}{P_r}}$$

- $-P_t$  is the transmitted power,  $P_r$  is the received power
- G<sub>t</sub> is the transmitter, G<sub>r</sub> is the receiver antenna gain
- d is the distance between transmitter and receiver, or the range
- Lambda is the wavelength  $\lambda = \frac{c}{f} = \frac{\text{Speed of light}}{\text{Frequency}}$





#### Range and Data rate: "Real life"

Compared to the estimated range we should get in theory here are some "real life" rules and experiences on RF range:

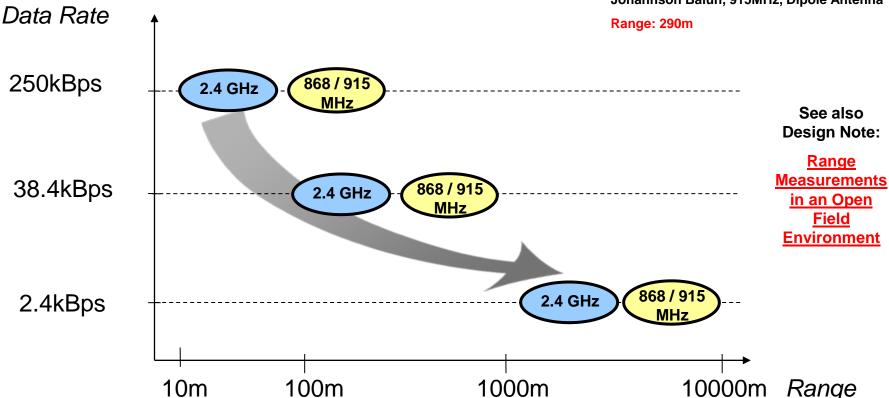
- 120 dB link budget at 433 MHz gives approximately 2000 meters (TI rule of thumb)
- Based on the emperical results above and Friis' equation estimates on real range can be made
- Rule of Thumb:
  - 6 dB improvement ~ twice the distance
  - Double the frequency ~ half the range (433 MHz longer range than 868 MHz)





Range and Data rate: Important factors

- Antenna (gain, sensitivity to body effects etc.)
- Sensitivity: Lowest input power with acceptable link quality (typically 1% PER)
- Channel Selectivity: How well a chip works in an environment with interference
- Output power
- Environment (Line of sight, obstructions, reflections, multi-path fading)






#### Range and Data rate: Estimated LOS

Test Example:

CC1101 with 0dBm output power, 250KBps, Johannson Balun, 915MHz, Dipole Antenna



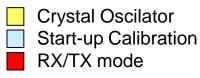
Note: These examples should be taken as a rough estimation as the final design is highly dependent on the antenna, frequency, output power and other parameters.







Low Power characteristics and features of TI's RF devices:


- Low sleep current
- Minimum MCU activity
- RX/TX turn around time
- Adaptive output power using RSSI
- Fast crystal start-up time
- Fast PLL calibration (and settling)
- Carrier sense recognition
- Low RX peak current
- Minimum duty cycle
- Wake on radio (new devices)







#### **Power Consumption: Application Scenarios**



| High duty cycle applications:<br>•Active radio current consumption<br>•RX/TX and Calibration | Long Packet Length<br>Radio power dominating        |      |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
|                                                                                              | Short Packet Length<br>Calibration power dominating | time |

#### Low duty cycle applications:

- •MCU sleep current
- •Regulator quiescent current
- •Average radio current consumption





Low duty-cycle transmission

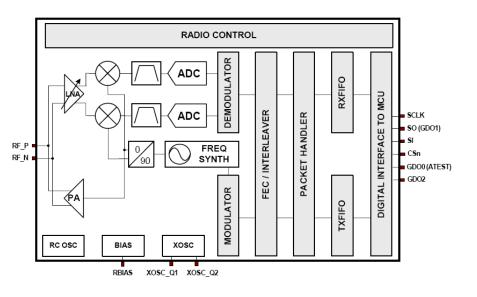
Sleep power dominating

time

time



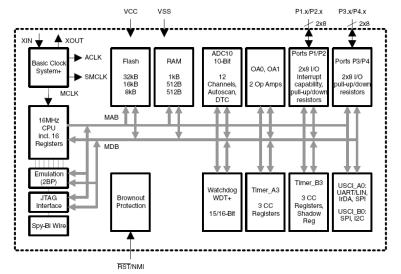
**Power Consumption: Low-Power Essentials** 


- Use the lowest possible duty cycle
  - Send data only when needed, do not send more data than necessary
  - Use the highest data rate you can (trade-off vs. range)
  - Watch out for protocol-related overhead
- Use the lowest possible voltage
  - RF chips have reduced current draw at lower voltages
  - Low voltage degrades RF performance
  - Above not a problem if on-chip regulator
- Use a switch-mode regulator with low quiescent current to maximize battery lifetime







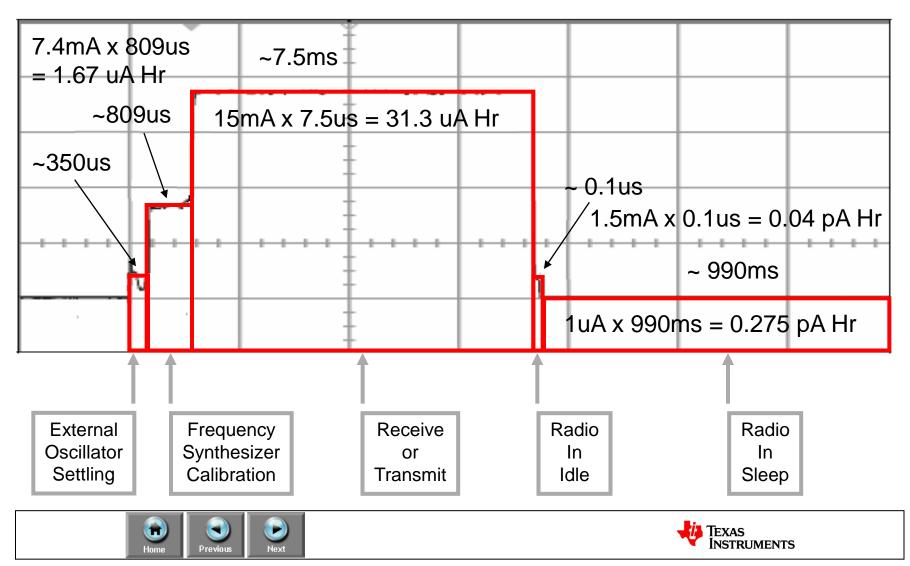

#### **Power Consumption: Example**



CC2500 Typicals: Vcc Range: 1.8V to 3.6V WOR Sleep Current: 900nA Idle Current: 1.5mA FSTXon Current: 7.4mA Rx Current: 15mA @ 2.4kB/s Tx Current: 21mA @ 0dB








MSP430F2274 Typicals: Vcc Range: 1.8V to 3.6V Sleep Current: 0.1uA @ 3V 32kOsc Current: 0.9uA @ 3V CPU off Current: 90uA @ 3V Active Current: 390uA @ 3V



### **Define** Power Consumption

Typical Power Profile of a LPRF System





**Choose the right RF solution** 

## How to choose the perfect RF solution:

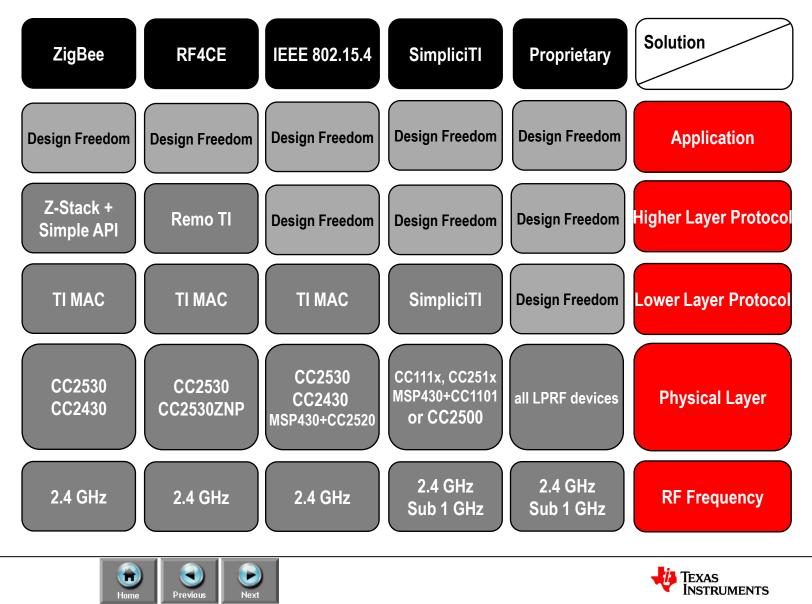
- Does the application need to associate with an existing system?
- What kind of software protocols fit the application best?
- Are there **regulations** to be considered?
- How much time/resources are available to get the product to market?





**Proprietary or Standard** 

TI LPRF offers several low power RF solutions by providing the required Hardware and Software.


As a result there is no need to promote any specific low power RF protocol as the solution for all applications.

However, it is important to make the customer choose the best fitting protocol for the targeted application in order to get optimal performance and meet expectations.





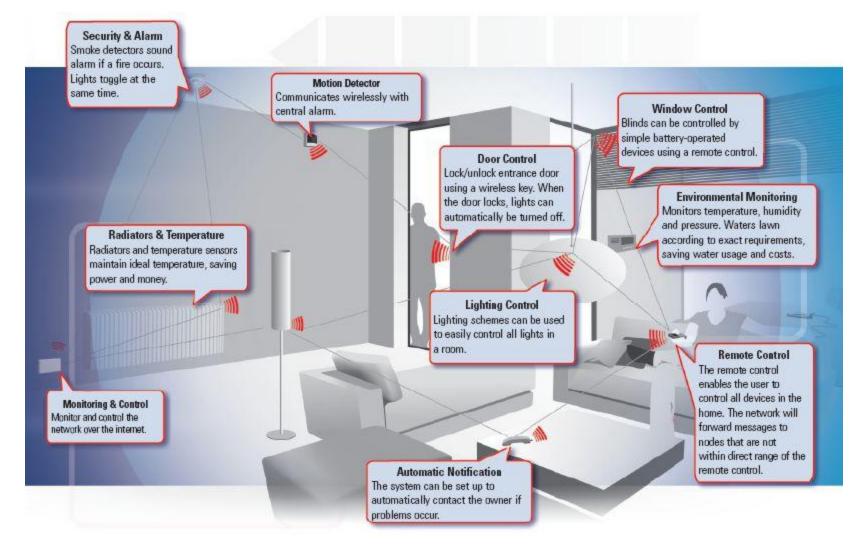
#### **Proprietary or Standard**



**Proprietary or Standard: ZigBee** 

"The ZigBee Alliance is an association of companies working together to enable reliable, cost-effective, low-power, wirelessly networked monitoring and control products based on an open global standard"

Source: ZigBee Alliance homepage


**Promoters of the ZigBee alliance are:** 







#### **Proprietary or Standard: ZigBee**







**Proprietary or Standard: RF4CE** 

- Founding Members
   **SONY**.
   PHILIPS
- Invited Contributors



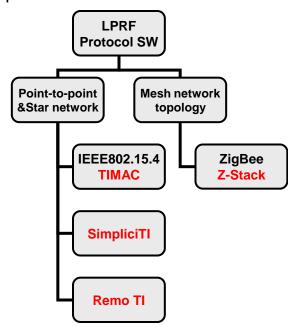


The RF4CE industry consortium has been formed to develop a new protocol that will further the adoption of radio frequency remote controls for audio visual devices.

The consortium will create a standardized specification for radio frequency-based remote controls that deliver richer communication, increased reliability and more flexible use.

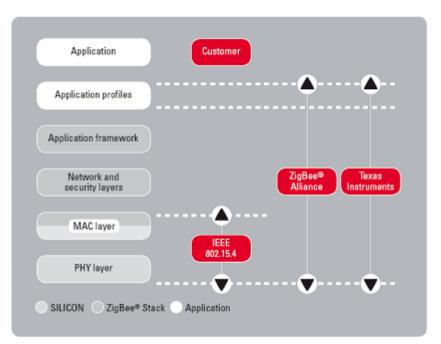
Visit <u>www.rf4ce.org</u> for more information on the RF4CE consortium Visit <u>www.ti.com/rf4ce</u> for more information on TI's RF4CE solution






#### **Protocol Software**

- <u>Z-Stack</u> ZigBee Protocol Stack from TI
  - Mesh networking
  - Golden Unit certification for ZigBee-2006, ZigBee-2007 and ZigBee PRO
  - Supports multiple platforms including the CC2530ZNP, CC2530 and CC2520+MSP430 platforms
  - ZigBee 2007/PRO available on MSP430 platform
- <u>TIMAC</u>
  - A standardized wireless protocol for battery-powered and/or mains powered nodes
  - Suitable for applications with low data-rate requirements
  - Support for IEEE 802.15.4-2003/2006
- SimpliciTI Network Protocol RF Made Easy
  - A simple low-power RF network protocol aimed at small RF networks
  - Typical for networks with battery operated devices that require long battery life, low data rate and low duty cycle
- <u>RemoTI</u> Remote control
  - RF4CE is built on the well-tested, reliable software, the TIMAC, which is based on the IEEE 802.15.4 protocol stack and runs in millions of devices worldwide


#### All software solutions can be downloaded free from TI web





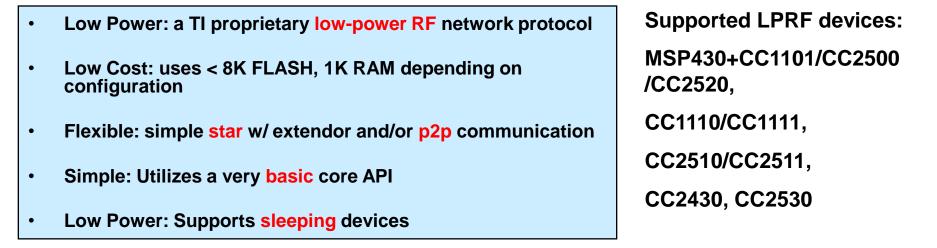


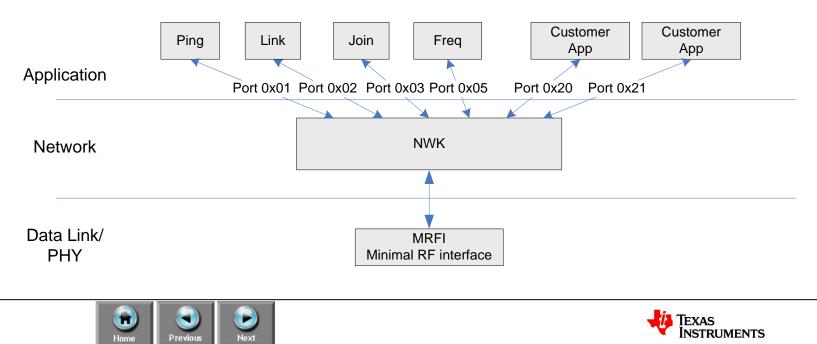
#### Protocol Software: ZigBee™ Z-Stack



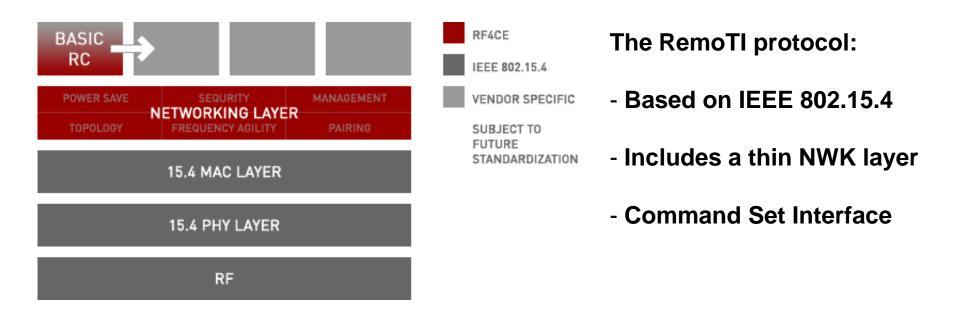
- Application
- ZigBee™ Stack
  - Network functionality
- IEEE 802.15.4
  - Physical layer/Radio
  - Standardized point to point link
- ZigBee™ devices from TI
  - CC2480 (network processor)
  - CC243x System on Chip
  - CC253x System on Chip

#### Key Benefits:


- Self healing (Mesh networks)
- Low node cost
- Easy to deploy (low installation cost)


- Supports large networks (hundreds of nodes)
- Intended for monitoring & control applications
- Standardized protocol (interoperability)






#### **Protocol Software: SimpliciTI**

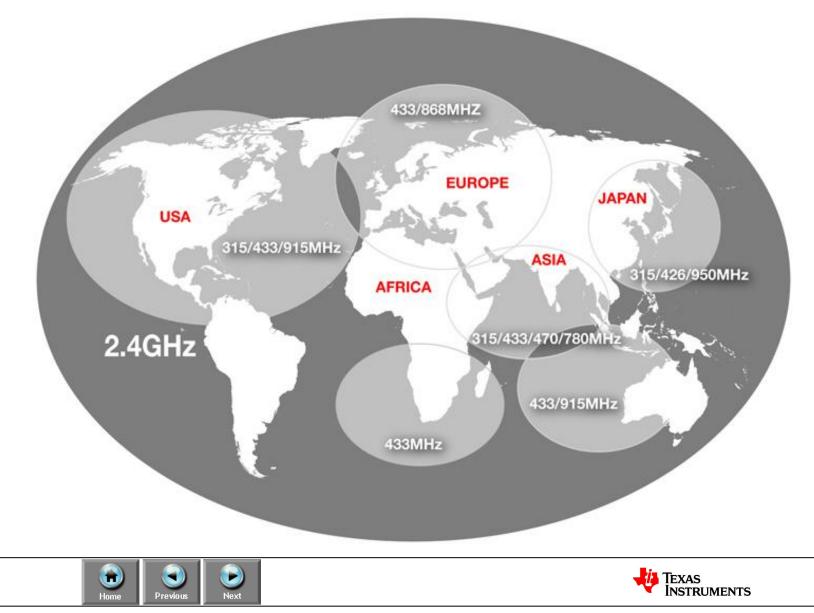




#### **Protocol Software: RemoTI**



**RemoTI (RF4CE) Standard Includes:** 


- Frequency agility for multi-channel operation to avoid interference
- A mechanism for secure transactions
- A power save mechanism for power efficient implementations
- A simple and intuitive pairing mechanism







#### **Regulations: ISM/SRD frequency bands**



**Regulations: 2.4 GHz ISM band** 

# The 2400–2483.5 MHz band is available for license-free operation in most countries

#### • 2.4 GHz Pros

- Same solution for all markets without SW/HW alterations
- Large bandwidth available, allows many separate channels and high datarates
- 100% duty cycle is possible
- More compact antenna solution than below 1 GHz

#### 2.4 GHz Cons

- Shorter range than a sub 1 GHz solution (with the same current consumption)
- Many possible interferers are present in the band





**Regulations: Sub 1GHz ISM bands** 

The ISM bands under 1 GHz are not world-wide. Limitations vary a lot from region to region and getting a full overview is not an easy task

#### Sub 1GHz Pros

- Better range than 2.4 GHz with the same output power and current consumption
- Lower frequencies have better penetration through concrete and steel (buildings and office environments) compared to 2.4 GHz

#### Sub 1GHz Cons

- No worldwide solution possible. Since different bands are used in different regions a custom solution has to be designed for each area
- Duty cycle restrictions in some regions







#### **Regulations: Sub 1GHz ISM bands**

#### 902-928 MHz is the main frequency band in the US

The 260-470 MHz range is also available, but with more limitations

#### The 902-928 MHz band is covered by FCC CFR 47, part 15

#### Sharing of the bandwidth is done in the same way as for 2.4 GHz:

- Higher output power is allowed if you spread your transmitted power and don't occupy one channel all the timeFCC CFR 47 part 15.247 covers wideband modulation
- Frequency Hopping Spread Spectrum (FHSS) with ≥50 channels are allowed up to 1 W, FHSS with 25-49 channels up to 0.25 W
- Direct Sequence Spread Spectrum (DSSS) and other digital modulation formats with bandwidth above 500 kHz are allowed up to 1W

#### FCC CFR 47 part 15.249

"Single channel systems" can only transmit with ~0.75 mW output power





#### **Regulations: Unlicensed ISM/SRD bands**

#### USA/Canada:

- 260 470 MHz
- 902 928 MHz
- 2400 2483.5 MHz

#### Europe:

- 433.050 434.790 MHz
- 863.0 870.0 MHz
- 2400 2483.5 MHz

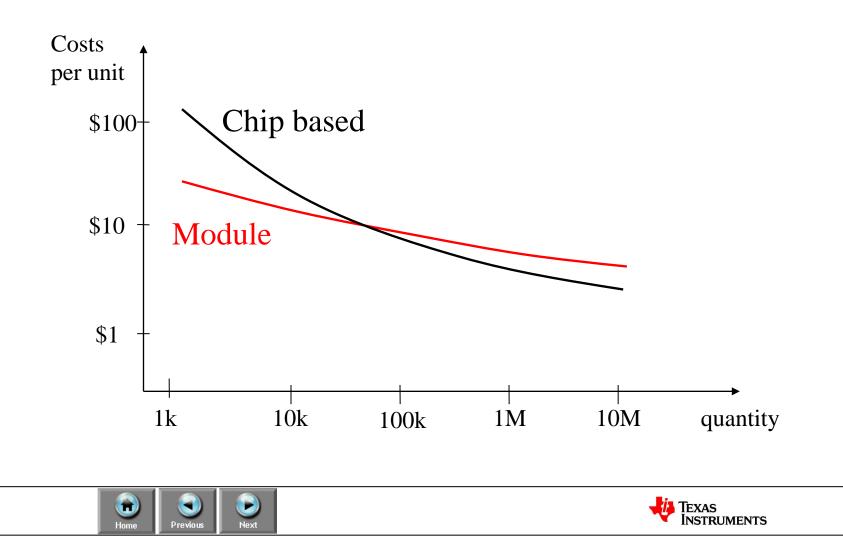
#### Japan:

- 315 MHz
- 426-430, 449, 469 MHz
- 2400 2483.5 MHz
- 2471 2497 MHz

(FCC Part 15.231; 15.205) (FCC Part 15.247; 15.249) (FCC Part 15.247; 15.249)

(ETSI EN 300 220) (ETSI EN 300 220) (ETSI EN 300 440 or ETSI EN 300 328)

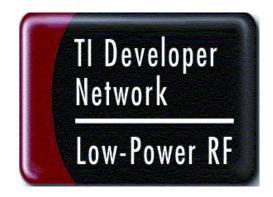
(Ultra low power applications) (ARIB STD-T67) (ARIB STD-T66) (ARIB RCR STD-33)


**ISM** = Industrial, Scientific and Medical **SRD** = Short Range Devices








Self development based on a chipset or buy a module?





**Benefits** of a module based solution compared to a self development:

- Shortest time to market
- Focus on core competence
- 100% RF yield
- FCC/CE re-use

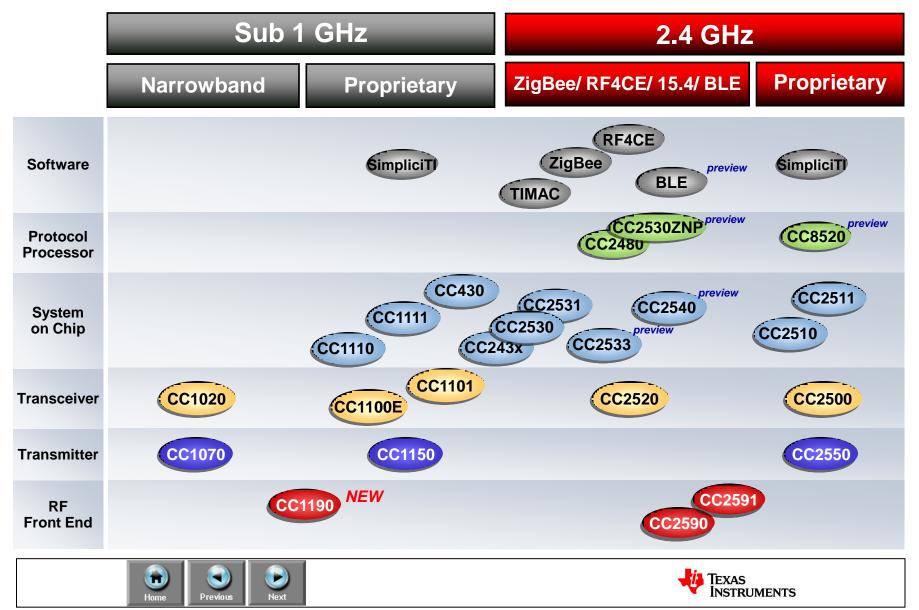


Field proven technology: Temperature, antenna loads,...

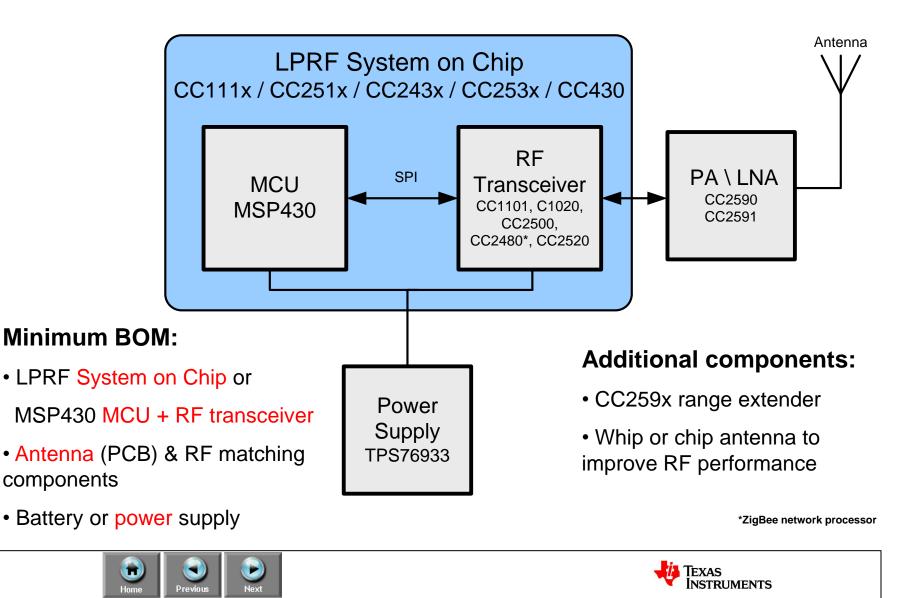




### **Design** Build your Application


### **Design your application using TI technology:**

- Low Power RF IC documentation
- Design notes supporting your RF Antenna design
- PCB reference designs help to accelerate your hardware layout
- Powerful and easy to use development tools
- Worldwide TI support organization

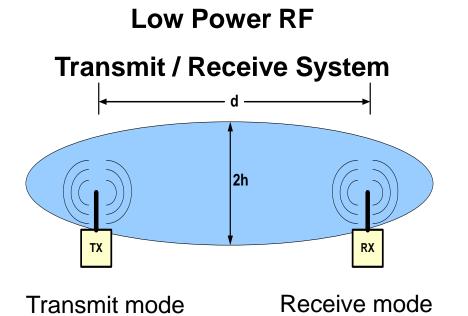





#### **Design** LPRF Product Portfolio



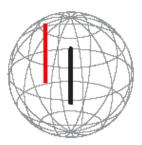
### **Design** Block diagram of LPRF application example



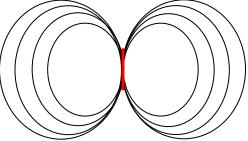



The **antenna** is a **key** component for the successful design of a wireless communication system

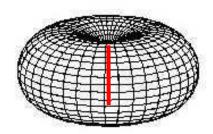
The **purpose** of an antenna is to provide two way transmission of data electromagnetically in free space

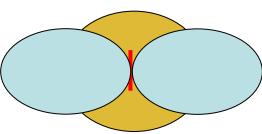

- Transform electrical signals into RF electromagnetic waves, propagating into free space (transmit mode)
- Transform RF electromagnetic waves into electrical signals (receive mode)








An Isotropic Antenna is a theoretical antenna that radiates a signal equally in all directions.



A Dipole Antenna is commonly used in wireless systems and can be modeled similarly to a doughnut





The Dipole represents a directional antenna with a further reach in the X&Y Plane (at the cost of a smaller reach in the Z plane) to the Isotropic.

Power measurements are referenced to isotropic antenna (dBi) as a theoretical model for comparison with all other antennas

Power Measurements of a Dipole Antenna (dBd) = 2.14 dBi.







#### Two fundamental connection types for low power RF systems

Single-ended antenna connection

- Usually matched to 50 ohm
- Requires a balun if the Chipcon-chip has a differential output
- Easy to measure the impedance with a network analyzer
- Easy to achieve high performance

Differential antenna connection

- Can be matched directly to the impedance at the RF pins
- Can be used to reduce the number of external components
- Complicated to make good design, might need to use a simulation
- Difficult to measure the impedance
- Possible to achieve equivalent performance of single-ended







### **PCB** antennas

- No extra cost development
- Requires more board area
- Size impacts at low frequencies and certain applications
- Good to high range
- Requires skilled resources and software

### Whip antennas

- Cost from (starting~ \$1)
- Best for matching theoretical range
- Size not limiting application

### **Chip antennas**

- Less expensive (below \$1)
- Lower range





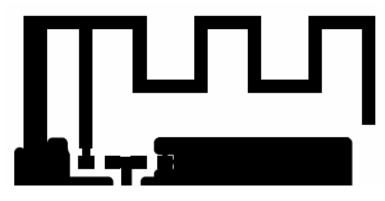






# **Design** Antenna Design: Frequency vs. Size

Lower frequency **increases** the antenna range


• Reducing the frequency by a factor of two doubles the range

### Lower frequency requires a larger antenna

- λ/4 at 433 MHz is 17.3 cm (6.81 in)
- λ/4 at 915 MHz is 8.2 cm (3.23 in)
- λ/4 at 2.4 GHz is 3.1 cm (1.22 in)

### A meandered structure can be used to reduce the size

• λ/4 at 2.4 GHz







#### **Antenna Design: TI Resources**

#### **General Antennas**

- AN003: SRD Antennas (<u>SWRA088</u>)
- Application Report ISM-Band and Short Range Device Antennas (<u>SWRA046A</u>)

### 2.4 GHz

- AN040: Folded Dipole for CC24xx (<u>SWRA093</u>)
- AN043: PCB antenna for USB dongle (<u>SWRA0117d</u>)
- DN001: Antenna measurement with network analyzer (<u>SWRA096</u>)
- DN004: Folded Dipole Antenna for CC25xx (<u>SWRA118</u>)
- DN0007: Inverted F Antenna for 2.4 GHz (<u>SWRU120b</u>)
- AN058: Antenna Selection Guide (<u>SWRA161</u>)
- AN048: Chip Antenna (<u>SWRA092b</u>)

### 868/915 MHz


- DN008: 868 and 915 MHz PCB antenna (<u>SWRU121</u>)
- DN016: 915 MHz Antenna Design (<u>SWRA160</u>)
- DN023: 868 MHz and 915 MHz PCB inverted-F antenna (<u>SWRA228</u>)





PCB Layout: Rules of thumb for RF Layout

 Keep via inductance as low as possible. Usually means larger holes or multiple parallel holes)

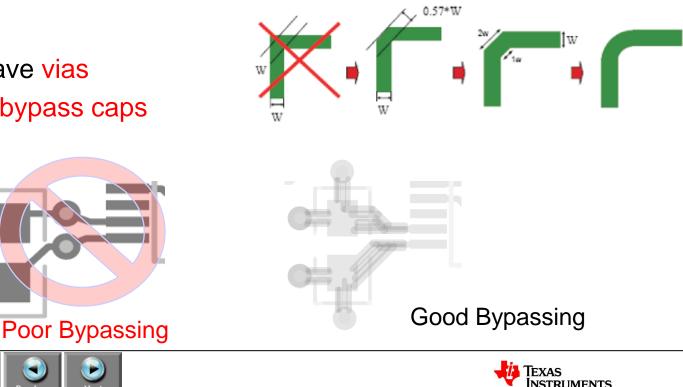


- Keep top ground continuous as possible. Similarly for bottom ground.
- Make the number of return paths equal for both digital and RF
  - Current flow is always through least impedance path. Therefore digital signals should not find a lower impedance path through the RF sections.
- Compact RF paths are better, but observe good RF isolation between pads and or traces.





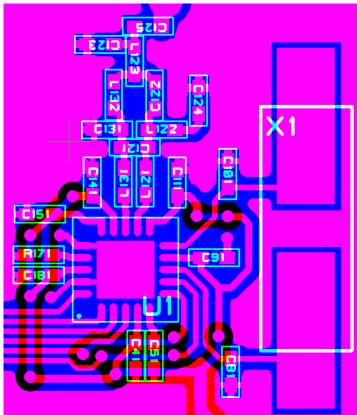
### PCB Layout: Do's and Don'ts of RF Layout


- Keep copper layer continuous for grounds. Keep connections to supply layers short
- Use SMT 402 packages which have higher self-resonance and lower package parasitic components.
- Use the chips star point ground return
- Avoid ground loops at the component level and or signal trace.
- Use vias to move the PCB self resonance higher than signal frequencies
- Keep trace and components spacing nothing less than 12 mils
- Keep via holes large at least 14.5 mils
- Separate high speed signals (e.g. clock signals) from low speed signals, digital from analog. Placement is critical to keep return paths free of mixed signals.
- Route digital signals traces so antenna field lines are not in parallel to lines of magnetic fields.
- Keep traces length runs under a ¼ wavelength when possible.





### PCB Layout: Do's and Don'ts of RF Layout


- Avoid discontinuities in ground layers ٠
- Keep vias spacing to minimize E fields that acts as current barriers, ۲ good rule to follow keep spacing greater than 5.2 x greater than hole diameter for separations.
- Don't use sharp right angle bends ۲
- Do not have vias between bypass caps



# **Design** PCB Layout: Example

Copy (for example) the CC1100EM reference design!

- Use the exact same values and placement on decoupling capacitors and matching components.
- Place vias close to decoupling capacitors.
- Ensure 50 ohm trace from balun to antenna.
- Remember vias on the ground pad under the chip.
- Use the same distance between the balun on layer 1 and the ground layer beneath.
- Implement a solid ground layer under the RF circuitry.
- Ensure that useful test pins are available on the PCB.
- Connect ground on layer 1 to the ground plane beneath with several vias.
- <u>Note:</u> different designs for 315/433 MHz and 868/915 MHz



Layout: CC1100EM 868/915MHz reference design





## **Design** PCB Layout: RF Licensing

#### **Design guidelines to meet the RF regulation requirements:**

- Place Decoupling capacitors close to the DC supply lines of the IC
- Design a solid ground plane and avoid cutouts or slots in that area
- Use a low-pass or band-pass filter in the transmit path to suppress the harmonics sufficiently
- Choose the transmit frequency such that the harmonics do not fall into restricted bands
- In case of shielding may be necessary filter all lines leaving the shielded case with decoupling capacitors to reduce spurious emissions.
- Chose values of decoupling capacitors in series resonance with their parasitic inductance at the RF frequency that needs to be filtered out
- Design the PLL loop filter carefully according to the data rate requirements
- In case of a battery driven equipment, use a brownout detector to switch off the transmitter before the PLL looses lock due to a low battery voltage





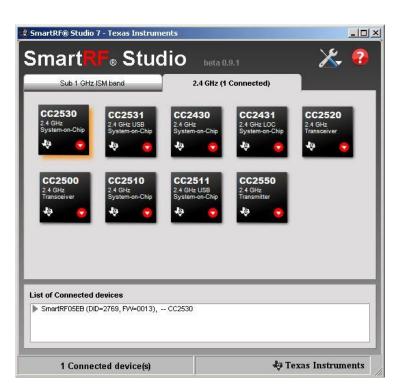


# Documentation on LPRF frequency bands and licensing:

**ISM-Band and Short Range Device Regulations** 

Using CC1100/CC1150 in European 433/868 MHz bands

SRD regulations for license free transceiver operation






### **Development Tools: SmartRF® Studio**

- <u>SmartRF® Studio</u> is a PC application to be used together with TI's development kits for ALL CCxxxx RF-ICs.
- Converts user input to associated chip register values
  - RF frequency
  - Data rate
  - Output power
- Allows remote control/ configuration of the RF chip when connected to a DK
- Supports quick and simple performance testing
  - Simple RX/TX
  - Packet RX/TX
  - Packet Error Rate (PER)



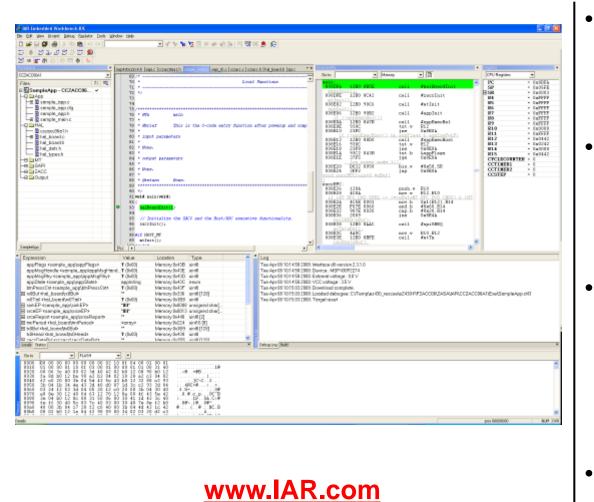




# **Design** Development Tools: Packet Sniffer

# Packet sniffer captures packets going over the air

# Protocols:


- SimpliciTI
- TIMAC
- ZigBee
- RemoTI

| e Help                                                |          |                          | an   [                    |             |                         |                            |                        |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
|-------------------------------------------------------|----------|--------------------------|---------------------------|-------------|-------------------------|----------------------------|------------------------|----------------------------|-----------------------------|----------|----------|----------|----|-----------|----------------------------------|--------|---------------------------------|-----------------------------------|----------------------------|------------------------------|----------------------------|------------------------------------|------------------------------|---------------------------------------|--------|
| ) 😂 🖬 🖾                                               | ► 11     | 1                        | t‰ ∣Z                     | igBee 2     | D06                     | -                          |                        |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr.<br>RX<br>385 =0                                  |          | Type Sec<br>DATA O       |                           |             | N_compr<br>1            | Sequence<br>number<br>0xD0 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0xFFFF | Source<br>Address<br>0x50F5 |          |          |          |    | pe Vers   | ame control<br>ion DR 1<br>2 0 ( | MF Sec | NW/K Dest<br>Address<br>0x FFFF | NWK Sro<br>Address<br>0x0000      | Broadcas<br>Radius<br>0x09 | t Broadca<br>Seq.nur<br>0x08 | m 08 1                     | (K payload<br>D2 17 00<br>CO CB 03 |                              | APS Frame c<br>1.mode Ir<br>oadcast ( | nd.a   |
| nbr. Time (ms)<br>RX +0<br>386 =0                     |          | Type Sec<br>DATA O       |                           | .req PA     | N_compr<br>1            | Sequence<br>number<br>0x97 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0xFFFF | Source<br>Address<br>0x1E56 |          |          |          |    | pe Vers   | ame control<br>ion DR 1<br>2 0 ( | MF Sec | NWK Dest<br>Address<br>0xFFFF   | NWK Sro<br>Address<br>0x0000      | Broadcas<br>Radius<br>0x09 | t Broadca<br>Seq.nur<br>0x08 | m 08 1                     | (K payload<br>D2 17 00<br>C0 CB 03 |                              | APS Frame c<br>1.mode Ir<br>oadcast C | nd.ar  |
| nbr. Time (ms)<br>RX +0<br>387 =0                     |          | Type Sec<br>DATA 0       |                           |             | N_compr<br>1            | Sequence<br>number<br>0xE4 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0x143E | Source<br>Address<br>0x1AF9 |          |          | F9 1A 0A |    | CB 14 0   | 00 03 C0<br>47 00 29             |        | pe Versi                        | e control fiel<br>on DR MF<br>0 0 | Sec Ad                     | dress A                      | VK Src.<br>ddress<br>k1AF9 | Broadcast<br>Radius<br>0x0A        | Broadcast<br>Seq.num<br>0xF3 | 00 CB 1<br>42 00 0                    |        |
| RX +                                                  | 0<br>0   | <ul> <li>Type</li> </ul> |                           |             | field<br>:q PAN_co<br>0 | mpr nur                    | ience<br>nber<br>E4 11 |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr. Time (ms)<br>RX +0<br>389 =0                     |          | Type Sec                 |                           |             | N_compr<br>1            | Sequence<br>number<br>0x1C | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0x0000 | Source<br>Address<br>0x143E |          |          | F9 1A 09 |    | CB 14 (   | 0 03 C0<br>47 00 29              |        | pe Versi                        | e control fiel<br>m DR MF<br>0 0  | Sec Ad                     | dress A                      | VK Src.<br>ddress<br>k1AF9 | Broadcast<br>Radius<br>0x09        | Broadcast<br>Seq.num<br>0xF3 | 00 CB 1<br>42 00 0                    |        |
| nbr. Time (ms)<br>RX +0<br>390 =0                     |          | Type Sec<br>CMD 0        |                           |             | N_compr<br>1            | Sequence<br>number<br>0xB9 | Dest.<br>PAN<br>0x0000 | Dest<br>Address<br>0x6532  | Source<br>Address<br>0x7961 | Data req | uest LG  |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr. Time (ms)<br>RX +0<br>391 =0                     |          | Type Sec                 | Frame cor<br>Pnd Ack<br>O | .req PA     | N_compr<br>1            | Sequence<br>number<br>0xB9 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0x6532 | Source<br>Address<br>0x7961 | Data req | LIC 24   |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr. Time (ms)<br>RX +0<br>392 =0                     |          | Type Sec                 |                           |             | N_compr<br>1            | Sequence<br>number<br>0xB9 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0x6532 | Source<br>Address<br>0x7961 | Data req | LC<br>23 |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr. Time (ms)<br>RX +0<br>393 =0                     |          | Type Sec<br>CMD 0        |                           |             | N_compr<br>1            | Sequence<br>number<br>0xB9 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0x6532 | Source<br>Address<br>0x7961 | Data req | LC<br>24 |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| nbr. Time (ms)<br>RX +0<br>394 =0                     |          | Type Sec<br>DATA O       |                           |             | N_compr<br>1            | Sequence<br>number<br>0xE5 | Dest.<br>PAN<br>0x0000 | Dest.<br>Address<br>0xFFFF | Source<br>Address<br>0x1AF9 |          |          |          |    |           | ame control<br>ion DR 1<br>2 0 ( | MF Sec | NWK Dest<br>Address<br>0x FFFF  | NWK Sro<br>Address<br>0x1AF9      | Broadcas<br>Radius<br>0x01 | t Broadca<br>Seq.nur<br>0xF4 | m 08 1                     | (K payload<br>D2 19 00<br>C0 D3 C9 | Type De                      | APS Frame c<br>1.mode Ir<br>oadcast ( | nd.a   |
| nbr. Time (ms)                                        |          |                          | Frame cor                 | ntrol field |                         | Sequence                   | Dest.                  | Dest.                      | Source                      |          | MAC pa   | yload    |    | NWK Fr    | ame control                      | field  | NWK Dest                        | NWK Sto                           | Broadcas                   | t Broadca                    | ist NV                     | /K payload                         |                              | APS Frame c                           | iontro |
| Setup   Select fie                                    | lds Pack | et details   A           | ddress bo                 | ok   Displa | y filter Tin            | e line                     |                        |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       |        |
| SOURCE<br>Unregistered/br                             |          | 1571                     |                           |             |                         |                            |                        |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              | 18                                    | 21 →   |
| Auto-registered<br>Auto-registered                    | )<br>1   | •                        |                           | · `•••      |                         |                            |                        |                            |                             |          |          |          | •  |           |                                  |        |                                 | 7.5                               |                            |                              |                            |                                    |                              | •                                     | •      |
| Auto-registered<br>Auto-registered<br>Auto-registered | 3        |                          |                           |             |                         |                            |                        |                            |                             | •        |          |          | 1  |           |                                  |        |                                 |                                   |                            |                              |                            | •                                  |                              |                                       | •      |
| Auto-registered                                       | 5<br>6   |                          |                           | 2           | - 61                    |                            |                        | 1.1                        |                             |          | 1        | 1.1      | ٠. | ÷ 1       |                                  | 1      |                                 | 11                                |                            |                              |                            |                                    |                              |                                       |        |
| Auto-registered<br>Auto-registered<br>Auto-registered | 8<br>9   | Ъ.                       | ٠.                        |             |                         |                            |                        |                            |                             | 1.       |          | Ċ.       | Ċ, | $f^{\mu}$ | s is                             |        |                                 | 1                                 |                            | Ъų                           |                            |                                    | 11                           |                                       |        |
| <                                                     |          |                          |                           |             |                         |                            |                        |                            |                             |          |          |          |    |           |                                  |        |                                 |                                   |                            |                              |                            |                                    |                              |                                       | >      |





### **Design** Development Tools: IAR Embedded Workbench



 IDE for software development and debugging

### Supports

- All LPRF SoCs
- All MSP430s
- 30 day full-feature evaluation version
  - Extended evaluation time when buying a SoC DK or ZDK
- Free code-size limited version





### **Development Tools: Kits Overview**

| Part Number      | Short Description                                          | Development Kit                          | Evaluation Modules                                                |
|------------------|------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
| CC1020<br>CC1070 | Narrowband RF Transceiver<br>Narrowband RF Transmitter     | CC1020-CC1070DK433<br>CC1020-CC1070DK868 | CC1020EMK433 / CC1020EMK868<br>CC1070EMK433 / CC1070EMK868        |
| CC1101           | <1 GHz Transceiver                                         | CC1101DK433 /<br>CC1101DK868             | CC1101EMK433 / CC1101EMK868                                       |
| CC1110<br>CC1111 | 8051 MCU + <1 GHz Radio<br>8051 MCU + <1 GHz Radio + USB   | CC1110-CC1111DK<br>CC1110DK-MINI-868     | CC1110EMK433 / CC1110EMK868<br>CC1111EMK868                       |
| CC2500           | 2.4 GHz Transceiver                                        | CC2500-CC2550DK                          | CC2500EMK                                                         |
| CC2510<br>CC2511 | 8051 MCU + 2.4 GHz Radio<br>8051 MCU + 2.4 GHz Radio + USB | CC2510-CC2511DK<br>CC2510DK-MINI         | CC2510EMK<br>CC2511EMK                                            |
| CC2520           | IEEE 802.15.4 compliant<br>Transceiver                     | CC2520DK                                 | СС2520ЕМК                                                         |
| CC2530<br>CC2531 | 8051 MCU + IEEE 802.15.4<br>8051 MCU + IEEE 802.15.4 + USB | CC2530DK<br>CC2530ZDK<br>RemoTI-CC2530DK | CC2530EMK<br>CC2531EMK                                            |
| CC1190           | PA/LNA RF frontend                                         |                                          | CC1190EMK-915                                                     |
| CC2591           | PA/LNA RF frontend                                         |                                          | CC2591EMK, CC2430-CC2591EMK<br>CC2520-CC2591EMK, CC2530-CC2591EMK |
| CC2590           | PA/LNA RF frontend                                         |                                          | СС2590ЕМК, СС2430-СС2590ЕМК                                       |





## Design Support

### Large selection of support collatoral:

- Development tools
- Application & Design Notes
- <u>Customer support</u>
- LPRF Developer Network
- LPRF Community













Get your products ready for the market

# Important points before market release:

- Test the product on meeting certification standards
- Check Co-existence with other wireless networks
- Solutions to test products in production line







Perform in-house product characterization on key regulatory parameters to reveal any potential issues early on.

Pre-testing at an accredited test house can shave off considerable time in the Development cycle.

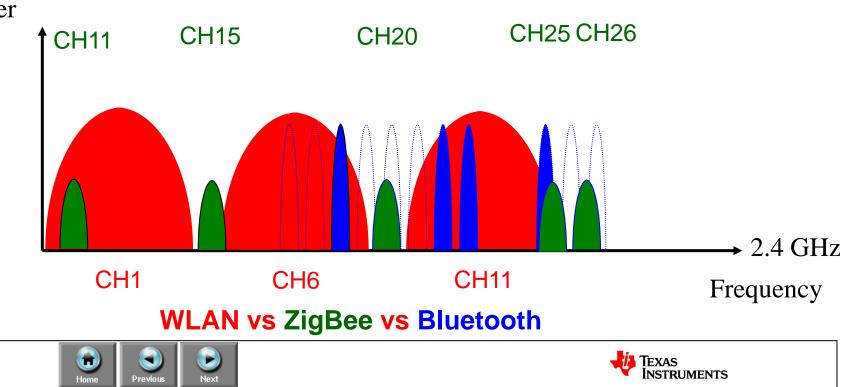






### **Coexistence of RF systems:**

- How well does the radio operate in environments with interferers
- Selectivity and saturation important factors
- The protocol also plays an important part
  - Frequency hopping or frequency agility improves coexisting with stationary sources like WLAN
  - Listen Before Talk used to avoid causing collisions
- GOOD COEXISTENCE = RELIABILITY






### Test Coexistence

Due to the world-wide availability the 2.4GHz ISM band it is getting more crowded day by day. Devices such as Wi-Fi, Bluetooth, ZigBee, cordless phones, microwave ovens, wireless game pads, toys, PC peripherals, wireless audio devices and many more occupy the 2.4 GHz frequency band.

Power





### **Coexistence: Selectivity / Channel rejection**

How good is the receiver at handling interferers at same frequency and close by frequencies?

#### Power Alternate channel **Adjacent** rejection channel [dB] rejection [dB] **Co-channel** rejection [dB] **Desired channel** Frequency Channel Channel separation separation

#### **Desired signal / Interferer**





### Test Production Test

Good quality depends highly on a good Production Line Test. Therefore a Strategy tailored to the application should be put in place. Here are some recommandations for RF testing:

- Send / receive test
- Signal strength
- Output power
- Interface test
- Current consumption (especially in RX mode)
- Frequency accuracy

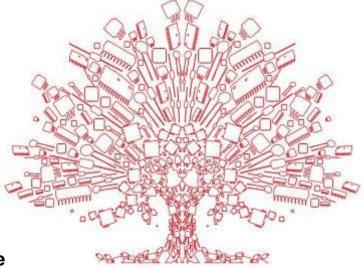




**Production support from TI** 

• TI obsolescence policy

• TI product change notification


 Huge Sales & Applications teams ready to help solving quality problems





#### **TI Obsolescence Policy**

- TI will not <u>obsolete a product</u> for "convenience" (JESD48B Policy)
- In the event that TI can no longer build a part, we offer one of the most generous policies providing the following information:
  - Detailed Description
  - PCN Tracking Number
  - TI Contact Information
  - Last Order Date (12 months after notification)
  - Last Delivery Date
    - (+6 month after order period ends)
  - Product Identification (affected products)
  - Identification of Replacement product, if applicable



TI will review each case individually to ensure a smooth transition





#### **TI Product Change Notification**

TI complies with JESD46C Policy and will provide the following information a minimum of 90 days before the implementation of any notifiable change:

- Detailed Description
- Change Reason
- PCN Tracking Number
- Product Identification (affected products)
- TI Contact Information
- Anticipated (positive/negative) impact on Fit, Form, Function, Quality & Reliability
- Qualification Plan & Results (Qual, Schedule if results are not available)
- Sample Availability Date
- Proposed Date of Production Shipment







#### Quality: TI Quality System Manual (QSM)

- TIs Semiconductor Group Quality System is among the finest and most comprehensive in the world. This Quality System satisfied customer needs long before international standards such as ISO-9001 existed, and our internal requirements go far beyond ISO-9001.
- The <u>Quality System Manual (QSM)</u> contains the 26 top-level SCG requirement documents.... What must be done.... for its worldwide manufacturing base to any of our global customers.
- Over 200 Quality System Standards (QSS), internal to TI, exist to support the QSM by defining key methods... How to do things... such as product qualification, wafer-level reliability, SPC, and acceptance testing.
- The Quality System Manual is reviewed routinely to ensure its alignment with customer requirements and International Standards.





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications                  |                                   |
|-----------------------------|------------------------|-------------------------------|-----------------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio                         | www.ti.com/audio                  |
| Data Converters             | dataconverter.ti.com   | Automotive                    | www.ti.com/automotive             |
| DLP® Products               | www.dlp.com            | Communications and<br>Telecom | www.ti.com/communications         |
| DSP                         | dsp.ti.com             | Computers and<br>Peripherals  | www.ti.com/computers              |
| Clocks and Timers           | www.ti.com/clocks      | Consumer Electronics          | www.ti.com/consumer-apps          |
| Interface                   | interface.ti.com       | Energy                        | www.ti.com/energy                 |
| Logic                       | logic.ti.com           | Industrial                    | www.ti.com/industrial             |
| Power Mgmt                  | power.ti.com           | Medical                       | www.ti.com/medical                |
| Microcontrollers            | microcontroller.ti.com | Security                      | www.ti.com/security               |
| RFID                        | www.ti-rfid.com        | Space, Avionics & Defense     | www.ti.com/space-avionics-defense |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video and Imaging             | www.ti.com/video                  |
|                             |                        | Wireless                      | www.ti.com/wireless-apps          |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated