

LDO Noise Demystified

Sanjay Pithadia

PMP - LP Linear Regulators

ABSTRACT

This application report explains the difference between noise and PSRR of an LDO. It also explains the different ways noise is specified in LDO datasheets and which specification should be used in the application. Finally it explains how LDO noise is reduced.

LDO Noise and PSRR

Low dropout linear regulators (LDOs) are a simple way to regulate an output voltage that is powered from a higher voltage input. Though it is simple to operate, its self generated noise is most of the times confused with its Power Supply Rejection Ratio (PSRR). Many times the two are combined together and loosely called just "noise". This is not correct. Noise is generated by the transistors and resistors in the LDO's internal circuitry and by the external components. The type of noise may include thermal, flicker and shot noise. PSRR is a measure of circuit's power supply rejection expressed as a ratio of output noise to noise at the power supply input. It provides a measure of how well a circuit rejects ripple at various frequencies injected from its input power supply. In the case of a LDO, it is a measure of the output ripple compared to the input ripple over a wide frequency range and is expressed in decibels (dB). The basic equation for PSRR is given in Equation 1:

$$PSRR = 20 log \frac{Ripple_{lnput}}{Ripple_{Output}}$$
(1)

Figure 1 explains how noise and PSRR are different from each other. The noise is something which may be internal and external to the LDO whereas PSRR is an internal parameter of the LDO. LDO users generally concentrate on PSRR and not on the self-generated output noise. PSRR rejects noise coming from outside of LDO but there is always noise generated inside the LDO. So an LDO with high PSRR may not be better for noise rejection. The user should always think of both parameters.

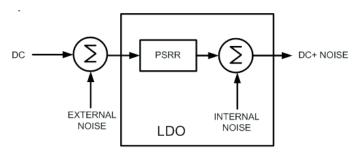


Figure 1. PSRR and Noise in LDO

LDO Noise Types

Noise is purely physical phenomenon that occurs with transistors and resistors. Transistors generate shot noise and flicker noise. The resistive element of MOSFETs also generates thermal noise like resistors. Thermal and shot noise is truly random in nature and its power is flat over frequency. It remains flat up to the bandwidth of the amplifier. Flicker noise is the noise due to trapped charges at the gate of the MOSFET. It follows Poisson's Distribution with 1/f roll-off in power versus frequency hence it is higher at low frequencies. This noise dominates until it becomes smaller than thermal noise. (See Figure 2)

SLAA412-June 2009 LDO Noise Demystified 1

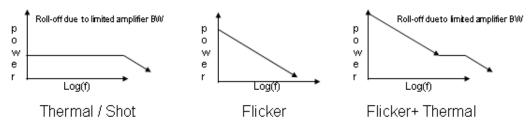


Figure 2. LDO Noise (types)

Noise Specifications in LDO Data Sheets

Typically noise in an LDO is specified by datasheets in two fashions. One is "Total (Integrated) output noise – in μ Vrms", which is RMS value of the spectral noise density integrated over a finite frequency range. The second method is to show a "Spectral Noise density curve – in μ V/ \sqrt{Hz} ", which is a plot of Noise density vs Frequency. Figure 3 shows both the specifications for TPS717xx series LDOs.

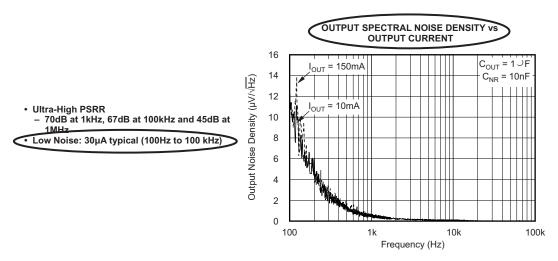


Figure 3. Noise Specified in Two Ways (for TPS717xx LDOs)

Since the output noise voltage is specified by a single number, it is very useful for comparison purposes. When noise specifications of different LDOs are compared, it is imperative that the two regulators' noise measurements be taken over the same frequency range and at the same output voltage and current values.

Which specification is for your application?

The user should know which noise specification of the LDO is to be used in the application, because there are some application where the Spectral noise density is pertinent and some applications where total (integrated) noise can be used. The following examples explain this.

1. Consider an RF system, where an LDO powers a Voltage Controlled Oscillator (VCO). VCO takes two input signals and mixes them together. If the two signals are $\sin(\omega 1)$ and $\sin(\omega 2)$ t, then the result is two outputs $\sin((\omega 1 - \omega 2)t)$, $\sin((\omega 1 + \omega 2)t)$ and harmonics. The RF signal chain following the VCO is typically a band-pass system tuned for only one frequency, that means, only higher frequency remains after mixing. Most broadband applications have very tight regulation on the frequency spectrum and the power in each band. For any band, the spurious noise has to be controlled to meet what is called the "transmit mask". This mask is very important for agency certification of the final product. Any humps in the noise floor at higher frequencies may cause the transmitted signal to be outside of the transmit mask and thus fail the certification testing.

Now if the noise is present on the conductors that are supplying power or in the LDO output then that noise at a frequency, FR, gets mixed with the carrier frequency and produces two sidebands as shown in the Figure 4. If the noise is so high that the sideband produced due to noise is out of transmit mask then it results in failure of the system.

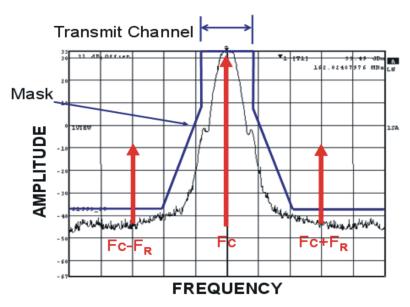
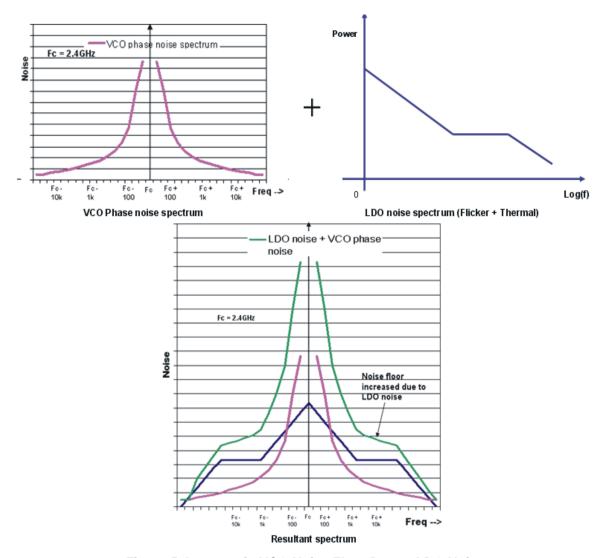
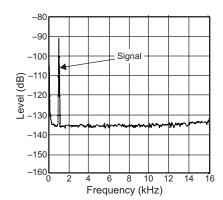
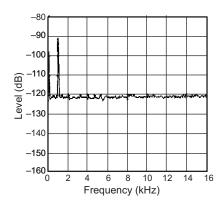


Figure 4. Transmit Mask and Sidebands Due to Noise

Also, if we assume that the RF system is working at a frequency of 2.4GHz, then LDO noise contributes to the VCO noise spectrum both above and below 2.4GHz with up to bandwidth of LDO. The LDO noise shown in Figure 2 adds to the original VCO noise plot which increases the VCO noise floor level around the center frequency.


Figure 5. Increase in VCO Noise Floor Due to LDO Noise

So in this RF application the user should use Spectral Noise Density curve since the single noise number loses the frequency dependence and would not be an accurate representation of the final output.

2. Consider a system in which LDO is powering an ADC or DAC. Any sampled system causes the high frequency noise to fold to lower frequencies due to aliasing. For example, if the sampling frequency is 100kHz and the noise due to LDO is at 90kHz and 110kHz, 190kHz and 210kHz, etc., then all the noise will fold back to 10kHz which is the beat frequency. This will occur for any frequency of the output noise so that all of the LDO noise folds back to within the bandwidth of the sampling system. This is same as integrating all the noise from DC to bandwidth of the system and computing the total noise. This way, the performance of ADC/DAC suffers if the LDO total (integrated) noise is high. Figure 6 below shows how LDO noise aliasing takes place. First graph is for a system powered by ideal LDO, second is for a system powered by LDO with thermal noise that increases noise floor and third is for a system powered by LDO with noise at high frequency that aliases to lower frequency.



Figure 6. LDO Noise Aliasing

So in this application, the user can use Total (Integrated) output noise since all of the noise will be folded in frequency and integrated by the system.

How to reduce the LDO noise?

The primary noise source in the LDO is the band gap. The noise in LDO can be reduced using two methods. The following discussion explains both the methods.

One method to reduce the noise is by reducing the bandwidth of the LDO. This can be done by lowering the bandwidth of error amplifier inside the LDO. But if we reduce the bandwidth of error amplifier then it reduces the transient response of the LDO.

Another method is by using a low-pass filter (LPF). As we know, the most dominant source of noise in an LDO is the internal band gap. A LPF can be inserted between the band gap output and the input of the error amplifier. This reduced the band gap noise before it is gained up by the error amplifier. Typically this LPF is formed with a large internal resistor and an external capacitor. The cutoff frequency of this filter is set as low in frequency as possible to filter out nearly all of the noise coming from the band gap.

There is always the question "Why the huge power pass element (mostly FET), which takes up most of the total die area, is not a primary noise contributor?" the answer is the lack of gain. The primary noise source, the band gap, is connected to the input of the error amplifier and thus amplified by the gain of the error amplifier. As we know, the procedure to find the output noise is first refer each noise contributor to the op-amp input; so to find the noise from the pass FET you would first divide the noise contribution by the open-loop gain that exists between it and the error amplifier input. This gain is very large; therefore, the noise contribution from the pass FET is usually negligible.

To summarize, the LDO noise and PSRR both are important specifications to be taken into account when selecting the LDO. There are two ways the LDO noise is specified, and the user should look for the appropriate specification for their application.

SLAA412-June 2009

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated