
bbs.21ic.com 1

第七章 电源管理模块（PMM）

7.1 本章引言

PMM提供管理电源及监视其相关设备的所有函数。它的主要功能是：生成一个电源电压的核

心逻辑；提供监督和监测设备的电压(VCC)和核心(VCORE)电压发生器的机制。

PMM使用一个集成的低压差稳压器(LDO)，用于从 VCC提供的初级电压产生一个二级核心

电压(VCORE)。VCORE提供给 CPU、内存(flash / RAM),和数字模块,而 VCC提供给 I / O模块

和模拟模块。VCORE输出使用一个通过 PMM内置的参考模块产生的电压基准维持。输入或调

节器的初级侧被称为其高侧。输出或次级侧被称为其低侧。

PMM特性包括：

电源电压（VCC）范围：2.2 V至 3.6 V

高端掉电复位（BOTH）

针对 VCC的阈值等级可编程电源电压监控和外部管脚（VMONIN）对内部参考监控。

1.8 V固定电压设备核心（VCORE）发生器

电源电压监控器（SVS）的 VCORE

为整个器件和集成温度传感器提供精确的 1.16-V参考。

7.2 函数总览

1
void PMM_setupVoltageMonitor(uint8_t voltageMonitorLevel)

设置电压监视器

2
void PMM_calibrateReference (void)

校准

3
void PMM_setRegulatorStatus (uint8_t status)

配置 PMM校准器状态

4
void PMM_unlockIOConfiguration (void)

解锁 IO

5 void PMM_enableInterrupt (uint8_t mask)

使能中断

6
void PMM_disableInterrupt (uint8_t mask)

关闭中断

7
void PMM_getInterrupt (uint8_t mask)

返回中断状态

8
void PMM_clearInterrupt (uint8_t mask)

清除中断掩码

函数分类

PMMAPI可以分成三组函数：那些设置 PMM的，那些使用 LPM4.5模式的，还有那些用于

PMM中断的。

设置 PMM的有：

void PMM_setupVoltageMonitor(uint8_t voltageMonitorLevel)SD24_initConverter()

void PMM_calibrateReference (void)SD24_startConverterConversion()

用于使用 LPM4.5模式的有：

void PMM_setRegulatorStatus (uint8_t status)

void PMM_unlockIOConfiguration (void)

用于 PMM中断的有：

void PMM_enableInterrupt (uint8_t mask)

void PMM_disableInterrupt (uint8_t mask)

void PMM_getInterrupt (uint8_t mask)

void PMM_clearInterrupt (uint8_t mask)

详细描述

void PMM_setupVoltageMonitor(uint8_t voltageMonitorLevel)

校准。

修改寄存器 REFCAL0和 REFCAL1.

返回值：空。

void PMM_clearInterrupt (uint8_t mask)

清中断掩码。

参数

mask 掩码值是下面数值的逻辑或

bbs.21ic.com 2

PMM_LPM45_INTERRUPT LPM4.5中断

返回：无。

void PMM_disableInterrupt (uint8_t mask)

关闭中断。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

返回：无。

void PMM_ensableInterrupt (uint8_t mask)

开启中断。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

返回：无。

unit8_t PMM_getInterruptStatus (uint8_t mask)

返回中断状态。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

PMM_LPM45_INTERRUPT LPM4.5中断

返回：下面量的逻辑或。

PMM_VMON_INTERRUPT 电压监视器中断

PMM_LPM45_INTERRUPT LPM4.5中断

指示中断掩码状态

void PMM_setRegulatorStatus (uint8_t status)

设置 PMM校准器的状态

参数

mask 可选值有：

PMM_REGULATOR_ON 开启 PMM校准器

PMM_REGULATOR_OFF 关闭 PMM校准器

修改 LPM45CTL寄存器 REGOFF

注释：手册解释的刚好颠倒，是不是错了？？

修改 LPM45CTL寄存器。

返回：无。

void PMM_setupVoltageMonitor(uint8_t voltageMonitorLevel)

配置电压监视器

参数

voltageMonitorLevel 可选值有：

PMM_DISABLE_VMON 关闭电压监视器

PMM_DVCC_2350MV DVCC与 2350mV比较

PMM_DVCC_2650MV DVCC与 2650mV比较

PMM_DVCC_2850MV DVCC与 2850mV比较

PMM_VMONIN_1160MV VMONIN与 1160mV比较

修改寄存器 VMONCTL的 REGOFF位

修改 VMONCTL寄存器。

void PMM_unlockIOConfiguration (void)

解锁 IO.

修改寄存器 LMP45CTL的 LOCKLPM45位。

返回：无。

7.3 例程

描述：在这个例子中，设备设置进入 LPM4.5.在进入 LPM4.5之前 LED是开启的来只是进入 LPM4.5。

退出 LPM4.5由 P2.1的上升沿触发，以导致设备的重置。一旦重置，LPM4.5中断设置和设备开始仅仅

翻转 LED状态。该例程示范如何配置设备的 LPM4.5和从它成功的中断

bbs.21ic.com 3

#include "driverlib.h"

#define GPIO_PIN_ALL (GPIO_PIN0 | GPIO_PIN1 | GPIO_PIN2 | GPIO_PIN3 |

GPIO_PIN4 | GPIO_PIN5 | GPIO_PIN6 | GPIO_PIN7)

int main(void) {

WDT_hold(WDT_BASE);

// Configure GPIO for low current numbers while in LPM4.5

//下面四条函数把 P1和 P2的八个 IO配置成输出，并拉低电平。

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN_ALL);

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN_ALL);

GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN_ALL);

GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN_ALL);

// Determine if coming out of LPM 4.5

// 判断是否从 LPM4.5出来

if(PMM_getInterruptStatus(PMM_LPM45_INTERRUPT))

{

PMM_clearInterrupt(PMM_LPM45_INTERRUPT);

// Need to unlock IO after exiting LPM4.5 so LED will blink

// 需要解锁后退出 LPM4.5 IO,这样 LED将会闪

PMM_unlockIOConfiguration();

}

else

{

// Configure exit of LPM4.5 on P2.1 interrupt

// 配置 P2.1的中断以退出 LPM4.5,P2.1设置为输入，选择上升沿中断，清除中断源，使能中断

GPIO_setAsInputPin(GPIO_PORT_P2, GPIO_PIN1);

GPIO_selectInterruptEdge(GPIO_PORT_P2, GPIO_PIN1,

GPIO_LOW_TO_HIGH_TRANSITION);

GPIO_clearInterrupt(GPIO_PORT_P2, GPIO_PIN1);

GPIO_enableInterrupt(GPIO_PORT_P2, GPIO_PIN1);

// Turn on LED to indicate we are about to enter LPM4.5

// 开 LED，指示我们进入了 LPM4.5,LED在 P1.4管脚，输出高电平。

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN4);

// Turn off regulator so we can enter LPM4.5

// 关校准器，这样我们才能进入 LPM4.5,之后通过特殊寄存器指令进入 LPM4.5

PMM_setRegulatorStatus(PMM_REGULATOR_OFF);

__bis_SR_register(LPM4_bits);

}

// Slow down clock so we can see LED blink

//减缓时钟,所以我们可以看到 LED闪烁

// Configure MCLK = ~1MHz

// DCO默认采用 16.384Mhz,获取 1MHz频率，需要进行 16分频，在循环体翻转，延时 1s

CS_initClockSignal(CS_MCLK, CS_CLOCK_DIVIDER_16);

while(1)

{

GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN4);

__delay_cycles(100000);

}

}

7.4 问题

1.查找本系列相关资料，了解 LPM4.5，帖子后面回复发表个人理解与见解。

2.查找该家族手册了解 calibrateReference是怎么回事。

3.查看 driverlib_2_00_00_16\examples\MSP430i2xx\pmm\ pmm_ex2_vmon1160mV.c

例程，学习相关 APP用法，并在帖子后参与内容学习与讨论，可以是对该例程的理解，也可以是

相关疑问或问题。

bbs.21ic.com 4

第八章 Tag Length Value(TLV)

6.1 本章引言

TLV（标签长度值）是一个存储在闪存的表,其中包含特定于设备的信息。包含重要的信息为

使用和校准设备。一个 TLV 内容的列表也可在特定于设备的数据表 （在 TLV 部分），其具体功

能上的解释在 MSP430i2xx Family User’s Guide中提供。

本驱动程序包含在 tlv.c文件里，头文件在 tlv.h里。

6.2 函数总览

1
void TLV_getInfo (uint8_t tag,uint8_t *length , uint16_t **data_address)

获取 TLV信息

2
bool TLV_performChecksumCheck (void)

执行对 TLV校验检查

这组 API用于查询 TLV结构中的信息。

TLV_getInfo() 该函数获取一个标签的值和这个标签的长度。

TLV_performaChecksumCheck() 该函数对 TLV执行 CRC检查。

详解

void TLV_getInfo (uint8_t tag,uint8_t *length , uint16_t **data_address)

获取 TLV信息。

TLV结构使用一个标签或标识表段的基地址信息存储的地方。这可以用于检索设备的校准常数或找出有

关该设备的详细信息。此函数可检索请求标签的地址和标签的长度。请参考你设备的手册，确认标签是否可

用。

参数

tag 代表的标签需要检索的信息。可用值有：

TLV_CHECKSUM

TLV_TAG_DIE_RECORD

TLV_LENGTH_DIE_RECORD

TLV_VAFER_LOT_ID

TLV_DIE_X_POSITION

TLV_DIE_Y_POSITION

TLV_TEST_RESULTS

TLV_REF_CALIBRATION_TAG

TLV_REF_CALIBRATION_LENGTH

TLV_REF_CALIBRATION_REFCAL1

TLV_REF_CALIBRATION_REFCAL0

TLV_DCO_CALIBRATION_TAG

TLV_DCO_CALIBRATION_LENGTH

TLV_DCO_CALIBRATION_CSIRFCAL

TLV_DCO_CALIBRATION_CSIRTCAL

TLV_DCO_CALIBRATION_CSERFCAL

TLV_DCO_CALIBRATION_CSIETCAL

TLV_SD24_CALIBRATION_TAG

TLV_SD24_CALIBRATION_LENGTH

TLV_SD24_CALIBRATION_SD24TRIM

lentgh 通过间接引用作为返回值执行。此函数检索 TLV标签长度值。一旦调用该函数，

该值通过*length指定，被应用层使用。

data_address 通过间接引用作为返回值执行。一旦该函数被调用，data_address指向的指针

值从指定检索 TAG标签。

返回：无。

bool TLV_performChecksumCheck (void)

执行 TLV的校验和检测。

2秒补充校验和计算的 TLV 中存储的数据。如果计算出的校验和是等于在 TLV 存储的校验和，用户可

知道 TLV 未损坏。这个 API可以在 BOR之后使用写配置常量到相应的寄存器之前。

返回值：如果 TLV校验和匹配存储在 TLV的值，即为真，否则为假。

bbs.21ic.com 5

6.3 例程

描述：在该例程中，TLV的校验和是被检测，以确认TLV没有毁坏。如果TLV没有错误，LED点亮。造成错误，
首先备份TLV，然后擦除它的一部分。这将导致发生校验和错误，LED不会被点亮。

#include "driverlib.h"

int main(void) {

bool result;

// Stop the WDT

WDT_hold(WDT_BASE);

// Check the TLV checksum

result = TLV_performChecksumCheck();

// Turn on LED if test passed

if(result)

{

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN4);

}

else

{

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN4);

}

// LED for indicating checksum result

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN4);

__bis_SR_register(LPM0_bits);

}

该例程看似很简单，那么我们的问题就是 TLV具体是用来干什么的？查找资料参与讨论。

回顾：

我们一共学习了 8种外设使用方法，还有很多功能我们没有学习，相信你也能够结合这几节课的内容自学其他
的部分，如果你要用得其他部分到的话。根据这四节课程相信你也对MSP430i2xx家族，以及相关库函数的结
构和编写的特点有了一定的认识，对未来深入学习打下了基础。MSP430i2xx是为工业级应用设计的，我们可

以用于电表和水表的应用设计，特别精简的 CS系统，让你的作品不会因为外部晶振和复杂的时钟设计而产生
累赘感。该家族集成的 DCO拥有超高的精度，可以完胜你关于时钟相关的大部分应用。ADC模块使用了 SD24，
高精度的模数模块可以胜任你所有的 ADC检测应用，该 ADC在仪表应用有出色的表现。本课程会提供若干相
关应用文档下载，帮助你更好的了解 430所擅长的领域。该系列 I/O与以往 430不同的地方在于不存在上下拉
电阻，这个可以参考该家族技术手册了解。最后祝大家学习进步，本版主能力有限，部分翻译可能很不到位，

也希望该教材起到抛砖引玉的效果，重要的是让你知道 TI 推出了一款新的 430单片机，它更加适合工业级的
设计应用。同时开心的告诉大家，TI终于把 430抄底功耗特性引入了 32位机，新推出的MSP432单片机拥有
430的超低功耗特性，同时具备 32位 ARM核心。另外 TI也推出的有MSP430FRxx系列，该系列采用铁电存
储，并提供库函数集，在 430家族 16位机里具备最为丰富的外设和功能，有兴趣的可以了解一下。

	第七章 电源管理模块（PMM）
	7.1 本章引言
	7.2 函数总览
	7.3 例程
	7.4 问题

	第八章 Tag Length Value(TLV)
	6.1 本章引言
	6.2 函数总览
	6.3 例程
	回顾：

