

Four Voltage References, an ADC and MSP430

Tadija Janjic

HPL – Tucson

Michael Ashton

Motivation

- u Total Solution Concept
- u Application section of datasheets
- u New REF products from TI
- u Greed
 - n Product Recognition
 - n Increased Revenue

Experiment

- u Verify setup/measurements
- u Evaluate TI REFs with ADS1256
- u Compare different TI REF results
- u Suggest the optimal circuitry

Basic Setup

ADS1256, PGA=1, Vref=2.5V

Board

Board (side view)

Considerations

- u Low Noise
- u Long term stability
 - n *Time*
 - n Temperature

Experiment Design

R1	C1	OPA	R2	C2	RMS noise free bits
		335	100	10u	
		227	100	10u	

Additional considerations:

Vin amplitude, f_s (data output rate)

Confirm the Setup

Table 2. Effective Number of Bits (ENOB, rms) with Buffer On

DATA RATE				PGA			
(SPS)	1	2	4	8	16	32	64
50	23.9	23.6	23.0	22.5	21.8	21.1	20.3
60	23.8	23.4	22.9	22.4	21.7	21.0	20.2

REF	R1	C1	OPA	R2	C2	RMSnfb
1004	10k	47u	227	100	10u	23.8

VIn=0V, shorted inputs,

Results

REF	R1	C1	OPA	R2	C2	RMSnfb
1004			OPA335	100	10u	20.7
1004	10k	220u	same	same	same	22.3
1004	10k	47u	same	same	same	22.4
3025	same	same	same	same	same	20.8
3125	same	same	same	same	same	20
1112*	same	same	same	same	same	22.1
1004	same	same	OPA227	same	same	22.4

* OPA in a gain of 2

Vin=2.5V, data output rate = 60Hz,

Conclusions

- u On ADS1256 one needs external buffer
 - n Input impedance 18k
- u Noise-wise OPA227 and OPA335 equal
 - n However, we tried at T=25 °C
- u REF1004 and REF1112 similar results
- u REF3xxx family good for lower precision
- u RC (settling time vs. noise) trade off

MSP430

- u Has 12 bit ADC (ADC12)
- u Has Vref (2.5V or 1.5V)
 - n 800uA max
 - n *100ppm/°C max*
 - n 4% initial accuracy

•TI REFs:

- •8uA -110 uA max current
- •15 -100ppm/ ° C
- •2.048/2.5/3.0V/3.3V

0.2%

Results

REF	R1	C1	Noise RMS bits
Internal (2.5V)			~3.1
1004 – 2.5V	100	47u	~3.0
3025	10k	47u	~2.7
3125	same	same	~2.7
1004	same	same	~2.7
3125	100	same	~3.0
3025	same	same	~3.0
1112	same	same	5.5

Conclusions - Part II

- u External REFs improve performance
 - n Lower noise
 - n Lower supply current
- u REF1112 can not be used with MSP430
 - n VeRef is 1.4V min!!!!!

Summary

- Built tools for evaluations
- u Got preliminary results
- u Will work on other ADCs and MSP430
 - n SARs, Delta-Sigma
- u Will improve datasheets
- u **Support customers** with optimal solution

Thank You

Amplifier to A/D Interface Study

Or...that short task that will not go away

Bill Klein

Senior Applications

Engineer

Miro Oljaca
Strategic Marketing: Motor Control

With major contributions from: Tom Hendrick, Tim Green, Rick Downs, Rod Burt, Bob Benjamin, Bernd Rundel, Bruce Trump, Dennis Goeke, Pat Highton

The Interface Circuit

Op Amp

CMV Range, V_{OS} vs CMV

RR Out-Swing to the rail

Slew Rate, Signal BW,

Load Transient, Settling Time,

Output Impedance,

Filter

Charge Bucket

Filtering,

C_{load} Isolation,

A/D

Acquisition Time

Input Circuit Parameters

Initial Voltage on C_{SH}

LSB Size

u Signal range:

```
n +/-10V is a 20V range
```

w 12 bits: 20V/4,096 = 4.88mV per LSB

w 16 bits: 20V/65,536 = 305µV per LSB

n +5V range

w 12 bits: 5V/4,096 = 1.22mV per LSB

w 16 bits: $5V/65,536 = 76.2\mu V per LSB$

w 24 bits: 5V/16,777,216 = 298nV per LSB

n +3.3V range

w 12 bits: $3.3V/4,096 = 806\mu V per LSB$

w 16 bits: $3.3V/65,536 = 50.4\mu V per LSB$

w 24 bits: 3.3V/16,777,216 = 196nV per LSB

Op Amp Input Concerns

See Appendix

Rail-to-Rail Input

Output Stage Concerns

See Appendix

Rail-to-Rail Output

How Fast does that Op Amp Settle

What Settling Time?

- u Think of a linear voltage regulator, there are TWO Settling Times.
 - n Line Transient
 - n Load Transient
- u Same applies here.
- u Data sheets report settling time to 0.01% at best.

OPA300

OPA340

OPA350

Line Transient Becomes

- u Response to change in input signal
- u Includes Slew Rate.
- u Op Amp data sheets MAY address Settling Time to 0.01%
- u But we need 0.0007629% for a 16 bit system

Required Settling Time

Number of bits	0.5LSB
10	0.0488281%
12	0.0122070%
14	0.0030518%
16	0.0007629%
18	0.0001907%
20	0.0000477%
22	0.0000119%
24	0.0000030%

See appendix for calculations

Load Transient is UNKNOWN

- u We know the load is the input capacitance of the A/D
- u We do NOT know the starting voltage.
 - n Possible voltages: GND, Mid-Rail, Random
 - n Not given in data sheet
- u The Op Amp data sheet does NOT even mention this settling time.

SAR A/D < 500kHz

u 70% Applications

- n Slow Moving "Real World Process" Signals
- n Fast Acquisition & Conversion Allows More System Time For Processing, Computation, Decision Making
- n Multiplexed, Scanning Systems for Slow Moving Signals

u 30% Applications

- n AC Fast Moving Dynamic Signals
- n "Real Time" Processing of Input Signals

Look at the Charge Transients

Capacitor Type is Critical

THD+N vs. Frequency for Various Capacitor types

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	Anlr.THD+N Ratio	Left	C = 0
2	1	Red	Solid	1	Anlr.THD+N Ratio	Left	C1
3	1	Blue	Solid	1	Anlr.THD+N Ratio	Left	C2
4	1	Cyan	Solid	1	Anlr.THD+N Ratio	Left	C3
5	1	Green	Solid	1	Anlr.THD+N Ratio	Left	C4

R = 100 ohm, C = 3.3 nF, Vp-p = 5V f(-3dB) = 482 kHz

THD+N vs. Voltage for Various Capacitor Types

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	Anlr.THD+N Ratio	Left	C = 0
2	1	Red	Solid	1	Anlr.THD+N Ratio	Left	C1
3	1	Blue	Solid	1	Anlr.THD+N Ratio	Left	C2
4	1	Cyan	Solid	1	Anlr.THD+N Ratio	Left	C3
5	1	Green	Solid	1	Anlr.THD+N Ratio	Left	C4

R = 100 ohm, C = 3.3 nF, f = 10 kHz, f(-3dB) = 482 kHz

Conclusions on "C" Type

u Best performance: Sliver Mica or COG(NPO)

u Avoid all other

u Others may cost less and be smaller but can distort signal

Selecting the Fly-wheel Values

Fly Wheel Component Selection

- u Pick $C_{flt} = 20 C_{SH}$ (See Appendix for proof)
- $u R_{flt}$ Calculation

n
$$t_{flt_settle} = t_{SAMPL} = 12 \ \mathcal{T}_{FLT}$$

Theoretical Minimum

n Practical results

w Use
$$t = 18 \mathcal{T}_{FLT}$$
 Margin for:

- Ø Op Amp Output Load Transient
- Op Amp Output Small Signal Settling Time

n
$$R_{flt} = t_{SAMPL}/18 C_{flt}$$

ADC Sampling Considerations

Voltage on the sampling capacitor during sampling period

$$V_{C}(t) = V_{0} + (E - V_{0}) \times (1 - e^{-\frac{t}{\tau}})$$

$$E - V_{C}(t_{AQ}) \le \frac{1}{2} LSB$$

$$V_{C}(t_{AQ}) \ge E \times (1 - \frac{1}{2^{17}})$$

$$\tau \le \frac{t_{AQ}}{\ln(\frac{E - V_{0}}{E} \times 2^{17})}$$

TEXAS INSTRUMENTS

ADC Sampling Considerations

Suggested input sampling switch transient-immunity RC filter

Required Settling Time

Number of bits	0.5LSB	Time Constants
10	0.0488281%	8
12	0.0122070%	9
14	0.0030518%	11
16	0.0007629%	12
18	0.0001907%	13
20	0.0000477%	15
22	0.0000119%	17
24	0.0000030%	18

See appendix for calculations

Establish Op Amp Specs

Determine Op Amp specs needed based on system values set in design.

Op Amp specs to be determined:

u UGBW

u Slew Rate

u I_{out}

Impact on UGBW

u Modified A_{ol} due to $R_{FLT} \& C_{FLT}$

n
$$f_{PX} = 1/[2 \Pi(R_O + R_{FLT})C_{FLT}]$$

n
$$f_{ZX} = 1/[2 \Pi R_{FLT}C_{FLT}]$$

u Stability Check

- n At f_{cl} "Rate-of-closure" is 20dB/decade à f_{ZX} cancels f_{PX} before f_{cl}
- n f_{PX} and f_{ZX} are \leq decade apart w Phase of pole will be cancelled by phase of zero
- n This implies: $R_{FLT} < 9 R_{\odot}$

u Impact on UGBW

n $UGBW_{mod} = UGBW_{orig} - (f_{ZX} - f_{PX})$

Impact on UGBW-cont

43

Op Amp Specs to Check

 $uUGBW_{mod} > 2*1/[2 \Pi R_{FLT}C_{FLT}]$

u Op Amp Transient Output Drive to $R_{FLT} \& C_{FLT}$

n
$$I_{Opk max} = (5\% V_{REF})/(R_{FLT})$$

Interface Design Check List

- u Op Amp Common Mode Voltage
- u Op Amp Output Swing to Rail
- u Op Amp Settling Time
- u Filter Capacitor Type
- u Filter Component Values
- u Op Amp Specifications

Appendix - Calculation Details

- 1.C_{flt} as a Function of C_{sh}
- 2. Open Loop Output Resistance

VS.

Closed Loop Output Resistance

- 3. Modified A_{ol} Calculations
- 4. Time to Charge Capacitor

Op Amp Input Concerns

Rail-to-Rail Input

Input Stage-Parallel P-ch & N-ch

TEXAS INSTRUMENTS

Looking at Input Stage **Performance**

Single Supply RRI Plot-Vos vs CMV

(Most RRI Op Amps Except OPA363/OPA364)

OPA2340 (Dual: V_{OUT1} & V_{OUT2} from different halves)

50

Performance Requirements

The simple buffer stage.

Most accurate unity gain.

Bits	(mV)	(dB)
10	2.44	66.2
12	0.61	78.3
16	0.0382	102.3

OPA350 Data Sheet THD+N

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

52

Possible Input Schemes

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	Anlr.THD+N Ratio	Left	OPA350 High CMRR G=-1
2	1	Red	Solid	1	Anlr.THD+N Ratio	Left	OPA350 High CMRR G=+1
3	1	Blue	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR G=+1
4	1	Cyan	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR G=-1

54

OPA350 with RC, THD+N vs Frequency -50 -55 -60 -65

-70 -75 -80 -85 -90 -95

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR G=+1 C1
2	1	Red	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR G=-1 C4

Hz

5k

10k

20k

50k

TEXAS INSTRUMENTS

100k

200k

1k

500

2k

-100

-105

-110

100

200

OPA350 THD+N vs Input Voltage -55 -60 -65 -75 d -80 -85 -95 -100 -105 3.8 4.2 4.8 5.2 3.6 4.4 4.6 5.4 Vpp

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Yellow	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR 1kHz
2	1	Red	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR 10kHz
3	1	Cyan	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR 50kHz
4	1	Green	Solid	1	Anlr.THD+N Ratio	Left	OPA350 Low CMRR 100kHz

Output Stage Concerns

Rail-to-Rail Output

OPA300

OPA350

Solution Circuit

Filter Design Example

 $u R_{SW} = 100$ (Not needed for Buffer & Filter Calculations)

$$U$$
 $C_{SH} = 50pF [for ADS8361]$

u Worst case Vacross C_{SH} is V_{REF}

n
$$V_{REF} = +5V$$

$$u t_{SAMPL} = 1.88 \mu s [for ADS8361]$$

Filter Design Example(cont)

- u Charge Transfer Equation: Q = CV
- u Charge required to charge C_{SH} to V_{REF}

n
$$Q_{SH} = C_{SH}V_{REF}$$

n
$$Q_{SH} = 50pF.5V = 250pC$$

- u IDEAL C_{FLT}
 - n "Charge Bucket" to fill C_{SH} with only a 76 μ V (1/2LSB) droop on C_{FLT}

n
$$Q_{FLT} = Q_{SH}$$

n
$$Q_{FLT} = C_{FLT} (38\mu V)$$

n
$$250pC = C_{FLT}(38\mu V)$$
 $C_{FLT} = 6.6\mu F$

- u IDEAL $C_{FIT} = 6.6 \mu F$
 - n Not a good, small, cheap high frequency ceramic capacitor
 - n Not practical for Op Amp to drive directly (stability, transient current)
 - n Isolation resistor likely not large enough to help isolate Cload and still meet necessary filter time constant

Filter Design Example(cont)

- u Partition the "Charge Bucket"
 - n 95% from C_{FIT}
 - n 5% from Op Amp

 \cup C_{FLT} value required to provide Q_{SH} with <5% droop on C_{FLT}

n
$$Q_{FLT} = Q_{SH}$$

n
$$Q_{FLT} = C_{FLT} (0.05 V_{REF})$$

n
$$250pC = C_{FLT} (0.05.5V)$$
 $C_{FLT} = 1nF$

- u During t_{SAMPL} the Op Amp must provide 5% V_{REF} to C_{FLT}
 - n Ensure C_{FIT} is at least $10X > C_{SH}$
 - w This implies dominant load for Op Amp Buffer is C_{FLT}
 - w $1nF = 20 \times 50pF \stackrel{.}{a} C_{FLT} = 20 \times C_{SH}$

Op Amp Model for Derivation of R_{OUT}

Derivation of R_{OUT} (Closed Loop Output Resistance)

$$\beta = V_{FB}/V_{OUT} = [V_{OUT}(R_I / \{R_F + R_I\})]/V_{OUT} = R_I / (R_F + R_I)$$

$$R_{OUT} = V_{OUT}/I_{OUT}$$

$$V_O = -V_E \text{ AoI}$$

$$V_E = V_{OUT}[R_I/(R_F + R_I)]$$

$$\begin{split} &V_{\text{OUT}} = V_{\text{O}} + I_{\text{OUT}} R_{\text{O}} \\ &V_{\text{OUT}} = -V_{\text{E}} \text{AoI} + I_{\text{OUT}} R_{\text{O}} \\ &V_{\text{OUT}} = -V_{\text{OUT}} \left[R_{\text{I}} / (R_{\text{F}} + R_{\text{I}}) \right] \text{AoI} + I_{\text{OUT}} R_{\text{O}} \\ &V_{\text{OUT}} + V_{\text{OUT}} \left[R_{\text{I}} / (R_{\text{F}} + R_{\text{I}}) \right] \text{AoI} = I_{\text{OUT}} R_{\text{O}} \\ &V_{\text{OUT}} = I_{\text{OUT}} R_{\text{O}} / \left\{ 1 + \left[R_{\text{I}} \text{AoI} / (R_{\text{F}} + R_{\text{I}}) \right] \right\} \end{split}$$

$$R_{OUT} = V_{OUT}/I_{OUT} = I_{OUT}R_O / \{1 + [R_IA_{OL}/(R_F + R_I)]\}$$

$$R_{OUT} = R_O / (1 + AoI\beta)$$

OPA353 Specifications

$$R_O = 40$$

 R_{OUT} (@1MHz, G=10) = 10
AoI @1MHz = 29.54dB = x30

OPA353 R_{OUT} Calculation

R_{OUT} vs R_O

- □ R_o does not change when feedback is used to close the loop
- □ Closed loop feedback forces V_o to increase/decrease
- u The increase/decrease in V_o appears at V_{out} as a reduction in R_o
- \cup R_{OUT} is the net effect of R_O and closed loop feedback controlling V_O

Op Amp Model for AC Stability Analysis

- \emptyset R_o is constant over the Op Amp's bandwidth
- \emptyset R_o is defined as the Op Amp's Open Loop Output Resistance
- \emptyset R_0 is measured at $I_{OUT} = 0$ Amps, f = 1MHz
- \emptyset R_0 is included in β calculation

Aol Modified by Filter

Modified Aol-The Math

$$V_{OUT} = \frac{V_O \left(R_{flt} + \frac{1}{sC_{flt}} \right)}{R_O + R_{flt} + \frac{1}{sC_{flt}}}$$

$$\frac{V_{OUT}}{V_O} = K = \frac{\left(R_{flt} + \frac{1}{sC_{flt}}\right)}{R_O + R_{flt} + \frac{1}{sC_{flt}}}$$

$$\frac{V_{OUT}}{V_O} = K = \frac{sC_{flt}R_{flt} + 1}{sC_{flt}(R_O + R_{flt}) + 1}$$

$$\frac{V_{OUT}}{V_O} = K = \frac{s + \frac{1}{C_{flt}R_{flt}}}{\frac{C_{flt}(R_O + R_{flt})}{C_{flt}R_{flt}}s + \frac{1}{C_{flt}R_{flt}}}$$

Modified Aol-The Math - cont.

$$\frac{V_{OUT}}{V_{O}} = K = \frac{\left(s + \frac{1}{C_{flt}R_{flt}}\right)\left(\frac{C_{flt}R_{flt}}{C_{flt}(R_{O} + R_{flt})}\right)}{s + \left(\frac{1}{C_{flt}R_{flt}}\right)\left(\frac{C_{flt}R_{flt}}{C_{flt}(R_{O} + R_{flt})}\right)}$$

$$\frac{V_{OUT}}{V_{O}} = K = \frac{\left(s + \frac{1}{C_{flt}R_{flt}}\right)\left(\frac{R_{flt}}{(R_{O} + R_{flt})}\right)}{s + \left(\frac{1}{C_{flt}R_{flt}}\right)\left(\frac{R_{flt}}{(R_{O} + R_{flt})}\right)}$$

$$\frac{V_{OUT}}{V_O} = K = \left(\frac{R_{fit}}{(R_O + R_{fit})}\right) \frac{\left(s + \frac{1}{C_{fit}R_{fit}}\right)}{\left(s + \frac{1}{C_{fit}(R_O + R_{fit})}\right)}$$

$$f_p = \frac{1}{2\Pi C_{flt} (R_O + R_{flt})}; \quad f_z = \frac{1}{2\Pi C_{flt} R_{flt}}$$

Voltage on the sampling capacitor during sampling period

$$V_C(t) = V_0 + (E - V_0) \times (1 - e^{-\frac{t}{\tau}})$$

$$E - V_C(t_{AQ}) \le \frac{1}{2} LSB$$

$$V_C(t_{AQ}) \ge E \times (1 - \frac{1}{2^{17}})$$

$$\tau \le \frac{t_{AQ}}{\ln(\frac{E - V_0}{E} \times 2^{17})}$$