

Noise Analysis for Simple Op-Amp Circuit

Noise Sources

Op-Amp Voltage Noise Source

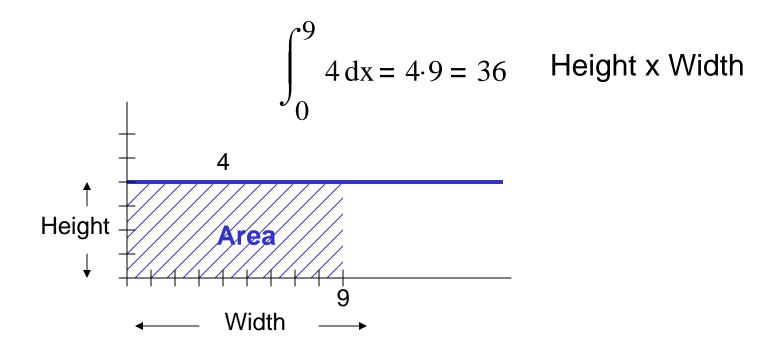
Op-Amp Current Noise Sources

Resistor Noise Sources

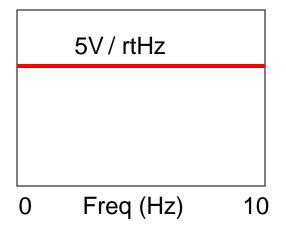
Calculation Considerations

Convert Noise Spectrum to Noise Voltage

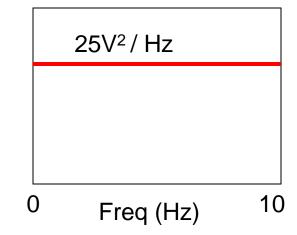
- External Filter Bandwidth Limit
- Op-Amp Closed Loop Bandwidth


Noise Gain

Calculus Reminder


Integral = Area under the curve

Convert Noise Spectrum to Noise Voltage (Broadband Only – Simple Case)


Voltage Spectral Density (V/rt-Hz)

You can't integrate the **Voltage** spectral density curve to get noise

$$\int_{0}^{10} \text{V_spec_dens df} = 5 \cdot \frac{\text{V}}{\sqrt{\text{Hz}}} \cdot 10 \cdot \text{Hz} = 50 \cdot \frac{\text{V} \cdot \text{Hz}}{\sqrt{\text{Hz}}}$$
Wrong

Power Spectral Density (V²/Hz)

You integrate the **Power** spectral density curve to get noise

NoisePower =
$$\int_{0}^{10} (V_{\text{spec_dens}})^{2} df = 25 \cdot \frac{V^{2}}{Hz} \cdot 10 \cdot Hz = 250 \cdot V^{2}$$

NoiseVoltage =
$$\sqrt{\text{NoisePower}} = \sqrt{250 \cdot \text{V}^2} = 15.811\text{V}$$
 RMS

Convert Noise Spectrum to Noise Voltage (Broadband Only – Simple Case)

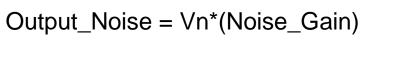
You integrate the **Power** spectral density curve to get noise

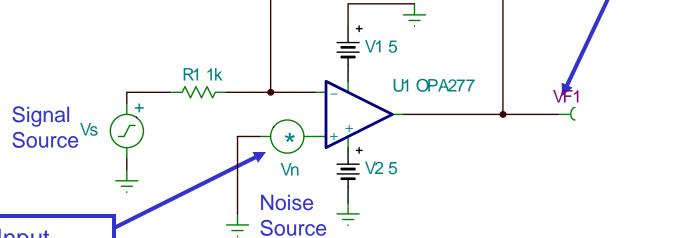
NoisePower =
$$\int_0^{10} (V_{\text{spec_dens}})^2 df = 25 \cdot \frac{V^2}{Hz} \cdot 10 \cdot Hz = 250 \cdot V^2$$

NoiseVoltage =
$$\sqrt{\text{NoisePower}} = \sqrt{250 \cdot \text{V}^2} = 15.811\text{V}$$
 RMS

Noise Power =
$$\frac{V^2}{Hz}$$
 * BW (Hz)

Noise Voltage = $\frac{V}{Hz}$ * $\frac{V}{BW}$ (Hz)


Noise Gain for Voltage Noise Source


Noise Gain – Gain seen by the noise source.

Example:

Noise_Gain =
$$(R2/R1) + 1 = 2$$

Signal_Gain = -R2/R1 = -1

R2 1k

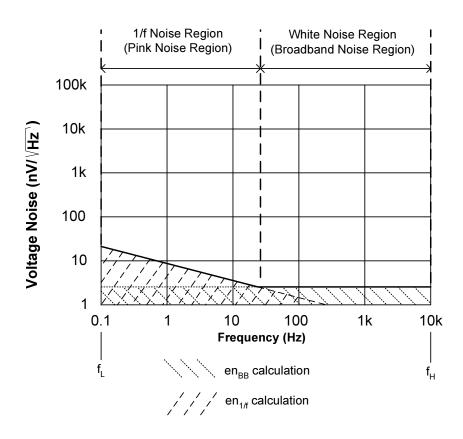
Referred to Input

Referred to

Output

Understanding The Spectrum:

Total Noise Equation (Current or Voltage)

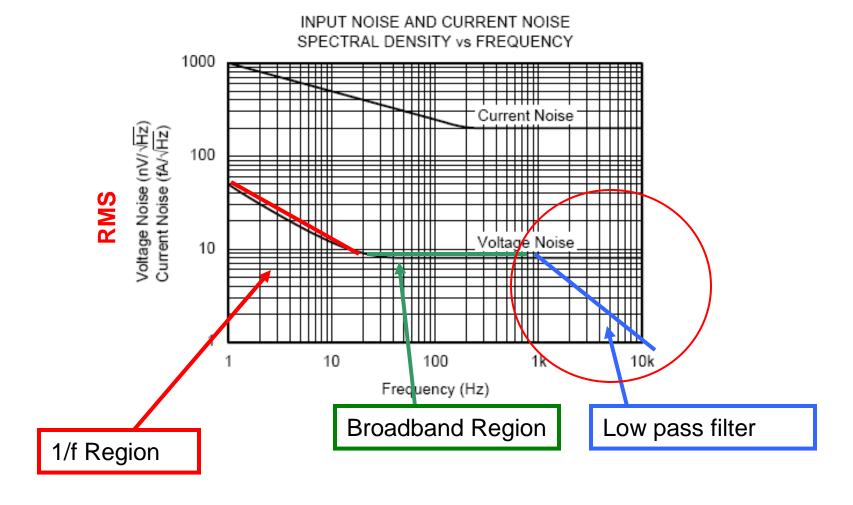

$$e_{nT} = \sqrt{[(e_{n1/f})^2 + (e_{nBB})^2]}$$

where:

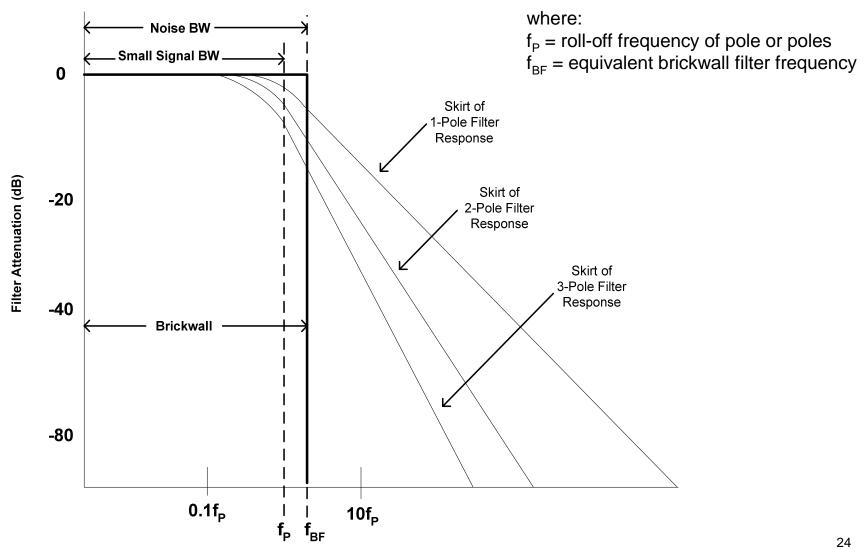
 e_{nT} = Total rms Voltage Noise in volts rms

 $e_{n1/f} = 1/f$ voltage noise in volts rms

 e_{nBB} = Broadband voltage noise in volts rms



Low Pass Filter Shapes the Spectrum

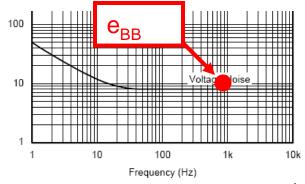

How do we convert this plot to noise?

Real Filter Correction vs Brickwall Filter

TEXAS INSTRUMENTS

AC Noise Bandwidth Ratios for nth Order Low-Pass Filters

 $BW_n = (f_H)(K_n)$ Effective Noise Bandwidth


Real Filter Correction vs Brickwall Filter

Number of Poles in Filter	Kn AC Noise Bandwidth Ratio
1	1.57
2	1.22
3	1.16
4	1.13
5	1.12

Broadband Noise Equation

$BW_n = (f_H)(K_n)$

where:

 BW_n = noise bandwidth for a given system

 f_H = upper frequency of frequency range of operation

 K_n = "Brickwall" filter multiplier to include the "skirt" effects of a low pass filter

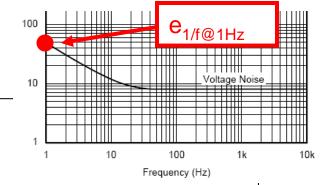
$$en_{BB} = (e_{BB})(\sqrt{[BW_n]})$$

where:

en_{BB} = Broadband voltage noise in volts rms

e_{BB} = Broadband voltage noise density; usually in nV/ √ Hz

BW_n = Noise bandwidth for a given system



1/f Noise Equation

(see appendix for derivation)

$$e_{1/f@1Hz} = (e_{1/f@f})(\sqrt{[f]})$$

where:

 $e_{1/f@1Hz}$ = normalized noise at 1Hz (usually in nV)

 $e_{1/f@f}$ = voltage noise density at f; (usually in nV/ \sqrt{Hz})

f = a frequency in the 1/f region where noise voltage density is known

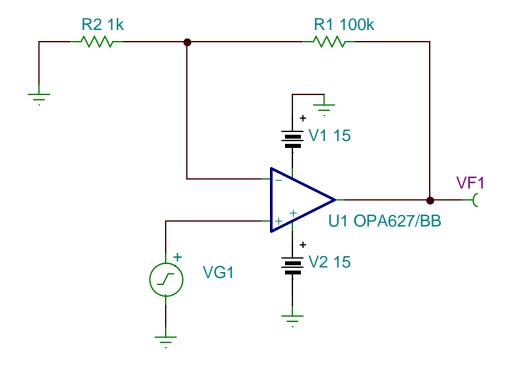
$$en_{1/f} = (e_{1/f@1Hz})(\sqrt{[ln(f_H/f_L)]})$$

where:

 $en_{1/f} = 1/f$ voltage noise in volts rms over frequency range of operation

 $e_{1/f@1Hz}$ = voltage noise density at 1Hz; (usually in nV)

f_H = upper frequency of frequency range of operation

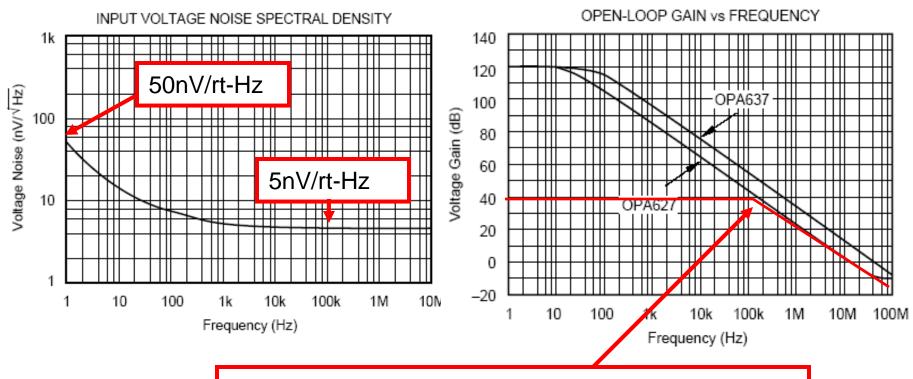

(Use BW_n as an approximation for f_H)

 f_L = lower frequency of frequency range of operation

Example Noise Calculation

Given:

OPA627 Noise Gain of 101


Find (RTI, RTO):

Voltage Noise Current Noise Resistor Noise

Voltage Noise Spectrum and Noise Bandwidth

Unity Gain Bandwidth = 16MHz

Closed Loop Bandwidth = 16MHz / 101 = 158kHz

Example Voltage Noise Calculation

Voltage Noise Calculation:

Broadband Voltage Noise Component:

$$BW_n \approx (f_H)(K_n)$$
 (note Kn = 1.57 for single pole) $BW_n \approx (158 \text{kHz})(1.57) = 248 \text{kHz}$

$$en_{BB} = (e_{BB})(\sqrt{BW_n})$$

 $en_{BB} = (5nV/\sqrt{Hz})(\sqrt{248kHz}) = 2490nV \text{ rms}$

1/f Voltage Noise Component:

$$e_{1/f@1Hz} = (e_{1/f@f})(\sqrt{f})$$

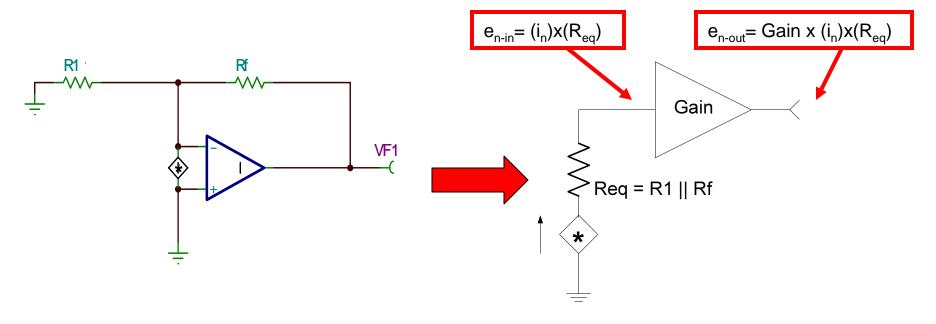
 $e_{1/f@1Hz} = (50nV/\sqrt{Hz})(\sqrt{1Hz}) = 50nV$

$$en_{1/f} = (e_{1/f@1Hz})(\sqrt{[ln(f_H/f_L)]})$$
 Use $f_H = BW_n$
 $en_{1/f} = (50nV)(\sqrt{[ln(248kHz/1Hz)]}) = 176nV$ rms

Total Voltage Noise (referred to the input of the amplifier):

$$en_T = \sqrt{[(en_{1/f})^2 + (en_{BB})^2]}$$

 $en_T = \sqrt{[(176\text{nV rms})^2 + (2490\text{nV rms})^2]} = 2496\text{nV rms}$



Example Current Noise Calculation

	OPA627BM, BP, SM OPA637BM, BP, SM			
PARAMETER	MIN	TYP	MAX	UNITS
NOISE				
Input Voltage Noise				
Noise Density: f = 10Hz		15 8	40	nV/vHz
f = 100Hz			20	nV/vHz
f = 1kHz		5.2	40 20 8 6 1.6	nV/vHz
f = 10kHz		4.5	6	nV/√Hz
Voltage Noise, BW = 0.1Hz to 10Hz Input Bias Current Noise		0.6	1.6	μ∨р-р
Noise Density, f = 100Hz		1.6	2.5	fA√Hz
Current Noise, BW = 0.1Hz to 10Hz		30	2.5	fAp-p

Note: This example amp doesn't have 1/f component for current noise.

Example Current Noise Calculation

Broadband Current Noise Component: BWn \approx (f_H)(K_n)

BWn \approx (158kHz)(1.57) = 248kHz

$$i_{nBB}$$
 = $(i_{BB})(\sqrt{BW_n})$
 i_{nBB} = $(2.5fA/\sqrt{Hz})(\sqrt{248kHz})$ = 1.244pA rms

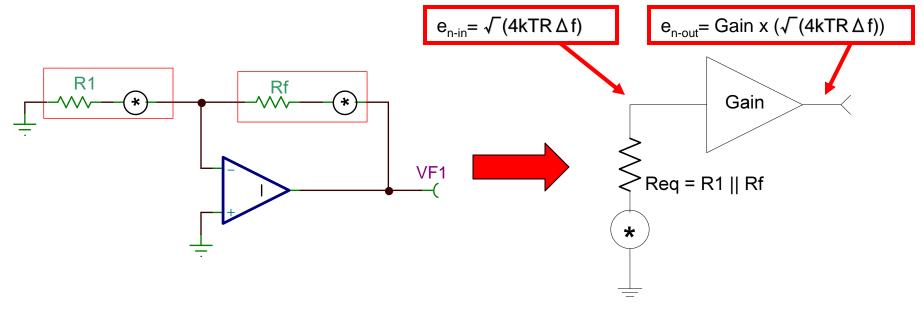
$$R_{eq} = R_f || R_1 = 100k || 1k = 0.99k$$

$$e_{ni} = (I_n)(R_{eq}) = (1.244pA)(0.99k) \in 1.23nV \text{ rms}$$
 neglect

Since the Total Voltage noise is $e_{nvt} = 2496nV$ rms the current noise can be neglected.

	OPA627BM, BP, SM OPA637BM, BP, SM			
PARAMETER	MIN TYP	MAX	UNITS	
NOISE Input Voltage Noise Noise Density: f = 10Hz f = 100Hz f = 1kHz f = 10kHz Voltage Noise, BW = 0.1Hz to 10Hz Input Bras Current Noise Noise Density, f = 100Hz Current Noise, BW = 0.1Hz to 10Hz		15 8 5.2 4.5 0.6 1.6 30	40 20 8 6 1.6 2.5	nV/\Hz nV/\Hz nV/\Hz nV/\Hz μVp-p fAγ-Fz

Example Resistor Noise Calculation


$$e_{nr} = \sqrt{(4kT_K R \Delta f)}$$

where:

$$R = Req = R1||Rf$$

$$\Delta f = BW_n$$

$$e_{nr} = \sqrt{(4 (1.38E-23) (273 + 25) (0.99k)(248kHz))} = 2010nV \text{ rms}$$

Total Noise Calculation

Voltage Noise From Op-Amp RTI:

 $e_{nv} = 2510 nV rms$

Current Noise From Op-Amp RTI (as a voltage):

 $e_{ni} = 1.24$ nV rms

Resistor Noise RTI:

 $e_{nr} = 2020 \text{nV rms}$

Total Noise RTI:

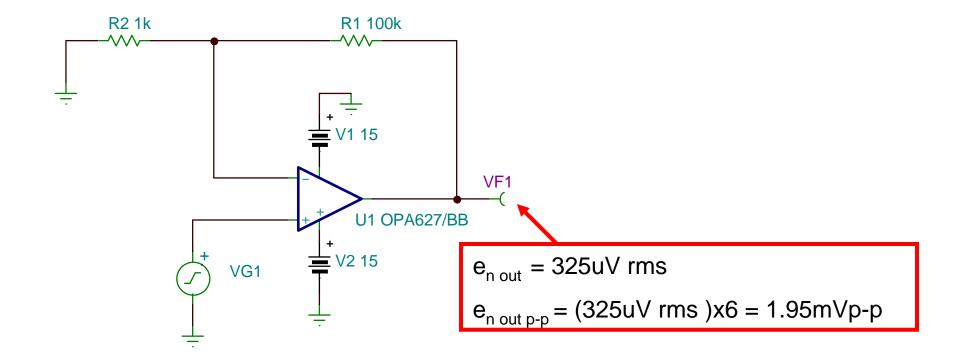
$$e_{n in} = \sqrt{((2510 \text{nV})^2 + ((1.2 \text{nV})^2 + ((2010 \text{nV})^2))} = 3216 \text{nV rms}$$

Total Noise RTO:

 $e_{n \text{ out}} = e_{n \text{ in}} x \text{ gain} = (3216 \text{nV})(101) = 325 \text{uV rms}$

Calculating Noise Vpp from Noise Vrms

Relation of Peak-to-Peak Value of AC Noise Voltage to rms Value


Peak-to-Peak Amplitude	Probability of Having a Larger Amplitude
2 X rms	32%
3 X rms	13%
4 X rms	4.6%
5 X rms	1.2%
6 X rms *	0.3%
6.6 X rms	0.1%

*Common Practice is to use: Peak-to-Peak Amplitude = 6 X rms

Peak to Peak Output For our Example

