
bbs.21ic.com 1

第七章 电源管理模块（PMM）

7.1 本章引言

PMM提供管理电源及监视其相关设备的所有函数。它的主要功能是：生成一个电源电压的核

心逻辑；提供监督和监测设备的电压(VCC)和核心(VCORE)电压发生器的机制。

PMM使用一个集成的低压差稳压器(LDO)，用于从 VCC提供的初级电压产生一个二级核心

电压(VCORE)。VCORE提供给 CPU、内存(flash / RAM),和数字模块,而 VCC提供给 I / O模块

和模拟模块。VCORE输出使用一个通过 PMM内置的参考模块产生的电压基准维持。输入或调

节器的初级侧被称为其高侧。输出或次级侧被称为其低侧。

PMM特性包括：

电源电压（VCC）范围：2.2 V至 3.6 V

高端掉电复位（BOTH）

针对 VCC的阈值等级可编程电源电压监控和外部管脚（VMONIN）对内部参考监控。

1.8 V固定电压设备核心（VCORE）发生器

电源电压监控器（SVS）的 VCORE

为整个器件和集成温度传感器提供精确的 1.16-V参考。

7.2 函数总览

1
void PMM_setupVoltageMonitor( uint8_t voltageMonitorLevel )

设置电压监视器

2
void PMM_calibrateReference (void)

校准

3
void PMM_setRegulatorStatus (uint8_t status)

配置 PMM校准器状态

4
void PMM_unlockIOConfiguration (void)

解锁 IO

5 void PMM_enableInterrupt (uint8_t mask)

使能中断

6
void PMM_disableInterrupt (uint8_t mask)

关闭中断

7
void PMM_getInterrupt (uint8_t mask)

返回中断状态

8
void PMM_clearInterrupt (uint8_t mask)

清除中断掩码

函数分类

PMMAPI可以分成三组函数：那些设置 PMM的，那些使用 LPM4.5模式的，还有那些用于

PMM中断的。

设置 PMM的有：

void PMM_setupVoltageMonitor( uint8_t voltageMonitorLevel )SD24_initConverter()

void PMM_calibrateReference (void)SD24_startConverterConversion()

用于使用 LPM4.5模式的有：

void PMM_setRegulatorStatus (uint8_t status)

void PMM_unlockIOConfiguration (void)

用于 PMM中断的有：

void PMM_enableInterrupt (uint8_t mask)

void PMM_disableInterrupt (uint8_t mask)

void PMM_getInterrupt (uint8_t mask)

void PMM_clearInterrupt (uint8_t mask)

详细描述

void PMM_setupVoltageMonitor( uint8_t voltageMonitorLevel )

校准。

修改寄存器 REFCAL0和 REFCAL1.

返回值：空。

void PMM_clearInterrupt (uint8_t mask)

清中断掩码。

参数

mask 掩码值是下面数值的逻辑或
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PMM_LPM45_INTERRUPT LPM4.5中断

返回：无。

void PMM_disableInterrupt (uint8_t mask)

关闭中断。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

返回：无。

void PMM_ensableInterrupt (uint8_t mask)

开启中断。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

返回：无。

unit8_t PMM_getInterruptStatus (uint8_t mask)

返回中断状态。

参数

mask 掩码值是下面数值的逻辑或

PMM_VMON_INTERRUPT 电压监视器中断

PMM_LPM45_INTERRUPT LPM4.5中断

返回：下面量的逻辑或。

PMM_VMON_INTERRUPT 电压监视器中断

PMM_LPM45_INTERRUPT LPM4.5中断

指示中断掩码状态

void PMM_setRegulatorStatus (uint8_t status)

设置 PMM校准器的状态

参数

mask 可选值有：

PMM_REGULATOR_ON 开启 PMM校准器

PMM_REGULATOR_OFF 关闭 PMM校准器

修改 LPM45CTL寄存器 REGOFF

注释：手册解释的刚好颠倒，是不是错了？？

修改 LPM45CTL寄存器。

返回：无。

void PMM_setupVoltageMonitor( uint8_t voltageMonitorLevel )

配置电压监视器

参数

voltageMonitorLevel 可选值有：

PMM_DISABLE_VMON 关闭电压监视器

PMM_DVCC_2350MV DVCC与 2350mV比较

PMM_DVCC_2650MV DVCC与 2650mV比较

PMM_DVCC_2850MV DVCC与 2850mV比较

PMM_VMONIN_1160MV VMONIN与 1160mV比较

修改寄存器 VMONCTL的 REGOFF位

修改 VMONCTL寄存器。

void PMM_unlockIOConfiguration (void)

解锁 IO.

修改寄存器 LMP45CTL的 LOCKLPM45位。

返回：无。

7.3 例程

描述：在这个例子中，设备设置进入 LPM4.5.在进入 LPM4.5之前 LED是开启的来只是进入 LPM4.5。

退出 LPM4.5由 P2.1的上升沿触发，以导致设备的重置。一旦重置，LPM4.5中断设置和设备开始仅仅

翻转 LED状态。该例程示范如何配置设备的 LPM4.5和从它成功的中断
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#include "driverlib.h"

#define GPIO_PIN_ALL (GPIO_PIN0 | GPIO_PIN1 | GPIO_PIN2 | GPIO_PIN3 |

GPIO_PIN4 | GPIO_PIN5 | GPIO_PIN6 | GPIO_PIN7)

int main(void) {

WDT_hold(WDT_BASE);

// Configure GPIO for low current numbers while in LPM4.5

//下面四条函数把 P1和 P2的八个 IO配置成输出，并拉低电平。

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN_ALL);

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN_ALL);

GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN_ALL);

GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN_ALL);

// Determine if coming out of LPM 4.5

// 判断是否从 LPM4.5出来

if(PMM_getInterruptStatus(PMM_LPM45_INTERRUPT))

{

PMM_clearInterrupt(PMM_LPM45_INTERRUPT);

// Need to unlock IO after exiting LPM4.5 so LED will blink

// 需要解锁后退出 LPM4.5 IO,这样 LED将会闪

PMM_unlockIOConfiguration();

}

else

{

// Configure exit of LPM4.5 on P2.1 interrupt

// 配置 P2.1的中断以退出 LPM4.5,P2.1设置为输入，选择上升沿中断，清除中断源，使能中断

GPIO_setAsInputPin(GPIO_PORT_P2, GPIO_PIN1);

GPIO_selectInterruptEdge(GPIO_PORT_P2, GPIO_PIN1,

GPIO_LOW_TO_HIGH_TRANSITION);

GPIO_clearInterrupt(GPIO_PORT_P2, GPIO_PIN1);

GPIO_enableInterrupt(GPIO_PORT_P2, GPIO_PIN1);

// Turn on LED to indicate we are about to enter LPM4.5

// 开 LED，指示我们进入了 LPM4.5,LED在 P1.4管脚，输出高电平。

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN4);

// Turn off regulator so we can enter LPM4.5

// 关校准器，这样我们才能进入 LPM4.5,之后通过特殊寄存器指令进入 LPM4.5

PMM_setRegulatorStatus(PMM_REGULATOR_OFF);

__bis_SR_register(LPM4_bits);

}

// Slow down clock so we can see LED blink

//减缓时钟,所以我们可以看到 LED闪烁

// Configure MCLK = ~1MHz

// DCO默认采用 16.384Mhz,获取 1MHz频率，需要进行 16分频，在循环体翻转，延时 1s

CS_initClockSignal(CS_MCLK, CS_CLOCK_DIVIDER_16);

while(1)

{

GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN4);

__delay_cycles(100000);

}

}

7.4 问题

1.查找本系列相关资料，了解 LPM4.5，帖子后面回复发表个人理解与见解。

2.查找该家族手册了解 calibrateReference是怎么回事。

3.查看 driverlib_2_00_00_16\examples\MSP430i2xx\pmm\ pmm_ex2_vmon1160mV.c

例程，学习相关 APP用法，并在帖子后参与内容学习与讨论，可以是对该例程的理解，也可以是

相关疑问或问题。
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第八章 Tag Length Value(TLV)

6.1 本章引言

TLV（标签长度值）是一个存储在闪存的表,其中包含特定于设备的信息。包含重要的信息为

使用和校准设备。一个 TLV 内容的列表也可在特定于设备的数据表 （在 TLV 部分），其具体功

能上的解释在 MSP430i2xx Family User’s Guide中提供。

本驱动程序包含在 tlv.c文件里，头文件在 tlv.h里。

6.2 函数总览

1
void TLV_getInfo (uint8_t tag,uint8_t *length , uint16_t **data_address)

获取 TLV信息

2
bool TLV_performChecksumCheck (void)

执行对 TLV校验检查

这组 API用于查询 TLV结构中的信息。

TLV_getInfo() 该函数获取一个标签的值和这个标签的长度。

TLV_performaChecksumCheck() 该函数对 TLV执行 CRC检查。

详解

void TLV_getInfo (uint8_t tag,uint8_t *length , uint16_t **data_address)

获取 TLV信息。

TLV结构使用一个标签或标识表段的基地址信息存储的地方。这可以用于检索设备的校准常数或找出有

关该设备的详细信息。此函数可检索请求标签的地址和标签的长度。请参考你设备的手册，确认标签是否可

用。

参数

tag 代表的标签需要检索的信息。可用值有：

TLV_CHECKSUM

TLV_TAG_DIE_RECORD

TLV_LENGTH_DIE_RECORD

TLV_VAFER_LOT_ID

TLV_DIE_X_POSITION

TLV_DIE_Y_POSITION

TLV_TEST_RESULTS

TLV_REF_CALIBRATION_TAG

TLV_REF_CALIBRATION_LENGTH

TLV_REF_CALIBRATION_REFCAL1

TLV_REF_CALIBRATION_REFCAL0

TLV_DCO_CALIBRATION_TAG

TLV_DCO_CALIBRATION_LENGTH

TLV_DCO_CALIBRATION_CSIRFCAL

TLV_DCO_CALIBRATION_CSIRTCAL

TLV_DCO_CALIBRATION_CSERFCAL

TLV_DCO_CALIBRATION_CSIETCAL

TLV_SD24_CALIBRATION_TAG

TLV_SD24_CALIBRATION_LENGTH

TLV_SD24_CALIBRATION_SD24TRIM

lentgh 通过间接引用作为返回值执行。此函数检索 TLV标签长度值。一旦调用该函数，

该值通过*length指定，被应用层使用。

data_address 通过间接引用作为返回值执行。一旦该函数被调用，data_address指向的指针

值从指定检索 TAG标签。

返回：无。

bool TLV_performChecksumCheck (void)

执行 TLV的校验和检测。

2秒补充校验和计算的 TLV 中存储的数据。如果计算出的校验和是等于在 TLV 存储的校验和，用户可

知道 TLV 未损坏。这个 API可以在 BOR之后使用写配置常量到相应的寄存器之前。

返回值：如果 TLV校验和匹配存储在 TLV的值，即为真，否则为假。
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6.3 例程

描述：在该例程中，TLV的校验和是被检测，以确认TLV没有毁坏。如果TLV没有错误，LED点亮。造成错误，
首先备份TLV，然后擦除它的一部分。这将导致发生校验和错误，LED不会被点亮。

#include "driverlib.h"

int main(void) {

bool result;

// Stop the WDT

WDT_hold(WDT_BASE);

// Check the TLV checksum

result = TLV_performChecksumCheck();

// Turn on LED if test passed

if(result)

{

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN4);

}

else

{

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN4);

}

// LED for indicating checksum result

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN4);

__bis_SR_register(LPM0_bits);

}

该例程看似很简单，那么我们的问题就是 TLV具体是用来干什么的？查找资料参与讨论。

回顾：

我们一共学习了 8种外设使用方法，还有很多功能我们没有学习，相信你也能够结合这几节课的内容自学其他
的部分，如果你要用得其他部分到的话。根据这四节课程相信你也对MSP430i2xx家族，以及相关库函数的结
构和编写的特点有了一定的认识，对未来深入学习打下了基础。MSP430i2xx是为工业级应用设计的，我们可

以用于电表和水表的应用设计，特别精简的 CS系统，让你的作品不会因为外部晶振和复杂的时钟设计而产生
累赘感。该家族集成的 DCO拥有超高的精度，可以完胜你关于时钟相关的大部分应用。ADC模块使用了 SD24，
高精度的模数模块可以胜任你所有的 ADC检测应用，该 ADC在仪表应用有出色的表现。本课程会提供若干相
关应用文档下载，帮助你更好的了解 430所擅长的领域。该系列 I/O与以往 430不同的地方在于不存在上下拉
电阻，这个可以参考该家族技术手册了解。最后祝大家学习进步，本版主能力有限，部分翻译可能很不到位，

也希望该教材起到抛砖引玉的效果，重要的是让你知道 TI 推出了一款新的 430单片机，它更加适合工业级的
设计应用。同时开心的告诉大家，TI终于把 430抄底功耗特性引入了 32位机，新推出的MSP432单片机拥有
430的超低功耗特性，同时具备 32位 ARM核心。另外 TI也推出的有MSP430FRxx系列，该系列采用铁电存
储，并提供库函数集，在 430家族 16位机里具备最为丰富的外设和功能，有兴趣的可以了解一下。
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