
Section 4

Interfacing High-Speed 
Amplifiers and A/D converters 



Agenda

High Speed ADC Drive Amplifier Options

Combining Amplifier and ADC   
Performance

Amplifier and ADC Interface Options

Amplifier to ADC Design Example: 
THS4509 + ADS5413-11



Key Assumptions
1. Only Looking at Frequency Domain 

Issues - focus specs are SNR and 
SFDR 

2. Differential Input Signal to ADC 
Required

3. Target Specifications for both the 
converter and the system are 
known



ADC Drive Circuit Options

Amplifiers
• Single Ended Output Amplifiers 
• Fully Differential Amplifiers

Topology
• DC Coupled 
• AC Coupled
• Differential In
• Single Ended In



2 Single Ended Amplifiers
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Fully Differential Amplifiers
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AC Coupling

Differential

Single-Ended

Differential

Source to Amplifier or Amplifier to ADC



DC Coupling Examples
RFRG

RFRG

AIN +

AIN -
ADS5xxxCO

RO

RO

Source

RS

OPA
THS

OPA
THS

RS

RT

RT

CM
CM

CM

CM
CM

CM

CO

VS+

RF

RF

RG

RG

RT

VIN

RO

RO

RTRS

THS45xx

Source

RS

VS-

AIN +

AIN -
ADS5xxx

CM

CM CM

CMCM



AC Coupling Examples
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Combining Amplifier and ADC   
Performance



Combining Amplifier and ADC Performance

Amplifier Specs

Input Referred Noise (en : nV/√Hz)

2nd & 3rd Harmonic Distortion (dB)

Driver

ADC Specs

SNR (dB)

2nd & 3rd Harmonic Distortion (dB)

ADC

System
System Specs

SNRSystem (dB)

SFDRSystem (dB)+



Differential Noise: Diff Amp
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Diff. Noise: Diff. Configuration

Inverting and non-inverting amplifier in differential 
configuration have the same noise formula.  What 
varies is the noise gain definition
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Calculating RMS Noise (eRMS)

Minimize eRMS by:
Minimizing eO

Reduce fNPBW

NPBWORMS fee ⋅=



Calculating NPBW for RC Filter 1st Order Filter

CNPBW ff ⋅=
2
π

fNPBW is the noise 
bandwidth for the 
equivalent Noise Power 
“Brickwall” Filter for an 
RC filter of cut-off 
frequency of fC

RC-Filter

Equivalent 
Noise Power 
“Brickwall”

Filter



Calculating NPBW for RLC Filter 2nd Order Filter

CNPBW fQf ⋅⋅=
2
π

fNPBW is the noise 
bandwidth for the 
equivalent Noise Power 
“Brickwall” Filter for an 
RLC filter of cut-off 
frequency of fC

RLC-Filter

Equivalent 
Noise Power 
“Brickwall”

Filter



Calculating SNR For Amplifiers

SNR can be calculated with the above definition given the 
RMS signal amplitude and the RMS output noise.

But
One difference in calculating the SNR for the converter and 
the amplifier.

The SNR is calculated at the input of the converter for the converter, 
thus using the full input range of the converter as defined in the 
datasheet.
For the Amplifier, the SNR needs to be calculated at the output of 
the Amplifier/Filter, thus using the full input range of the converter as 
value for the RMS signal.
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Adding Noise

SNRSystem is the RMS 
addition of SNRADC and 
SNROPA

As an example, for a 70dB 
SNRADC for the converter, 
the combined SNR 
becomes                →
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Combined SNR for a 70dB Converter SNR

Combined SNR for ADC Converter + 
Amplifier with Filter

65

70

75

80

85

90

95

70 75 80 85 90
Amplifier + Filter SNR (dB)

SN
R

 (d
B

)

Converter SNR = 70dB

Amplifier + Filter SNR

Combined SNR

Op Amp with 
Filter must be 
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Adding Distortion

A/D Converter and 
Amplifier Distortion 
add linearly
As an example, for a 
70dBc HD2ADC for the 
converter, the 
combined HD2 
becomes                →
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Combined HDx for a target 75dBc HDx ADC Converter

Combined SFDR 
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System SFDR

The A-to-D conversion process of an ADC 
may lead to spurs that set the SFDR of 
the ADC that are not either HD2 or HD3
In this case there is no comparable 
amplifier term to combine and the SFDR 
of the system is best taken as that of the 
ADC
If SFDR of the ADC is set by HD2 or 
HD3, the SFDR can be estimated as the 
linear sum as shown



Amplifier and ADC Interface Options

As high performance ADCs continue to improve 
their performance, the last stage interface, the 
filter from the final amplifier into the converter 
input becomes increasingly critical in the 
system design 
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1st Order Differential 

 

C

R O

R T

R O

From 
Amplifier

To 
ADC

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
CRRsRR

R
V

V

OTOT

T

IN

OUT

2||1
1

2

If the effects of RT are minimized, this can be simplified to: 

CRsV
V

OIN

OUT

21
1

+
≅

OO Rf
C

22
1
×

=
π

RC Low-Pass Filter



2nd Order Differential
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If we assume, as before, the effects of RT are minimized, this 
formula can be simplified

But lets explore another less rigorous approach using basic 
definitions of Q and resonance



Simple 2nd Order Equations

By definition, Q is set by the reactance and 
resistance in the circuit
By definition, at resonance the inductive 
reactance and capacitive reactance are equal

If the effects of RT are minimized, this leads to the 
equations at resonance (fO), : 
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Rearrange to Solve for L and C

Given the frequency of resonance and 
resistance, solve for inductance and 
capacitance
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SPICE Simulation 0

Exact Values with no Frequency Scaling

Result: 
Exact Responses in SPICE, but do not 
standard filter definitions 



Frequency Scaling and Q
Q is the quality factor and is fairly commonly 
understood. The most obvious impact is the 
peaking near the cut-off frequency
Frequency scaling factor (FSF) may be new to 
you 
FSF is used to scale the cut-off frequency of the 
filter to meet the classic definitions;

for example Butterworth and Bessel define the cut-off 
frequency as the -3dB point and Chebyshev defines it 
as the frequency where the response first falls out of 
the ripple band 

This means value of fO is scaled by FSF for use 
in the equations above in order to design a filter 
that meet standard definitions



Frequency Scaling and Q

A good filter book will list the zeroes and 
the coefficients of the particular polynomial 
being used to define the filter 

frequency scaling factor:
22 ImRe +=FSF

quality factor: 
Re2

ImRe 22+
=Q

Re is the real part of the complex zero pair, and Im is the imaginary part 



FSF and Q for 3 Classic Filters 

Filter Type FSF Q 
1dB Chebyshev 1.0500 0.9565

Butterworth 1.000 0.7071

Bessel 1.2736 0.5773

Given RO = 50Ω and 100MHz cut-off frequency, 
L and C values as follows: 

Filter Type fO x FSF (MHz) Q R (ohms) L (nH) C (pF)
1dB Chebyshev 105

100
127

0.9565 50 72.49 15.85

Butterworth 0.707 50 56.26 22.51
Bessel 0.5773 50 36.06 21.64



SPICE Simulation 1

Exact Values with no RT 

Result: 
Exact Responses in SPICE 



SPICE Simulation 2

Nearest Standard Values (no RT)

Errors are Introduced:
Available Values no Longer 
Satisfy the Equations



SPICE Simulation 3

Nearest Standard Values with RT = 1kΩ
Same Shape as Before
Stray Capacitance Like at ADC Input
Will Cause Further Errors



Amplifier to ADC Design Example: 
THS4509 + ADS5413-11

1. Data sheet specification for each part

2. Lab measurements of each part separately

3. Circuits

4. Comparison of actual combined performance 

versus predicted performance 



THS4509 Noise and Distortion

Input Referred Voltage Noise vs Frequency
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ADS5413-11 Noise and Distortion

Information from Data Sheet



THS4509 and ADS5413-11 
HD2 and HD3 vs. Frequency
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THS4509 + ADS5413-11: Circuit 1
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THS4509 + ADS5413-11: Circuit 2
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THS4509 and ADS5413-11

Combined Performance Circuit 1: RC

Combined SNR Performance with RC
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THS4509 and ADS5413-11

Combined Performance Circuit 2: LRC

Combined SNR Performance with LRC
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Conclusion
A variety of circuit topologies are available to 
convert single-ended input to differential

AC coupling allow the greatest freedom in choice of 
amplifiers and power supply voltage
Fully differential amplifier allows DC coupling 

System performance can be analyzed knowing 
the performance of the individual components 
Passive differential 1st order RC and 2nd order 
RLC low-pass filters can be designed with 
simple equations 

2nd order filters will provide better SNR performance 
because of faster role off, but may lead to lower 
SFDR

The actual system needs to be built and tested 
to validate system performance.
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