
MSP430x2xx Family

User's Guide

Literature Number: SLAU144I

December 2004–Revised January 2012

2 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Contents

Preface .. 23

1 Introduction .. 25
1.1 Architecture ... 26
1.2 Flexible Clock System .. 26
1.3 Embedded Emulation ... 27
1.4 Address Space ... 27

1.4.1 Flash/ROM .. 27
1.4.2 RAM .. 28
1.4.3 Peripheral Modules ... 28
1.4.4 Special Function Registers (SFRs) .. 28
1.4.5 Memory Organization .. 28

1.5 MSP430x2xx Family Enhancements .. 29

2 System Resets, Interrupts, and Operating Modes .. 31
2.1 System Reset and Initialization .. 32

2.1.1 Brownout Reset (BOR) .. 32
2.1.2 Device Initial Conditions After System Reset ... 33

2.2 Interrupts .. 34
2.2.1 (Non)-Maskable Interrupts (NMI) ... 34
2.2.2 Maskable Interrupts .. 37
2.2.3 Interrupt Processing .. 38
2.2.4 Interrupt Vectors .. 40

2.3 Operating Modes .. 41
2.3.1 Entering and Exiting Low-Power Modes .. 43

2.4 Principles for Low-Power Applications .. 43
2.5 Connection of Unused Pins .. 44

3 CPU ... 45
3.1 CPU Introduction .. 46
3.2 CPU Registers ... 47

3.2.1 Program Counter (PC) ... 47
3.2.2 Stack Pointer (SP) .. 48
3.2.3 Status Register (SR) ... 48
3.2.4 Constant Generator Registers CG1 and CG2 .. 49
3.2.5 General-Purpose Registers R4 to R15 .. 50

3.3 Addressing Modes ... 50
3.3.1 Register Mode .. 52
3.3.2 Indexed Mode ... 53
3.3.3 Symbolic Mode ... 54
3.3.4 Absolute Mode .. 55
3.3.5 Indirect Register Mode ... 56
3.3.6 Indirect Autoincrement Mode ... 57
3.3.7 Immediate Mode .. 58

3.4 Instruction Set .. 59
3.4.1 Double-Operand (Format I) Instructions ... 60
3.4.2 Single-Operand (Format II) Instructions ... 61
3.4.3 Jumps .. 62

3SLAU144I–December 2004–Revised January 2012 Contents
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

3.4.4 Instruction Cycles and Lengths ... 63
3.4.5 Instruction Set Description .. 65
3.4.6 Instruction Set Details .. 67

4 CPUX .. 119
4.1 CPU Introduction ... 120
4.2 Interrupts .. 122
4.3 CPU Registers .. 123

4.3.1 Program Counter (PC) ... 123
4.3.2 Stack Pointer (SP) .. 123
4.3.3 Status Register (SR) .. 125
4.3.4 Constant Generator Registers (CG1 and CG2) ... 126
4.3.5 General-Purpose Registers (R4 to R15) ... 127

4.4 Addressing Modes ... 129
4.4.1 Register Mode ... 130
4.4.2 Indexed Mode ... 131
4.4.3 Symbolic Mode .. 135
4.4.4 Absolute Mode .. 140
4.4.5 Indirect Register Mode ... 142
4.4.6 Indirect Autoincrement Mode .. 143
4.4.7 Immediate Mode .. 144

4.5 MSP430 and MSP430X Instructions .. 146
4.5.1 MSP430 Instructions .. 146
4.5.2 MSP430X Extended Instructions .. 151

4.6 Instruction Set Description .. 164
4.6.1 Extended Instruction Binary Descriptions .. 165
4.6.2 MSP430 Instructions .. 167
4.6.3 MSP430X Extended Instructions .. 219
4.6.4 MSP430X Address Instructions ... 261

5 Basic Clock Module+ .. 277
5.1 Basic Clock Module+ Introduction ... 278
5.2 Basic Clock Module+ Operation ... 280

5.2.1 Basic Clock Module+ Features for Low-Power Applications .. 281
5.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ... 281
5.2.3 LFXT1 Oscillator .. 281
5.2.4 XT2 Oscillator ... 282
5.2.5 Digitally-Controlled Oscillator (DCO) ... 282
5.2.6 DCO Modulator .. 284
5.2.7 Basic Clock Module+ Fail-Safe Operation ... 284
5.2.8 Synchronization of Clock Signals ... 285

5.3 Basic Clock Module+ Registers .. 287
5.3.1 DCOCTL, DCO Control Register ... 288
5.3.2 BCSCTL1, Basic Clock System Control Register 1 .. 288
5.3.3 BCSCTL2, Basic Clock System Control Register 2 .. 289
5.3.4 BCSCTL3, Basic Clock System Control Register 3 .. 290
5.3.5 IE1, Interrupt Enable Register 1 .. 291
5.3.6 IFG1, Interrupt Flag Register 1 .. 291

6 DMA Controller .. 293
6.1 DMA Introduction ... 294
6.2 DMA Operation ... 296

6.2.1 DMA Addressing Modes ... 296
6.2.2 DMA Transfer Modes ... 297
6.2.3 Initiating DMA Transfers ... 303

4 Contents SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

6.2.4 Stopping DMA Transfers ... 304
6.2.5 DMA Channel Priorities .. 305
6.2.6 DMA Transfer Cycle Time ... 305
6.2.7 Using DMA With System Interrupts ... 305
6.2.8 DMA Controller Interrupts .. 306
6.2.9 Using the USCI_B I2C Module with the DMA Controller ... 306
6.2.10 Using ADC12 with the DMA Controller .. 307
6.2.11 Using DAC12 With the DMA Controller ... 307
6.2.12 Writing to Flash With the DMA Controller .. 307

6.3 DMA Registers ... 308
6.3.1 DMACTL0, DMA Control Register 0 .. 309
6.3.2 DMACTL1, DMA Control Register 1 .. 309
6.3.3 DMAxCTL, DMA Channel x Control Register ... 310
6.3.4 DMAxSA, DMA Source Address Register ... 311
6.3.5 DMAxDA, DMA Destination Address Register .. 312
6.3.6 DMAxSZ, DMA Size Address Register ... 312
6.3.7 DMAIV, DMA Interrupt Vector Register .. 313

7 Flash Memory Controller .. 315
7.1 Flash Memory Introduction ... 316
7.2 Flash Memory Segmentation ... 316

7.2.1 SegmentA .. 317
7.3 Flash Memory Operation .. 318

7.3.1 Flash Memory Timing Generator ... 318
7.3.2 Erasing Flash Memory ... 319
7.3.3 Writing Flash Memory .. 322
7.3.4 Flash Memory Access During Write or Erase ... 327
7.3.5 Stopping a Write or Erase Cycle .. 328
7.3.6 Marginal Read Mode ... 328
7.3.7 Configuring and Accessing the Flash Memory Controller ... 328
7.3.8 Flash Memory Controller Interrupts ... 328
7.3.9 Programming Flash Memory Devices .. 328

7.4 Flash Memory Registers .. 330
7.4.1 FCTL1, Flash Memory Control Register ... 331
7.4.2 FCTL2, Flash Memory Control Register ... 331
7.4.3 FCTL3, Flash Memory Control Register ... 332
7.4.4 FCTL4, Flash Memory Control Register ... 333
7.4.5 IE1, Interrupt Enable Register 1 .. 333

8 Digital I/O .. 335
8.1 Digital I/O Introduction ... 336
8.2 Digital I/O Operation ... 336

8.2.1 Input Register PxIN ... 336
8.2.2 Output Registers PxOUT ... 336
8.2.3 Direction Registers PxDIR ... 337
8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN .. 337
8.2.5 Function Select Registers PxSEL and PxSEL2 ... 337
8.2.6 Pin Oscillator ... 338
8.2.7 P1 and P2 Interrupts .. 339
8.2.8 Configuring Unused Port Pins ... 340

8.3 Digital I/O Registers ... 341

9 Supply Voltage Supervisor (SVS) ... 343
9.1 Supply Voltage Supervisor (SVS) Introduction ... 344
9.2 SVS Operation ... 345

9.2.1 Configuring the SVS .. 345

5SLAU144I–December 2004–Revised January 2012 Contents
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

9.2.2 SVS Comparator Operation ... 345
9.2.3 Changing the VLDx Bits .. 345
9.2.4 SVS Operating Range .. 346

9.3 SVS Registers .. 347
9.3.1 SVSCTL, SVS Control Register ... 348

10 Watchdog Timer+ (WDT+) ... 349
10.1 Watchdog Timer+ (WDT+) Introduction ... 350
10.2 Watchdog Timer+ Operation ... 352

10.2.1 Watchdog Timer+ Counter .. 352
10.2.2 Watchdog Mode .. 352
10.2.3 Interval Timer Mode ... 352
10.2.4 Watchdog Timer+ Interrupts .. 352
10.2.5 Watchdog Timer+ Clock Fail-Safe Operation .. 353
10.2.6 Operation in Low-Power Modes ... 353
10.2.7 Software Examples .. 353

10.3 Watchdog Timer+ Registers .. 354
10.3.1 WDTCTL, Watchdog Timer+ Register .. 355
10.3.2 IE1, Interrupt Enable Register 1 ... 356
10.3.3 IFG1, Interrupt Flag Register 1 ... 356

11 Hardware Multiplier .. 357
11.1 Hardware Multiplier Introduction ... 358
11.2 Hardware Multiplier Operation .. 358

11.2.1 Operand Registers ... 359
11.2.2 Result Registers .. 359
11.2.3 Software Examples .. 360
11.2.4 Indirect Addressing of RESLO ... 361
11.2.5 Using Interrupts .. 361

11.3 Hardware Multiplier Registers .. 362

12 Timer_A .. 363
12.1 Timer_A Introduction .. 364
12.2 Timer_A Operation ... 365

12.2.1 16-Bit Timer Counter .. 365
12.2.2 Starting the Timer .. 366
12.2.3 Timer Mode Control ... 366
12.2.4 Capture/Compare Blocks ... 370
12.2.5 Output Unit .. 371
12.2.6 Timer_A Interrupts ... 375

12.3 Timer_A Registers ... 377
12.3.1 TACTL, Timer_A Control Register ... 378
12.3.2 TAR, Timer_A Register ... 379
12.3.3 TACCRx, Timer_A Capture/Compare Register x .. 379
12.3.4 TACCTLx, Capture/Compare Control Register .. 380
12.3.5 TAIV, Timer_A Interrupt Vector Register ... 381

13 Timer_B .. 383
13.1 Timer_B Introduction .. 384

13.1.1 Similarities and Differences From Timer_A .. 384
13.2 Timer_B Operation ... 386

13.2.1 16-Bit Timer Counter .. 386
13.2.2 Starting the Timer .. 386
13.2.3 Timer Mode Control ... 386
13.2.4 Capture/Compare Blocks ... 390
13.2.5 Output Unit .. 393

6 Contents SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

13.2.6 Timer_B Interrupts ... 397
13.3 Timer_B Registers ... 399

13.3.1 Timer_B Control Register TBCTL ... 400
13.3.2 TBR, Timer_B Register ... 401
13.3.3 TBCCRx, Timer_B Capture/Compare Register x .. 401
13.3.4 TBCCTLx, Capture/Compare Control Register .. 402
13.3.5 TBIV, Timer_B Interrupt Vector Register ... 403

14 Universal Serial Interface (USI) .. 405
14.1 USI Introduction .. 406
14.2 USI Operation .. 409

14.2.1 USI Initialization .. 409
14.2.2 USI Clock Generation ... 409
14.2.3 SPI Mode ... 410
14.2.4 I2C Mode .. 412

14.3 USI Registers ... 415
14.3.1 USICTL0, USI Control Register 0 .. 416
14.3.2 USICTL1, USI Control Register 1 .. 417
14.3.3 USICKCTL, USI Clock Control Register .. 418
14.3.4 USICNT, USI Bit Counter Register .. 418
14.3.5 USISRL, USI Low Byte Shift Register ... 419
14.3.6 USISRH, USI High Byte Shift Register .. 419

15 Universal Serial Communication Interface, UART Mode .. 421
15.1 USCI Overview ... 422
15.2 USCI Introduction: UART Mode .. 422
15.3 USCI Operation: UART Mode .. 424

15.3.1 USCI Initialization and Reset ... 424
15.3.2 Character Format .. 424
15.3.3 Asynchronous Communication Formats .. 424
15.3.4 Automatic Baud Rate Detection .. 427
15.3.5 IrDA Encoding and Decoding .. 428
15.3.6 Automatic Error Detection .. 429
15.3.7 USCI Receive Enable ... 429
15.3.8 USCI Transmit Enable .. 430
15.3.9 UART Baud Rate Generation .. 430
15.3.10 Setting a Baud Rate .. 432
15.3.11 Transmit Bit Timing ... 433
15.3.12 Receive Bit Timing ... 433
15.3.13 Typical Baud Rates and Errors ... 435
15.3.14 Using the USCI Module in UART Mode with Low Power Modes 437
15.3.15 USCI Interrupts ... 437

15.4 USCI Registers: UART Mode .. 439
15.4.1 UCAxCTL0, USCI_Ax Control Register 0 .. 440
15.4.2 UCAxCTL1, USCI_Ax Control Register 1 .. 441
15.4.3 UCAxBR0, USCI_Ax Baud Rate Control Register 0 .. 441
15.4.4 UCAxBR1, USCI_Ax Baud Rate Control Register 1 .. 441
15.4.5 UCAxMCTL, USCI_Ax Modulation Control Register .. 442
15.4.6 UCAxSTAT, USCI_Ax Status Register ... 442
15.4.7 UCAxRXBUF, USCI_Ax Receive Buffer Register ... 443
15.4.8 UCAxTXBUF, USCI_Ax Transmit Buffer Register ... 443
15.4.9 UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register .. 443
15.4.10 UCAxIRRCTL, USCI_Ax IrDA Receive Control Register ... 443
15.4.11 UCAxABCTL, USCI_Ax Auto Baud Rate Control Register ... 444
15.4.12 IE2, Interrupt Enable Register 2 .. 444

7SLAU144I–December 2004–Revised January 2012 Contents
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

15.4.13 IFG2, Interrupt Flag Register 2 ... 444
15.4.14 UC1IE, USCI_A1 Interrupt Enable Register .. 445
15.4.15 UC1IFG, USCI_A1 Interrupt Flag Register ... 445

16 Universal Serial Communication Interface, SPI Mode ... 447
16.1 USCI Overview ... 448
16.2 USCI Introduction: SPI Mode ... 448
16.3 USCI Operation: SPI Mode ... 450

16.3.1 USCI Initialization and Reset ... 450
16.3.2 Character Format .. 451
16.3.3 Master Mode .. 451
16.3.4 Slave Mode ... 452
16.3.5 SPI Enable .. 453
16.3.6 Serial Clock Control ... 453
16.3.7 Using the SPI Mode With Low-Power Modes .. 454
16.3.8 SPI Interrupts ... 454

16.4 USCI Registers: SPI Mode ... 456
16.4.1 UCAxCTL0, USCI_Ax Control Register 0, UCBxCTL0, USCI_Bx Control Register 0 457
16.4.2 UCAxCTL1, USCI_Ax Control Register 1, UCBxCTL1, USCI_Bx Control Register 1 457
16.4.3 UCAxBR0, USCI_Ax Bit Rate Control Register 0, UCBxBR0, USCI_Bx Bit Rate Control Register

0 ... 458
16.4.4 UCAxBR1, USCI_Ax Bit Rate Control Register 1, UCBxBR1, USCI_Bx Bit Rate Control Register

1 ... 458
16.4.5 UCAxSTAT, USCI_Ax Status Register, UCBxSTAT, USCI_Bx Status Register 458
16.4.6 UCAxRXBUF, USCI_Ax Receive Buffer Register, UCBxRXBUF, USCI_Bx Receive Buffer

Register .. 458
16.4.7 UCAxTXBUF, USCI_Ax Transmit Buffer Register, UCBxTXBUF, USCI_Bx Transmit Buffer

Register .. 459
16.4.8 IE2, Interrupt Enable Register 2 ... 459
16.4.9 IFG2, Interrupt Flag Register 2 ... 459
16.4.10 UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register .. 460
16.4.11 UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register ... 460

17 Universal Serial Communication Interface, I2C Mode .. 461
17.1 USCI Overview ... 462
17.2 USCI Introduction: I2C Mode ... 462
17.3 USCI Operation: I2C Mode .. 463

17.3.1 USCI Initialization and Reset ... 464
17.3.2 I2C Serial Data .. 464
17.3.3 I2C Addressing Modes ... 465
17.3.4 I2C Module Operating Modes ... 466
17.3.5 I2C Clock Generation and Synchronization ... 476
17.3.6 Using the USCI Module in I2C Mode with Low-Power Modes ... 477
17.3.7 USCI Interrupts in I2C Mode .. 477

17.4 USCI Registers: I2C Mode .. 479
17.4.1 UCBxCTL0, USCI_Bx Control Register 0 .. 480
17.4.2 UCBxCTL1, USCI_Bx Control Register 1 .. 481
17.4.3 UCBxBR0, USCI_Bx Baud Rate Control Register 0 .. 481
17.4.4 UCBxBR1, USCI_Bx Baud Rate Control Register 1 .. 481
17.4.5 UCBxSTAT, USCI_Bx Status Register ... 482
17.4.6 UCBxRXBUF, USCI_Bx Receive Buffer Register ... 482
17.4.7 UCBxTXBUF, USCI_Bx Transmit Buffer Register ... 482
17.4.8 UCBxI2COA, USCIBx I2C Own Address Register ... 483
17.4.9 UCBxI2CSA, USCI_Bx I2C Slave Address Register .. 483
17.4.10 UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register .. 483
17.4.11 IE2, Interrupt Enable Register 2 .. 484

8 Contents SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

17.4.12 IFG2, Interrupt Flag Register 2 ... 484
17.4.13 UC1IE, USCI_B1 Interrupt Enable Register .. 484
17.4.14 UC1IFG, USCI_B1 Interrupt Flag Register ... 485

18 USART Peripheral Interface, UART Mode .. 487
18.1 USART Introduction: UART Mode ... 488
18.2 USART Operation: UART Mode ... 489

18.2.1 USART Initialization and Reset .. 489
18.2.2 Character Format .. 490
18.2.3 Asynchronous Communication Formats .. 490
18.2.4 USART Receive Enable .. 493
18.2.5 USART Transmit Enable .. 493
18.2.6 USART Baud Rate Generation .. 494
18.2.7 USART Interrupts .. 500

18.3 USART Registers: UART Mode .. 503
18.3.1 UxCTL, USART Control Register .. 504
18.3.2 UxTCTL, USART Transmit Control Register ... 505
18.3.3 UxRCTL, USART Receive Control Register ... 506
18.3.4 UxBR0, USART Baud Rate Control Register 0 .. 506
18.3.5 UxBR1, USART Baud Rate Control Register 1 .. 506
18.3.6 UxMCTL, USART Modulation Control Register .. 507
18.3.7 UxRXBUF, USART Receive Buffer Register ... 507
18.3.8 UxTXBUF, USART Transmit Buffer Register .. 507
18.3.9 ME1, Module Enable Register 1 ... 507
18.3.10 ME2, Module Enable Register 2 .. 507
18.3.11 IE1, Interrupt Enable Register 1 .. 508
18.3.12 IE2, Interrupt Enable Register 2 .. 508
18.3.13 IFG1, Interrupt Flag Register 1 ... 508
18.3.14 IFG2, Interrupt Flag Register 2 ... 509

19 USART Peripheral Interface, SPI Mode ... 511
19.1 USART Introduction: SPI Mode .. 512
19.2 USART Operation: SPI Mode .. 513

19.2.1 USART Initialization and Reset .. 513
19.2.2 Master Mode .. 514
19.2.3 Slave Mode ... 514
19.2.4 SPI Enable .. 515
19.2.5 Serial Clock Control ... 516
19.2.6 SPI Interrupts ... 518

19.3 USART Registers: SPI Mode ... 520
19.3.1 UxCTL, USART Control Register .. 521
19.3.2 UxTCTL, USART Transmit Control Register ... 521
19.3.3 UxRCTL, USART Receive Control Register ... 522
19.3.4 UxBR0, USART Baud Rate Control Register 0 .. 522
19.3.5 UxBR1, USART Baud Rate Control Register 1 .. 522
19.3.6 UxMCTL, USART Modulation Control Register .. 522
19.3.7 UxRXBUF, USART Receive Buffer Register ... 522
19.3.8 UxTXBUF, USART Transmit Buffer Register .. 523
19.3.9 ME1, Module Enable Register 1 ... 523
19.3.10 ME2, Module Enable Register 2 .. 523
19.3.11 IE1, Interrupt Enable Register 1 .. 523
19.3.12 IE2, Interrupt Enable Register 2 .. 524
19.3.13 IFG1, Interrupt Flag Register 1 ... 524
19.3.14 IFG2, Interrupt Flag Register 2 ... 524

9SLAU144I–December 2004–Revised January 2012 Contents
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

20 OA ... 525
20.1 OA Introduction ... 526
20.2 OA Operation ... 527

20.2.1 OA Amplifier .. 528
20.2.2 OA Input ... 528
20.2.3 OA Output and Feedback Routing ... 528
20.2.4 OA Configurations ... 528

20.3 OA Registers ... 534
20.3.1 OAxCTL0, Opamp Control Register 0 .. 535
20.3.2 OAxCTL1, Opamp Control Register 1 .. 536

21 Comparator_A+ ... 537
21.1 Comparator_A+ Introduction ... 538
21.2 Comparator_A+ Operation .. 539

21.2.1 Comparator ... 539
21.2.2 Input Analog Switches ... 539
21.2.3 Input Short Switch ... 540
21.2.4 Output Filter .. 540
21.2.5 Voltage Reference Generator .. 541
21.2.6 Comparator_A+, Port Disable Register CAPD ... 541
21.2.7 Comparator_A+ Interrupts .. 542
21.2.8 Comparator_A+ Used to Measure Resistive Elements ... 542

21.3 Comparator_A+ Registers .. 544
21.3.1 CACTL1, Comparator_A+ Control Register 1 .. 545
21.3.2 CACTL2, Comparator_A+, Control Register ... 546
21.3.3 CAPD, Comparator_A+, Port Disable Register .. 546

22 ADC10 .. 547
22.1 ADC10 Introduction .. 548
22.2 ADC10 Operation .. 550

22.2.1 10-Bit ADC Core ... 550
22.2.2 ADC10 Inputs and Multiplexer ... 550
22.2.3 Voltage Reference Generator .. 551
22.2.4 Auto Power-Down .. 551
22.2.5 Sample and Conversion Timing .. 552
22.2.6 Conversion Modes ... 553
22.2.7 ADC10 Data Transfer Controller ... 558
22.2.8 Using the Integrated Temperature Sensor ... 563
22.2.9 ADC10 Grounding and Noise Considerations ... 564
22.2.10 ADC10 Interrupts ... 565

22.3 ADC10 Registers ... 566
22.3.1 ADC10CTL0, ADC10 Control Register 0 ... 567
22.3.2 ADC10CTL1, ADC10 Control Register 1 ... 569
22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0 ... 570
22.3.4 ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430F22xx only) 570
22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format ... 570
22.3.6 ADC10MEM, Conversion-Memory Register, 2s Complement Format 571
22.3.7 ADC10DTC0, Data Transfer Control Register 0 ... 571
22.3.8 ADC10DTC1, Data Transfer Control Register 1 ... 571
22.3.9 ADC10SA, Start Address Register for Data Transfer ... 572

23 ADC12 .. 573
23.1 ADC12 Introduction .. 574
23.2 ADC12 Operation .. 576

23.2.1 12-Bit ADC Core ... 576
23.2.2 ADC12 Inputs and Multiplexer ... 576

10 Contents SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

23.2.3 Voltage Reference Generator .. 577
23.2.4 Sample and Conversion Timing .. 577
23.2.5 Conversion Memory ... 579
23.2.6 ADC12 Conversion Modes ... 579
23.2.7 Using the Integrated Temperature Sensor ... 584
23.2.8 ADC12 Grounding and Noise Considerations ... 585
23.2.9 ADC12 Interrupts .. 586

23.3 ADC12 Registers ... 588
23.3.1 ADC12CTL0, ADC12 Control Register 0 ... 589
23.3.2 ADC12CTL1, ADC12 Control Register 1 ... 591
23.3.3 ADC12MEMx, ADC12 Conversion Memory Registers .. 592
23.3.4 ADC12MCTLx, ADC12 Conversion Memory Control Registers ... 592
23.3.5 ADC12IE, ADC12 Interrupt Enable Register ... 593
23.3.6 ADC12IFG, ADC12 Interrupt Flag Register .. 593
23.3.7 ADC12IV, ADC12 Interrupt Vector Register .. 594

24 TLV Structure .. 595
24.1 TLV Introduction .. 596
24.2 Supported Tags .. 597

24.2.1 DCO Calibration TLV Structure .. 597
24.2.2 TAG_ADC12_1 Calibration TLV Structure ... 598

24.3 Checking Integrity of SegmentA ... 600
24.4 Parsing TLV Structure of Segment A .. 600

25 DAC12 .. 601
25.1 DAC12 Introduction .. 602
25.2 DAC12 Operation .. 604

25.2.1 DAC12 Core .. 604
25.2.2 DAC12 Reference ... 604
25.2.3 Updating the DAC12 Voltage Output .. 604
25.2.4 DAC12_xDAT Data Format ... 605
25.2.5 DAC12 Output Amplifier Offset Calibration ... 605
25.2.6 Grouping Multiple DAC12 Modules .. 606
25.2.7 DAC12 Interrupts .. 607

25.3 DAC12 Registers ... 608
25.3.1 DAC12_xCTL, DAC12 Control Register .. 609
25.3.2 DAC12_xDAT, DAC12 Data Register ... 610

26 SD16_A ... 611
26.1 SD16_A Introduction ... 612
26.2 SD16_A Operation ... 614

26.2.1 ADC Core ... 614
26.2.2 Analog Input Range and PGA .. 614
26.2.3 Voltage Reference Generator .. 614
26.2.4 Auto Power-Down .. 614
26.2.5 Analog Input Pair Selection ... 614
26.2.6 Analog Input Characteristics .. 615
26.2.7 Digital Filter ... 616
26.2.8 Conversion Memory Register: SD16MEM0 .. 620
26.2.9 Conversion Modes ... 621
26.2.10 Using the Integrated Temperature Sensor .. 621
26.2.11 Interrupt Handling .. 622

26.3 SD16_A Registers ... 624
26.3.1 SD16CTL, SD16_A Control Register .. 625
26.3.2 SD16CCTL0, SD16_A Control Register 0 .. 626

11SLAU144I–December 2004–Revised January 2012 Contents
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

26.3.3 SD16INCTL0, SD16_A Input Control Register ... 627
26.3.4 SD16MEM0, SD16_A Conversion Memory Register ... 628
26.3.5 SD16AE, SD16_A Analog Input Enable Register ... 628
26.3.6 SD16IV, SD16_A Interrupt Vector Register .. 628

27 SD24_A ... 629
27.1 SD24_A Introduction ... 630
27.2 SD24_A Operation ... 632

27.2.1 ADC Core ... 632
27.2.2 Analog Input Range and PGA .. 632
27.2.3 Voltage Reference Generator .. 632
27.2.4 Auto Power-Down .. 632
27.2.5 Analog Input Pair Selection ... 632
27.2.6 Analog Input Characteristics .. 633
27.2.7 Digital Filter ... 634
27.2.8 Conversion Memory Register: SD24MEMx .. 638
27.2.9 Conversion Modes ... 639
27.2.10 Conversion Operation Using Preload .. 641
27.2.11 Using the Integrated Temperature Sensor .. 642
27.2.12 Interrupt Handling .. 643

27.3 SD24_A Registers ... 645
27.3.1 SD24CTL, SD24_A Control Register .. 646
27.3.2 SD24CCTLx, SD24_A Channel x Control Register ... 647
27.3.3 SD24INCTLx, SD24_A Channel x Input Control Register .. 648
27.3.4 SD24MEMx, SD24_A Channel x Conversion Memory Register ... 649
27.3.5 SD24PREx, SD24_A Channel x Preload Register .. 649
27.3.6 SD24AE, SD24_A Analog Input Enable Register ... 649
27.3.7 SD24IV, SD24_A Interrupt Vector Register .. 650

28 Embedded Emulation Module (EEM) .. 651
28.1 EEM Introduction ... 652
28.2 EEM Building Blocks .. 654

28.2.1 Triggers ... 654
28.2.2 Trigger Sequencer ... 654
28.2.3 State Storage (Internal Trace Buffer) .. 654
28.2.4 Clock Control ... 654

28.3 EEM Configurations ... 655

Revision History ... 657

12 Contents SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

List of Figures

1-1. MSP430 Architecture ... 26

1-2. Memory Map ... 27

1-3. Bits, Bytes, and Words in a Byte-Organized Memory .. 28

2-1. Power-On Reset and Power-Up Clear Schematic .. 32

2-2. Brownout Timing... 33

2-3. Interrupt Priority.. 34

2-4. Block Diagram of (Non)-Maskable Interrupt Sources... 35

2-5. NMI Interrupt Handler ... 37

2-6. Interrupt Processing... 38

2-7. Return From Interrupt ... 39

2-8. Typical Current Consumption of 'F21x1 Devices vs Operating Modes... 41

2-9. Operating Modes For Basic Clock System... 42

3-1. CPU Block Diagram ... 47

3-2. Program Counter .. 47

3-3. Stack Counter.. 48

3-4. Stack Usage.. 48

3-5. PUSH SP - POP SP Sequence ... 48

3-6. Status Register Bits ... 49

3-7. Register-Byte/Byte-Register Operations.. 50

3-8. Operand Fetch Operation .. 57

3-9. Double Operand Instruction Format .. 60

3-10. Single Operand Instruction Format.. 61

3-11. Jump Instruction Format.. 62

3-12. Core Instruction Map.. 65

3-13. Decrement Overlap.. 83

3-14. Main Program Interrupt.. 103

3-15. Destination Operand – Arithmetic Shift Left .. 104

3-16. Destination Operand - Carry Left Shift .. 105

3-17. Destination Operand – Arithmetic Right Shift .. 106

3-18. Destination Operand - Carry Right Shift .. 107

3-19. Destination Operand - Byte Swap ... 114

3-20. Destination Operand - Sign Extension .. 115

4-1. MSP430X CPU Block Diagram .. 121

4-2. PC Storage on the Stack for Interrupts ... 122

4-3. Program Counter... 123

4-4. PC Storage on the Stack for CALLA .. 123

4-5. Stack Pointer ... 124

4-6. Stack Usage .. 124

4-7. PUSHX.A Format on the Stack .. 124

4-8. PUSH SP, POP SP Sequence ... 124

4-9. SR Bits .. 125

4-10. Register-Byte/Byte-Register Operation ... 127

4-11. Register-Word Operation ... 127

4-12. Word-Register Operation ... 128

4-13. Register – Address-Word Operation .. 128

4-14. Address-Word – Register Operation .. 129

4-15. Indexed Mode in Lower 64KB.. 131

13SLAU144I–December 2004–Revised January 2012 List of Figures
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

4-16. Indexed Mode in Upper Memory... 132

4-17. Overflow and Underflow for Indexed Mode... 133

4-18. Symbolic Mode Running in Lower 64KB.. 136

4-19. Symbolic Mode Running in Upper Memory .. 137

4-20. Overflow and Underflow for Symbolic Mode ... 138

4-21. MSP430 Double-Operand Instruction Format.. 146

4-22. MSP430 Single-Operand Instructions ... 147

4-23. Format of Conditional Jump Instructions.. 148

4-24. Extension Word for Register Modes... 151

4-25. Extension Word for Non-Register Modes... 153

4-26. Example for Extended Register/Register Instruction .. 154

4-27. Example for Extended Immediate/Indexed Instruction.. 154

4-28. Extended Format I Instruction Formats ... 156

4-29. 20-Bit Addresses in Memory ... 156

4-30. Extended Format II Instruction Format.. 157

4-31. PUSHM/POPM Instruction Format .. 158

4-32. RRCM, RRAM, RRUM, and RLAM Instruction Format ... 158

4-33. BRA Instruction Format ... 158

4-34. CALLA Instruction Format .. 158

4-35. Decrement Overlap .. 184

4-36. Stack After a RET Instruction .. 203

4-37. Destination Operand—Arithmetic Shift Left .. 205

4-38. Destination Operand—Carry Left Shift .. 206

4-39. Rotate Right Arithmetically RRA.B and RRA.W ... 207

4-40. Rotate Right Through Carry RRC.B and RRC.W.. 208

4-41. Swap Bytes in Memory.. 215

4-42. Swap Bytes in a Register ... 215

4-43. Rotate Left Arithmetically—RLAM[.W] and RLAM.A .. 242

4-44. Destination Operand-Arithmetic Shift Left .. 243

4-45. Destination Operand-Carry Left Shift.. 244

4-46. Rotate Right Arithmetically RRAM[.W] and RRAM.A ... 245

4-47. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode ... 247

4-48. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode ... 247

4-49. Rotate Right Through Carry RRCM[.W] and RRCM.A.. 248

4-50. Rotate Right Through Carry RRCX(.B,.A) – Register Mode ... 250

4-51. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode ... 250

4-52. Rotate Right Unsigned RRUM[.W] and RRUM.A.. 251

4-53. Rotate Right Unsigned RRUX(.B,.A) – Register Mode ... 252

4-54. Swap Bytes SWPBX.A Register Mode.. 256

4-55. Swap Bytes SWPBX.A In Memory .. 256

4-56. Swap Bytes SWPBX[.W] Register Mode ... 257

4-57. Swap Bytes SWPBX[.W] In Memory .. 257

4-58. Sign Extend SXTX.A .. 258

4-59. Sign Extend SXTX[.W] .. 258

5-1. Basic Clock Module+ Block Diagram − MSP430F2xx .. 279

5-2. Basic Clock Module+ Block Diagram − MSP430AFE2xx... 280

5-3. Off Signals for the LFXT1 Oscillator... 282

5-4. Off Signals for Oscillator XT2 .. 282

5-5. On/Off Control of DCO .. 283

14 List of Figures SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

5-6. Typical DCOx Range and RSELx Steps.. 283

5-7. Modulator Patterns... 284

5-8. Oscillator-Fault Logic .. 285

5-9. Switch MCLK from DCOCLK to LFXT1CLK.. 286

6-1. DMA Controller Block Diagram... 295

6-2. DMA Addressing Modes .. 296

6-3. DMA Single Transfer State Diagram .. 298

6-4. DMA Block Transfer State Diagram ... 300

6-5. DMA Burst-Block Transfer State Diagram .. 302

7-1. Flash Memory Module Block Diagram .. 316

7-2. Flash Memory Segments, 32-KB Example ... 317

7-3. Flash Memory Timing Generator Block Diagram .. 318

7-4. Erase Cycle Timing .. 319

7-5. Erase Cycle from Within Flash Memory .. 320

7-6. Erase Cycle from Within RAM.. 321

7-7. Byte/Word Write Timing ... 322

7-8. Initiating a Byte/Word Write from Flash ... 323

7-9. Initiating a Byte/Word Write from RAM.. 324

7-10. Block-Write Cycle Timing ... 325

7-11. Block Write Flow ... 326

7-12. User-Developed Programming Solution .. 329

8-1. Example Circuitry and Configuration using the Pin Oscillator.. 338

8-2. Typical Pin-Oscillation Frequency ... 339

9-1. SVS Block Diagram.. 344

9-2. Operating Levels for SVS and Brownout/Reset Circuit ... 346

10-1. Watchdog Timer+ Block Diagram.. 351

11-1. Hardware Multiplier Block Diagram.. 358

12-1. Timer_A Block Diagram ... 365

12-2. Up Mode .. 366

12-3. Up Mode Flag Setting ... 367

12-4. Continuous Mode .. 367

12-5. Continuous Mode Flag Setting ... 367

12-6. Continuous Mode Time Intervals .. 368

12-7. Up/Down Mode ... 368

12-8. Up/Down Mode Flag Setting.. 369

12-9. Output Unit in Up/Down Mode ... 370

12-10. Capture Signal (SCS = 1)... 370

12-11. Capture Cycle .. 371

12-12. Output Example—Timer in Up Mode.. 372

12-13. Output Example—Timer in Continuous Mode.. 373

12-14. Output Example—Timer in Up/Down Mode .. 374

12-15. Capture/Compare TACCR0 Interrupt Flag.. 375

13-1. Timer_B Block Diagram ... 385

13-2. Up Mode .. 387

13-3. Up Mode Flag Setting ... 387

13-4. Continuous Mode .. 387

13-5. Continuous Mode Flag Setting ... 388

13-6. Continuous Mode Time Intervals .. 388

13-7. Up/Down Mode ... 389

15SLAU144I–December 2004–Revised January 2012 List of Figures
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

13-8. Up/Down Mode Flag Setting.. 389

13-9. Output Unit in Up/Down Mode ... 390

13-10. Capture Signal (SCS = 1)... 390

13-11. Capture Cycle .. 391

13-12. Output Example, Timer in Up Mode ... 394

13-13. Output Example, Timer in Continuous Mode... 395

13-14. Output Example, Timer in Up/Down Mode ... 396

13-15. Capture/Compare TBCCR0 Interrupt Flag.. 397

14-1. USI Block Diagram: SPI Mode ... 407

14-2. USI Block Diagram: I2C Mode .. 408

14-3. SPI Timing .. 410

14-4. Data Adjustments for 7-Bit SPI Data .. 411

15-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)... 423

15-2. Character Format .. 424

15-3. Idle-Line Format.. 425

15-4. Address-Bit Multiprocessor Format.. 426

15-5. Auto Baud Rate Detection - Break/Synch Sequence ... 427

15-6. Auto Baud Rate Detection - Synch Field ... 427

15-7. UART vs IrDA Data Format... 428

15-8. Glitch Suppression, USCI Receive Not Started.. 430

15-9. Glitch Suppression, USCI Activated ... 430

15-10. BITCLK Baud Rate Timing With UCOS16 = 0 ... 431

15-11. Receive Error ... 434

16-1. USCI Block Diagram: SPI Mode ... 449

16-2. USCI Master and External Slave .. 451

16-3. USCI Slave and External Master .. 452

16-4. USCI SPI Timing with UCMSB = 1 .. 454

17-1. USCI Block Diagram: I2C Mode .. 463

17-2. I2C Bus Connection Diagram ... 464

17-3. I2C Module Data Transfer ... 464

17-4. Bit Transfer on the I2C Bus ... 465

17-5. I2C Module 7-Bit Addressing Format ... 465

17-6. I2C Module 10-Bit Addressing Format... 465

17-7. I2C Module Addressing Format with Repeated START Condition... 466

17-8. I2C Time Line Legend ... 466

17-9. I2C Slave Transmitter Mode .. 467

17-10. I2C Slave Receiver Mode ... 469

17-11. I2C Slave 10-bit Addressing Mode ... 470

17-12. I2C Master Transmitter Mode ... 472

17-13. I2C Master Receiver Mode .. 474

17-14. I2C Master 10-bit Addressing Mode ... 475

17-15. Arbitration Procedure Between Two Master Transmitters .. 475

17-16. Synchronization of Two I2C Clock Generators During Arbitration ... 476

18-1. USART Block Diagram: UART Mode ... 489

18-2. Character Format .. 490

18-3. Idle-Line Format.. 491

18-4. Address-Bit Multiprocessor Format.. 492

18-5. State Diagram of Receiver Enable .. 493

18-6. State Diagram of Transmitter Enable ... 494

16 List of Figures SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

18-7. MSP430 Baud Rate Generator... 494

18-8. BITCLK Baud Rate Timing ... 495

18-9. Receive Error ... 498

18-10. Transmit Interrupt Operation ... 500

18-11. Receive Interrupt Operation .. 500

18-12. Glitch Suppression, USART Receive Not Started ... 502

18-13. Glitch Suppression, USART Activated .. 502

19-1. USART Block Diagram: SPI Mode .. 512

19-2. USART Master and External Slave.. 514

19-3. USART Slave and External Master.. 515

19-4. Master Transmit Enable State Diagram... 515

19-5. Slave Transmit Enable State Diagram .. 516

19-6. SPI Master Receive-Enable State Diagram .. 516

19-7. SPI Slave Receive-Enable State Diagram.. 516

19-8. SPI Baud Rate Generator... 517

19-9. USART SPI Timing .. 517

19-10. Transmit Interrupt Operation ... 518

19-11. Receive Interrupt Operation .. 519

19-12. Receive Interrupt State Diagram... 519

20-1. OA Block Diagram ... 527

20-2. Two-Opamp Differential Amplifier.. 530

20-3. Two-Opamp Differential Amplifier OAx Interconnections ... 531

20-4. Three-Opamp Differential Amplifier.. 532

20-5. Three-Opamp Differential Amplifier OAx Interconnections ... 533

21-1. Comparator_A+ Block Diagram .. 538

21-2. Comparator_A+ Sample-And-Hold .. 540

21-3. RC-Filter Response at the Output of the Comparator... 541

21-4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer 541

21-5. Comparator_A+ Interrupt System.. 542

21-6. Temperature Measurement System ... 542

21-7. Timing for Temperature Measurement Systems... 543

22-1. ADC10 Block Diagram .. 549

22-2. Analog Multiplexer ... 550

22-3. Sample Timing ... 552

22-4. Analog Input Equivalent Circuit .. 552

22-5. Single-Channel Single-Conversion Mode... 554

22-6. Sequence-of-Channels Mode .. 555

22-7. Repeat-Single-Channel Mode .. 556

22-8. Repeat-Sequence-of-Channels Mode... 557

22-9. One-Block Transfer .. 559

22-10. State Diagram for Data Transfer Control in One-Block Transfer Mode... 560

22-11. Two-Block Transfer .. 561

22-12. State Diagram for Data Transfer Control in Two-Block Transfer Mode... 562

22-13. Typical Temperature Sensor Transfer Function ... 564

22-14. ADC10 Grounding and Noise Considerations (Internal VREF) .. 564

22-15. ADC10 Grounding and Noise Considerations (External VREF) ... 565

22-16. ADC10 Interrupt System .. 565

23-1. ADC12 Block Diagram .. 575

23-2. Analog Multiplexer ... 576

17SLAU144I–December 2004–Revised January 2012 List of Figures
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

23-3. Extended Sample Mode... 578

23-4. Pulse Sample Mode ... 578

23-5. Analog Input Equivalent Circuit .. 579

23-6. Single-Channel, Single-Conversion Mode .. 580

23-7. Sequence-of-Channels Mode .. 581

23-8. Repeat-Single-Channel Mode .. 582

23-9. Repeat-Sequence-of-Channels Mode... 583

23-10. Typical Temperature Sensor Transfer Function ... 585

23-11. ADC12 Grounding and Noise Considerations.. 586

25-1. DAC12 Block Diagram .. 603

25-2. Output Voltage vs DAC12 Data, 12-Bit, Straight Binary Mode .. 605

25-3. Output Voltage vs DAC12 Data, 12-Bit, 2s-Compliment Mode .. 605

25-4. Negative Offset... 606

25-5. Positive Offset .. 606

25-6. DAC12 Group Update Example, Timer_A3 Trigger ... 607

26-1. SD16_A Block Diagram ... 613

26-2. Analog Input Equivalent Circuit .. 615

26-3. Comb Filter Frequency Response With OSR = 32 .. 616

26-4. Digital Filter Step Response and Conversion Points.. 617

26-5. Used Bits of Digital Filter Output... 619

26-6. Input Voltage vs Digital Output... 620

26-7. Single Channel Operation .. 621

26-8. Typical Temperature Sensor Transfer Function ... 622

27-1. Block Diagram of the SD24_A ... 631

27-2. Analog Input Equivalent Circuit .. 633

27-3. Comb Filter Frequency Response With OSR = 32 .. 635

27-4. Digital Filter Step Response and Conversion Points.. 635

27-5. Used Bits of Digital Filter Output... 637

27-6. Input Voltage vs Digital Output... 638

27-7. Single Channel Operation - Example ... 639

27-8. Grouped Channel Operation - Example .. 640

27-9. Conversion Delay Using Preload - Example ... 641

27-10. Start of Conversion Using Preload - Example ... 641

27-11. Preload and Channel Synchronization .. 642

27-12. Typical Temperature Sensor Transfer Function ... 642

28-1. Large Implementation of the Embedded Emulation Module (EEM) ... 653

18 List of Figures SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

List of Tables

1-1. MSP430x2xx Family Enhancements.. 29

2-1. Interrupt Sources, Flags, and Vectors .. 40

2-2. Operating Modes For Basic Clock System... 42

2-3. Connection of Unused Pins .. 44

3-1. Description of Status Register Bits.. 49

3-2. Values of Constant Generators CG1, CG2 .. 49

3-3. Source/Destination Operand Addressing Modes.. 51

3-4. Register Mode Description ... 52

3-5. Indexed Mode Description ... 53

3-6. Symbolic Mode Description .. 54

3-7. Absolute Mode Description... 55

3-8. Indirect Mode Description .. 56

3-9. Indirect Autoincrement Mode Description .. 57

3-10. Immediate Mode Description... 58

3-11. Double Operand Instructions .. 60

3-12. Single Operand Instructions.. 61

3-13. Jump Instructions.. 62

3-14. Interrupt and Reset Cycles ... 63

3-15. Format-II Instruction Cycles and Lengths .. 63

3-16. Format 1 Instruction Cycles and Lengths .. 64

3-17. MSP430 Instruction Set .. 65

4-1. SR Bit Description ... 125

4-2. Values of Constant Generators CG1, CG2... 126

4-3. Source/Destination Addressing .. 129

4-4. MSP430 Double-Operand Instructions.. 147

4-5. MSP430 Single-Operand Instructions ... 147

4-6. Conditional Jump Instructions .. 148

4-7. Emulated Instructions ... 148

4-8. Interrupt, Return, and Reset Cycles and Length... 149

4-9. MSP430 Format II Instruction Cycles and Length ... 149

4-10. MSP430 Format I Instructions Cycles and Length .. 150

4-11. Description of the Extension Word Bits for Register Mode... 151

4-12. Description of Extension Word Bits for Non-Register Modes .. 153

4-13. Extended Double-Operand Instructions... 155

4-14. Extended Single-Operand Instructions.. 157

4-15. Extended Emulated Instructions ... 159

4-16. Address Instructions, Operate on 20-Bit Register Data... 160

4-17. MSP430X Format II Instruction Cycles and Length ... 161

4-18. MSP430X Format I Instruction Cycles and Length .. 162

4-19. Address Instruction Cycles and Length ... 163

4-20. Instruction Map of MSP430X ... 164

5-1. Basic Clock Module+ Registers .. 287

6-1. DMA Transfer Modes.. 297

6-2. DMA Trigger Operation ... 303

6-3. Channel Priorities .. 305

6-4. Maximum Single-Transfer DMA Cycle Time ... 305

6-5. DMA Registers ... 308

19SLAU144I–December 2004–Revised January 2012 List of Tables
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

7-1. Erase Modes.. 319

7-2. Write Modes .. 322

7-3. Flash Access While BUSY = 1 ... 327

7-4. Flash Memory Registers .. 330

8-1. PxSEL and PxSEL2 ... 337

8-2. Digital I/O Registers ... 341

9-1. SVS Registers .. 347

10-1. Watchdog Timer+ Registers .. 354

11-1. OP1 Addresses... 359

11-2. RESHI Contents.. 359

11-3. SUMEXT Contents... 359

11-4. Hardware Multiplier Registers .. 362

12-1. Timer Modes.. 366

12-2. Output Modes .. 372

12-3. Timer_A3 Registers.. 377

13-1. Timer Modes.. 386

13-2. TBCLx Load Events ... 392

13-3. Compare Latch Operating Modes ... 392

13-4. Output Modes .. 393

13-5. Timer_B Registers ... 399

14-1. USI Registers... 415

14-2. Word Access to USI Registers ... 415

15-1. Receive Error Conditions ... 429

15-2. BITCLK Modulation Pattern .. 431

15-3. BITCLK16 Modulation Pattern ... 432

15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 .. 435

15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 .. 436

15-6. USCI_A0 Control and Status Registers... 439

15-7. USCI_A1 Control and Status Registers... 439

16-1. UCxSTE Operation .. 450

16-2. USCI_A0 and USCI_B0 Control and Status Registers ... 456

16-3. USCI_A1 and USCI_B1 Control and Status Registers ... 456

17-1. State Change Interrupt Flags... 477

17-2. USCI_B0 Control and Status Registers... 479

17-3. USCI_B1 Control and Status Registers... 479

18-1. Receive Error Conditions ... 493

18-2. Commonly Used Baud Rates, Baud Rate Data, and Errors ... 499

18-3. USART0 Control and Status Registers ... 503

18-4. USART1 Control and Status Registers ... 503

19-1. USART0 Control and Status Registers ... 520

19-2. USART1 Control and Status Registers ... 520

20-1. OA Output Configurations .. 528

20-2. OA Mode Select.. 528

20-3. Two-Opamp Differential Amplifier Control Register Settings... 530

20-4. Two-Opamp Differential Amplifier Gain Settings... 530

20-5. Three-Opamp Differential Amplifier Control Register Settings... 532

20-6. Three-Opamp Differential Amplifier Gain Settings... 532

20-7. OA Registers ... 534

21-1. Comparator_A+ Registers .. 544

20 List of Tables SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com

22-1. Conversion Mode Summary .. 553

22-2. Maximum DTC Cycle Time ... 563

22-3. ADC10 Registers... 566

23-1. Conversion Mode Summary .. 579

23-2. ADC12 Registers... 588

24-1. Example SegmentA Structure.. 596

24-2. Supported Tags (Device Specific) ... 597

24-3. DCO Calibration Data (Device Specific) .. 597

24-4. TAG_ADC12_1 Calibration Data (Device Specific) ... 598

25-1. DAC12 Full-Scale Range (VREF = VeREF+ or VREF+) .. 604

25-2. DAC12 Registers... 608

26-1. High Input Impedance Buffer ... 615

26-2. Sampling Capacitance .. 616

26-3. Data Format .. 620

26-4. Conversion Mode Summary .. 621

26-5. SD16_A Registers ... 624

27-1. High Input Impedance Buffer ... 633

27-2. Sampling Capacitance .. 634

27-3. Data Format .. 638

27-4. Conversion Mode Summary .. 639

27-5. SD24_A Registers ... 645

28-1. 2xx EEM Configurations .. 655

21SLAU144I–December 2004–Revised January 2012 List of Tables
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

22 List of Tables SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Preface
SLAU144I–December 2004–Revised January 2012

Read This First

About This Manual

This manual discusses modules and peripherals of the MSP430x2xx family of devices. Each discussion
presents the module or peripheral in a general sense. Not all features and functions of all modules or
peripherals are present on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on an individual device or
device family.

Pin functions, internal signal connections, and operational paramenters differ from device to device. The
user should consult the device-specific datasheet for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

ACLK Auxiliary Clock See Basic Clock Module
ADC Analog-to-Digital Converter
BOR Brown-Out Reset See System Resets, Interrupts, and Operating Modes
BSL Bootstrap Loader See www.ti.com/msp430for application reports
CPU Central Processing Unit See RISC 16-Bit CPU
DAC Digital-to-Analog Converter
DCO Digitally Controlled Oscillator See Basic Clock Module
dst Destination See RISC 16-Bit CPU
FLL Frequency Locked Loop See FLL+in MSP430x4xx Family User’s Guide
GIE General Interrupt Enable See System Resets, Interrupts, and Operating Modes
INT(N/2) Integer portion of N/2
I/O Input/Output See Digital I/O
ISR Interrupt Service Routine
LSB Least-Significant Bit
LSD Least-Significant Digit
LPM Low-Power Mode See System Resets, Interrupts, and Operating Modes
MAB Memory Address Bus

23SLAU144I–December 2004–Revised January 2012 Read This First
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Register Bit Conventions www.ti.com

MCLK Master Clock See Basic Clock Module
MDB Memory Data Bus
MSB Most-Significant Bit
MSD Most-Significant Digit
NMI (Non)-Maskable Interrupt See System Resets, Interrupts, and Operating Modes
PC Program Counter See RISC 16-Bit CPU
POR Power-On Reset See System Resets, Interrupts, and Operating Modes
PUC Power-Up Clear See System Resets, Interrupts, and Operating Modes
RAM Random Access Memory
SCG System Clock Generator See System Resets, Interrupts, and Operating Modes
SFR Special Function Register
SMCLK Sub-System Master Clock See Basic Clock Module
SP Stack Pointer See RISC 16-Bit CPU
SR Status Register See RISC 16-Bit CPU
src Source See RISC 16-Bit CPU
TOS Top-of-Stack See RISC 16-Bit CPU
WDT Watchdog Timer See Watchdog Timer

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial
condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

-0,-1 Condition after PUC

-(0),-(1) Condition after POR

24 Read This First SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 1
SLAU144I–December 2004–Revised January 2012

Introduction

This chapter describes the architecture of the MSP430.

Topic ... Page

1.1 Architecture .. 26
1.2 Flexible Clock System .. 26
1.3 Embedded Emulation ... 27
1.4 Address Space .. 27
1.5 MSP430x2xx Family Enhancements ... 29

25SLAU144I–December 2004–Revised January 2012 Introduction
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ACLK

Bus
Conv.

Peripheral

MAB 16-Bit

MDB 16-Bit

MCLK

SMCLK

Clock
System

Peripheral PeripheralPeripheral

Peripheral Peripheral Peripheral

Watchdog

RAM
Flash/

RISC CPU
16-Bit

J
T
A

G
/D

e
b
u
g

ACLK

SMCLK

ROM

MDB 8-Bit

JTAG

Architecture www.ti.com

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock system that interconnect
using a von-Neumann common memory address bus (MAB) and memory data bus (MDB) (see
Figure 1-1). Partnering a modern CPU with modular memory-mapped analog and digital peripherals, the
MSP430 offers solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

• Ultralow-power architecture extends battery life

– 0.1 µA RAM retention

– 0.8 µA real-time clock mode

– 250 µA/MIPS active

• High-performance analog ideal for precision measurement

– Comparator-gated timers for measuring resistive elements

• 16-bit RISC CPU enables new applications at a fraction of the code size.

– Large register file eliminates working file bottleneck

– Compact core design reduces power consumption and cost

– Optimized for modern high-level programming

– Only 27 core instructions and seven addressing modes

– Extensive vectored-interrupt capability

• In-system programmable Flash permits flexible code changes, field upgrades and data logging

Figure 1-1. MSP430 Architecture

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A low-frequency auxiliary clock
(ACLK) is driven directly from a common 32-kHz watch crystal. The ACLK can be used for a background
real-time clock self wake-up function. An integrated high-speed digitally controlled oscillator (DCO) can
source the master clock (MCLK) used by the CPU and high-speed peripherals. By design, the DCO is
active and stable in less than 2 µs at 1 MHz. MSP430-based solutions effectively use the
high-performance 16-bit RISC CPU in very short bursts.

• Low-frequency auxiliary clock = Ultralow-power stand-by mode

• High-speed master clock = High performance signal processing

26 Introduction SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0FFE0h

Interrupt Vector Table

Flash/ROM

RAM

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

0FFFFh

0FFDFh

0200h

01FFh

0100h

0FFh

010h

0Fh

0h

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

10000h

Flash/ROM
1FFFFh

Access

Word/Byte

www.ti.com Embedded Emulation

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is accessed via JTAG using no
additional system resources.

The benefits of embedded emulation include:

• Unobtrusive development and debug with full-speed execution, breakpoints, and single-steps in an
application are supported.

• Development is in-system subject to the same characteristics as the final application.

• Mixed-signal integrity is preserved and not subject to cabling interference.

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with special function registers
(SFRs), peripherals, RAM, and Flash/ROM memory as shown in Figure 1-2. See the device-specific data
sheets for specific memory maps. Code access are always performed on even addresses. Data can be
accessed as bytes or words.

The addressable memory space is currently 128 KB.

Figure 1-2. Memory Map

1.4.1 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM present and varies by device. The
end address for Flash/ROM is 0x0FFFF for devices with less that 60KB of Flash/ROM. Flash can be used
for both code and data. Word or byte tables can be stored and used in Flash/ROM without the need to
copy the tables to RAM before using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM address space, with the
highest priority interrupt vector at the highest Flash/ROM word address (0x0FFFE).

27SLAU144I–December 2004–Revised January 2012 Introduction
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15

7

14

6

. . Bits . .

. . Bits . .

9

1

8

0

Byte

Byte

Word (High Byte)

Word (Low Byte)

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Address Space www.ti.com

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM present and varies by
device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space from 0100 to 01FFh is
reserved for 16-bit peripheral modules. These modules should be accessed with word instructions. If byte
instructions are used, only even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to 0FFh is reserved for 8-bit peripheral modules. These modules should be
accessed with byte instructions. Read access of byte modules using word instructions results in
unpredictable data in the high byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located in the lower 16 bytes of the
address space, and are organized by byte. SFRs must be accessed using byte instructions only. See the
device-specific data sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even addresses as shown in
Figure 1-3. When using word instructions, only even addresses may be used. The low byte of a word is
always an even address. The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address xxx4h, and the high byte of
that word is located at address xxx5h.

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

28 Introduction SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430x2xx Family Enhancements

1.5 MSP430x2xx Family Enhancements

Table 1-1 highlights enhancements made to the MSP430x2xx family. The enhancements are discussed
fully in the following chapters, or in the case of improved device parameters, shown in the device-specific
data sheet.

Table 1-1. MSP430x2xx Family Enhancements

Subject Enhancement

• Brownout reset is included on all MSP430x2xx devices.
Reset • PORIFG and RSTIFG flags have been added to IFG1 to indicate the cause of a reset.

• An instruction fetch from the address range 0x0000 - 0x01FF will reset the device.

• All MSP430x2xx devices integrate the Watchdog Timer+ module (WDT+). The WDT+Watchdog Timer
ensures the clock source for the timer is never disabled.

• The LFXT1 oscillator has selectable load capacitors in LF mode.
• The LFXT1 supports up to 16-MHz crystals in HF mode.
• The LFXT1 includes oscillator fault detection in LF mode.
• The XIN and XOUT pins are shared function pins on 20- and 28-pin devices.

Basic Clock System • The external R OSCfeature of the DCO not supported on some devices. Software should not
set the LSB of the BCSCTL2 register in this case. See the device-specific data sheet for
details.

• The DCO operating frequency has been significantly increased.
• The DCO temperature stability has been significantly improved.

• The information memory has 4 segments of 64 bytes each.
• SegmentA is individually locked with the LOCKA bit.
• All information if protected from mass erase with the LOCKA bit.
• Segment erases can be interrupted by an interrupt.Flash Memory
• Flash updates can be aborted by an interrupt.
• Flash programming voltage has been lowered to 2.2 V
• Program/erase time has been reduced.
• Clock failure aborts a flash update.

• All ports have integrated pullup/pulldown resistors.
• P2.6 and P2.7 functions have been added to 20- and 28- pin devices. These are sharedDigital I/O

functions with XIN and XOUT. Software must not clear the P2SELx bits for these pins if
crystal operation is required.

Comparator_A • Comparator_A has expanded input capability with a new input multiplexer.

• Typical LPM3 current consumption has been reduced almost 50% at 3 V.Low Power
DCO startup time has been significantly reduced.

Operating frequency • The maximum operating frequency is 16 MHz at 3.3 V.

• An incorrect password causes a mass erase.BSL
• BSL entry sequence is more robust to prevent accidental entry and erasure.

29SLAU144I–December 2004–Revised January 2012 Introduction
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

30 Introduction SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 2
SLAU144I–December 2004–Revised January 2012

System Resets, Interrupts, and Operating Modes

This chapter describes the MSP430x2xx system resets, interrupts, and operating modes.

Topic ... Page

2.1 System Reset and Initialization ... 32
2.2 Interrupts ... 34
2.3 Operating Modes ... 41
2.4 Principles for Low-Power Applications .. 43
2.5 Connection of Unused Pins .. 44

31SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

POR

LatchS

R

PUC

Latch

S

R

Resetwd1

Resetwd2

S

S

Delay

RST/NMI

WDTNMI†

WDTTMSEL
†WDTQn†

WDTIFG†

EQU†

MCLK

POR

PUC
S

(from flash module)
KEYV

SVS_POR‡

0 V

VCC

0 V

Brownout

Reset

† From watchdog timer peripheral module
‡ Devices with SVS only

S

Invalid instruction fetch

~50 µs

System Reset and Initialization www.ti.com

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2-1 sources both a power-on reset (POR) and a power-up clear
(PUC) signal. Different events trigger these reset signals and different initial conditions exist depending on
which signal was generated.

Figure 2-1. Power-On Reset and Power-Up Clear Schematic

A POR is a device reset. A POR is only generated by the following three events:

• Powering up the device

• A low signal on the RST/NMI pin when configured in the reset mode

• An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not generated by a PUC. The
following events trigger a PUC:

• A POR signal

• Watchdog timer expiration when in watchdog mode only

• Watchdog timer security key violation

• A Flash memory security key violation

• A CPU instruction fetch from the peripheral address range 0h to 01FFh

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply voltage is applied to or
removed from the VCC terminal. The brownout reset circuit resets the device by triggering a POR signal
when power is applied or removed. The operating levels are shown in Figure 2-2.

The POR signal becomes active when VCC crosses the VCC(start) level. It remains active until VCC crosses the
V(B_IT+) threshold and the delay t(BOR) elapses. The delay t(BOR) is adaptive being longer for a slow ramping
VCC. The hysteresis Vhys(B_ IT-) ensures that the supply voltage must drop below V(B_IT-) to generate another
POR signal from the brownout reset circuitry.

32 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

t
(BOR)

VCC(start)

VCC

V(B_IT−)

Set Signal for
POR circuitry

V(B_IT+)

Vhys(B_IT−)

www.ti.com System Reset and Initialization

Figure 2-2. Brownout Timing

As the V(B_IT-) level is significantly above the Vmin level of the POR circuit, the BOR provides a reset for
power failures where VCC does not fall below Vmin. See device-specific data sheet for parameters.

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

• The RST/NMI pin is configured in the reset mode.

• I/O pins are switched to input mode as described in the Digital I/O chapter.

• Other peripheral modules and registers are initialized as described in their respective chapters in this
manual.

• Status register (SR) is reset.

• The watchdog timer powers up active in watchdog mode.

• Program counter (PC) is loaded with address contained at reset vector location (0FFFEh). If the reset
vectors content is 0FFFFh the device will be disabled for minimum power consumption.

2.1.2.1 Software Initialization

After a system reset, user software must initialize the MSP430 for the application requirements. The
following must occur:

• Initialize the SP, typically to the top of RAM.

• Initialize the watchdog to the requirements of the application.

• Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can be evaluated to determine
the source of the reset.

33SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Bus

Grant

Module

1

Module

2

WDT

Timer

Module

m

Module

n
1 2 1 2 1 2 1 2 1

NMIRS

GIE

CPU

OSCfault

Reset/NMI

PUC

Circuit

PUC

WDT Security Key

Priority High
Low

MAB − 5LSBs

GMIRS

Flash Security Key

Flash ACCV

Interrupts www.ti.com

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Figure 2-3. The nearer a module is to the CPU/NMIRS, the higher the priority. Interrupt priorities
determine what interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

• System reset

• (Non)-maskable NMI

• Maskable

Figure 2-3. Interrupt Priority

2.2.1 (Non)-Maskable Interrupts (NMI)

(Non)-maskable NMI interrupts are not masked by the general interrupt enable bit (GIE), but are enabled
by individual interrupt enable bits (NMIIE, ACCVIE, OFIE). When a NMI interrupt is accepted, all NMI
interrupt enable bits are automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, 0FFFCh. User software must set the required NMI interrupt enable bits
for the interrupt to be re-enabled. The block diagram for NMI sources is shown in Figure 2-4.

A (non)-maskable NMI interrupt can be generated by three sources:

• An edge on the RST/NMI pin when configured in NMI mode

• An oscillator fault occurs

• An access violation to the flash memory

34 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Flash Module

KEYV

System Reset

Generator

BOR

POR PUC

WDTQn EQU

PUC

POR

PUC POR

NMIRS

Clear

S
WDTIFG

IR

Q

WDTIE

Clear
IE1.0

PUC

POR

IRQA

WDTTMSEL

Counter

IFG1.0

WDTNMI

WDTTMSEL

WDTNMIES

Watchdog Timer Module

Clear

S

IFG1.4

PUC

Clear

IE1.4

PUC

NMIIFG

NMIIE

S

IFG1.1

Clear

IE1.1

PUC

OFIFG

OFIE

OSCFault

NMI_IRQA

IRQA: Interrupt Request Accepted

RST/NMI

S

FCTL3.2

Clear

IE1.5

ACCVIFG

ACCVIE

PUC

ACCV

WDT

S

IFG1.2

POR

PORIFG

Clear

S

IFG1.3
RSTIFG

POR

SVS_POR

www.ti.com Interrupts

Figure 2-4. Block Diagram of (Non)-Maskable Interrupt Sources

35SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Interrupts www.ti.com

2.2.1.1 Reset/NMI Pin

At power-up, the RST/NMI pin is configured in the reset mode. The function of the RST/NMI pins is
selected in the watchdog control register WDTCTL. If the RST/NMI pin is set to the reset function, the
CPU is held in the reset state as long as the RST/NMI pin is held low. After the input changes to a high
state, the CPU starts program execution at the word address stored in the reset vector, 0FFFEh, and the
RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal edge selected by the
WDTNMIES bit generates an NMI interrupt if the NMIIE bit is set. The RST/NMI flag NMIIFG is also set.

NOTE: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should not hold the
RST/NMI pin low. If a PUC occurs from a different source while the NMI signal is low, the
device will be held in the reset state because a PUC changes the RST/NMI pin to the reset
function.

NOTE: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can be generated,
depending on the actual level at the RST/NMI pin. When the NMI edge select bit is changed
before selecting the NMI mode, no NMI is generated.

2.2.1.2 Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash access violation can be
enabled to generate an NMI interrupt by setting the ACCVIE bit. The ACCVIFG flag can then be tested by
the NMI interrupt service routine to determine if the NMI was caused by a flash access violation.

2.2.1.3 Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal oscillator. The oscillator fault
can be enabled to generate an NMI interrupt by setting the OFIE bit. The OFIFG flag can then be tested
by NMI the interrupt service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the LFXT1 to LF mode, therefore
switching off the HF mode. The PUC signal also switches off the XT2 oscillator.

36 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

yes

no
OFIFG=1

yes

no
ACCVIFG=1

yes

Reset ACCVIFG

no
NMIIFG=1

Reset NMIIFGReset OFIFG

Start of NMI Interrupt Handler

Reset by HW:

OFIE, NMIIE, ACCVIE

User’s Software,

Oscillator Fault

Handler

User’s Software,

Flash Access

Violation Handler

User’s Software,

External NMI

Handler

Optional

RETI

End of NMI Interrupt

Handler

www.ti.com Interrupts

2.2.1.4 Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically resets the NMIIE, OFIE
and ACCVIE interrupt-enable bits. The user NMI service routine resets the interrupt flags and re-enables
the interrupt-enable bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

NOTE: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits should not be
set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability including the watchdog timer
overflow in interval-timer mode. Each maskable interrupt source can be disabled individually by an
interrupt enable bit, or all maskable interrupts can be disabled by the general interrupt enable (GIE) bit in
the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral module chapter in this
manual.

37SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Item1

Item2SP TOS

Item1

Item2

SP TOS

PC

SR

Before

Interrupt

After

Interrupt

Interrupts www.ti.com

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for
(non)-maskable interrupts to be requested.

2.2.3.1 Interrupt Acceptance

The interrupt latency is 5 cycles (CPUx) or 6 cycles (CPU), starting with the acceptance of an interrupt
request and lasting until the start of execution of the first instruction of the interrupt-service routine, as
shown in Figure 2-6. The interrupt logic executes the following:

1. Any currently executing instruction is completed.

2. The PC, which points to the next instruction, is pushed onto the stack.

3. The SR is pushed onto the stack.

4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last
instruction and are pending for service.

5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set
for servicing by software.

6. The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further
interrupts are disabled.

7. The content of the interrupt vector is loaded into the PC: the program continues with the interrupt
service routine at that address.

Figure 2-6. Interrupt Processing

38 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

www.ti.com Interrupts

2.2.3.2 Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles (CPU) or 3 cycles (CPUx) to execute the following actions and
is illustrated in Figure 2-7.

1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are
now in effect, regardless of the settings used during the interrupt service routine.

2. The PC pops from the stack and begins execution at the point where it was interrupted.

Figure 2-7. Return From Interrupt

2.2.3.3 Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting
is enabled, any interrupt occurring during an interrupt service routine will interrupt the routine, regardless
of the interrupt priorities.

39SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Interrupts www.ti.com

2.2.4 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to
0FFC0h, as described in Table 2-1. A vector is programmed by the user with the 16-bit address of the
corresponding interrupt service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt vector that is assigned to a
module. A dummy interrupt service routine can consist of just the RETI instruction and several interrupt
vectors can point to it.

Unassigned interrupt vectors can be used for regular program code if necessary.

Some module enable bits, interrupt enable bits, and interrupt flags are located in the SFRs. The SFRs are
located in the lower address range and are implemented in byte format. SFRs must be accessed using
byte instructions. See the device-specific data sheet for the SFR configuration.

Table 2-1. Interrupt Sources, Flags, and Vectors

Interrupt Source Interrupt Flag System Interrupt Word Address Priority

PORIFG
Power-up, external reset, watchdog, flash RSTIFG Reset 0FFFEh 31, highestpassword, illegal instruction fetch WDTIFG

KEYV

NMIIFG (non)-maskableNMI, oscillator fault, flash memory access OFIFG (non)-maskable 0FFFCh 30violation ACCVIFG (non)-maskable

device-specific 0FFFAh 29

device-specific 0FFF8h 28

device-specific 0FFF6h 27

Watchdog timer WDTIFG maskable 0FFF4h 26

device-specific 0FFF2h 25

device-specific 0FFF0h 24

device-specific 0FFEEh 23

device-specific 0FFECh 22

device-specific 0FFEAh 21

device-specific 0FFE8h 20

device-specific 0FFE6h 19

device-specific 0FFE4h 18

device-specific 0FFE2h 17

device-specific 0FFE0h 16

device-specific 0FFDEh 15

device-specific 0FFDCh 14

device-specific 0FFDAh 13

device-specific 0FFD8h 12

device-specific 0FFD6h 11

device-specific 0FFD4h 10

device-specific 0FFD2h 9

device-specific 0FFD0h 8

device-specific 0FFCEh 7

device-specific 0FFCCh 6

device-specific 0FFCAh 5

device-specific 0FFC8h 4

device-specific 0FFC6h 3

device-specific 0FFC4h 2

device-specific 0FFC2h 1

device-specific 0FFC0h 0, lowest

40 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

315

AM

300

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

200

55
32

17 11 0.9 0.7 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

I C
C

/µ
A

a
t
1
 M

H
z

www.ti.com Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses different operating modes shown
in Figure 2-9.

The operating modes take into account three different needs:

• Ultralow-power

• Speed and data throughput

• Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 'F21x1 Devices vs Operating Modes

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF, SCG0, and SCG1 bits in the
status register The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control bits in
the status register is that the present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR value is not altered during
the interrupt service routine. Program flow can be returned to a different operating mode by manipulating
the saved SR value on the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes effect immediately (see
Figure 2-9). Peripherals operating with any disabled clock are disabled until the clock becomes active. The
peripherals may also be disabled with their individual control register settings. All I/O port pins and
RAM/registers are unchanged. Wake up is possible through all enabled interrupts.

41SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Active Mode

CPU Is Active

Peripheral Modules Are Active

LPM0

CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1

SCG0 = 0

SCG1 = 0

CPUOFF = 1

SCG0 = 1

SCG1 = 0

LPM2

CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1

SCG0 = 0

SCG1 = 1
LPM3

CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4

CPU Off, MCLK Off, DCO

Off, SMCLK Off,

ACLK Off

DC Generator Off

CPUOFF = 1

OSCOFF = 1

SCG0 = 1

SCG1 = 1

RST/NMI

NMI Active

PUC RST/NMI is Reset Pin

WDT is Active

POR

WDT Active,

Security Key Violation

WDT

Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI

Reset Active
SVS_POR

WDTIFG = 0

LPM1

CPU Off, MCLK Off,

DCO off, SMCLK On,

ACLK On

DC Generator Off if DCO

not used for SMCLK

CPUOFF = 1

SCG0 = 1

SCG1 = 1

Operating Modes www.ti.com

Figure 2-9. Operating Modes For Basic Clock System

Table 2-2. Operating Modes For Basic Clock System

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled, SMCLK, ACLK are active

CPU, MCLK are disabled. DCO and DC generator are
0 1 0 1 LPM1 disabled if the DCO is not used for SMCLK. ACLK is

active.

CPU, MCLK, SMCLK, DCO are disabled. DC generator1 0 0 1 LPM2 remains enabled. ACLK is active.

CPU, MCLK, SMCLK, DCO are disabled. DC generator1 1 0 1 LPM3 disabled. ACLK is active.

1 1 1 1 LPM4 CPU and all clocks disabled

42 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Principles for Low-Power Applications

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power operating modes. The program
flow is:

• Enter interrupt service routine:

– The PC and SR are stored on the stack

– The CPUOFF, SCG1, and OSCOFF bits are automatically reset

• Options for returning from the interrupt service routine:

– The original SR is popped from the stack, restoring the previous operating mode.

– The SR bits stored on the stack can be modified within the interrupt service routine returning to a
different operating mode when the RETI instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine
BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine
BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the MSP430 clock system to
maximize the time in LPM3. LPM3 power consumption is less than 2 µA typical with both a real-time clock
function and all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU is clocked
from the DCO (normally off) which has a 1-µs wake-up.

• Use interrupts to wake the processor and control program flow.

• Peripherals should be switched on only when needed.

• Use low-power integrated peripheral modules in place of software driven functions. For example
Timer_A and Timer_B can automatically generate PWM and capture external timing, with no CPU
resources.

• Calculated branching and fast table look-ups should be used in place of flag polling and long software
calculations.

• Avoid frequent subroutine and function calls due to overhead.

• For longer software routines, single-cycle CPU registers should be used.

43SLAU144I–December 2004–Revised January 2012 System Resets, Interrupts, and Operating Modes
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Connection of Unused Pins www.ti.com

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-3.

Table 2-3. Connection of Unused Pins

Pin Potential Comment

AVCC DVCC

AVSS DVSS

VREF+ Open

VeREF+ DVSS

VREF-/VeREF- DVSS

For dedicated XIN pins only. XIN pins with shared GPIO functions should beXIN DVCC programmed to GPIO and follow Px.0 to Px.7 recomendations.

For dedicated XOUT pins only. XOUT pins with shared GPIO functions should beXOUT Open programmed to GPIO and follow Px.0 to Px.7 recomendations.

For dedicated X2IN pins only. X2IN pins with shared GPIO functions should beXT2IN DVSS programmed to GPIO and follow Px.0 to Px.7 recomendations.

For dedicated X2OUT pins only. X2OUT pins with shared GPIO functions should beXT2OUT Open programmed to GPIO and follow Px.0 to Px.7 recomendations.

Px.0 to Px.7 Open Switched to port function, output direction or input with pullup/pulldown enabled

RST/NMI DVCC or VCC 47 kΩ pullup with 10 nF (2.2 nF (1)) pulldown

Test Open 20xx, 21xx, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open
(1) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in

4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

44 System Resets, Interrupts, and Operating Modes SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 3
SLAU144I–December 2004–Revised January 2012

CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction set.

Topic ... Page

3.1 CPU Introduction ... 46
3.2 CPU Registers .. 47
3.3 Addressing Modes .. 50
3.4 Instruction Set .. 59

45SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CPU Introduction www.ti.com

3.1 CPU Introduction

The CPU incorporates features specifically designed for modern programming techniques such as
calculated branching, table processing, and the use of high-level languages such as C. The CPU can
address the complete address range without paging.

The CPU features include:

• RISC architecture with 27 instructions and 7 addressing modes.

• Orthogonal architecture with every instruction usable with every addressing mode.

• Full register access including program counter, status registers, and stack pointer.

• Single-cycle register operations.

• Large 16-bit register file reduces fetches to memory.

• 16-bit address bus allows direct access and branching throughout entire memory range.

• 16-bit data bus allows direct manipulation of word-wide arguments.

• Constant generator provides six most used immediate values and reduces code size.

• Direct memory-to-memory transfers without intermediate register holding.

• Word and byte addressing and instruction formats.

The block diagram of the CPU is shown in Figure 3-1.

46 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

015

MDB − Memory Data Bus Memory Address Bus − MAB

16

Zero, Z

Carry, C

Overflow, V

Negative, N

16−bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

MCLK

www.ti.com CPU Registers

Figure 3-1. CPU Block Diagram

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. R0, R1, R2, and R3 have dedicated functions. R4 to R15
are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an
even number of bytes (two, four, or six), and the PC is incremented accordingly. Instruction accesses in
the 64-KB address space are performed on word boundaries, and the PC is aligned to even addresses.
Figure 3-2 shows the program counter.

Figure 3-2. Program Counter
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Program Counter Bits 15 to 1 0

47SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after

a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the

stack pointer SP (SP2=SP1)

CPU Registers www.ti.com

The PC can be addressed with all instructions and addressing modes. A few examples:
MOV #LABEL,PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14,PC ; Branch indirect to address in R14

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and
interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software
with all instructions and addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM by the
user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Counter
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Stack Pointer Bits 15 to 1 0

MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h

Figure 3-4. Stack Usage

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be used in the register mode
only addressed with word instructions. The remaining combinations of addressing modes are used to
support the constant generator. Figure 3-6 shows the SR bits.

48 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com CPU Registers

Figure 3-6. Status Register Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSC CPUReserved V SCG1 SCG0 GIE N Z COFF OFF

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Table 3-1 describes the status register bits.

Table 3-1. Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B),ADDC(.B)

Positive + Positive = Negative

Negative + Negative = Positive

Otherwise reset

Set when:SUB(.B),SUBC(.B),CMP(.B)

Positive – Negative = Negative

Negative – Positive = Positive

Otherwise reset

SCG1 System clock generator 1. When set, turns off the SMCLK.

SCG0 System clock generator 0. When set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. When set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not use for MCLK or SMCLK.

CPUOFF CPU off. When set, turns off the CPU.

GIE General interrupt enable. When set, enables maskable interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. Set when the result of a byte or word operation is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the result.

Byte operation: N is set to the value of bit 7 of the result.

Z Zero bit. Set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C Carry bit. Set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator registers R2 and R3, without
requiring an additional 16-bit word of program code. The constants are selected with the source-register
addressing modes (As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 – – – – – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh 1, word processing

The constant generator advantages are:

• No special instructions required

• No additional code word for the six constants

• No code memory access required to retrieve the constant

49SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

Addressing Modes www.ti.com

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

3.2.4.1 Constant Generator - Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional, emulated instructions. For example, the single-operand
instruction
CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:
ADD 0(R3),dst

3.2.5 General-Purpose Registers R4 to R15

The twelve registers, R4-R15, are general-purpose registers. All of these registers can be used as data
registers, address pointers, or index values and can be accessed with byte or word instructions as shown
in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh 05Fh

+ 012h + 002h

0A1h 00061h

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

+ (Addressed byte) + (Low byte of register)

->(Addressed byte) ->(Low byte of register, zero to High byte)

3.3 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
can address the complete address space with no exceptions. The bit numbers in Table 3-3 describe the
contents of the As (source) and Ad (destination) mode bits.

50 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Addressing Modes

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X is stored in the next word.
Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction contains the absolute
address. X is stored in the next word. Indexed mode X(SR) is
used.

10/- Indirect register mode @Rn Rn is used as a pointer to the operand.

11/- Indirect autoincrement @Rn+ Rn is used as a pointer to the operand. Rn is incremented
afterwards by 1 for .B instructions and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction contains the immediate
constant N. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels. They have no special meaning.

51SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0A023hR10

R11

Before: After:

PC

0FA15h

PCold

0A023hR10

R11

PC PCold + 2

0A023h

Addressing Modes www.ti.com

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3-4. Register Mode Description

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

NOTE: Data in Registers

The data in the register can be accessed using word or byte instructions. If byte instructions
are used, the high byte is always 0 in the result. The status bits are handled according to the
result of the byte instructions.

52 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

00006h

Address

Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch

+0006h

01092h

01080h

+0002h

01082h

Register
Before:

00006h

Address

Space

00002h

04596h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh

www.ti.com Addressing Modes

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5. Indexed Mode Description

Assembler Code Content of ROM

MOV 2(R5),6(R6) MOV X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2) to the destination address (contents of R6 + 6). The
source and destination registers (R5 and R6) are not affected. In indexed mode, the program counter is
incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example: MOV 2(R5),6(R6);

53SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

011FEh

Address

Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

05555h

01116h

01114h

01112h 0xxxxh

0FF14h

+0F102h

0F016h

0FF16h

+011FEh

01114h

Register
Before:

011FEh

Address

Space

0F102h

04090h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

Addressing Modes www.ti.com

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3-6. Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV X(PC),Y(PC)

X = EDE – PC

Y = TONI – PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of PC + X) to the destination address TONI (contents of
PC + Y). The words after the instruction contain the differences between the PC and the source or destination
addresses. The assembler computes and inserts offsets X and Y automatically. With symbolic mode, the program
counter (PC) is incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example:

MOV EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI = 01114h

54 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

01114h

Address

Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address

Space

0F016h

04292h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

www.ti.com Addressing Modes

3.3.4 Absolute Mode

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Assembler Code Content of ROM

MOV &EDE,&TONI MOV X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the destination address TONI. The words after the instruction
contain the absolute address of the source and destination addresses. With absolute mode, the PC is
incremented automatically so that program execution continues with the next instruction.

Comment: Valid for source and destination

Example:

MOV &EDE,&TONI ;Source address EDE = 0F016h
;Dest. address TONI = 01114h

This address mode is mainly for hardware peripheral modules that are located at an absolute, fixed
address. These are addressed with absolute mode to ensure software transportability (for example,
position-independent code).

55SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0000h

Address

Space

04AEBh PC

0FF16

h
0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address

Space

04AEBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h

Addressing Modes www.ti.com

3.3.5 Indirect Register Mode

The indirect register mode is described in Table 3-8.

Table 3-8. Indirect Mode Description

Assembler Code Content of ROM

MOV @R10,0(R11) MOV @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to the destination address (contents of R11). The
registers are not modified.

Comment: Valid only for source operand. The substitute for destination operand is 0(Rd).

Example: MOV.B @R10,0(R11)

56 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

00000h

Address

Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address

Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h

00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

Instruction Address Operand

+1/ +2

www.ti.com Addressing Modes

3.3.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to the destination address (contents of R11). Register
R10 is incremented by 1 for a byte operation, or 2 for a word operation after the fetch; it points to the next address
without any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

The auto-incrementing of the register contents occurs after the operand is fetched. This is shown in
Figure 3-8.

Figure 3-8. Operand Fetch Operation

57SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

01192h

Address

Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h

+01192h

010A8h

Register
Before:

01192h

Address

Space

00045h

040B0h

PC

0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h

Addressing Modes www.ti.com

3.3.7 Immediate Mode

The immediate mode is described in Table 3-10.

Table 3-10. Immediate Mode Description

Assembler Code Content of ROM

MOV #45h,TONI MOV @PC+,X(PC)

45

X = TONI – PC

Length: Two or three words

It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the word following the instruction, to destination address
TONI. When fetching the source, the program counter points to the word following the instruction and moves the
contents to the destination.

Comment: Valid only for a source operand.

Example: MOV #45h,TONI

58 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24 emulated instructions. The
core instructions are instructions that have unique op-codes decoded by the CPU. The emulated
instructions are instructions that make code easier to write and read, but do not have op-codes
themselves, instead they are replaced automatically by the assembler with an equivalent core instruction.
There is no code or performance penalty for using emulated instruction.

There are three core-instruction formats:

• Dual-operand

• Single-operand

• Jump

All single-operand and dual-operand instructions can be byte or word instructions by using .B or .W
extensions. Byte instructions are used to access byte data or byte peripherals. Word instructions are used
to access word data or word peripherals. If no extension is used, the instruction is a word instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used for the source (src)
S-reg The working register used for the source (src)
Ad The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg The working register used for the destination (dst)
B/W Byte or word operation:

0: word operation
1: byte operation

NOTE: Destination Address

Destination addresses are valid anywhere in the memory map. However, when using an
instruction that modifies the contents of the destination, the user must ensure the destination
address is writable. For example, a masked-ROM location would be a valid destination
address, but the contents are not modifiable, so the results of the instruction would be lost.

59SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad B/W As D-Reg

Figure 3-9. Double Operand Instruction Format

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Status BitsS-Reg,Mnemonic OperationD-Reg V N Z C

src → dst - - - -MOV(.B) src,dst

src + dst → dst * * * *ADD(.B) src,dst

src + dst + C → dst * * * *ADDC(.B) src,dst

dst + .not.src + 1 → dst * * * *SUB(.B) src,dst

dst + .not.src + C → dst * * * *SUBC(.B) src,dst

dst - src * * * *CMP(.B) src,dst

src + dst + C → dst (decimally) * * * *DADD(.B) src,dst

src .and. dst 0 * * *BIT(.B) src,dst

not.src .and. dst → dst - - - -BIC(.B) src,dst

src .or. dst → dst - - - -BIS(.B) src,dst

src .xor. dst → dst * * * *XOR(.B) src,dst

src .and. dst → dst 0 * * *AND(.B) src,dst

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

NOTE: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the result. The same is
true for the BIT and AND instructions.

60 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.2 Single-Operand (Format II) Instructions

Figure 3-10 illustrates the single-operand instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code B/W Ad D/S-Reg

Figure 3-10. Single Operand Instruction Format

Table 3-12 lists and describes the single operand instructions.

Table 3-12. Single Operand Instructions

Status BitsS-Reg,Mnemonic OperationD-Reg V N Z C

C → MSB →.......LSB → C * * * *RRC(.B) dst

MSB → MSB →....LSB → C 0 * * *RRA(.B) dst

SP – 2 → SP, src → @SP - - - -PUSH(.B) src

Swap bytes - - - -SWPB dst

SP – 2 → SP, PC+2 → @SP - - - -CALL dst

dst → PC

TOS → SR, SP + 2 → SP * * * *RETI

TOS → PC,SP + 2 → SP

Bit 7 → Bit 8........Bit 15 0 * * *SXT dst

* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic mode (ADDRESS), the
immediate mode (#N), the absolute mode (&EDE) or the indexed mode x(RN) is used, the word that
follows contains the address information.

61SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.3 Jumps

Figure 3-11 shows the conditional-jump instruction format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code C 10-Bit PC Offset

Figure 3-11. Jump Instruction Format

Table 3-13 lists and describes the jump instructions

Table 3-13. Jump Instructions

Mnemonic S-Reg, D-Reg Operation

Jump to label if zero bit is setJEQ/JZ Label

Jump to label if zero bit is resetJNE/JNZ Label

Jump to label if carry bit is setJC Label

Jump to label if carry bit is resetJNC Label

Jump to label if negative bit is setJN Label

Jump to label if (N .XOR. V) = 0JGE Label

Jump to label if (N .XOR. V) = 1JL Label

Jump to label unconditionallyJMP Label

Conditional jumps support program branching relative to the PC and do not affect the status bits. The
possible jump range is from –511 to +512 words relative to the PC value at the jump instruction. The
10-bit program-counter offset is treated as a signed 10-bit value that is doubled and added to the program
counter:

PCnew = PCold + 2 + PCoffset × 2

62 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used - not the instruction itself. The number of clock cycles refers to the MCLK.

3.4.4.1 Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14. Interrupt and Reset Cycles

Action No. of Cycles Length of Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 -

WDT reset 4 -

Reset (RST/NMI) 4 -

3.4.4.2 Format-II (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of format-II instructions.

Table 3-15. Format-II Instruction Cycles and Lengths

No. of Cycles

RRA, RRC Length of
Addressing Mode SWPB, SXT PUSH CALL Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 5 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #0F000h

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

NOTE: Instruction Format II Immediate Mode

Do not use instruction RRA, RRC, SWPB, and SXT with the immediate mode in the destination
field. Use of these in the immediate mode results in an unpredictable program operation.

3.4.4.3 Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

63SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.4.4 Format-I (Double Operand) Instruction Cycles and Lengths

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I instructions.

Table 3-16. Format 1 Instruction Cycles and Lengths

Addressing Mode Length of
Src Dst No. of Cycles Instruction Example

Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,4(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 2 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 4(R4),6(R9)

&TONI 6 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BRA &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI

64 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0xxx

4xxx

8xxx

Cxxx

1xxx

14xx

18xx

1Cxx

20xx

24xx

28xx

2Cxx

30xx

34xx

38xx

3Cxx

4xxx

5xxx

6xxx

7xxx

8xxx

9xxx

Axxx

Bxxx

Cxxx

Dxxx

Exxx

Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ

JEQ/JZ

JNC

JC

JN

JGE

JL

JMP

MOV, MOV.B

ADD, ADD.B

ADDC, ADDC.B

SUBC, SUBC.B

SUB, SUB.B

CMP, CMP.B

DADD, DADD.B

BIT, BIT.B

BIC, BIC.B

BIS, BIS.B

XOR, XOR.B

AND, AND.B

www.ti.com Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3-12 and the complete instruction set is summarized in Table 3-17.

Figure 3-12. Core Instruction Map

Table 3-17. MSP430 Instruction Set

Mnemonic Description V N Z C

ADC(.B) (1) dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination not.src .and. dst → dst - - - -

BIS(.B) src,dst Set bits in destination src .or. dst → dst - - - -

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR (1) dst Branch to destination dst → PC - - - -

CALL dst Call destination PC+2 → stack, dst → PC - - - -

CLR(.B) (1) dst Clear destination 0 → dst - - - -

CLRC (1) Clear C 0 → C - - - 0

CLRN (1) Clear N 0 → N - 0 - -

CLRZ (1) Clear Z 0 → Z - - 0 -

CMP(.B) src,dst Compare source and destination dst - src * * * *

DADC(.B) (1) dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst src + dst + C → dst (decimally) * * * *

DEC(.B) (1) dst Decrement destination dst - 1 → dst * * * *

(1) Emulated Instruction

65SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

Table 3-17. MSP430 Instruction Set (continued)

Mnemonic Description V N Z C

DECD(.B) (1) dst Double-decrement destination dst - 2 → dst * * * *

DINT (1) Disable interrupts 0 → GIE - - - -

EINT (1) Enable interrupts 1 → GIE - - - -

INC(.B) (1) dst Increment destination dst +1 → dst * * * *

INCD(.B) (1) dst Double-increment destination dst+2 → dst * * * *

INV(.B) (1) dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same - - - -

JEQ/JZ label Jump if equal/Jump if Z set - - - -

JGE label Jump if greater or equal - - - -

JL label Jump if less - - - -

JMP label Jump PC + 2 × offset → PC - - - -

JN label Jump if N set - - - -

JNC/JLO label Jump if C not set/Jump if lower - - - -

JNE/JNZ label Jump if not equal/Jump if Z not set - - - -

MOV(.B) src,dst Move source to destination src → dst - - - -

NOP (2) No operation - - - -

POP(.B) (2) dst Pop item from stack to destination @SP → dst, SP+2 → SP - - - -

PUSH(.B) src Push source onto stack SP - 2 → SP, src → @SP - - - -

RET (2) Return from subroutine @SP → PC, SP + 2 → SP - - - -

RETI Return from interrupt * * * *

RLA(.B) (2) dst Rotate left arithmetically * * * *

RLC(.B) (2) dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B) (2) dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC (2) Set C 1 → C - - - 1

SETN (2) Set N 1 → N - 1 - -

SETZ (2) Set Z 1 → Z - - 1 -

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst dst + .not.src + C → dst * * * *

SWPB dst Swap bytes - - - -

SXT dst Extend sign 0 * * *

TST(.B) (2) dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *
(2) Emulated Instruction

66 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6 Instruction Set Details

3.4.6.1 ADC

*ADC[.W] Add carry to destination

*ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C → dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bit N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

67SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.2 ADD

ADD[.W] Add source to destination

ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst → dst

Description The source operand is added to the destination operand. The source operand is not
affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the result, cleared if not

V:Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.
ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.
ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

68 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.3 ADDC

ADDC[.W] Add source and carry to destination

ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C → dst

Description The source operand and the carry bit (C) are added to the destination operand. The
source operand is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.
ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words above
the pointer in R13.
ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

69SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.4 AND

AND[.W] Source AND destination

AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst → dst

Description The source operand and the destination operand are logically ANDed. The result is
placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by TOM. If the
result is zero, a branch is taken to label TONI.
MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result is zero,
a branch is taken to label TONI.
AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero

70 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.5 BIC

BIC[.W] Clear bits in destination

BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst → dst

Description The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.
BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.
BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

71SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.6 BIS

BIS[.W] Set bits in destination

BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst → dst

Description The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM ; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.
BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

72 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.7 BIT

BIT[.W] Test bits in destination

BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects only the
status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.
BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.
BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is equal to the
state of the tested bit while using the BIT instruction to test a single bit, the carry bit is
used by the subsequent instruction; the read information is shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry -> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; |
; MSB LSB

73SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.8 BR, BRANCH

*BR, BRANCH Branch to destination

Syntax BR dst

Operation dst → PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address space. All
source addressing modes can be used. The branch instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.
BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h)

; Core instruction MOV @PC+,PC
BR EXEC ; Branch to the address contained in EXEC

; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5+,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time--S/W flow uses R5 pointer--it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

74 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.9 CALL

CALL Subroutine

Syntax CALL dst

Operation dst → tmp dst is evaluated and stored

SP - 2 → SP

PC → @SP PC updated to TOS

tmp → PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space. All
addressing modes can be used. The return address (the address of the following
instruction) is stored on the stack. The call instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.
CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)

; SP-2 -> SP, PC+2 -> @SP, @PC+ -> PC
CALL EXEC ; Call on the address contained in EXEC

; SP-2 -> SP, PC+2 ->SP, X(PC) -> PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 -> SP, PC+2 -> @SP, X(0) -> PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP-2 -> SP, PC+2 -> @SP, R5 -> PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP-2 -> SP, PC+2 -> @SP, @R5 -> PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time S/W flow uses R5 pointer
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 -> SP, PC+2 -> @SP, @R5 -> PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 -> SP, PC+2 -> @SP, X(R5) -> PC
; Indirect, indirect R5 + X

75SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.10 CLR

*CLR[.W] Clear destination

*CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 → dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.
CLR TONI ; 0 -> TONI

Example Register R5 is cleared.
CLR R5

Example RAM byte TONI is cleared.
CLR.B TONI ; 0 -> TONI

76 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.11 CLRC

*CLRC Clear carry bit

Syntax CLRC

Operation 0 → C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected

Z: Not affected

C: Cleared

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by
R12.
CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16=bit counter to low word of 32=bit counter
DADC 2(R12) ; add carry to high word of 32=bit counter

77SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.12 CLRN

*CLRN Clear negative bit

Syntax CLRN

Operation 0 → N

or

(.NOT.src .AND. dst → dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0

Z: Not affected

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment with
negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

78 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.13 CLRZ

*CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z

or

(.NOT.src .AND. dst → dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected

Z: Reset to 0

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.
CLRZ

79SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.14 CMP

CMP[.W] Compare source and destination

CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1

or

(dst - src)

Description The source operand is subtracted from the destination operand. This is accomplished by
adding the 1s complement of the source operand plus 1. The two operands are not
affected and the result is not stored; only the status bits are affected.

Status Bits N: Set if result is negative, reset if positive (src ≥ dst)

Z: Set if result is zero, reset otherwise (src = dst)

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label EQUAL.
CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches to the label
ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal, the
program continues at the label EQUAL.
CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

80 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.15 DADC

*DADC[.W] Add carry decimally to destination

*DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C → dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number
pointed to by R8.
CLRC ; Reset carry

; next instruction's start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.
CLRC ; Reset carry

; next instruction's start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC.B 1(R8) ; Add carry to MSDs

81SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.16 DADD

DADD[.W] Source and carry added decimally to destination

DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C → dst (decimally)

Description The source operand and the destination operand are treated as four binary coded
decimals (BCD) with positive signs. The source operand and the carry bit (C)are added
decimally to the destination operand. The source operand is not affected. The previous
contents of the destination are lost. The result is not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if the result is greater than 9999

Set if the result is greater than 99

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an eight-digit
BCD number contained in R3 and R4 (R6 and R4 contain the MSDs).
CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.
CLRC ; clear carry
DADD.B #1,CNT

or
SETC
DADD.B #0,CNT ; equivalent to DADC.B CNT

82 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

EDE

EDE+254

TONI

TONI+254

www.ti.com Instruction Set

3.4.6.17 DEC

*DEC[.W] Decrement destination

*DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst - 1 → dst

Emulation SUB #1,dst
SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.

Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example R10 is decremented by 1.
DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
memory location starting with
; TONI. Tables should not overlap: start of destination address TONI
must not be within the range EDE
; to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 3-13.

Figure 3-13. Decrement Overlap

83SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.18 DECD

*DECD[.W] Double-decrement destination

*DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst - 2 → dst

Emulation SUB #2,dst

Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.

Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to
; memory location starting with TONI
; Tables should not overlap: start of destination address TONI must not be
; within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.
DECD.B STATUS

84 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.19 DINT

*DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE

or

(0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst)

Emulation BIC #8,SR

Description All interrupts are disabled.

The constant 08h is inverted and logically ANDed with the status register (SR). The
result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow a
nondisrupted move of a 32-bit counter. This ensures that the counter is not modified
during the move by any interrupt.
DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

NOTE: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

85SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.20 EINT

*EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE

or

(0008h .OR. SR → SR / .src .OR. dst → dst)

Emulation BIS #8,SR

Description All interrupts are enabled.

The constant #08h and the status register SR are logically ORed. The result is placed
into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.
; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is
; the address of the register where all interrupt events are latched.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

NOTE: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the
interrupts are enable.

86 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.21 INC

*INC[.W] Increment destination

*INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 → dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch
to OVFL is taken.
INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

87SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.22 INCD

*INCD[.W] Double-increment destination

*INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 → dst

Emulation ADD #2,dst
ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.
INCD.B 0(SP) ; Byte on TOS is increment by two

88 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.23 INV

*INV[.W] Invert destination

*INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst → dst

Emulation XOR #0FFFFh,dst
XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.
MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

89SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.24 JC, JHS

JC Jump if carry set

JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 offset → PC

If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If C is reset, the next instruction
following the jump is executed. JC (jump if carry/higher or same) is used for the
comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.
BIT.B #02h,&P1IN ; State of signal -> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.
CMP #15,R5
JHS LABEL ; Jump is taken if R5 >= 15
...... ; Continue here if R5 < 15

90 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.25 JEQ, JZ

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label
JZ label

Operation If Z = 1: PC + 2 offset → PC

If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If Z is not set, the instruction
following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.
TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.
CMP R6,Table(R5) ; Compare content of R6 with content of

; MEM (table address + content of R5)
JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.
TST R5
JZ LABEL
......

91SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.26 JGE

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 P offset → PC

If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N and V are
set or reset, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If only one is set, the instruction following the jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7, the program
continues at label EDE.
CMP @R7,R6 ; R6 >= (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 >= (R7)
...... ; No, proceed
......
......

92 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.27 JL

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 offset → PC

If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one is set, the
10-bit signed offset contained in the instruction LSBs is added to the program counter. If
both N and V are set or reset, the instruction following the jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.
CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

93SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.28 JMP

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset → PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the program
counter.

Status Bits Status bits are not affected.

Hint This one-word instruction replaces the BRANCH instruction in the range of –511 to +512
words relative to the current program counter.

94 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.29 JN

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 ×offset → PC

if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If N is reset, the next
instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result is
negative, COUNT is to be cleared and the program continues execution in another path.

SUB R5,COUNT ; COUNT - R5 -> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT>=0
......
......
......

L$1 CLR COUNT
......
......
......

95SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.30 JNC, JLO

JNC Jump if carry not set

JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 offset → PC

if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset contained
in the instruction LSBs is added to the program counter. If C is set, the next instruction
following the jump is executed. JNC (jump if no carry/lower) is used for the comparison
of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling routine at
address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 -> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.
CMP.B #2,STATUS
JLO STL 2 ; STATUS < 2
...... ; STATUS >= 2, continue here

96 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.31 JNE, JNZ

JNE Jump if not equal

JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 a offset → PC

If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset contained in
the instruction LSBs is added to the program counter. If Z is set, the next instruction
following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.
CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

97SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.32 MOV

MOV[.W] Move source to destination

MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src → dst

Description The source operand is moved to the destination.

The source operand is not affected. The previous contents of the destination are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length of the tables
must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter not 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of the tables
should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter not 0, continue

; copying
...... ; Copying completed
......
......

98 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.33 NOP

*NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

• To fill one, two, or three memory words

• To adjust software timing

NOTE: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the
value in R4 is 120h, then a security violation occurs with the watchdog
timer (address 120h), because the security key was not used.

99SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.34 POP

*POP[.W] Pop word from stack to destination

*POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP → temp

SP + 2 → SP

temp → dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the destination. The
stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.
POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.
POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are restored from
the stack.
POP.B 0(R7) ; The low byte of the stack is moved to the

; the byte which is pointed to by R7
; Example: R7 = 203h
; Mem(R7) = low byte of system stack
; Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

NOTE: The System Stack Pointer

The system stack pinter (SP) is always incremented by two, independent
of the byte suffix.

100 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.35 PUSH

PUSH[.W] Push word onto stack

PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP - 2 → SP

src → @SP

Description The stack pointer is decremented by two, then the source operand is moved to the RAM
word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.
PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.
PUSH.B &TCDAT ; save data from 8-bit peripheral module,

; address TCDAT, onto stack

NOTE: System Stack Pointer

The System stack pointer (SP) is always decremented by two,
independent of the byte suffix.

101SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.36 RET

*RET Return from subroutine

Syntax RET

Operation @SP → PC

SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to the
program counter. The program continues at the code address following the subroutine
call.

Status Bits Status bits are not affected.

102 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

PC −6

PC −4

PC −2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n−4

PCi +n−2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored

Onto Stack

RETI

www.ti.com Instruction Set

3.4.6.37 RETI

RETI Return from interrupt

Syntax RETI

Operation TOS → SR

SP + 2 → SP

TOS → PC

SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt service
routine by replacing the present SR contents with the TOS contents. The stack pointer
(SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt service. This is
the consecutive step after the interrupted program flow. Restoration is performed by
replacing the present PC contents with the TOS memory contents. The stack pointer
(SP) is incremented.

Status Bits N: Restored from system stack

Z: Restored from system stack

C: Restored from system stack

V: Restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3-14 illustrates the main program interrupt.

Figure 3-14. Main Program Interrupt

103SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

7 0

C

Byte

Word

0

Instruction Set www.ti.com

3.4.6.38 RLA

*RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-15. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed: the
result has changed sign.

Figure 3-15. Destination Operand – Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed: the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:

the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example R7 is multiplied by 2.
RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.
RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

NOTE: RLA Substitution

The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

ADD @R5+,-2(R5), ADD.B @R5+,-1(R5), or ADD(.B) @R5

104 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

7 0

C

Byte

Word

www.ti.com Instruction Set

3.4.6.39 RLC

*RLC[.W] Rotate left through carry

*RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <- MSB <- MSB-1 LSB+1 <- LSB <- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-16. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Figure 3-16. Destination Operand - Carry Left Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:

the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.
RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.
BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.
RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC @R5, or RLC(.B) @R5

It must be substitued by:

ADDC @R5+,-2(R5), ADDC.B @R5+,-1(R5), or ADDC(.B) @R5

105SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

15 0

C

Byte

Word

Instruction Set www.ti.com

3.4.6.40 RRA

RRA[.W] Rotate right arithmetically

RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB → MSB, MSB → MSB-1, ... LSB+1 → LSB, LSB → C

Description The destination operand is shifted right one position as shown in Figure 3-17. The MSB
is shifted into the MSB, the MSB is shifted into the MSB-1, and the LSB+1 is shifted into
the LSB.

Figure 3-17. Destination Operand – Arithmetic Right Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates equal to an
arithmetic division by 2.
RRA R5 ; R5/2 -> R5
; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;
PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 x 0.5 -> R5
ADD @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5 -> R5
RRA R5 ; (1.5 x R5) x 0.5 = 0.75 x R5 -> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value. It
operates equal to an arithmetic division by 2.
RRA.B R5 ; R5/2 -> R5: operation is on low byte only

; High byte of R5 is reset
PUSH.B R5 ; R5 x 0.5 -> TOS
RRA.B @SP ; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5 -> TOS
ADD.B @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5 -> R5
......

106 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

7 0

C

Byte

Word

www.ti.com Instruction Set

3.4.6.41 RRC

RRC[.W] Rotate right through carry

RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C → MSB → MSB-1 LSB+1 → LSB → C

Description The destination operand is shifted right one position as shown in Figure 3-18. The carry
bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3-18. Destination Operand - Carry Right Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIEare not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.
SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h -> R5

Example R5 is shifted right one position. The MSB is loaded with 1.
SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h -> R5; low byte of R5 is used

107SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.42 SBC

*SBC[.W] Subtract source and borrow/.NOT. carry from destination

*SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C → dst

dst + 0FFh + C → dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by
R12.
SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.
SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow Implementation

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

108 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.43 SETC

*SETC Set carry bit

Syntax SETC

Operation 1 → C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected

Z: Not affected

C: Set

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally

Assume that R5 = 03987h and R6 = 04137h
DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh

; R5 = 03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)

; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

109SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.44 SETN

*SETN Set negative bit

Syntax SETN

Operation 1 → N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set

Z: Not affected

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

110 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.45 SETZ

*SETZ Set zero bit

Syntax SETZ

Operation 1 → Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected

Z: Set

C: Not affected

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

111SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.46 SUB

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 → dst

or

[(dst - src → dst)]

Description The source operand is subtracted from the destination operand by adding the source
operand's 1s complement and the constant 1. The source operand is not affected. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

NOTE: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

112 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.47 SUBC, SBB

SUBC[.W], SBB[.W] Subtract source and borrow/.NOT. carry from destination

SUBC.B, SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C → dst

or

(dst - src - 1 + C → dst)

Description The source operand is subtracted from the destination operand by adding the source
operand's 1s complement and the carry bit (C). The source operand is not affected. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.

Z: Set if result is zero, reset otherwise.

C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.

LSBs are in R13 and R10, MSBs are in R12 and R9.
SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10 and
R11(MSD).
SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

NOTE: Borrow Implementation

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

113SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 0

Instruction Set www.ti.com

3.4.6.48 SWPB

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 ↔ bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in Figure 3-19.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-19. Destination Operand - Byte Swap

Example MOV #040BFh,R7 ; 0100000010111111 -> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.
SWPB R5 ;
MOV R5,R4 ; Copy the swapped value to R4
BIC #0FF00h,R5 ; Correct the result
BIC #00FFh,R4 ; Correct the result

114 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 0

www.ti.com Instruction Set

3.4.6.49 SXT

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 → Bit 8 Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure 3-20.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-20. Destination Operand - Sign Extension

Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction expands
bit 8 to bit 15 with the value of bit 7.

R7 is then added to R6.
MOV.B &P1IN,R7 ; P1IN = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000

115SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set www.ti.com

3.4.6.50 TST

*TST[.W] Test destination

*TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1

dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise

C: Set

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at
R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

116 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set

3.4.6.51 XOR

XOR[.W] Exclusive OR of source with destination

XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst → dst

Description The source and destination operands are exclusive ORed. The result is placed into the
destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF,and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.
XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.
XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in

; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte EDE.
XOR.B EDE,R7 ; Set different bit to "1s"
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

117SLAU144I–December 2004–Revised January 2012 CPU
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

118 CPU SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 4
SLAU144I–December 2004–Revised January 2012

CPUX

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB memory access, its
addressing modes, and instruction set. The MSP430X CPU is implemented in all MSP430 devices that
exceed 64-KB of address space.

Topic ... Page

4.1 CPU Introduction ... 120
4.2 Interrupts .. 122
4.3 CPU Registers ... 123
4.4 Addressing Modes ... 129
4.5 MSP430 and MSP430X Instructions ... 146
4.6 Instruction Set Description ... 164

119SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CPU Introduction www.ti.com

4.1 CPU Introduction

The MSP430X CPU incorporates features specifically designed for modern programming techniques such
as calculated branching, table processing and the use of high-level languages such as C. The MSP430X
CPU can address a 1-MB address range without paging. In addition, the MSP430X CPU has fewer
interrupt overhead cycles and fewer instruction cycles in some cases than the MSP430 CPU, while
maintaining the same or better code density than the MSP430 CPU. The MSP430X CPU is backward
compatible with the MSP430 CPU.

The MSP430X CPU features include:

• RISC architecture

• Orthogonal architecture

• Full register access including program counter, status register and stack pointer

• Single-cycle register operations

• Large register file reduces fetches to memory

• 20-bit address bus allows direct access and branching throughout the entire memory range without
paging

• 16-bit data bus allows direct manipulation of word-wide arguments

• Constant generator provides the six most often used immediate values and reduces code size

• Direct memory-to-memory transfers without intermediate register holding

• Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

120 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus - MABMDB - Memor y Data Bus

16
20

16/20-bit ALU

srcdstZero, Z
Carry, C

Overflow,V

Negative,N

MCLK

016 15

R2/SR Status Register

www.ti.com CPU Introduction

Figure 4-1. MSP430X CPU Block Diagram

121SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Item n-1

PC.19:16

PC.15:0

SP
old

SP SR.11:0

Interrupts www.ti.com

4.2 Interrupts

The MSP430X uses the same interrupt structure as the MSP430:

• Vectored interrupts with no polling necessary

• Interrupt vectors are located downward from address 0FFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in Chapter 2 System Resets,
Interrupts, and Operating modes, Section 2 Interrupts. The interrupt vectors contain 16-bit addresses that
point into the lower 64-KB memory. This means all interrupt handlers must start in the lower 64-KB
memory, even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed onto the stack as shown in
Figure 4-2. The MSP430X architecture efficiently stores the complete 20-bit PC value by automatically
appending the PC bits 19:16 to the stored SR value on the stack. When the RETI instruction is executed,
the full 20-bit PC is restored making return from interrupt to any address in the memory range possible.

Figure 4-2. PC Storage on the Stack for Interrupts

122 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0Program Counter Bits 19 to 1

19 15 1 016

Item n

PC.19:16

PC.15:0

SP
old

SP

www.ti.com CPU Registers

4.3 CPU Registers

The CPU incorporates 16 registers (R0 through R15). Registers R0, R1, R2, and R3 have dedicated
functions. Registers R4 through R15 are working registers for general use.

4.3.1 Program Counter (PC)

The 20-bit PC (PC/R0) points to the next instruction to be executed. Each instruction uses an even
number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses. Figure 4-3 shows the PC.

Figure 4-3. Program Counter

The PC can be addressed with all instructions and addressing modes. A few examples:
MOV.W #LABEL,PC ; Branch to address LABEL (lower 64KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64KB)

ADDA #4,PC ; Skip two words (1MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64-KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64-KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV.W #value,PC clears the upper four bits of the PC, because it is a .W instruction.

The PC is automatically stored on the stack with CALL (or CALLA) instructions and during an interrupt
service routine. Figure 4-4 shows the storage of the PC with the return address after a CALLA instruction.
A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. PC Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP). The RET
instruction restores bits 15:0 to the PC and adds 2 to the SP.

4.3.2 Stack Pointer (SP)

The 20-bit SP (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts.
It uses a predecrement, postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is initialized into RAM by the user,
and is always aligned to even addresses.

123SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

I3

I1

I2

I3

0xxxh

0xxxh - 2

0xxxh - 4

0xxxh - 6

0xxxh - 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

Item n-1

Item.19:16

Item.15:0

SP
old

SP

SPold

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

CPU Registers www.ti.com

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when 20-bit address words are
pushed.

Figure 4-5. Stack Pointer

Figure 4-6. Stack Usage

Figure 4-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 4-8.

Figure 4-8. PUSH SP, POP SP Sequence

124 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU

OFF

OSC

OFF
SCG1V

8 79

www.ti.com CPU Registers

4.3.3 Status Register (SR)

The 16-bit SR (SR/R2), used as a source or destination register, can only be used in register mode
addressed with word instructions. The remaining combinations of addressing modes are used to support
the constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values to the SR. Unpredictable
operation can result.

Figure 4-9. SR Bits

Table 4-1 describes the SR bits.

Table 4-1. SR Bit Description

Bit Description

Reserved Reserved

V Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range.

Set when:ADD(.B), ADDX(.B,.A), ADDC(.B),
positive + positive = negativeADDCX(.B.A), ADDA
negative + negative = positive
otherwise reset

Set when:SUB(.B), SUBX(.B,.A), SUBC(.B),
positive – negative = negativeSUBCX(.B,.A), SUBA, CMP(.B),
negative – positive = positiveCMPX(.B,.A), CMPA
otherwise reset

SCG1 System clock generator 1. This bit may be to enable/disable functions in the clock system depending on the device
family; for example, DCO bias enable/disable

SCG0 System clock generator 0. This bit may be used to enable/disable functions in the clock system depending on the
device family; for example, FLL disable/enable

OSCOFF Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or
SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are
disabled.

N Negative. This bit is set when the result of an operation is negative and cleared when the result is positive.

Z Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0.

C Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

125SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CPU Registers www.ti.com

4.3.4 Constant Generator Registers (CG1 and CG2)

Six commonly-used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in Table 4-2.

Table 4-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 – Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh –1, word processing

The constant generator advantages are:

• No special instructions required

• No additional code word for the six constants

• No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.

4.3.4.1 Constant Generator – Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional emulated instructions. For example, the single-operand
instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
INC dst

is replaced by:
ADD 0(R3),dst

126 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Unused
Un-

used

0

19 16 15 0

19 16 15 0

8 7

8 7

Un-
used

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

www.ti.com CPU Registers

4.3.5 General-Purpose Registers (R4 to R15)

The 12 CPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register
clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction.
The SXT instruction extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word, and address-word data. Note the reset of the
leading most significant bits (MSBs) if a register is the destination of a byte or word instruction.

Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

Figure 4-11 and Figure 4-12 show 16-bit word handling (.W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.

Figure 4-11. Register-Word Operation

127SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

High Byte Low Byte

Word-Register Operation

Register

Memory

Operation

0 Register

Un-

used

19 16 15 08 7

High Byte Low Byte

Register - Ad dress-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

CPU Registers www.ti.com

Figure 4-12. Word-Register Operation

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a
destination register.

Figure 4-13. Register – Address-Word Operation

128 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

High Byte Low Byte

Address-Word - Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

www.ti.com Addressing Modes

Figure 4-14. Address-Word – Register Operation

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 4-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1MB memory range.

Table 4-3. Source/Destination Addressing

As/Ad Addressing Mode Syntax Description

00/0 Register Rn Register contents are operand.

01/1 Indexed X(Rn) (Rn + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word.

01/1 Symbolic ADDR (PC + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word. Indexed mode X(PC) is used.

01/1 Absolute &ADDR The word following the instruction contains the absolute address. X is stored in the next
word, or stored in combination of the preceding extension word and the next word.
Indexed mode X(SR) is used.

10/– Indirect Register @Rn Rn is used as a pointer to the operand.

11/– Indirect @Rn+ Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B
Autoincrement instructions. by 2 for .W instructions, and by 4 for .A instructions.

11/– Immediate #N N is stored in the next word, or stored in combination of the preceding extension word
and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels and have no special meaning.

129SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address

Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

xxxxh

Address

Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address

Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

Addressing Modes www.ti.com

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU register.
Length: One, two, or three words
Comment: Valid for source and destination
Byte operation: Byte operation reads only the eight least significant bits (LSBs) of the source

register Rsrc and writes the result to the eight LSBs of the destination register Rdst.
The bits Rdst.19:8 are cleared. The register Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.

Address-word Address-word operation reads the 20 bits of the source register Rsrc and writes the
operation: result to the 20 bits of the destination register Rdst. The register Rsrc is not

modified
SXT exception: The SXT instruction is the only exception for register operation. The sign of the low

byte in bit 7 is extended to the bits Rdst.19:8.
Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:

130 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

16-bit signed index

CPU Register Rn

16-bit signed add

0 Memory address

FFFFF

00000

L
o

w
e
r

6
4
K

B

0FFFF

10000

Rn.19:0

Lower 64 KB

Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

www.ti.com Addressing Modes

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has three addressing possibilities:

• Indexed mode in lower 64-KB memory

• MSP430 instruction with Indexed mode addressing memory above the lower 64-KB memory

• MSP430X instruction with Indexed mode

4.4.2.1 Indexed Mode in Lower 64-KB Memory

If the CPU register Rn points to an address in the lower 64KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means the calculated memory address is always located in the lower 64KB and does not
overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64KB

Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the instruction and is added to

the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to 0FFFFh.
The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts
it.

Example: ADD.B 1000h(R5),0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte 0F000h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64KB due to the cleared bits 19:16 of
registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after
truncation to a 16-bit address.

131SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h

+F000h

00778h

Register
Before:

Address

Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

0479Ch

+1000h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed index
(sign extended to 20 bits)

CPU Register Rn

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e
r

6
4
 K

B

0FFFF

10000

Upper Memory

Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ± 32 KB

S

Rn.19:0

Addressing Modes www.ti.com

4.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory, the Rn bits 19:16 are used
for the address calculation of the operand. The operand may be located in memory in the range Rn
±32KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space (see Figure 4-16 and Figure 4-17).

Figure 4-16. Indexed Mode in Upper Memory

132 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

FFFFF

0000C

L
o

w
e
r

6
4
 K

B

0,FFFF

10000

Rn.19:0

Rn.19:0

Rn.19:0

±
3
2
 K

B

Rn.19:0

±
3
2
 K

B

www.ti.com Addressing Modes

Figure 4-17. Overflow and Underflow for Indexed Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign extended,
which results in address 23456h + F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

133SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h

+02100h

17778h

Register
Before:

Address

Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h

+02345h

07777h

src

dst

Sum

23456h

+F8346h

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

Addressing Modes www.ti.com

4.4.2.3 MSP430X Instruction With Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the
range of Rn + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit

index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs
are contained in the word following the instruction. The CPU register is not modified

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

134 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

2100h

Address

Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h

+32100h

77778h

Register
Before:

Address

Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h

+12346h

3579Ch

www.ti.com Addressing Modes

The extension word contains the MSBs of the source index and of the destination index and the A/L bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the signed index to the PC. The
Symbolic mode has three addressing possibilities:

• Symbolic mode in lower 64-KB memory

• MSP430 instruction with Symbolic mode addressing memory above the lower 64-KB memory.

• MSP430X instruction with Symbolic mode

4.4.3.1 Symbolic Mode in Lower 64KB

If the PC points to an address in the lower 64KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means the calculated
memory address is always located in the lower 64KB and does not overflow or underflow out of the lower
64-KB memory space. The RAM and the peripheral registers can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 4-18.

135SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

16-bit signed

PC index

Program

counter PC

16-bit signed add

0 Memory address

FFFFF

00000
L

o
w

e
r

6
4
 K

B

0FFFF

10000

PC.19:0

Lower 64 KB

PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Addressing Modes www.ti.com

Figure 4-18. Symbolic Mode Running in Lower 64KB

Operation: The signed 16-bit index in the next word after the instruction is added temporarily to
the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h to 0FFFFh. The
operand is the content of the addressed memory location.

Length: Two or three words
Comment: Valid for source and destination. The assembler calculates the PC index and

inserts it.
Example: ADD.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64KB.

Source: Byte EDE located at address 0579Ch, pointed to by PC + 4766h, where the PC
index 4766h is the result of 0579Ch – 01036h = 04766h. Address 01036h is the
location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the
index for this example.

136 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h

+0F740h

00778h

Before:
Address

Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

01036h

+04766h

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

16-bit signed PC index
(sign extended to 20 bits)

Program

counter PC

20-bit signed add

Memory address

FFFFF

00000

L
o

w
e
r

6
4
 K

B

0FFFF

10000

PC.19:0

Upper Memory

PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32 KB

S

www.ti.com Addressing Modes

4.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC ± 32KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64-KB memory space as shown in Figure 4-19 and Figure 4-20.

Figure 4-19. Symbolic Mode Running in Upper Memory

137SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

FFFFF

0000C

L
o

w
e
r
 6

4
 K

B

0FFFF

10000

PC.19:0

PC.19:0

PC.19:0

±
3
2
 K

B

PC.19:0

±
3
2
 K

B

Addressing Modes www.ti.com

Figure 4-20. Overflow and Underflow for Symbolic Mode

Length: Two or three words
Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the PC index and
inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h, which is the 16-bit result
of 3379Ch – 2F036h = 04766h. Address 2F036h is the location of the index for this
example.

Destination: Word TONI located at address 00778h pointed to by the absolute address 00778h

138 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h

+04766h

3379Ch

Before:
Address

Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h

+2345h

7777h

src

dst

Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

www.ti.com Addressing Modes

4.4.3.3 MSP430X Instruction With Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.

Length: Three or four words
Operation: The operand address is the sum of the 20-bit PC and the 20-bit index. The 4 MSBs

of the index are contained in the extension word; the 16 LSBs are contained in the
word following the instruction.

Comment: Valid for source and destination. The assembler calculates the register index and
inserts it.

Example: ADDX.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch – 21036h = 14766h. Address 21036h is the address of the index
in this example.

Destination: Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h – 21038h = 56740h. Address 21038h is the address of the index in
this example.

139SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h

+56740h

77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h

+45h

77h

src

dst

Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h

+14766h

3579Ch

Addressing Modes www.ti.com

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as the address of the operand.
The Absolute mode has two addressing possibilities:

• Absolute mode in lower 64-KB memory

• MSP430X instruction with Absolute mode

4.4.4.1 Absolute Mode in Lower 64KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and, therefore, points to an address in the lower 64KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

Length: Two or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE
Destination: Word at address TONI

140 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

www.ti.com Addressing Modes

4.4.4.2 MSP430X Instruction With Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value
and, therefore, points to any address in the memory range. The address value is calculated as an index
from 0. The 4 MSBs of the index are contained in the extension word, and the 16 LSBs are contained in
the word following the instruction.

Length: Three or four words
Operation: The operand is the content of the addressed memory location.
Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.
Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE
Destination: Two words beginning with address TONI

141SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

7778h

Address

Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h

+12345h

77777h

src

dst

Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

Addressing Modes www.ti.com

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words
Operation: The operand is the content the addressed memory location. The source register

Rsrc is not modified.
Comment: Valid only for the source operand. The substitute for the destination operand is

0(Rdst).
Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Word pointed to by R6 + 2100h, which results in address 45678h + 2100h = 7778h

142 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h

+02100h

47778h

Register
Before:

Address

Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h

+2345h

7777h

src

dst

Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

www.ti.com Addressing Modes

4.4.6 Indirect Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for
source and destination, it contains the incremented address for the destination access. Indirect
Autoincrement mode always uses 20-bit addresses.

Length: One, two, or three words
Operation: The operand is the content of the addressed memory location.
Comment: Valid only for the source operand
Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3579Ch for this example.
Destination: Byte pointed to by R6 + 0h, which results in address 0778h for this example

143SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h

+0000h

00778h

Register
Before:

Address

Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h

+45h

77h

src

dst

Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

Addressing Modes www.ti.com

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including the constant in the memory
location following the instruction. The PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the immediate operand, the PC is
incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing
possibilities:

• 8-bit or 16-bit constants with MSP430 instructions

• 20-bit constants with MSP430X instruction

4.4.7.1 MSP430 Instructions With Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value
and is stored in the word following the instruction.

Length: Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with the 16-bit destination
operand.

Comment: Valid only for the source operand
Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h
Destination: Word at address TONI

144 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

xxxxh

Address

Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address

Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h

+2345h

579Bh

src

dst

Sum

7778h

Address

Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address

Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h

+12345h

3579Bh

src

dst

Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

www.ti.com Addressing Modes

4.4.7.2 MSP430X Instructions With Immediate Mode

If an MSP430X instruction is used with Immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word, and the 16 LSBs of the constant are stored in the
word following the instruction.

Length: Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with the 20-bit destination
operand.

Comment: Valid only for the source operand
Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h
Destination: Two words beginning with address TONI

145SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

MSP430 and MSP430X Instructions www.ti.com

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are
used throughout the 1MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands, or the data length exceeds the 16-bit
capability of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:

• To use only the MSP430 instructions – The only exceptions are the CALLA and the RETA instruction.
This can be done if a few, simple rules are met:

– Placement of all constants, variables, arrays, tables, and data in the lower 64KB. This allows the
use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit
addresses are needed.

– Placement of subroutine constants immediately after the subroutine code. This allows the use of
the symbolic addressing mode with its 16-bit index to reach addresses within the range of
PC + 32KB.

• To use only MSP430X instructions – The disadvantages of this method are the reduced speed due to
the additional CPU cycles and the increased program space due to the necessary extension word for
any double operand instruction.

• Use the best fitting instruction where needed.

The following sections list and describe the MSP430 and MSP430X instructions.

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the lower 64KB or beyond it.
The only exceptions are the instructions CALL and RET, which are limited to the lower 64-KB address
range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.

4.5.1.1 MSP430 Double-Operand (Format I) Instructions

Figure 4-21 shows the format of the MSP430 double-operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-4 lists the 12 MSP430
double-operand instructions.

Figure 4-21. MSP430 Double-Operand Instruction Format

146 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

www.ti.com MSP430 and MSP430X Instructions

Table 4-4. MSP430 Double-Operand Instructions

Status Bits (1)
S-Reg,Mnemonic OperationD-Reg V N Z C

MOV(.B) src,dst src → dst - - - -

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst → src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * Z

BIC(.B) src,dst .not.src .and. dst → dst - - - -

BIS(.B) src,dst src .or. dst → dst - - - -

XOR(.B) src,dst src .xor. dst → dst * * * Z

AND(.B) src,dst src .and. dst → dst 0 * * Z
(1) * = Status bit is affected.

- = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

4.5.1.2 MSP430 Single-Operand (Format II) Instructions

Figure 4-22 shows the format for MSP430 single-operand instructions, except RETI. The destination word
is appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-5 lists the seven
single-operand instructions.

Figure 4-22. MSP430 Single-Operand Instructions

Table 4-5. MSP430 Single-Operand Instructions

Status Bits (1)
S-Reg,Mnemonic OperationD-Reg V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP - 2 → SP, src → SP – – – –
SWPB dst bit 15...bit 8 ↔ bit 7...bit 0 – – – –
CALL dst Call subroutine in lower 64KB – – – –
RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

Register mode: bit 7 → bit 8...bit 19SXT dst 0 * * ZOther modes: bit 7 → bit 8...bit 15
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

147SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

MSP430 and MSP430X Instructions www.ti.com

4.5.1.3 Jump Instructions

Figure 4-23 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset
of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit PC.
This allows jumps in a range of –511 to +512 words relative to the PC in the full 20-bit address space.
Jumps do not affect the status bits. Table 4-6 lists and describes the eight jump instructions.

Figure 4-23. Format of Conditional Jump Instructions

Table 4-6. Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

4.5.1.4 Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in Table 4-7.

Table 4-7. Emulated Instructions

Status Bits (1)

Instruction Explanation Emulation
V N Z C

Add Carry to dst * * * *ADC(.B) dst ADDC(.B) #0,dst

Branch indirectly dst – – – –BR dst MOV dst,PC

Clear dst – – – –CLR(.B) dst MOV(.B) #0,dst

Clear Carry bit – – – 0CLRC BIC #1,SR

Clear Negative bit – 0 – –CLRN BIC #4,SR

Clear Zero bit – – 0 –CLRZ BIC #2,SR

Add Carry to dst decimally * * * *DADC(.B) dst DADD(.B) #0,dst

Decrement dst by 1 * * * *DEC(.B) dst SUB(.B) #1,dst

Decrement dst by 2 * * * *DECD(.B) dst SUB(.B) #2,dst

Disable interrupt – – – –DINT BIC #8,SR

Enable interrupt – – – –EINT BIS #8,SR

Increment dst by 1 * * * *INC(.B) dst ADD(.B) #1,dst

Increment dst by 2 * * * *INCD(.B) dst ADD(.B) #2,dst

Invert dst * * * *INV(.B) dst XOR(.B) #–1,dst

No operation – – – –NOP MOV R3,R3

Pop operand from stack – – – –POP dst MOV @SP+,dst

(1) * = Status bit is affected; – = Status bit is not affected; 0 = Status bit is cleared; 1 = Status bit is set.

148 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430 and MSP430X Instructions

Table 4-7. Emulated Instructions (continued)

Status Bits (1)

Instruction Explanation Emulation
V N Z C

Return from subroutine – – – –RET MOV @SP+,PC

Shift left dst arithmetically * * * *RLA(.B) dst ADD(.B) dst,dst

Shift left dst logically through Carry * * * *RLC(.B) dst ADDC(.B) dst,dst

Subtract Carry from dst * * * *SBC(.B) dst SUBC(.B) #0,dst

Set Carry bit – – – 1SETC BIS #1,SR

Set Negative bit – 1 – –SETN BIS #4,SR

Set Zero bit – – 1 –SETZ BIS #2,SR

Test dst (compare with 0) 0 * * 1TST(.B) dst CMP(.B) #0,dst

4.5.1.5 MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used – not the instruction itself. The number of clock cycles refers to MCLK.

4.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 4-8. Interrupt, Return, and Reset Cycles and Length

Execution Time Length of InstructionAction (MCLK Cycles) (Words)

Return from interrupt RETI 3 (1) 1

Return from subroutine RET 3 1

Interrupt request service (cycles needed before first 5 (2) –instruction)

WDT reset 4 –
Reset (RST/NMI) 4 –

(1) The cycle count in MSP430 CPU is 5.
(2) The cycle count in MSP430 CPU is 6.

4.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths

Table 4-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single-operand
instructions.

Table 4-9. MSP430 Format II Instruction Cycles and Length

No. of Cycles
Length ofAddressing Mode ExampleRRA, RRC InstructionPUSH CALLSWPB, SXT

Rn 1 3 3 (1) 1 SWPB R5

@Rn 3 3 (1) 4 1 RRC @R9

@Rn+ 3 3 (1) 4 (2) 1 SWPB @R10+

#N N/A 3 (1) 4 (2) 2 CALL #LABEL

X(Rn) 4 4 (2) 4 (2) 2 CALL 2(R7)

EDE 4 4 (2) 4 (2) 2 PUSH EDE

(1) The cycle count in MSP430 CPU is 4.
(2) The cycle count in MSP430 CPU is 5. Also, the cycle count is 5 for X(Rn) addressing mode, when

Rn = SP.

149SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSP430 and MSP430X Instructions www.ti.com

Table 4-9. MSP430 Format II Instruction Cycles and Length (continued)

No. of Cycles
Length ofAddressing Mode ExampleRRA, RRC InstructionPUSH CALLSWPB, SXT

&EDE 4 4 (2) 4 (2) 2 SXT &EDE

4.5.1.5.3 Jump Instructions Cycles and Lengths

All jump instructions require one code word and take two CPU cycles to execute, regardless of whether
the jump is taken or not.

4.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths

Table 4-10 lists the length and CPU cycles for all addressing modes of the MSP430 Format I instructions.

Table 4-10. MSP430 Format I Instructions Cycles and Length

Addressing Mode Length ofNo. of Cycles ExampleInstructionSrc Dst

Rm 1 1 MOV R5,R8

PC 2 1 BR R9

Rn x(Rm) 4 (1) 2 ADD R5,4(R6)

EDE 4 (1) 2 XOR R8,EDE

&EDE 4 (1) 2 MOV R5,&EDE

Rm 2 1 AND @R4,R5

PC 3 1 BR @R8

@Rn x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R5,EDE

&EDE 5 (1) 2 XOR @R5,&EDE

Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R9+

@Rn+ x(Rm) 5 (1) 2 XOR @R5,8(R6)

EDE 5 (1) 2 MOV @R9+,EDE

&EDE 5 (1) 2 MOV @R9+,&EDE

Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

#N x(Rm) 5 (1) 3 MOV #0300h,0(SP)

EDE 5 (1) 3 ADD #33,EDE

&EDE 5 (1) 3 ADD #33,&EDE

Rm 3 2 MOV 2(R5),R7

PC 3 2 BR 2(R6)

x(Rn) TONI 6 (1) 3 MOV 4(R7),TONI

x(Rm) 6 (1) 3 ADD 4(R4),6(R9)

&TONI 6 (1) 3 MOV 2(R4),&TONI

Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

EDE TONI 6 (1) 3 CMP EDE,TONI

x(Rm) 6 (1) 3 MOV EDE,0(SP)

&TONI 6 (1) 3 MOV EDE,&TONI

(1) MOV, BIT, and CMP instructions execute in one fewer cycle.

150 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n-1)/Rn

www.ti.com MSP430 and MSP430X Instructions

Table 4-10. MSP430 Format I Instructions Cycles and Length (continued)

Addressing Mode Length ofNo. of Cycles ExampleInstructionSrc Dst

Rm 3 2 MOV &EDE,R8

PC 3 2 BR &EDE

&EDE TONI 6 (1) 3 MOV &EDE,TONI

x(Rm) 6 (1) 3 MOV &EDE,0(SP)

&TONI 6 (1) 3 MOV &EDE,&TONI

4.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most
MSP430X instructions require an additional word of op-code called the extension word. Some extended
instructions do not require an additional word and are noted in the instruction description. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word.

There are two types of extension words:

• Register/register mode for Format I instructions and register mode for Format II instructions

• Extension word for all other address mode combinations

4.5.2.1 Register Mode Extension Word

The register mode extension word is shown in Figure 4-24 and described in Table 4-11. An example is
shown in Figure 4-26.

Figure 4-24. Extension Word for Register Modes

Table 4-11. Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

10:9 Reserved

ZC Zero carry

0 The executed instruction uses the status of the carry bit C.

1 The executed instruction uses the carry bit as 0. The carry bit is defined by the result of the final operation after
instruction execution.

Repetition

0 The number of instruction repetitions is set by extension word bits 3:0.

1 The number of instruction repetitions is defined by the value of the four LSBs of Rn. See description for bits 3:0.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

151SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSP430 and MSP430X Instructions www.ti.com

Table 4-11. Description of the Extension Word Bits for Register Mode (continued)

Bit Description

3:0 Repetition count

= 0 These four bits set the repetition count n. These bits contain n – 1.

= 1 These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1.

152 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

www.ti.com MSP430 and MSP430X Instructions

4.5.2.2 Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-25 and described in Table 4-12. An
example is shown in Figure 4-27.

Figure 4-25. Extension Word for Non-Register Modes

Table 4-12. Description of Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
19:16 immediate operand, an index or to an absolute address.

A/L Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used
data length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
Bits 19:16 belong to an index or to an absolute address.

NOTE: B/W and A/L bit settings for SWPBX and SXTX

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

153SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n-1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01:Address word

Destination
register mode

Source
register mode

Destination R8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+

X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

MSP430 and MSP430X Instructions www.ti.com

Figure 4-26. Example for Extended Register/Register Instruction

Figure 4-27. Example for Extended Immediate/Indexed Instruction

154 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430 and MSP430X Instructions

4.5.2.3 Extended Double-Operand (Format I) Instructions

All 12 double-operand instructions have extended versions as listed in Table 4-13.

Table 4-13. Extended Double-Operand Instructions

Status Bits (1)

Mnemonic Operands Operation
V N Z C

src,dst src → dst – – – –MOVX(.B,.A)

src,dst src + dst → dst * * * *ADDX(.B,.A)

src,dst src + dst + C → dst * * * *ADDCX(.B,.A)

src,dst dst + .not.src + 1 → dst * * * *SUBX(.B,.A)

src,dst dst + .not.src + C → dst * * * *SUBCX(.B,.A)

src,dst dst – src * * * *CMPX(.B,.A)

src,dst src + dst + C → dst (decimal) * * * *DADDX(.B,.A)

src,dst src .and. dst 0 * * ZBITX(.B,.A)

src,dst .not.src .and. dst → dst – – – –BICX(.B,.A)

src,dst src .or. dst → dst – – – –BISX(.B,.A)

src,dst src .xor. dst → dst * * * ZXORX(.B,.A)

src,dst src .and. dst → dst 0 * * ZANDX(.B,.A)
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

155SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

MSP430 and MSP430X Instructions www.ti.com

The four possible addressing combinations for the extension word for Format I instructions are shown in
Figure 4-28.

Figure 4-28. Extended Format I Instruction Formats

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 4-29.

Figure 4-29. 20-Bit Addresses in Memory

156 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n-1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

www.ti.com MSP430 and MSP430X Instructions

4.5.2.4 Extended Single-Operand (Format II) Instructions

Extended MSP430X Format II instructions are listed in Table 4-14.

Table 4-14. Extended Single-Operand Instructions

Status Bits (1)

Mnemonic Operands Operation
n V N Z C

CALLA dst Call indirect to subroutine (20-bit address) – – – –
POPM.A #n,Rdst Pop n 20-bit registers from stack 1 to 16 – – – –
POPM.W #n,Rdst Pop n 16-bit registers from stack 1 to 16 – – – –
PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1 to 16 – – – –
PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1 to 16 – – – –
PUSHX(.B,.A) src Push 8/16/20-bit source to stack – – – –
RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry (16-/20-bit register) 1 to 4 0 * * *

RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned (16-/20-bit register) 1 to 4 0 * * *

RRAM(.A) #n,Rdst Rotate right Rdst n bits arithmetically (16-/20-bit register) 1 to 4 * * * *

RLAM(.A) #n,Rdst Rotate left Rdst n bits arithmetically (16-/20-bit register) 1 to 4 * * * *

RRCX(.B,.A) dst Rotate right dst through carry (8-/16-/20-bit data) 1 0 * * *

RRUX(.B,.A) Rdst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * *

RRAX(.B,.A) dst Rotate right dst arithmetically 1 * * * *

SWPBX(.A) dst Exchange low byte with high byte 1 – – – –
SXTX(.A) Rdst Bit7 → bit8 ... bit19 1 0 * * *

SXTX(.A) dst Bit7 → bit8 ... MSB 1 0 * * *
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

The three possible addressing mode combinations for Format II instructions are shown in Figure 4-30.

Figure 4-30. Extended Format II Instruction Format

157SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 4 3 0

Op-code n-1 Rdst - n+1

15 12 11 10 9 4 3 0

C n-1 Op-code Rdst

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

MSP430 and MSP430X Instructions www.ti.com

4.5.2.4.1 Extended Format II Instruction Format Exceptions

Exceptions for the Format II instruction formats are shown in Figure 4-31 through Figure 4-34.

Figure 4-31. PUSHM/POPM Instruction Format

Figure 4-32. RRCM, RRAM, RRUM, and RLAM Instruction Format

Figure 4-33. BRA Instruction Format

Figure 4-34. CALLA Instruction Format

158 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430 and MSP430X Instructions

4.5.2.5 Extended Emulated Instructions

The extended instructions together with the constant generator form the extended emulated instructions.
Table 4-15 lists the emulated instructions.

Table 4-15. Extended Emulated Instructions

Instruction Explanation Emulation

Add carry to dstADCX(.B,.A) dst ADDCX(.B,.A) #0,dst

Branch indirect dstBRA dst MOVA dst,PC

Return from subroutineRETA MOVA @SP+,PC

Clear RdstCLRA Rdst MOV #0,Rdst

Clear dstCLRX(.B,.A) dst MOVX(.B,.A) #0,dst

Add carry to dst decimallyDADCX(.B,.A) dst DADDX(.B,.A) #0,dst

Decrement dst by 1DECX(.B,.A) dst SUBX(.B,.A) #1,dst

Decrement Rdst by 2DECDA Rdst SUBA #2,Rdst

Decrement dst by 2DECDX(.B,.A) dst SUBX(.B,.A) #2,dst

Increment dst by 1INCX(.B,.A) dst ADDX(.B,.A) #1,dst

Increment Rdst by 2INCDA Rdst ADDA #2,Rdst

Increment dst by 2INCDX(.B,.A) dst ADDX(.B,.A) #2,dst

Invert dstINVX(.B,.A) dst XORX(.B,.A) #-1,dst

Shift left dst arithmeticallyRLAX(.B,.A) dst ADDX(.B,.A) dst,dst

Shift left dst logically through carryRLCX(.B,.A) dst ADDCX(.B,.A) dst,dst

Subtract carry from dstSBCX(.B,.A) dst SUBCX(.B,.A) #0,dst

Test Rdst (compare with 0)TSTA Rdst CMPA #0,Rdst

Test dst (compare with 0)TSTX(.B,.A) dst CMPX(.B,.A) #0,dst

Pop to dstPOPX dst MOVX(.B, .A) @SP+,dst

159SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSP430 and MSP430X Instructions www.ti.com

4.5.2.6 MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction as listed in Table 4-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.

Table 4-16. Address Instructions, Operate on 20-Bit Register Data

Status Bits (1)

Mnemonic Operands Operation
V N Z C

Rsrc,Rdst
Add source to destination register * * * *ADDA

#imm20,Rdst

Rsrc,Rdst

#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

Move source to destination – – – –MOVA &abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

Rsrc,Rdst
Compare source to destination register * * * *CMPA

#imm20,Rdst

Rsrc,Rdst
Subtract source from destination register * * * *SUBA

#imm20,Rdst
(1) * = Status bit is affected.

– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

160 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430 and MSP430X Instructions

4.5.2.7 MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

4.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths

Table 4-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended
single-operand instructions.

Table 4-17. MSP430X Format II Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)
Instruction

Rn @Rn @Rn+ #N X(Rn) EDE &EDE

RRAM n/1 – – – – – –
RRCM n/1 – – – – – –
RRUM n/1 – – – – – –
RLAM n/1 – – – – – –
PUSHM 2+n/1 – – – – – –
PUSHM.A 2+2n/1 – – – – – –
POPM 2+n/1 – – – – – –
POPM.A 2+2n/1 – – – – – –
CALLA 4/1 5/1 5/1 4/2 6 (1)/2 6/2 6/2

RRAX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3

RRAX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3

RRCX(.B) 1+n/2 4/2 4/2 – 5/3 5/3 5/3

RRCX.A 1+n/2 6/2 6/2 – 7/3 7/3 7/3

PUSHX(.B) 4/2 4/2 4/2 4/3 5 (1)/3 5/3 5/3

PUSHX.A 5/2 6/2 6/2 6/3 7 (1)/3 7/3 7/3

POPX(.B) 3/2 – – – 5/3 5/3 5/3

POPX.A 4/2 – – – 7/3 7/3 7/3
(1) Add one cycle when Rn = SP

161SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSP430 and MSP430X Instructions www.ti.com

4.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths

Table 4-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended Format I
instructions.

Table 4-18. MSP430X Format I Instruction Cycles and Length

Addressing Mode No. of Cycles Length of Examples
Instruction

Source Destination .B/.W .A .B/.W/.A

Rn Rm (1) 2 2 2 BITX.B R5,R8

PC 3 3 2 ADDX R9,PC

X(Rm) 5 (2) 7 (3) 3 ANDX.A R5,4(R6)

EDE 5 (2) 7 (3) 3 XORX R8,EDE

&EDE 5 (2) 7 (3) 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 3 4 2 ADDX @R9,PC

X(Rm) 6 (2) 9 (3) 3 ANDX.A @R5,4(R6)

EDE 6 (2) 9 (3) 3 XORX @R8,EDE

&EDE 6 (2) 9 (3) 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 4 5 2 ADDX.A @R9+,PC

X(Rm) 6 (2) 9 (3) 3 ANDX @R5+,4(R6)

EDE 6 (2) 9 (3) 3 XORX.B @R8+,EDE

&EDE 6 (2) 9 (3) 3 BITX @R5+,&EDE

#N Rm 3 3 3 BITX #20,R8

PC (4) 4 4 3 ADDX.A #FE000h,PC

X(Rm) 6 (2) 8 (3) 4 ANDX #1234,4(R6)

EDE 6 (2) 8 (3) 4 XORX #A5A5h,EDE

&EDE 6 (2) 8 (3) 4 BITX.B #12,&EDE

X(Rn) Rm 4 5 3 BITX 2(R5),R8

PC (4) 5 6 3 SUBX.A 2(R6),PC

X(Rm) 7 (2) 10 (3) 4 ANDX 4(R7),4(R6)

EDE 7 (2) 10 (3) 4 XORX.B 2(R6),EDE

&EDE 7 (2) 10 (3) 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC (4) 5 6 3 ADDX.A EDE,PC

X(Rm) 7 (2) 10 (3) 4 ANDX EDE,4(R6)

EDE 7 (2) 10 (3) 4 ANDX EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC (4) 5 6 3 ADDX.A &EDE,PC

X(Rm) 7 (2) 10 (3) 4 ANDX.B &EDE,4(R6)

TONI 7 (2) 10 (3) 4 XORX &EDE,TONI

&TONI 7 (2) 10 (3) 4 BITX &EDE,&TONI
(1) Repeat instructions require n + 1 cycles, where n is the number of times the instruction is executed.
(2) Reduce the cycle count by one for MOV, BIT, and CMP instructions.
(3) Reduce the cycle count by two for MOV, BIT, and CMP instructions.
(4) Reduce the cycle count by one for MOV, ADD, and SUB instructions.

162 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com MSP430 and MSP430X Instructions

4.5.2.7.3 MSP430X Address Instruction Cycles and Lengths

Table 4-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.

Table 4-19. Address Instruction Cycles and Length

Execution Time Length of InstructionAddressing Mode (MCLK Cycles) (Words)
ExampleCMPA CMPAMOVASource Destination ADDA MOVA ADDABRA SUBA SUBA

Rn Rn 1 1 1 1 CMPA R5,R8

PC 2 2 1 1 SUBA R9,PC

x(Rm) 4 – 2 – MOVA R5,4(R6)

EDE 4 – 2 – MOVA R8,EDE

&EDE 4 – 2 – MOVA R5,&EDE

@Rn Rm 3 – 1 – MOVA @R5,R8

PC 3 – 1 – MOVA @R9,PC

@Rn+ Rm 3 – 1 – MOVA @R5+,R8

PC 3 – 1 – MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 – 2 – MOVA 2(R5),R8

PC 4 – 2 – MOVA 2(R6),PC

EDE Rm 4 – 2 – MOVA EDE,R8

PC 4 – 2 – MOVA EDE,PC

&EDE Rm 4 – 2 – MOVA &EDE,R8

PC 4 – 2 – MOVA &EDE,PC

163SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6 Instruction Set Description

Table 4-20 shows all available instructions:

Table 4-20. Instruction Map of MSP430X

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

0xxx MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

PUSH. CALL10xx RRC RRC.B SWPB RRA RRA.B SXT PUSH CALL RETIB A

14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W

18xx
Extension word for Format I and Format II instructions

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xxx MOV, MOV.B

5xxx ADD, ADD.B

6xxx ADDC, ADDC.B

7xxx SUBC, SUBC.B

8xxx SUB, SUB.B

9xxx CMP, CMP.B

Axxx DADD, DADD.B

Bxxx BIT, BIT.B

Cxxx BIC, BIC.B

Dxxx BIS, BIS.B

Exxx XOR, XOR.B

Fxxx AND, AND.B

164 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown in the following tables.

Instruction Instructionsrc or data.19:16 dstGroup IdentifierInstruction
15 12 11 8 7 4 3 0

MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0

0 0 0 0 src 0 0 1 1 dst MOVA x(Rsrc),Rdst

x.15:0 ±15-bit index x

0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0

0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,X(Rdst)

x.15:0 ±15-bit index x

0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0

CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0

ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0

SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0

MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction InstructionBit Loc. Inst. ID dstGroup IdentifierInstruction
15 12 11 10 9 8 7 4 3 0

RRCM.A 0 0 0 0 n – 1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n – 1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n – 1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n – 1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n – 1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n – 1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n – 1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n – 1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

165SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

Instruction Identifier dst
Instruction

15 12 11 8 7 6 5 4 3 0

RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0

0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0

0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0

Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x

Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x

PUSHM.A 0 0 0 1 0 1 0 0 n – 1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n – 1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n – 1 dst – n + 1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n – 1 dst – n + 1 POPM.W #n,Rdst

166 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2 MSP430 Instructions

The MSP430 instructions are described in the following sections.

See Section 4.6.3 for MSP430X extended instructions and Section 4.6.4 for MSP430X address
instructions.

167SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.1 ADC

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination
Syntax ADC dst or ADC.W dst

ADC.B dst

Operation dst + C → dst
Emulation ADDC #0,dst

ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.

ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.

ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

168 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.2 ADD

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte
Syntax ADD src,dst or ADD.W src,dst

ADD.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous content of the

destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 16-bit counter CNTR located in lower 64KB.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

169SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.3 ADDC

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte
Syntax ADDC src,dst or ADDC.W src,dst

ADDC.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous content of the destination is lost.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant value 15 and the carry of the previous instruction are added to the 16-bit

counter CNTR located in lower 64KB.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

170 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.4 AND

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte
Syntax AND src,dst or AND.W src,dst

AND.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in

the lower 64KB. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

171SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.5 BIC

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte
Syntax BIC src,dst or BIC.W src,dst

BIC.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

172 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.6 BIS

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte
Syntax BIS src,dst or BIS.W src,dst

BIS.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

173SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.7 BIT

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte
Syntax BIT src,dst or BIT.W src,dst

BIT.B src,dst

Operation src .and. dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this

is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump
to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
... ; At least one bit is set

174 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.8 BR, BRANCH

* BR, Branch to destination in lower 64K address space
BRANCH
Syntax BR dst

Operation dst → PC
Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.

BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time-S/W flow uses R5 pointer-it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

175SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.9 CALL

CALL Call a subroutine in lower 64KB
Syntax CALL dst

Operation dst → PC 16-bit dst is evaluated and stored
SP – 2 → SP
PC → @SP updated PC with return address to TOS
tmp → PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64KB to a subroutine address in
the lower 64KB. All seven source addressing modes can be used. The call instruction is
a word instruction. The return is made with the RET instruction.

Status Bits Status bits are not affected.
PC.19:16 cleared (address in lower 64KB)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64KB) or call directly to
address.

CALL #EXEC ; Start address EXEC
CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC + 32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64KB.

CALL &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).

CALL @R5 ; Start address at @R5

176 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.10 CLR

* CLR[.W] Clear destination
* CLR.B Clear destination
Syntax CLR dst or CLR.W dst

CLR.B dst

Operation 0 → dst
Emulation MOV #0,dst

MOV.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.

CLR TONI ; 0 -> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 -> TONI

177SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.11 CLRC

* CLRC Clear carry bit
Syntax CLRC

Operation 0 → C
Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.
Status Bits N: Not affected

Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by

R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

178 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.12 CLRN

* CLRN Clear negative bit
Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst → dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The negative bit in the SR is cleared. This avoids special treatment with negative

numbers of the subroutine called.

CLRN
CALL SUBR
...
...

SUBR JN SUBRET ; If input is negative: do nothing and return
...
...
...

SUBRET RET

179SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.13 CLRZ

* CLRZ Clear zero bit
Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst → dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The zero bit in the SR is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X), for example, a table with addresses starting at X. The
address is within the lower 64KB. X is within +32KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

180 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.14 CMP

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte
Syntax CMP src,dst or CMP.W src,dst

CMP.B src,dst

Operation (.not.src) + 1 + dst
or
dst – src

Emulation BIC #2,SR

Description The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src = dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the

constant. The address of EDE is within PC + 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
... ; Not equal

Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1.
Jump to label TONI if values are equal. The next table byte is addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

181SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.15 DADC

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination
Syntax DADC dst or DADC.W dst

DADC.B dst

Operation dst + C → dst (decimally)
Emulation DADD #0,dst

DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number

pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

CLRC ; Reset carry
; next instruction's start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

182 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.16 DADD

* DADD[.W] Add source word and carry decimally to destination word
* DADD.B Add source byte and carry decimally to destination byte
Syntax DADD src,dst or DADD.W src,dst

DADD.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B) or four (.W)

binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Result >9999,9999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0CLRC ;
Clear carryDADD.B &BCD,R4 ; Add BCD to R4 decimally. R4: 0,00ddh

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.

R4: 0,00ddh

183SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

EDE

EDE+254

TONI

TONI+254

Instruction Set Description www.ti.com

4.6.2.17 DEC

* DEC[.W] Decrement destination
* DEC.B Decrement destination
Syntax DEC dst or DEC.W dst

DEC.B dst

Operation dst – 1 → dst
Emulation SUB #1,dst

SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 1.

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI. Tables should not overlap: start of
; destination address TONI must not be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

Do not transfer tables using the routine above with the overlap shown in Figure 4-35.

Figure 4-35. Decrement Overlap

184 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.18 DECD

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst

DECD.B dst

Operation dst – 2 → dst
Emulation SUB #2,dst

SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Set if initial value of destination was 08001 or 08000h, otherwise reset
Set if initial value of destination was 081 or 080h, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI.
; Tables should not overlap: start of destination address TONI must not
; be within the range EDE to EDE+0FEh

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two

DECD.B STATUS

185SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.19 DINT

* DINT Disable (general) interrupts
Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT. src .AND. dst → dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the SR. The result is placed into
the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is cleared to allow a nondisrupted move

of a 32-bit counter. This ensures that the counter is not modified during the move by any
interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

NOTE: Disable interrupt

If any code sequence needs to be protected from interruption, DINT should be executed at
least one instruction before the beginning of the uninterruptible sequence, or it should be
followed by a NOP instruction.

186 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.20 EINT

* EINT Enable (general) interrupts
Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR → SR / .src .OR. dst → dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the SR are logically ORed. The result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the SR is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read.
; P1IFG is the address of the register where all interrupt events are latched.

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
...
...

MaskOK BIC #Mask,@SP
...
...
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

NOTE: Enable interrupt

The instruction following the enable interrupt instruction (EINT) is always executed, even if
an interrupt service request is pending when the interrupts are enabled.

187SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.21 INC

* INC[.W] Increment destination
* INC.B Increment destination
Syntax INC dst or INC.W dst

INC.B dst

Operation dst + 1 → dst
Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch

to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

188 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.22 INCD

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination
Syntax INCD dst or INCD.W dst

INCD.B dst

Operation dst + 2 → dst
Emulation ADD #2,dst

ADD.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register
RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

189SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.23 INV

* INV[.W] Invert destination
* INV.B Invert destination
Syntax INV dst or INV.W dst

INV.B dst

Operation .not.dst → dst
Emulation XOR #0FFFFh,dst

XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (2s complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

190 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.24 JC, JHS

JC Jump if carry
JHS Jump if higher or same (unsigned)
Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C
JC Label1 ; Yes, proceed at Label1
... ; No, continue

Example If R5 ≥ R6 (unsigned), the program continues at Label2.

CMP R6,R 5 ; Is R5 >= R6? Info to C
JHS Label2 ; Yes, C = 1
... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands), the program continues at Label2.

CMPA #12345h,R5 ; Is R5 >= 12345h? Info to C
JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1
... ; No, R5 < 12345h. Continue

191SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.25 JEQ, JZ

JEQ Jump if equal
JZ Jump if zero
Syntax JEQ label

JZ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The zero bit Z in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The state of the P2IN.0 bit defines the program flow.

BIT.B #1,&P2IN ; Port 2, bit 0 reset?
JZ Label1 ; Yes, proceed at Label1
... ; No, set, continue

Example If R5 = 15000h (20-bit data), the program continues at Label2.

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 ; Yes, R5 = 15000h. Z = 1
... ; No, R5 not equal 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
... ; R7 not equal 0. Continue here.

192 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.26 JGE

JGE Jump if greater or equal (signed)
Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If both bits are set or both
are reset, the signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit PC. This means a jump in the range -511 to +512
words relative to the PC in full Memory range. If only one bit is set, the instruction after
the jump is executed.
JGE is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note: JGE emulates the nonimplemented JP (jump if positive) instruction if used after the
instructions AND, BIT, RRA, SXTX, and TST. These instructions clear the V bit.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE (lower 64KB) contains positive data, go to Label1. Software can run in the

full memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Label1 ; Yes, JGE emulates JP
... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.

CMP @R7,R6 ; Is R6 >= @R7?
JGE Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 ≥ 12345h (signed operands), the program continues at Label2. Program in full
memory range.

CMPA #12345h,R5 ; Is R5 >= 12345h?
JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh
... ; No, 80000h <= R5 < 12345h

193SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.27 JL

JL Jump if less (signed)
Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the SR are tested. If only one is set, the
signed 10-bit word offset contained in the instruction is multiplied by two, sign extended,
and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative
to the PC in full memory range. If both bits N and V are set or both are reset, the
instruction after the jump is executed.
JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The

address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI
JL Label1 ; Yes
... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address), the
program continues at Label5. Data and program in full memory range.

CMP @R7,R6 ; Is R6 < @R7?
JL Label5 ; Yes, go to Label5
... ; No, continue here

Example If R5 < 12345h (signed operands), the program continues at Label2. Data and program
in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?
JL Label2 ; Yes, 80000h =< R5 < 12345h
... ; No, 12344h < R5 <= 7FFFFh

194 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.28 JMP

JMP Jump unconditionally
Syntax JMP label

Operation PC + (2 × Offset) → PC
Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign

extended, and added to the 20-bit PC. This means an unconditional jump in the range
–511 to +512 words relative to the PC in the full memory. The JMP instruction may be
used as a BR or BRA instruction within its limited range relative to the PC.

Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower

64KB, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64KB.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending
JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

195SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.29 JN

JN Jump if negative
Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the SR is tested. If it is set, the signed 10-bit word offset contained
in the instruction is multiplied by two, sign extended, and added to the 20-bit program
PC. This means a jump in the range -511 to +512 words relative to the PC in the full
memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data

in lower 64KB, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN Label0 ; Yes, proceed at Label0
... ; COUNT >= 0

Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program
in full memory range.

SUB R6,R5 ; R5 - R6 -> R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
... ; R5 >= 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 ; R7 < 0: Go to Label4
... ; R7 >= 0. Continue here.

196 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.30 JNC, JLO

JNC Jump if no carry
JLO Jump if lower (unsigned)
Syntax JNC label

JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example If byte EDE < 15, the program continues at Label2. Unsigned data. Data in lower 64KB,

program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C
JLO Label2 ; Yes, EDE < 15. C = 0
... ; No, EDE >= 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC Label0 ; No carry
... ; Carry = 1: continue here

197SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.31 JNZ, JNE

JNZ Jump if not zero
JNE Jump if not equal
Syntax JNZ label

JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is set, the instruction after the jump is executed.
JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The

address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
... ; Yes, continue here

Example If word EDE ≠ 1500, the program continues at Label2. Data in lower 64KB, program in
full memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR
JNE Label2 ; No, EDE not equal 1500.
... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JNZ Label4 ; Zero not reached: Go to Label4
... ; Yes, R7 = 0. Continue here.

198 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.32 MOV

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte
Syntax MOV src,dst or MOV.W src,dst

MOV.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64KB)

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64KB.

MOV #EDE,R10 ; Prepare pointer (16-bit address)
Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMP #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 ± 32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

199SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.33 NOP

* NOP No operation
Syntax NOP

Operation None
Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.

Status Bits Status bits are not affected.

200 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.34 POP

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination
Syntax POP dst

POP.B dst

Operation @SP → temp
SP + 2 → SP
temp → dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst

MOV.B @SP+,dst

Description The stack location pointed to by the SP (TOS) is moved to the destination. The SP is
incremented by two afterwards.

Status Bits Status bits are not affected.
Example The contents of R7 and the SR are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the SR are restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

NOTE: System stack pointer

The system SP is always incremented by two, independent of the byte suffix.

201SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.35 PUSH

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH.W dst

PUSH.B dst

Operation SP – 2 → SP
dst → @SP

Description The 20-bit SP SP is decremented by two. The operand is then copied to the RAM word
addressed by the SP. A pushed byte is stored in the low byte; the high byte is not
affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the two 16-bit registers R9 and R10 on the stack

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh
PUSH.B TONI ; Save TONI xxYYh

202 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Item n

PC
Return

Item n

Stack before RET

instruction

Stack after RET

instruction

SP

SP

www.ti.com Instruction Set Description

4.6.2.36 RET

RET Return from subroutine
Syntax RET

Operation @SP →PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64KB), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the PC.19:16 are cleared.

Status Bits Status bits are not affected.
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR in the lower 64KB and return to the address in the lower 64KB

after the CALL.

CALL #SUBR ; Call subroutine starting at SUBR
... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)
... ; Subroutine code
POP R14 ; Restore R14
RET ; Return to lower 64KB

Figure 4-36. Stack After a RET Instruction

203SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.37 RETI

RETI Return from interrupt
Syntax RETI

Operation @SP → SR.15:0 Restore saved SR with PC.19:16
SP + 2 → SP
@SP → PC.15:0 Restore saved PC.15:0
SP + 2 → SP Housekeeping

Description The SR is restored to the value at the beginning of the interrupt service routine. This
includes the four MSBs of the PC.19:16. The SP is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit PC is restored to the value at the beginning of the interrupt
service routine. The program continues at the address following the last executed
instruction when the interrupt was granted. The SP is incremented by two afterward.

Status Bits N: Restored from stack
C: Restored from stack
Z: Restored from stack
V: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.
Example Interrupt handler in the lower 64KB. A 20-bit return address is stored on the stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)
... ; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

204 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

7 0

C

Byte

Word

0

www.ti.com Instruction Set Description

4.6.2.38 RLA

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically
Syntax RLA dst or RLA.W dst

RLA.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-37. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed; the
result has changed sign.

Figure 4-37. Destination Operand—Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed; the
result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

NOTE: RLA substitution

The assembler does not recognize the instructions:

RLA @R5+ RLA.B @R5+ RLA(.B) @R5

They must be substituted by:

ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) ADD(.B) @R5

205SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

7 0

C

Byte

Word

Instruction Set Description www.ti.com

4.6.2.39 RLC

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry
Syntax RLC dst or RLC.W dst

RLC.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-38. The carry bit
(C) is shifted into the LSB, and the MSB is shifted into the carry bit (C).

Figure 4-38. Destination Operand—Carry Left Shift
Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,

reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLA substitution

The assembler does not recognize the instructions:

RLC @R5+ RLC.B @R5+ RLC(.B) @R5

They must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5

206 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

www.ti.com Instruction Set Description

4.6.2.40 RRA

RRA[.W] Rotate right arithmetically destination word
RRA.B Rotate right arithmetically destination byte
Syntax RRA.B dst or RRA.W dst

Operation MSB → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one bit position as shown in

Figure 4-39. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4-39. Rotate Right Arithmetically RRA.B and RRA.W

207SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

Instruction Set Description www.ti.com

4.6.2.41 RRC

RRC[.W] Rotate right through carry destination word
RRC.B Rotate right through carry destination byte
Syntax RRC dst or RRC.W dst

RRC.B dst

Operation C → MSB → MSB–1 → ... LSB+1 → LSB → C
Description The destination operand is shifted right by one bit position as shown in Figure 4-40. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.
Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE ; EDE = EDE >> 1 + 8000h

Figure 4-40. Rotate Right Through Carry RRC.B and RRC.W

208 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.42 SBC

* SBC[.W] Subtract borrow (.NOT. carry) from destination
* SBC.B Subtract borrow (.NOT. carry) from destination
Syntax SBC dst or SBC.W dst

SBC.B dst

Operation dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SUBC #0,dst

SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by

R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

209SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.43 SETC

* SETC Set carry bit
Syntax SETC

Operation 1 → C
Emulation BIS #1,SR

Description The carry bit (C) is set.
Status Bits N: Not affected

Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally.
Assume that R5 = 03987h and R6 = 04137h.

DSUB ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

210 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.44 SETN

* SETN Set negative bit
Syntax SETN

Operation 1 → N
Emulation BIS #4,SR

Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

211SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.45 SETZ

* SETZ Set zero bit
Syntax SETZ

Operation 1 → N
Emulation BIS #2,SR

Description The zero bit (Z) is set.
Status Bits N: Not affected

Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

212 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.46 SUB

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte
Syntax SUB src,dst or SUB.W src,dst

SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32K.
The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

213SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.47 SUBC

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte
Syntax SUBC src,dst or SUBC.W src,dst

SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous

instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64KB.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

214 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

www.ti.com Instruction Set Description

4.6.2.48 SWPB

SWPB Swap bytes
Syntax SWPB dst

Operation dst.15:8 ↔ dst.7:0
Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in

register mode.
Status Bits Status bits are not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM word EDE (lower 64KB)

MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 4-41. Swap Bytes in Memory

Figure 4-42. Swap Bytes in a Register

215SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.49 SXT

SXT Extend sign
Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode)
Description Register mode: the sign of the low byte of the operand is extended into the bits

Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards

Other modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE (lower 64KB) is sign extended and added to the 16-bit

signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

216 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.2.50 TST

* TST[.W] Test destination
* TST.B Test destination
Syntax TST dst or TST.W dst

TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst

CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at

R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

217SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.2.51 XOR

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte
Syntax XOR src,dst or XOR.W src,dst

XOR.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into the

destination. The source operand is not affected. The previous content of the destination
is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.

Both operands are located in lower 64KB.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.
R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is 0h

218 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3 MSP430X Extended Instructions

The MSP430X extended instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word. The
MSP430X extended instructions are described in the following sections. For MSP430X instructions that do
not require the extension word, it is noted in the instruction description.

See Section 4.6.2 for standard MSP430 instructions and Section 4.6.4 for MSP430X address instructions.

219SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.1 ADCX

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte
Syntax ADCX.A dst

ADCX dst or ADCX.W dst

ADCX.B dst

Operation dst + C → dst
Emulation ADDCX.A #0,dst

ADDCX #0,dst

ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

220 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.2 ADDX

ADDX.A Add source address-word to destination address-word
ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte
Syntax ADDX.A src,dst

ADDX src,dst or ADDX.W src,dst

ADDX.B src,dst

Operation src + dst → dst
Description The source operand is added to the destination operand. The previous contents of the

destination are lost. Both operands can be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and

CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.

ADDX.A Rsrc,Rdst
ADDX.A #imm20,Rdst

221SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.3 ADDCX

ADDCX.A Add source address-word and carry to destination address-word
ADDCX.[W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte
Syntax ADDCX.A src,dst

ADDCX src,dst or ADDCX.W src,dst

ADDCX.B src,dst

Operation src + dst + C → dst
Description The source operand and the carry bit C are added to the destination operand. The

previous contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter

CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

222 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.4 ANDX

ANDX.A Logical AND of source address-word with destination address-word
ANDX.[W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte
Syntax ANDX.A src,dst

ANDX src,dst or ANDX.W src,dst

ANDX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM

located in two words. If the result is zero, a branch is taken to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

223SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.5 BICX

BICX.A Clear bits set in source address-word in destination address-word
BICX.[W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte
Syntax BICX.A src,dst

BICX src,dst or BICX.W src,dst

BICX.B src,dst

Operation (.not. src) .and. dst → dst
Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

224 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.6 BISX

BISX.A Set bits set in source address-word in destination address-word
BISX.[W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte
Syntax BISX.A src,dst

BISX src,dst or BISX.W src,dst

BISX.B src,dst

Operation src .or. dst → dst
Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected. Both operands may be located
in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

225SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.7 BITX

BITX.A Test bits set in source address-word in destination address-word
BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte
Syntax BITX.A src,dst

BITX src,dst or BITX.W src,dst

BITX.B src,dst

Operation src .and. dst → dst
Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits. Both operands may be located in the full address space.
Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits
JNZ TONI ; At least one bit is set
... ; Both are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z
JC TONI ; At least one is set
... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to
label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1
JNC TONI ; No corresponding input bit is set
... ; At least one bit is set

226 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.8 CLRX

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst

CLRX dst or CLRX.W dst

CLRX.B dst

Operation 0 → dst
Emulation MOVX.A #0,dst

MOVX #0,dst

MOVX.B #0,dst

Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 -> TONI

227SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.9 CMPX

CMPX.A Compare source address-word and destination address-word
CMPX.[W] Compare source word and destination word
CMPX.B Compare source byte and destination byte
Syntax CMPX.A src,dst

CMPX src,dst or CMPX.W src,dst

CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst – src
Description The source operand is subtracted from the destination operand by adding the 1s

complement of the source + 1 to the destination. The result affects only the status bits.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the

constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI ; R7 < @R5
... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1.
Jump to label TONI if the values are equal. The next table byte is addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

228 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.10 DADCX

* DADCX.A Add carry decimally to destination address-word
* DADCX.[W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte
Syntax DADCX.A dst

DADCX dst or DADCX.W dst

DADCX.B dst

Operation dst + C → dst (decimally)
Emulation DADDX.A #0,dst

DADDX #0,dst

DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.
Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

229SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.11 DADDX

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX.[W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte
Syntax DADDX.A src,dst

DADDX src,dst or DADDX.W src,dst

DADDX.B src,dst

Operation src + dst + C → dst (decimally)
Description The source operand and the destination operand are treated as two (.B), four (.W), or

five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC ; Clear carry
DADDX.W BCD,R4 ; Add LSDs
DADDX.W BCD+2,R5 ; Add MSDs with carry
JC OVERFLOW ; Result >99999999: go to error routine
... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added decimally to a
two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.

; R4: 000ddh

230 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.12 DECX

* DECX.A Decrement destination address-word
* DECX.[W] Decrement destination word
* DECX.B Decrement destination byte
Syntax DECX.A dst

DECX dst or DECX.W dst

DECX.B dst

Operation dst – 1 → dst
Emulation SUBX.A #1,dst

SUBX #1,dst

SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by one.

DECX.A TONI ; Decrement TONI

231SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.13 DECDX

* DECDX.A Double-decrement destination address-word
* DECDX.[W] Double-decrement destination word
* DECDX.B Double-decrement destination byte
Syntax DECDX.A dst

DECDX dst or DECDX.W dst

DECDX.B dst

Operation dst – 2 → dst
Emulation SUBX.A #2,dst

SUBX #2,dst

SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by two.

DECDX.A TONI ; Decrement TONI

232 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.14 INCX

* INCX.A Increment destination address-word
* INCX.[W] Increment destination word
* INCX.B Increment destination byte
Syntax INCX.A dst

INCX dst or INCX.W dst

INCX.B dst

Operation dst + 1 → dst
Emulation ADDX.A #1,dst

ADDX #1,dst

ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is incremented by one.

INCX.A TONI ; Increment TONI (20-bits)

233SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.15 INCDX

* INCDX.A Double-increment destination address-word
* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte
Syntax INCDX.A dst

INCDX dst or INCDX.W dst

INCDX.B dst

Operation dst + 2 → dst
Emulation ADDX.A #2,dst

ADDX #2,dst

ADDX.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFEh, reset otherwise
Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B LEO ; Increment LEO by two

234 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.16 INVX

* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination
Syntax INVX.A dst

INVX dst or INVX.W dst

INVX.B dst

Operation .NOT.dst → dst
Emulation XORX.A #0FFFFFh,dst

XORX #0FFFFh,dst

XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example 20-bit content of R5 is negated (2s complement).

INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory.

INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

235SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.17 MOVX

MOVX.A Move source address-word to destination address-word
MOVX.[W] Move source word to destination word
MOVX.B Move source byte to destination byte
Syntax MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst

MOVX.B src,dst

Operation src → dst
Description The source operand is copied to the destination. The source operand is not affected.

Both operands may be located in the full address space.
Status Bits N: Not affected

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Move a 20-bit constant 18000h to absolute address-word EDE

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The
length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.

; R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)
MOV #20h,R9 ; Prepare counter

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter
JNZ Loop ; Not yet done
... ; Copy completed

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg
MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg
MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg
MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg
MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

236 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

The next four replacements are possible only if 16-bit indexes are sufficient for the
addressing:

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg
MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

237SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.18 POPM

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM.[W] Restore n CPU registers (16-bit data) from the stack
Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16

POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16
Operation POPM.A: Restore the register values from stack to the specified CPU registers. The SP

is incremented by four for each register restored from stack. The 20-bit values from
stack (two words per register) are restored to the registers.
POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The SP is incremented by two for each register restored from stack. The 16-bit values
from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst – n + 1). The SP is incremented by (n ×
4) after the operation.
POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst – n + 1). The SP is incremented by (n × 2)
after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are cleared.

Status Bits Status bits are not affected, except SR is included in the operation.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

238 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.19 PUSHM

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack
Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16

PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16
Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The SP is decremented

by four for each register stored on the stack. The MSBs are stored first (higher
address).
PUSHM.W: Save the 16-bit CPU register values on the stack. The SP is decremented
by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The SP is decremented by (n × 4) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
SP is decremented by (n × 2) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
Note : This instruction does not use the extension word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

239SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.20 POPX

* POPX.A Restore single address-word from the stack
* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst

POPX dst or POPX.W dst

POPX.B dst

Operation Restore the 8-/16-/20-bit value from the stack to the destination. 20-bit addresses are
possible. The SP is incremented by two (byte and word operands) and by four
(address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register mode, Indexed mode,
Symbolic mode, and Absolute mode are possible. The SP is incremented by two or
four.
Note: The SP is incremented by two also for byte operations.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9

POPX.A R9 ; Write address-word to R9

240 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.21 PUSHX

PUSHX.A Save single address-word to the stack
PUSHX.[W] Save single word to the stack
PUSHX.B Save single byte to the stack
Syntax PUSHX.A src

PUSHX src or PUSHX.W src

PUSHX.B src

Operation Save the 8-/16-/20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The SP is decremented by two (byte and word operands) or by four
(address-word operand) before the write operation.

Description The SP is decremented by two (byte and word operands) or by four (address-word
operand). Then the source operand is written to the TOS. All seven addressing modes
are possible for the source operand.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Save the byte at the 20-bit address &EDE on the stack

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

241SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

Instruction Set Description www.ti.com

4.6.3.22 RLAM

RLAM.A Rotate left arithmetically the 20-bit CPU register content
RLAM.[W] Rotate left arithmetically the 16-bit CPU register content
Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4

RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4
Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Description The destination operand is shifted arithmetically left one, two, three, or four positions as

shown in Figure 4-43. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 4-43. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

242 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSBC 0LSB

0

www.ti.com Instruction Set Description

4.6.3.23 RLAX

* RLAX.A Rotate left arithmetically address-word
* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte
Syntax RLAX.A dst

RLAX dst or RLAX.W dst

RLAX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0
Emulation ADDX.A dst,dst

ADDX dst,dst

ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-44. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is multiplied by 2

RLAX.A R7 ; Shift left R7 (20-bit)

Figure 4-44. Destination Operand-Arithmetic Shift Left

243SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSB

0

C LSB

Instruction Set Description www.ti.com

4.6.3.24 RLCX

* RLCX.A Rotate left through carry address-word
* RLCX.[W] Rotate left through carry word
* RLCX.B Rotate left through carry byte
Syntax RLCX.A dst

RLCX dst or RLCX.W dst

RLCX.B dst

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← C
Emulation ADDCX.A dst,dst

ADDCX dst,dst

ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-45. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;

reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C -> R5

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.

RLCX.B LEO ; RAM(LEO) x 2 + C -> RAM(LEO)

Figure 4-45. Destination Operand-Carry Left Shift

244 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

www.ti.com Instruction Set Description

4.6.3.25 RRAM

RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content
Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4

RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4
Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right arithmetically by one, two, three, or four bit

positions as shown in Figure 4-46. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2/4/8/16. The MSB is retained and shifted into MSB-1. The
LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15.

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15 y 0.5 -> R15
ADDX.A @SP+,R15 ; R15 y 0.5 + R15 = 1.5 y R15 -> R15
RRAM.A #1,R15 ; (1.5 y R15) y 0.5 = 0.75 y R15 -> R15

Figure 4-46. Rotate Right Arithmetically RRAM[.W] and RRAM.A

245SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.26 RRAX

RRAX.A Rotate right arithmetically the 20-bit operand
RRAX.[W] Rotate right arithmetically the 16-bit operand
RRAX.B Rotate right arithmetically the 8-bit operand
Syntax RRAX.A Rdst

RRAX.W Rdst

RRAX Rdst

RRAX.B Rdst

RRAX.A dst

RRAX dst or RRAX.W dst

RRAX.B dst

Operation MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 4-47. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.
All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Figure 4-48. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes, with the exception of the Immediate mode, are possible in the full
memory.

Status Bits N: Set if result is negative, reset if positive
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 -> R5

246 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

www.ti.com Instruction Set Description

Example The signed 8-bit value in EDE is multiplied by 0.5.

RRAX.B &EDE ; EDE/2 -> EDE

Figure 4-47. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

247SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

Instruction Set Description www.ti.com

4.6.3.27 RRCM

RRCM.A Rotate right through carry the 20-bit CPU register content
RRCM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4

RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4
Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 4-49. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The address-word in R5 is shifted right by three positions. The MSB–2 is loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB–1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0

Figure 4-49. Rotate Right Through Carry RRCM[.W] and RRCM.A

248 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.28 RRCX

RRCX.A Rotate right through carry the 20-bit operand
RRCX.[W] Rotate right through carry the 16-bit operand
RRCX.B Rotate right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst

RRCX Rdst

RRCX.B Rdst

RRCX.A dst

RRCX dst or RRCX.W dst

RRCX.B dst

Operation C → MSB → MSB–1 ... LSB+1 → LSB → C
Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 4-50. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.
All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 4-51. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes, with the exception of the Immediate
mode, are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded

with 1.

SETC ; Prepare carry for MSB
RRCX.A EDE ; EDE = EDE » 1 + 80000h

249SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Instruction Set Description www.ti.com

Example The word in R6 is shifted right by 12 positions.

RPT #12
RRCX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4-50. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode

250 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

www.ti.com Instruction Set Description

4.6.3.29 RRUM

RRUM.A Rotate right through carry the 20-bit CPU register content
RRUM.[W] Rotate right through carry the 16-bit CPU register content
Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4

RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4
Operation 0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 4-52. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 » 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 4-52. Rotate Right Unsigned RRUM[.W] and RRUM.A

251SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

C

19 0

MSB0 - 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

Instruction Set Description www.ti.com

4.6.3.30 RRUX

RRUX.A Shift right unsigned the 20-bit CPU register content
RRUX.[W] Shift right unsigned the 16-bit CPU register content
RRUX.B Shift right unsigned the 8-bit CPU register content
Syntax RRUX.A Rdst

RRUX.W Rdst

RRUX Rdst

RRUX.B Rdst

Operation C=0 → MSB → MSB–1 ... LSB+1 → LSB → C
Description RRUX is valid for register mode only: the destination operand is shifted right by one bit

position as shown in Figure 4-53. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The word in R6 is shifted right by 12 positions.

RPT #12
RRUX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4-53. Rotate Right Unsigned RRUX(.B,.A) – Register Mode

252 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.31 SBCX

* SBCX.A Subtract borrow (.NOT. carry) from destination address-word
* SBCX.[W] Subtract borrow (.NOT. carry) from destination word
* SBCX.B Subtract borrow (.NOT. carry) from destination byte
Syntax SBCX.A dst

SBCX dst or SBCX.W dst

SBCX.B dst

Operation dst + 0FFFFFh + C → dst
dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation SBCX.A #0,dst

SBCX #0,dst

SBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

NOTE: Borrow implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

253SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.32 SUBX

SUBX.A Subtract source address-word from destination address-word
SUBX.[W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte
Syntax SUBX.A src,dst

SUBX src,dst or SUBX.W src,dst

SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst – src → dst
Description The source operand is subtracted from the destination operand. This is done by adding

the 1s complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by two. R7.19:16 =
0.

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space. Address of
CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.

SUBX.A Rsrc,Rdst
SUBX.A #imm20,Rdst

254 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.33 SUBCX

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX.[W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte
Syntax SUBCX.A src,dst

SUBCX src,dst or SUBCX.W src,dst

SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst – (src – 1) + C → dst
Description The source operand is subtracted from the destination operand. This is made by adding

the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous

instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction
is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

255SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

Instruction Set Description www.ti.com

4.6.3.34 SWPBX

SWPBX.A Swap bytes of lower word
SWPBX.[W] Swap bytes of word
Syntax SWPBX.A dst

SWPBX dst or SWPBX.W dst

Operation dst.15:8 ↔ dst.7:0
Description Register mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,

Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Exchange the bytes of RAM address-word EDE

MOVX.A #23456h,&EDE ; 23456h -> EDE
SWPBX.A EDE ; 25634h -> EDE

Example Exchange the bytes of R5

MOVA #23456h,R5 ; 23456h -> R5
SWPBX.W R5 ; 05634h -> R5

Figure 4-54. Swap Bytes SWPBX.A Register Mode

Figure 4-55. Swap Bytes SWPBX.A In Memory

256 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

www.ti.com Instruction Set Description

Figure 4-56. Swap Bytes SWPBX[.W] Register Mode

Figure 4-57. Swap Bytes SWPBX[.W] In Memory

257SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

Instruction Set Description www.ti.com

4.6.3.35 SXTX

SXTX.A Extend sign of lower byte to address-word
SXTX.[W] Extend sign of lower byte to word
Syntax SXTX.A dst

SXTX dst or SXTX.W dst

Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register mode)
Description Register mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits

Rdst.19:8.
Other modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20

located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

Figure 4-58. Sign Extend SXTX.A

Figure 4-59. Sign Extend SXTX[.W]

258 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.3.36 TSTX

* TSTX.A Test destination address-word
* TSTX.[W] Test destination word
* TSTX.B Test destination byte
Syntax TSTX.A dst

TSTX dst or TSTX.W dst

TSTX.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst

CMPX #0,dst

CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at

LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

259SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.3.37 XORX

XORX.A Exclusive OR source address-word with destination address-word
XORX.[W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte
Syntax XORX.A src,dst

XORX src,dst or XORX.W src,dst

XORX.B src,dst

Operation src .xor. dst → dst
Description The source and destination operands are exclusively ORed. The result is placed into

the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI

(20-bit address)

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address)

XORX.B EDE,R7 ; Set different bits to 1 in R7
INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

260 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4 MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code, which improves code density and execution time. The MSP430X address
instructions are described in the following sections.

See Section 4.6.3 for MSP430X extended instructions and Section 4.6.2 for standard MSP430
instructions.

261SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.4.1 ADDA

ADDA Add 20-bit source to a 20-bit destination register
Syntax ADDA Rsrc,Rdst

ADDA #imm20,Rdst

Operation src + Rdst → Rdst
Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous

contents of the destination are lost. The source operand is not affected.
Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)

Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5
JC TONI ; Jump on carry
... ; No carry occurred

262 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.2 BRA

* BRA Branch to destination
Syntax BRA dst

Operation dst → PC
Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AA04h

Symbolic mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within +32 K.
Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: If the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register mode: Branch to the 20-bit address contained in register R5. Indirect R5.

BRA R5 ; MOVA R5,PC

Indirect mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

BRA @R5 ; MOVA @R5,PC

263SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

Indirect, Auto-Increment mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the S/W flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (for example, a table with addresses starting at X). (R5 + X) points to
the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 + 32 K.
Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: If the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

264 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.3 CALLA

CALLA Call a subroutine
Syntax CALLA dst

Operation dst → tmp 20-bit dst is evaluated and stored
SP – 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP – 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words, X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Examples for all addressing modes are given.

Immediate mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC
CALLA #01AA04h ; Start address 01AA04h

Symbolic mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within +32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.

CALLA R5 ; Start address at @R5

Indirect mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

265SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

Indirect, Auto-Increment mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the S/W flow uses R5 as a pointer, it can alter the program execution due
to access to the next word address in the table pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); for example, a table with addresses starting at X. (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5
+ 32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

266 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.4 CLRA

* CLRA Clear 20-bit destination register
Syntax CLRA Rdst

Operation 0 → Rdst
Emulation MOVA #0,Rdst

Description The destination register is cleared.
Status Bits Status bits are not affected.
Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 -> R10

267SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.4.5 CMPA

CMPA Compare the 20-bit source with a 20-bit destination register
Syntax CMPA Rsrc,Rdst

CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst – src
Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This

is made by adding the 1s complement of the source + 1 to the destination register. The
result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example A 20-bit immediate operand and R6 are compared. If they are equal, the program

continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 = 12345h
... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
JGE GRE ; R5 >= R6
... ; R5 < R6

268 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.6 DECDA

* DECDA Double-decrement 20-bit destination register
Syntax DECDA Rdst

Operation Rdst – 2 → Rdst
Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is decremented by 2.

DECDA R5 ; Decrement R5 by two

269SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.4.7 INCDA

* INCDA Double-increment 20-bit destination register
Syntax INCDA Rdst

Operation Rdst + 2 → Rdst
Emulation ADDA #2,Rdst

Description The destination register is incremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 0FFFFEh, reset otherwise
Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is incremented by two.

INCDA R5 ; Increment R5 by two

270 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.8 MOVA

MOVA Move the 20-bit source to the 20-bit destination
Syntax MOVA Rsrc,Rdst

MOVA #imm20,Rdst

MOVA z16(Rsrc),Rdst

MOVA EDE,Rdst

MOVA &abs20,Rdst

MOVA @Rsrc,Rdst

MOVA @Rsrc+,Rdst

MOVA Rsrc,z16(Rdst)

MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.

MOVA 100h(R9),R8 ; Index: + 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index ± 32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

271SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs)

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index ± 32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

272 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.9 RETA

* RETA Return from subroutine
Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is
restored to the PC. The program continues at the address following the subroutine call.
The SR bits SR.11:0 are not affected. This allows the transfer of information with these
bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the

address after the CALLA

CALLA #SUBR ; Call subroutine starting at SUBR
... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
... ; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

273SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Instruction Set Description www.ti.com

4.6.4.10 TSTA

* TSTA Test 20-bit destination register
Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but

not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

274 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Instruction Set Description

4.6.4.11 SUBA

SUBA Subtract 20-bit source from 20-bit destination register
Syntax SUBA Rsrc,Rdst

SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst
Description The 20-bit source operand is subtracted from the 20-bit destination register. This is

made by adding the 1s complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination

operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at

label TONI.

SUBA R5,R6 ; R6 - R5 -> R6
JC TONI ; Carry occurred
... ; No carry

275SLAU144I–December 2004–Revised January 2012 CPUX
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

276 CPUX SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 5
SLAU144I–December 2004–Revised January 2012

Basic Clock Module+

The basic clock module+ provides the clocks for MSP430x2xx devices. This chapter describes the
operation of the basic clock module+ of the MSP430x2xx device family.

Topic ... Page

5.1 Basic Clock Module+ Introduction ... 278
5.2 Basic Clock Module+ Operation .. 280
5.3 Basic Clock Module+ Registers ... 287

277SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Basic Clock Module+ Introduction www.ti.com

5.1 Basic Clock Module+ Introduction

The basic clock module+ supports low system cost and ultralow power consumption. Using three internal
clock signals, the user can select the best balance of performance and low power consumption. The basic
clock module+ can be configured to operate without any external components, with one external resistor,
with one or two external crystals, or with resonators, under full software control.

The basic clock module+ includes two, three or four clock sources:

• LFXT1CLK: Low-frequency/high-frequency oscillator that can be used with low-frequency watch
crystals or external clock sources of 32768 Hz or with standard crystals, resonators, or external clock
sources in the 400-kHz to 16-MHz range.

• XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or
external clock sources in the 400-kHz to 16-MHz range.

• DCOCLK: Internal digitally controlled oscillator (DCO).

• VLOCLK: Internal very low power, low frequency oscillator with 12-kHz typical frequency.

Three clock signals are available from the basic clock module+:

• ACLK: Auxiliary clock. ACLK is software selectable as LFXT1CLK or VLOCLK. ACLK is divided by 1,
2, 4, or 8. ACLK is software selectable for individual peripheral modules.

• MCLK: Master clock. MCLK is software selectable as LFXT1CLK, VLOCLK, XT2CLK (if available
on-chip), or DCOCLK. MCLK is divided by 1, 2, 4, or 8. MCLK is used by the CPU and system.

• SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK, VLOCLK, XT2CLK (if available
on-chip), or DCOCLK. SMCLK is divided by 1, 2, 4, or 8. SMCLK is software selectable for individual
peripheral modules.

The block diagram of the basic clock module+ in the MSP430F2xx devices is shown in Figure 5-1.

The block diagram of the basic clock module+ in the MSP430AFE2xx devices is shown in Figure 5-2.

278 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Divider

/1/2/4/8

DIVAx

MCLK

CPUOFF

LFXT1CLK

DCOCLK

XIN

XOUT

Divider

/1/2/4/8

DIVMx

SMCLK

SCG1
DIVSx

ACLK

Main System Clock

Auxillary Clock

Sub System Clock

DCO

DCOx

DC

Generator

SCG0 RSELx

off

SELS

1

0

SELMx

00

01

10

11
1

0

1

0
Divider

/1/2/4/8

Modulator

1

0n

n+1

XTS

XCAPx

LFXT1 Oscillator

LF

0 V

LFOff

0 V

Min. Puls

Filter

LFXT1Sx

MODx

else

10
Min. Pulse

Filter

Internal

LP/LF
VLOCLK

XT2IN

XT2OUT

XT2OFF

XT

Min. Pulse

Filter

Connected only when

XT2 not present on−chip

XT2S

VCC

1

0

DCOR

Oscillator†

XT1Off

XT2 Oscillator

Rosc

OSCOFF

XT†

www.ti.com Basic Clock Module+ Introduction

Figure 5-1. Basic Clock Module+ Block Diagram − MSP430F2xx

NOTE: † Device-Specific Clock Variations

Not all clock features are available on all MSP430x2xx devices:
MSP430G22x0: LFXT1 is not present, XT2 is not present, ROSC is not supported.

MSP430F20xx, MSP430G2xx1, MSP430G2xx2, MSP430G2xx3: LFXT1 does not support
HF mode, XT2 is not present, ROSC is not supported.
MSP430x21x1: Internal LP/LF oscillator is not present, XT2 is not present, ROSC is not
supported.
MSP430x21x2: XT2 is not present.
MSP430F22xx, MSP430x23x0: XT2 is not present.

279SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Divider
/1/2/4/8

DIVAx

MCLK

CPUOFF

DCOCLK

Divider

/1/2/4/8

DIVMx

SMCLK

SCG1
DIVSx

ACLK

Main System Clock

Auxillary Clock

Sub System Clock

DCO

DCOx

DC

Generator

SCG0 RSELx

off

SELS

1

0

SELMx

00

01

10

11

1

0

1

0
Divider

/1/2/4/8

Modulator

1

0n

n+1

Min. Puls

Filter

MODx

else

10Internal

LP/LF

VLOCLK

XT2IN

XT2OUT

XT2OFF

XT

Min. Pulse

Filter

XT2Sx

VCC

XT2 Oscillator

OSCOFF

LFXT1Sx

Basic Clock Module+ Operation www.ti.com

Figure 5-2. Basic Clock Module+ Block Diagram − MSP430AFE2xx

NOTE: LFXT1 is not present in MSP430AFE2xx devices.

5.2 Basic Clock Module+ Operation

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~1.1 MHz (see the device-specific data
sheet for parameters) and ACLK is sourced from LFXT1CLK in LF mode with an internal load capacitance
of 6 pF.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure the MSP430 operating modes
and enable or disable portions of the basic clock module+ (see the System Resets, Interrupts and
Operating Modes chapter). The DCOCTL, BCSCTL1, BCSCTL2, and BCSCTL3 registers configure the
basic clock module+.

The basic clock module+ can be configured or reconfigured by software at any time during program
execution, for example:
CLR.B &DCOCTL ; Select lowest DCOx

; and MODx settings
BIS.B #RSEL2+RSEL1+RSEL0,&BCSCTL1 ; Select range 7
BIS.B #DCO2+DCO1+DCO0,&DCOCTL ; Select max DCO tap

280 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Basic Clock Module+ Operation

5.2.1 Basic Clock Module+ Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:

• Low clock frequency for energy conservation and time keeping

• High clock frequency for fast reaction to events and fast burst processing capability

• Clock stability over operating temperature and supply voltage

The basic clock module+ addresses the above conflicting requirements by allowing the user to select from
the three available clock signals: ACLK, MCLK, and SMCLK. For optimal low-power performance, ACLK
can be sourced from a low-power 32768-Hz watch crystal (if available), providing a stable time base for
the system and low-power standby operation, or from the internal low-frequency oscillator when
crystal-accurate time keeping is not required. The MCLK can be configured to operate from the on-chip
DCO that can be activated when requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A flexible clock distribution and
divider system is provided to fine tune the individual clock requirements.

5.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

The internal very-low-power low-frequency oscillator (VLO) provides a typical frequency of 12 kHz (see
device-specific data sheet for parameters) without requiring a crystal. VLOCLK source is selected by
setting LFXT1Sx = 10 when XTS = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current consumption. The VLO consumes no
power when not being used.

Devices without LFXT1 (for example, the MSP430G22x0) should be configured to use the VLO as ACLK.

5.2.3 LFXT1 Oscillator

The LFXT1 oscillator is not implemented in the MSP430G22x0 device family.

The LFXT1 oscillator supports ultra-low current consumption using a 32768-Hz watch crystal in LF mode
(XTS = 0). A watch crystal connects to XIN and XOUT without any other external components. The
software-selectable XCAPx bits configure the internally provided load capacitance for the LFXT1 crystal in
LF mode. This capacitance can be selected as 1 pF, 6 pF, 10 pF, or 12.5 pF typical. Additional external
capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in HF mode (XTS = 1,
XCAPx = 00). The high-speed crystal or resonator connects to XIN and XOUT and requires external
capacitors on both terminals. These capacitors should be sized according to the crystal or resonator
specifications. When LFXT1 is in HF mode, the LFXT1Sx bits select the range of operation.

LFXT1 may be used with an external clock signal on the XIN pin in either LF or HF mode when
LFXT1Sx = 11, OSCOFF = 0, and XCAPx = 00. When used with an external signal, the external
frequency must meet the data sheet parameters for the chosen mode. When the input frequency is below
the specified lower limit, the LFXT1OF bit may be set preventing the CPU from being clocked with
LFXT1CLK.

Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not source SMCLK or MCLK, as
shown in Figure 5-3.

281SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

XT2 is an Internal Signal

XT2 = 0: Devices without XT2 oscillator

XT2 = 1: Devices with XT2 oscillator

ACLK_request

MCLK_request

OSCOFF

CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2

XTS

LFOff

XT1Off

LFXT1Off

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2OFF

XT2off (Internal Signal)

Basic Clock Module+ Operation www.ti.com

Figure 5-3. Off Signals for the LFXT1 Oscillator

NOTE: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up, depending on the
crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded from noise
coupling from other sources. The crystal should be placed as close as possible to the
MSP430 with the crystal housing grounded and the crystal traces guarded with ground
traces.

5.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK and its characteristics are
identical to LFXT1 in HF mode. The XT2Sx bits select the range of operation of XT2. The XT2OFF bit
disables the XT2 oscillator if XT2CLK is not used for MCLK or SMCLK as shown in Figure 5-4.

XT2 may be used with external clock signals on the XT2IN pin when XT2Sx = 11 and XT2OFF = 0. When
used with an external signal, the external frequency must meet the data sheet parameters for XT2. When
the input frequency is below the specified lower limit, the XT2OF bit may be set to prevent the CPU from
being clocked with XT2CLK.

Figure 5-4. Off Signals for Oscillator XT2

5.2.5 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software
using the DCOx, MODx, and RSELx bits.

5.2.5.1 Disabling the DCO

Software can disable DCOCLK by setting SCG0 when it is not used to source SMCLK or MCLK in active
mode, as shown in Figure 5-5.

282 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

XSELM1

SYNCDCOCLK
XT2CLK

QD

SCG0

DCOCLK_on

1: on

0: off

1: on

0: off

DCO_Gen_on

DCOCLK

RSEL=0

RSEL = 15

DCO=0 DCO=7DCO=4DCO=1 DCO=2 DCO=3 DCO=5 DCO=6

fDCO

20000 kHz

100 kHz

1000 kHz

RSEL = 7

www.ti.com Basic Clock Module+ Operation

Figure 5-5. On/Off Control of DCO

5.2.5.2 Adjusting the DCO Frequency

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a mid-range frequency. MCLK and
SMCLK are sourced from DCOCLK. Because the CPU executes code from MCLK, which is sourced from
the fast-starting DCO, code execution typically begins from PUC in less than 2 µs. The typical DCOx and
RSELx ranges and steps are shown in Figure 5-6.

The frequency of DCOCLK is set by the following functions:

• The four RSELx bits select one of sixteen nominal frequency ranges for the DCO. These ranges are
defined for an individual device in the device-specific data sheet.

• The three DCOx bits divide the DCO range selected by the RSELx bits into 8 frequency steps,
separated by approximately 10%.

• The five MODx bits, switch between the frequency selected by the DCOx bits and the next higher
frequency set by DCOx+1. When DCOx = 07h, the MODx bits have no effect because the DCO is
already at the highest setting for the selected RSELx range.

Figure 5-6. Typical DCOx Range and RSELx Steps

Each MSP430F2xx device (and most MSP430G2xx devices; see device-specific data sheets) has
calibrated DCOCTL and BCSCTL1 register settings for specific frequencies stored in information memory
segment A. To use the calibrated settings, the information is copied into the DCOCTL and BCSCTL1
registers. The calibrated settings affect the DCOx, MODx, and RSELx bits, and clear all other bits, except
XT2OFF which remains set. The remaining bits of BCSCTL1 can be set or cleared as needed with BIS.B
or BIC.B instructions.
; Set DCO to 1 MHz:
CLR.B &DCOCTL ; Select lowest DCOx

; and MODx settings

283SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MODx

Lower DCO Tap Frequency fDCO

31

24

16

15

5

4

3

2

1

0

Upper DCO Tap Frequency fDCO+1

Basic Clock Module+ Operation www.ti.com

MOV.B &CALBC1_1MHZ,&BCSCTL1 ; Set range
MOV.B &CALDCO_1MHZ,&DCOCTL ; Set DCO step + modulation

5.2.5.3 Using an External Resistor (ROSC) for the DCO

Some MSP430F2xx devices provide the option to source the DCO current through an external resistor,
ROSC, tied to DVCC, when DCOR = 1. In this case, the DCO has the same characteristics as MSP430x1xx
devices, and the RSELx setting is limited to 0 to 7 with the RSEL3 ignored. This option provides an
additional method to tune the DCO frequency by varying the resistor value. See the device-specific data
sheet for parameters.

5.2.6 DCO Modulator

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an intermediate effective frequency
between fDCO and fDCO+1 and spread the clock energy, reducing electromagnetic interference (EMI). The
modulator mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the MODx bits. When
MODx = 0 the modulator is off.

The modulator mixing formula is:
t = (32 – MODx) × tDCO + MODx × tDCO+1

Because fDCO is lower than the effective frequency and fDCO+1 is higher than the effective frequency, the
error of the effective frequency integrates to zero. It does not accumulate. The error of the effective
frequency is zero every 32 DCOCLK cycles. Figure 5-7 shows the modulator operation.

The modulator settings and DCO control are configured with software. The DCOCLK can be compared to
a stable frequency of known value and adjusted with the DCOx, RSELx, and MODx bits. See
http://www.msp430.com for application notes and example code on configuring the DCO.

Figure 5-7. Modulator Patterns

5.2.7 Basic Clock Module+ Fail-Safe Operation

The basic clock module+ incorporates an oscillator-fault fail-safe feature. This feature detects an oscillator
fault for LFXT1 and XT2 as shown in Figure 5-8. The available fault conditions are:

• Low-frequency oscillator fault (LFXT1OF) for LFXT1 in LF mode

284 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.msp430.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

LF_OscFault

XT1_OscFault

XT2_OscFault

XTS

XT2OF

LFXT1OF

Set OFIFG Flag

www.ti.com Basic Clock Module+ Operation

• High-frequency oscillator fault (LFXT1OF) for LFXT1 in HF mode

• High-frequency oscillator fault (XT2OF) for XT2

The crystal oscillator fault bits LFXT1OF, and XT2OF are set if the corresponding crystal oscillator is
turned on and not operating properly. The fault bits remain set as long as the fault condition exists and are
automatically cleared if the enabled oscillators function normally.

The OFIFG oscillator-fault flag is set and latched at POR or when an oscillator fault (LFXT1OF, or XT2OF)
is detected. When OFIFG is set, MCLK is sourced from the DCO, and if OFIE is set, the OFIFG requests
an NMI interrupt. When the interrupt is granted, the OFIE is reset automatically. The OFIFG flag must be
cleared by software. The source of the fault can be identified by checking the individual fault bits.

If a fault is detected for the crystal oscillator sourcing the MCLK, the MCLK is automatically switched to
the DCO for its clock source. This does not change the SELMx bit settings. This condition must be
handled by user software.

Figure 5-8. Oscillator-Fault Logic

5.2.7.1 Sourcing MCLK from a Crystal

After a PUC, the basic clock module+ uses DCOCLK for MCLK. If required, MCLK may be sourced from
LFXT1 or XT2 - if available.

The sequence to switch the MCLK source from the DCO clock to the crystal clock (LFXT1CLK or
XT2CLK) is:

1. Turn on the crystal oscillator and select the appropriate mode

2. Clear the OFIFG flag

3. Wait at least 50 µs

4. Test OFIFG, and repeat steps 2 through 4 until OFIFG remains cleared.
; Select LFXT1 (HF mode) for MCLK

BIC.W #OSCOFF,SR ; Turn on osc.
BIS.B #XTS,&BCSCTL1 ; HF mode
MOV.B #LFXT1S0,&BCSCTL3 ; 1-3MHz Crystal

L1 BIC.B #OFIFG,&IFG1 ; Clear OFIFG
MOV.W #0FFh,R15 ; Delay

L2 DEC.W R15 ;
JNZ L2 ;
BIT.B #OFIFG,&IFG1 ; Re-test OFIFG
JNZ L1 ; Repeat test if needed
BIS.B #SELM1+SELM0,&BCSCTL2 ; Select LFXT1CLK

5.2.8 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to another, the switch is synchronized to avoid
critical race conditions as shown in Figure 5-9:

• The current clock cycle continues until the next rising edge.

• The clock remains high until the next rising edge of the new clock.

• The new clock source is selected and continues with a full high period.

285SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DCOCLK

LFXT1CLK

MCLK

LFXT1CLKDCOCLK

Select

LFXT1CLK

Wait for

LFXT1CLK

Basic Clock Module+ Operation www.ti.com

Figure 5-9. Switch MCLK from DCOCLK to LFXT1CLK

286 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Basic Clock Module+ Registers

5.3 Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 5-1.

Table 5-1. Basic Clock Module+ Registers

Register Short Form Register Type Address Initial State

DCO control register DCOCTL Read/write 056h 060h with PUC

Basic clock system control 1 BCSCTL1 Read/write 057h 087h with POR (1)

Basic clock system control 2 BCSCTL2 Read/write 058h Reset with PUC

Basic clock system control 3 BCSCTL3 Read/write 053h 005h with PUC (2)

SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC
(1) Some of the register bits are also PUC initialized (see Section 5.3.2).
(2) The initial state of BCSCTL3 is 000h in the MSP430AFE2xx devices.

287SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Basic Clock Module+ Registers www.ti.com

5.3.1 DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0

DCOx MODx

rw-0 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0

DCOx Bits 7-5 DCO frequency select. These bits select which of the eight discrete DCO frequencies within the range
defined by the RSELx setting is selected.

MODx Bits 4-0 Modulator selection. These bits define how often the f DCO+1 frequency is used within a period of 32 DCOCLK
cycles. During the remaining clock cycles (32-MOD) the f DCO frequency is used. Not useable when
DCOx = 7.

5.3.2 BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0

XT2OFF XTS (1) (2) DIVAx RSELx

rw-(1) rw-(0) rw-(0) rw-(0) rw-0 rw-1 rw-1 rw-1

XT2OFF Bit 7 XT2 off. This bit turns off the XT2 oscillator

0 XT2 is on

1 XT2 is off if it is not used for MCLK or SMCLK.

XTS Bit 6 LFXT1 mode select.

0 Low-frequency mode

1 High-frequency mode

DIVAx Bits 5-4 Divider for ACLK

00 /1

01 /2

10 /4

11 /8

RSELx Bits 3-0 Range select. Sixteen different frequency ranges are available. The lowest frequency range is selected by
setting RSELx = 0. RSEL3 is ignored when DCOR = 1.

(1) XTS = 1 is not supported in MSP430x20xx and MSP430G2xx devices (see Figure 5-1 and Figure 5-2 for details on supported settings for
all devices).

(2) This bit is reserved in the MSP430AFE2xx devices.

288 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Basic Clock Module+ Registers

5.3.3 BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0

SELMx DIVMx SELS DIVSx DCOR (1) (2)

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SELMx Bits 7-6 Select MCLK. These bits select the MCLK source.

00 DCOCLK

01 DCOCLK

10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK when XT2 oscillator not present
on-chip.

11 LFXT1CLK or VLOCLK

DIVMx Bits 5-4 Divider for MCLK

00 /1

01 /2

10 /4

11 /8

SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.

0 DCOCLK

1 XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when XT2 oscillator not present

DIVSx Bits 2-1 Divider for SMCLK

00 /1

01 /2

10 /4

11 /8

DCOR Bit 0 DCO resistor select. Not available in all devices. See the device-specific data sheet.

0 Internal resistor

1 External resistor

(1) Does not apply to MSP430x20xx or MSP430x21xx devices.
(2) This bit is reserved in the MSP430AFE2xx devices.

289SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Basic Clock Module+ Registers www.ti.com

5.3.4 BCSCTL3, Basic Clock System Control Register 3

7 6 5 4 3 2 1 0

XT2Sx LFXT1Sx (1) XCAPx (2) XT2OF (3) LFXT1OF (2)

rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 r0 r-(1)

XT2Sx Bits 7-6 XT2 range select. These bits select the frequency range for XT2.

00 0.4- to 1-MHz crystal or resonator

01 1- to 3-MHz crystal or resonator

10 3- to 16-MHz crystal or resonator

11 Digital external 0.4- to 16-MHz clock source

LFXT1Sx Bits 5-4 Low-frequency clock select and LFXT1 range select. These bits select between LFXT1 and VLO when XTS =
0, and select the frequency range for LFXT1 when XTS = 1.

When XTS = 0:

00 32768-Hz crystal on LFXT1

01 Reserved

10 VLOCLK (Reserved in MSP430F21x1 devices)

11 Digital external clock source

When XTS = 1 (Not applicable for MSP430x20xx devices, MSP430G2xx1/2/3)

00 0.4- to 1-MHz crystal or resonator

01 1- to 3-MHz crystal or resonator

10 3- to 16-MHz crystal or resonator

11 Digital external 0.4- to 16-MHz clock source

LFXT1Sx definition for MSP430AFE2xx devices:

00 Reserved

01 Reserved

10 VLOCLK

11 Reserved

XCAPx Bits 3-2 Oscillator capacitor selection. These bits select the effective capacitance seen by the LFXT1 crystal when
XTS = 0. If XTS = 1 or if LFXT1Sx = 11 XCAPx should be 00.

00 ~1 pF

01 ~6 pF

10 ~10 pF

11 ~12.5 pF

XT2OF Bit 1 XT2 oscillator fault

0 No fault condition present

1 Fault condition present

LFXT1OF Bit 0 LFXT1 oscillator fault

0 No fault condition present

1 Fault condition present

(1) MSP430G22x0: The LFXT1Sx bits should be programmed to 10b during the initialization and start-up code to select VLOCLK (for more
details refer to Digital I/O chapter). The other bits are reserved and should not be altered.

(2) This bit is reserved in the MSP430AFE2xx devices.
(3) Does not apply to MSP430x2xx, MSP430x21xx, or MSP430x22xx devices.

290 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Basic Clock Module+ Registers

5.3.5 IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

OFIE (1)

rw-0

Bits 7-2 These bits may be used by other modules. See device-specific data sheet.

OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt. Because other bits in IE1 may be used
for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Bits 0 This bit may be used by other modules. See device-specific data sheet.

(1) MSP430G22x0: This bit should not be set.

5.3.6 IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

OFIFG (1)

rw-1

Bits 7-2 These bits may be used by other modules. See device-specific data sheet.

OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other modules, it is recommended to
set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

Bits 0 This bit may be used by other modules. See device-specific data sheet.

(1) MSP430G22x0: The LFXT1 oscillator pins are not available in this device. The oscillator fault flag will always be set by hardware. The
interrupt enable bit should not be set.

291SLAU144I–December 2004–Revised January 2012 Basic Clock Module+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

292 Basic Clock Module+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 6
SLAU144I–December 2004–Revised January 2012

DMA Controller

The DMA controller module transfers data from one address to another without CPU intervention. This
chapter describes the operation of the DMA controller of the MSP430x2xx device family.

Topic ... Page

6.1 DMA Introduction .. 294
6.2 DMA Operation .. 296
6.3 DMA Registers .. 308

293SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Introduction www.ti.com

6.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address to another, without CPU
intervention, across the entire address range. For example, the DMA controller can move data from the
ADC12 conversion memory to RAM.

Devices that contain a DMA controller may have one, two, or three DMA channels available. Therefore,
depending on the number of DMA channels available, some features described in this chapter are not
applicable to all devices.

Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system
power consumption by allowing the CPU to remain in a low-power mode without having to awaken to
move data to or from a peripheral.

The DMA controller features include:

• Up to three independent transfer channels

• Configurable DMA channel priorities

• Requires only two MCLK clock cycles per transfer

• Byte or word and mixed byte/word transfer capability

• Block sizes up to 65535 bytes or words

• Configurable transfer trigger selections

• Selectable edge or level-triggered transfer

• Four addressing modes

• Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 6-1.

294 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ENNMI

DT

DMA Channel 2

DMASRSBYTE

DMA2SZ

DMA2DA

DMA2SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMAONFETCH

DAC12_0IFG

DMAE0

DMAREQ

DMA0TSELx

4

DMA2IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

USCI A0 data receive

USCI A0 data transmit

1100

0111

USCI B0 data transmit

USCI B0 data receive

TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

USCI A1 data Tx

USCI A1 data Rx

1011Multiplier ready

D
M

A
P

ri
o
ri
ty

A
n
d
 C

o
n
tr

o
ll

DAC12_0IFG

DMAE0

DMAREQ

DMA1TSELx

4

DMA0IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

1100

0111TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

1011Multiplier ready

DAC12_0IFG

DMAE0

DMAREQ

DMA2TSEL

4

DMA1IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

1100

0111TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

1011Multiplier ready

USCI A0 data receive

USCI A0 data transmit

USCI B0 data transmit

USCI B0 data receive

USCI A0 data receive

USCI A0 data transmit

USCI B0 data transmit

USCI B0 data receive

USCI A1 data Tx

USCI A1 data Rx

USCI A1 data Tx

USCI A1 data Rx

www.ti.com DMA Introduction

Figure 6-1. DMA Controller Block Diagram

295SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Address SpaceAddress Space

DMA
Controller

Address Space Address SpaceDMA
Controller

DMA
Controller

DMA
Controller

Fixed Address To Block Of AddressesFixed Address To Fixed Address

Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA Operation www.ti.com

6.2 DMA Operation

The DMA controller is configured with user software. The setup and operation of the DMA is discussed in
the following sections.

6.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for each DMA channel is
independently configurable. For example, channel 0 may transfer between two fixed addresses, while
channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 6-2.
The addressing modes are:

• Fixed address to fixed address

• Fixed address to block of addresses

• Block of addresses to fixed address

• Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and DMADSTINCRx control bits. The
DMASRCINCRx bits select if the source address is incremented, decremented, or unchanged after each
transfer. The DMADSTINCRx bits select if the destination address is incremented, decremented, or
unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When transferring
word-to-byte, only the lower byte of the source-word transfers. When transferring byte-to-word, the upper
byte of the destination-word is cleared when the transfer occurs.

Figure 6-2. DMA Addressing Modes

296 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

6.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADTx bits as listed in Table 6-1. Each
channel is individually configurable for its transfer mode. For example, channel 0 may be configured in
single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates
in repeated block mode. The transfer mode is configured independently from the addressing mode. Any
addressing mode can be used with any transfer mode.

Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The
source and/or destination location can be either byte or word data. It is also possible to transfer byte to
byte, word to word or any combination.

Table 6-1. DMA Transfer Modes

DMADTx Transfer Mode Description

000 Single transfer Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ
transfers have been made.

001 Block transfer A complete block is transferred with one trigger. DMAEN is automatically cleared
at the end of the block transfer.

010, 011 Burst-block transfer CPU activity is interleaved with a block transfer. DMAEN is automatically cleared
at the end of the burst-block transfer.

100 Repeated single transfer Each transfer requires a trigger. DMAEN remains enabled.

101 Repeated block transfer A complete block is transferred with one trigger. DMAEN remains enabled.

110, 111 Repeated burst-block transfer CPU activity is interleaved with a block transfer. DMAEN remains enabled.

297SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Reset

Wait for Trigger

Idle

Hold CPU,

Transfer one word/byte

[+Trigger AND DMALEVEL = 0]

OR

[Trigger=1AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd

Modify T_DestAdd

Decrement DMAxSZ

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADTx = 0

AND DMAxSZ = 0]

OR DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAREQ = 0

DMAxSZ > 0

AND DMAEN = 1

DMAEN = 0
DMAEN = 1

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMADTx = 4

AND DMAxSZ = 0

AND DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation www.ti.com

6.2.2.1 Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state
diagram is shown in Figure 6-3.

The DMAxSZ register is used to define the number of transfers to be made. The DMADSTINCRx and
DMASRCINCRx bits select if the destination address and the source address are incremented or
decremented after each transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ
register is decremented after each transfer. When the DMAxSZ register decrements to zero it is reloaded
from its temporary register and the corresponding DMAIFG flag is set. When DMADTx = 0, the DMAEN bit
is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer
occurs every time a trigger occurs.

Figure 6-3. DMA Single Transfer State Diagram

298 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

6.2.2.2 Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADTx = 1,
the DMAEN bit is cleared after the completion of the block transfer and must be set again before another
block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring
during the block transfer are ignored. The block transfer state diagram is shown in Figure 6-4.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

During a block transfer, the CPU is halted until the complete block has been transferred. The block
transfer takes 2 x MCLK x DMAxSZ clock cycles to complete. CPU execution resumes with its previous
state after the block transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The
next trigger after the completion of a repeated block transfer triggers another block transfer.

299SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Reset

Wait for Trigger

Idle

Hold CPU,

Transfer one word/byte

[+Trigger AND DMALEVEL = 0]

OR

[Trigger=1AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd

Modify T_DestAdd

Decrement DMAxSZ

DMAxSZ > 0

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADTx = 1

AND DMAxSZ = 0]

OR

DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAREQ = 0
T_Size → DMAxSZ

DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMADTx = 5

AND DMAxSZ = 0

AND DMAEN = 1

DMAEN = 0
DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation www.ti.com

Figure 6-4. DMA Block Transfer State Diagram

300 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

6.2.2.3 Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes 2
MCLK cycles after every four byte/word transfers of the block resulting in 20% CPU execution capacity.
After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN
must be set again before another burst-block transfer can be triggered. After a burst-block transfer has
been triggered, further trigger signals occurring during the burst-block transfer are ignored. The
burst-block transfer state diagram is shown in Figure 6-5.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx
bits select if the destination address and the source address are incremented or decremented after each
transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of the burst-block transfer and
no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer
begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped
by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set. In repeated burst-block mode the
CPU executes at 20% capacity continuously until the repeated burst-block transfer is stopped.

301SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

2 x MCLK

Reset

Wait for Trigger

Idle

Hold CPU,

Transfer one word/byte

Burst State

(release CPU for 2xMCLK)

[+Trigger AND DMALEVEL = 0]

OR

[Trigger=1AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd

Modify T_DestAdd

Decrement DMAxSZ

[DMADTx = {6, 7}

AND DMAxSZ = 0]

[ENNMI = 1

AND NMI event]

OR

[DMALEVEL = 1

AND Trigger = 0]

[DMADTx = {2, 3}

AND DMAxSZ = 0]

OR

DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAEN = 0
DMAEN = 1

DMAxSZ > 0
DMAxSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAxSZ > 0

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation www.ti.com

Figure 6-5. DMA Burst-Block Transfer State Diagram

302 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

6.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the DMAxTSELx bits as
described in Table 6-2. The DMAxTSELx bits should be modified only when the DMACTLx DMAEN bit is
0. Otherwise, unpredictable DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the transfer will not take place.
For example, if the TACCR2 CCIFG bit is selected as a trigger, and it is already set, no transfer will occur
until the next time the TACCR2 CCIFG bit is set.

6.2.3.1 Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge of the trigger signal initiates
the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or
burst-block modes, only one trigger is required to initiate the block or burst-block transfer.

6.2.3.2 Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can
only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long
as the trigger signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal
goes low during a block or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not
modified by software, when the trigger signal goes high again, the transfer resumes from where it was
when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3} are recommended because
the DMAEN bit is automatically reset after the configured transfer.

6.2.3.3 Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer. When DMAONFETCH = 0,
the CPU is halted immediately and the transfer begins when a trigger is received. When DMAONFETCH =
1, the CPU finishes the currently executing instruction before the DMA controller halts the CPU and the
transfer begins.

NOTE: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH bit must be set.
Otherwise, unpredictable operation can result.

Table 6-2. DMA Trigger Operation

DMAxTSELx Operation

0000 A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer
starts

0001 A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is automatically reset
when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2 CCIFG flag will not trigger a transfer.

0010 A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2 CCIFG flag will not trigger a transfer.

0011 A transfer is triggered when serial interface receives new data.
Devices with USCI_A0 module: A transfer is triggered when USCI_A0 receives new data. UCA0RXIFG is
automatically reset when the transfer starts. If UCA0RXIE is set, the UCA0RXIFG flag will not trigger a
transfer.

0100 A transfer is triggered when serial interface is ready to transmit new data.
Devices with USCI_A0 module: A transfer is triggered when USCI_A0 is ready to transmit new data.
UCA0TXIFG is automatically reset when the transfer starts. If UCA0TXIE is set, the UCA0TXIFG flag will not
trigger a transfer.

303SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Operation www.ti.com

Table 6-2. DMA Trigger Operation (continued)

DMAxTSELx Operation

0101 A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set. The DAC12_0CTL DAC12IFG flag is
automatically cleared when the transfer starts. If the DAC12_0CTL DAC12IE bit is set, the DAC12_0CTL
DAC12IFG flag will not trigger a transfer.

0110 A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are performed, the
corresponding ADC12IFGx is the trigger. When sequences are used, the ADC12IFGx for the last conversion
in the sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFGx is
set. Setting the ADC12IFGx with software will not trigger a transfer. All ADC12IFGx flags are automatically
reset when the associated ADC12MEMx register is accessed by the DMA controller.

0111 A transfer is triggered when the TACCR0 CCIFG flag is set. The TACCR0 CCIFG flag is automatically reset
when the transfer starts. If the TACCR0 CCIE bit is set, the TACCR0 CCIFG flag will not trigger a transfer.

1000 A transfer is triggered when the TBCCR0 CCIFG flag is set. The TBCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TBCCR0 CCIE bit is set, the TBCCR0 CCIFG flag will not trigger a transfer.

1001 A transfer is triggered when the UCA1RXIFG flag is set. UCA1RXIFG is automatically reset when the transfer
starts. If URXIE1 is set, the UCA1RXIFG flag will not trigger a transfer.

1010 A transfer is triggered when the UCA1TXIFG flag is set. UCA1TXIFG is automatically reset when the transfer
starts. If UTXIE1 is set, the UCA1TXIFG flag will not trigger a transfer.

1011 A transfer is triggered when the hardware multiplier is ready for a new operand.

1100 No transfer is triggered.
Devices with USCI_B0 module: A transfer is triggered when USCI_B0 receives new data. UCB0RXIFG is
automatically reset when the transfer starts. If UCB0RXIE is set, the UCB0RXIFG flag will not trigger a
transfer.

1101 No transfer is triggered.
Devices with USCI_B0 module: A transfer is triggered when USCI_B0 is ready to transmit new data.
UCB0TXIFG is automatically reset when the transfer starts. If UCB0TXIE is set, the UCB0TXIFG flag will not
trigger a transfer.

1110 A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers
channel 2, and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the
transfer starts.

1111 A transfer is triggered by the external trigger DMAE0.

6.2.4 Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

• A single, block, or burst-block transfer may be stopped with an NMI interrupt, if the ENNMI bit is set in
register DMACTL1.

• A burst-block transfer may be stopped by clearing the DMAEN bit.

304 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

6.2.5 DMA Channel Priorities

The default DMA channel priorities are DMA0-DMA1-DMA2. If two or three triggers happen
simultaneously or are pending, the channel with the highest priority completes its transfer (single, block or
burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher priority channel waits until the
transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is
set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the
channels always stays the same, DMA0-DMA1-DMA2 (see Table 6-3).

Table 6-3. Channel Priorities

DMA Priority Transfer Occurs New DMA Priority

DMA0 - DMA1 - DMA2 DMA1 DMA2 - DMA0 - DMA1

DMA2 - DMA0 - DMA1 DMA2 DMA0 - DMA1 - DMA2

DMA0 - DMA1 - DMA2 DMA0 DMA1 - DMA2 - DMA0

When the ROUNDROBIN bit is cleared the channel priority returns to the default priority.

6.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or
complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the
DMA cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the MCLK source for each
transfer, without re-enabling the CPU. If the MCLK source is off, the DMA controller will temporarily restart
MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU
remains off, and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all
operating modes is shown in Table 6-4.

Table 6-4. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time

Active mode MCLK = DCOCLK 4 MCLK cycles

Active mode MCLK = LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK = DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK = DCOCLK 5 MCLK cycles + 6 µs (1)

Low-power mode LPM0/1 MCLK = LFXT1CLK 5 MCLK cycles

Low-power mode LPM3 MCLK = LFXT1CLK 5 MCLK cycles

Low-power mode LPM4 MCLK = LFXT1CLK 5 MCLK cycles + 6 µs (1)

(1) The additional 6 µs are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet.

6.2.7 Using DMA With System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the
completion of the transfer. NMI interrupts can interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other
routine must execute with no interruptions, the DMA controller should be disabled prior to executing the
routine.

305SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Operation www.ti.com

6.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode, when the
corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an
interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and, on some devices, the interrupt
vector may be shared with other modules. Please refer to the device specific datasheet for further details.
For these devices, software must check the DMAIFG and respective module flags to determine the source
of the interrupt. The DMAIFG flags are not reset automatically and must be reset by software.

Additionally, some devices utilize the DMAIV register. All DMAIFG flags are prioritized, with DMA0IFG
being the highest, and combined to source a single interrupt vector. The highest priority enabled interrupt
generates a number in the DMAIV register. This number can be evaluated or added to the program
counter to automatically enter the appropriate software routine. Disabled DMA interrupts do not affect the
DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set
when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the DMA2IFG will generate another interrupt.

The following software example shows the recommended use of DMAIV and the handling overhead. The
DMAIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.

Example 6-1. DMAIV Software Example

;Interrupt handler for DMA0IFG, DMA1IFG, DMA2IFG Cycles
DMA_HND ... ; Interrupt latency 6

ADD &DMAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP DMA0_HND ; Vector 2: DMA channel 0 2
JMP DMA1_HND ; Vector 4: DMA channel 1 2
JMP DMA2_HND ; Vector 6: DMA channel 2 2
RETI ; Vector 8: Reserved 5
RETI ; Vector 10: Reserved 5
RETI ; Vector 12: Reserved 5
RETI ; Vector 14: Reserved 5

DMA2_HND ; Vector 6: DMA channel 2
... ; Task starts here
RETI ; Back to main program 5

DMA1_HND ; Vector 4: DMA channel 1
... ; Task starts here
RETI ; Back to main program 5

DMA0_HND ; Vector 2: DMA channel 0
... ; Task starts here
RETI ; Back to main program 5

6.2.9 Using the USCI_B I2C Module with the DMA Controller

The USCI_B I2C module provides two trigger sources for the DMA controller. The USCI_B I2C module can
trigger a transfer when new I2C data is received and when data is needed for transmit.

A transfer is triggered if UCB0RXIFG is set. The UCB0RXIFG is cleared automatically when the DMA
controller acknowledges the transfer. If UCB0RXIE is set, UCB0RXIFG will not trigger a transfer.

306 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Operation

A transfer is triggered if UCB0TXIFG is set. The UCB0TXIFG is cleared automatically when the DMA
controller acknowledges the transfer. If UCB0TXIE is set, UCB0TXIFG will not trigger a transfer.

6.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx
register to another location. DMA transfers are done without CPU intervention and independently of any
low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances
low-power applications allowing the CPU to remain off while data transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx = {0,2} the ADC12IFGx flag
for the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the
ADC12IFGx flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFGx
flag is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx.

6.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT
register. DMA transfers are done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput to the DAC12 module, and enhances low-power applications
allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using the DMA controller with the
DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values
in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at
specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is
automatically cleared when the DMA controller accesses the DAC12_xDAT register.

6.2.12 Writing to Flash With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data to the Flash memory.
DMA transfers are done without CPU intervention and independent of any low-power modes. The DMA
controller performs the move of the data word/byte to the Flash. The write timing control is done by the
Flash controller. Write transfers to the Flash memory succeed if the Flash controller is set up prior to the
DMA transfer and if the Flash is not busy. To set up the Flash controller for write accesses, see the Flash
Memory Controller chapter.

307SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Registers www.ti.com

6.3 DMA Registers

The DMA registers are listed in Table 6-5.

Table 6-5. DMA Registers

Register Short Form Register Type Address Initial State

DMA control 0 DMACTL0 Read/write 0122h Reset with POR

DMA control 1 DMACTL1 Read/write 0124h Reset with POR

DMA interrupt vector DMAIV Read only 0126h Reset with POR

DMA channel 0 control DMA0CTL Read/write 01D0h Reset with POR

DMA channel 0 source address DMA0SA Read/write 01D2h Unchanged

DMA channel 0 destination address DMA0DA Read/write 01D6h Unchanged

DMA channel 0 transfer size DMA0SZ Read/write 01DAh Unchanged

DMA channel 1 control DMA1CTL Read/write 01DCh Reset with POR

DMA channel 1 source address DMA1SA Read/write 01DEh Unchanged

DMA channel 1 destination address DMA1DA Read/write 01E2h Unchanged

DMA channel 1 transfer size DMA1SZ Read/write 01E6h Unchanged

DMA channel 2 control DMA2CTL Read/write 01E8h Reset with POR

DMA channel 2 source address DMA2SA Read/write 01EAh Unchanged

DMA channel 2 destination address DMA2DA Read/write 01EEh Unchanged

DMA-channel 2 transfer size DMA2SZ Read/write 01F2h Unchanged

308 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Registers

6.3.1 DMACTL0, DMA Control Register 0

15 14 13 12 11 10 9 8

Reserved DMA2TSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DMA1TSELx DMA0TSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits 15-12 Reserved

DMA2TSELx Bits 11-8 DMA trigger select. These bits select the DMA transfer trigger.

0000 DMAREQ bit (software trigger)

0001 TACCR2 CCIFG bit

0010 TBCCR2 CCIFG bit

0011 Serial data received UCA0RXIFG

0100 Serial data transmit ready UCA0TXIFG

0101 DAC12_0CTL DAC12IFG bit

0110 ADC12 ADC12IFGx bit

0111 TACCR0 CCIFG bit

1000 TBCCR0 CCIFG bit

1001 Serial data received UCA1RXIFG

1010 Serial data transmit ready UCA1TXIFG

1011 Multiplier ready

1100 Serial data received UCB0RXIFG

1101 Serial data transmit ready UCB0TXIFG

1110 DMA0IFG bit triggers DMA channel 1
DMA1IFG bit triggers DMA channel 2
DMA2IFG bit triggers DMA channel 0

1111 External trigger DMAE0

DMA1TSELx Bits 7-4 Same as DMA2TSELx

DMA0TSELx Bits 3-0 Same as DMA2TSELx

6.3.2 DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMAON ROUND ENNMI
FETCH ROBIN

r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)

Reserved Bits 15-3 Reserved. Read only. Always read as 0.

DMAONFETCH Bit 2 DMA on fetch

0 The DMA transfer occurs immediately.

1 The DMA transfer occurs on next instruction fetch after the trigger.

ROUNDROBIN Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.

0 DMA channel priority is DMA0 - DMA1 - DMA2

1 DMA channel priority changes with each transfer

ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI interrupt. When an NMI
interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped, and
DMAABORT is set.

0 NMI interrupt does not interrupt DMA transfer

1 NMI interrupt interrupts a DMA transfer

309SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Registers www.ti.com

6.3.3 DMAxCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8

Reserved DMADTx DMADSTINCRx DMASRCINCRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DMADST DMASRC DMALEVEL DMAEN DMAIFG DMAIE DMAABORT DMAREQ
BYTE BYTE

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bit 15 Reserved

DMADTx Bits 14-12 DMA Transfer mode.

000 Single transfer

001 Block transfer

010 Burst-block transfer

011 Burst-block transfer

100 Repeated single transfer

101 Repeated block transfer

110 Repeated burst-block transfer

111 Repeated burst-block transfer

DMADSTINCRx Bits 11-10 DMA destination increment. This bit selects automatic incrementing or decrementing of the
destination address after each byte or word transfer. When DMADSTBYTE = 1, the destination
address increments/decrements by one. When DMADSTBYTE = 0, the destination address
increments/decrements by two. The DMAxDA is copied into a temporary register and the
temporary register is incremented or decremented. DMAxDA is not incremented or decremented.

00 Destination address is unchanged

01 Destination address is unchanged

10 Destination address is decremented

11 Destination address is incremented

DMASRCINCRx Bits 9-8 DMA source increment. This bit selects automatic incrementing or decrementing of the source
address for each byte or word transfer. When DMASRCBYTE = 1, the source address
increments/decrements by one. When DMASRCBYTE = 0, the source address
increments/decrements by two. The DMAxSA is copied into a temporary register and the
temporary register is incremented or decremented. DMAxSA is not incremented or decremented.

00 Source address is unchanged

01 Source address is unchanged

10 Source address is decremented

11 Source address is incremented

DMADSTBYTE Bit 7 DMA destination byte. This bit selects the destination as a byte or word.

0 Word

1 Byte

DMASRCBYTE Bit 6 DMA source byte. This bit selects the source as a byte or word.

0 Word

1 Byte

DMALEVEL Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive triggers.

0 Edge sensitive (rising edge)

1 Level sensitive (high level)

DMAEN Bit 4 DMA enable

0 Disabled

1 Enabled

DMAIFG Bit 3 DMA interrupt flag

0 No interrupt pending

1 Interrupt pending

DMAIE Bit 2 DMA interrupt enable

0 Disabled

1 Enabled

310 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Registers

DMAABORT Bit 1 DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.

0 DMA transfer not interrupted

1 DMA transfer was interrupted by NMI

DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset automatically.

0 No DMA start

1 Start DMA

6.3.4 DMAxSA, DMA Source Address Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DMAxSAx

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxSAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSAx

rw rw rw rw rw rw rw rw

DMAxSA Bits 15-0 DMA source address
The source address register points to the DMA source address for single transfers or the first source
address for block transfers. The source address register remains unchanged during block and burst-block
transfers.
Devices that have addressable memory range 64 KB or below contain a single word for the DMAxSA. The
upper word is automatically cleared when writing using word operations. Reads from this location are always
read as zero.
Devices that have addressable memory range beyond 64 KB contain an additional word for the source
address. Bits 15-4 of this additional word are reserved and always read as zero. When writing to DMAxSA
with word formats, this additional word is automatically cleared. Reads of this additional word using word
formats, are always read as zero.

311SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DMA Registers www.ti.com

6.3.5 DMAxDA, DMA Destination Address Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DMAxDAx

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxDAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxDAx

rw rw rw rw rw rw rw rw

DMAxDA Bits 15-0 DMA destination address
The destination address register points to the DMA destination address for single transfers or the first
destination address for block transfers. The destination address register remains unchanged during block
and burst-block transfers.
Devices that have addressable memory range 64 KB or below contain a single word for the DMAxDA.
Devices that have addressable memory range beyond 64 KB contain an additional word for the destination
address. Bits 15-4 of this additional word are reserved and always read as zero. When writing to DMAxDA
with word formats, this additional word is automatically cleared. Reads of this additional word using word
formats, are always read as zero.

6.3.6 DMAxSZ, DMA Size Address Register

15 14 13 12 11 10 9 8

DMAxSZx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSZx

rw rw rw rw rw rw rw rw

DMAxSZx Bits 15-0 DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ register
decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately and
automatically reloaded with its previously initialized value.

00000h Transfer is disabled

00001h One byte or word to be transferred

00002h Two bytes or words have to be transferred

⋮
0FFFFh 65535 bytes or words have to be transferred

312 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DMA Registers

6.3.7 DMAIV, DMA Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 DMAIVx 0

r0 r0 r0 r0 r--(0) r--(0) r--(0) r0

DMAIVx Bits 15-0 DMA interrupt vector value

DMAIV Interrupt Source Interrupt Flag Interrupt
Contents Priority

00h No interrupt pending -

02h DMA channel 0 DMA0IFG Highest

04h DMA channel 1 DMA1IFG

06h DMA channel 2 DMA2IFG

08h Reserved -

0Ah Reserved -

0Ch Reserved -

0Eh Reserved - Lowest

313SLAU144I–December 2004–Revised January 2012 DMA Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

314 DMA Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 7
SLAU144I–December 2004–Revised January 2012

Flash Memory Controller

This chapter describes the operation of the MSP430x2xx flash memory controller.

Topic ... Page

7.1 Flash Memory Introduction ... 316
7.2 Flash Memory Segmentation ... 316
7.3 Flash Memory Operation .. 318
7.4 Flash Memory Registers ... 330

315SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Enable

Data Latch

Enable

Address

Latch

Address Latch Data Latch

MAB
MDB

FCTL1

FCTL2

FCTL3

Timing

Generator

Programming

Voltage

Generator

Flash

Memory

ArrayFCTL4

Flash Memory Introduction www.ti.com

7.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and programmable. The flash memory
module has an integrated controller that controls programming and erase operations. The controller has
four registers, a timing generator, and a voltage generator to supply program and erase voltages.

MSP430 flash memory features include:

• Internal programming voltage generation

• Bit, byte or word programmable

• Ultra-low-power operation

• Segment erase and mass erase

• Marginal 0 and marginal 1 read mode (optional, see the device-specific data sheet)

The block diagram of the flash memory and controller is shown in Figure 7-1.

NOTE: Minimum VCC during flash write or erase

The minimum VCC voltage during a flash write or erase operation is 2.2 V. If VCC falls below
2.2 V during write or erase, the result of the write or erase is unpredictable.

Figure 7-1. Flash Memory Module Block Diagram

7.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or words can be written to flash
memory, but the segment is the smallest size of flash memory that can be erased.

The flash memory is partitioned into main and information memory sections. There is no difference in the
operation of the main and information memory sections. Code or data can be located in either section.
The differences between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments. The main memory has two or more 512-byte
segments. See the device-specific data sheet for the complete memory map of a device.

The segments are further divided into blocks.

316 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

32-kbyte
Flash

Main Memory

Segment 0

512-byte
Flash

Information Memory

Segment 1

Segment 2

Segment 61

Segment 62

Segment 63

0x0FFFF

0x0F000

0x010FF

0x01000

Segment A

Segment B

Segment C

Segment D

0x0FFFF

0x08000

0x010FF

0x01000

0x0FE00

0x0FDFF

0x0FC00

Block
0x0FFFF

0x0FFC0

0x0FFBF

0x0FF80

0x0FF7F

0x0FF40

0x0FF3F

0x0FF00

Block

Block

Block

Block
0x0FFFF

0x0FEC0

0x0FEBF

0x0FE80

0x0FE7F

0x0FE40

0x0FE3F

0x0FE00

Block

Block

Block

www.ti.com Flash Memory Segmentation

Figure 7-2 shows the flash segmentation using an example of 32-KB flash that has eight main segments
and four information segments.

Figure 7-2. Flash Memory Segments, 32-KB Example

7.2.1 SegmentA

SegmentA of the information memory is locked separately from all other segments with the LOCKA bit.
When LOCKA = 1, SegmentA cannot be written or erased and all information memory is protected from
erasure during a mass erase or production programming. When LOCKA = 0, SegmentA can be erased
and written as any other flash memory segment, and all information memory is erased during a mass
erase or production programming.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This
allows existing flash programming routines to be used unchanged.
; Unlock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA
JZ SEGA_UNLOCKED ; Already unlocked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA

SEGA_UNLOCKED ; Yes, continue
; SegmentA is unlocked

; Lock SegmentA
BIT #LOCKA,&FCTL3 ; Test LOCKA
JNZ SEGA_LOCKED ; Already locked?
MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA

SEGA_LOCKED ; Yes, continue
; SegmentA is locked

317SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

FN5 FN0 PUC........... EMEX

Flash Timing Generator
Divider, 1−64

BUSY WAIT

Reset
fFTG

FSSELx

SMCLK

SMCLK

ACLK

MCLK

00

01

10

11

Flash Memory Operation www.ti.com

7.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased
or written, the flash timing generator and voltage generator are off, and the memory operates identically to
ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for additional external voltage.
The CPU can program its own flash memory. The flash memory write/erase modes are selected with the
BLKWRT, WRT, MERAS, and ERASE bits and are:

• Byte/word write

• Block write

• Segment Erase

• Mass Erase (all main memory segments)

• All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is prohibited. If CPU execution
is required during the write or erase, the code to be executed must be in RAM. Any flash update can be
initiated from within flash memory or RAM.

7.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown in Figure 7-3. The flash
timing generator operating frequency, fFTG, must be in the range from approximately 257 kHz to
approximately 476 kHz (see device-specific data sheet).

Figure 7-3. Flash Memory Timing Generator Block Diagram

7.3.1.1 Flash Timing Generator Clock Selection

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The selected clock source
should be divided using the FNx bits to meet the frequency requirements for fFTG. If the fFTG frequency
deviates from the specification during the write or erase operation, the result of the write or erase may be
unpredictable, or the flash memory may be stressed above the limits of reliable operation.

If a clock failure is detected during a write or erase operation, the operation is aborted, the FAIL flag is set,
and the result of the operation is unpredictable.

While a write or erase operation is active the selected clock source can not be disabled by putting the
MSP430 into a low-power mode. The selected clock source will remain active until the operation is
completed before being disabled.

318 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BUSY

Erase Operation Active

tmass erase = 10593/fFTG, tsegment erase = 4819/fFTG

Erase Time, VCC Current Consumption is Increased

Generate
Programming Voltage

Remove
Programming Voltage

www.ti.com Flash Memory Operation

7.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from 1 to 0 individually but to
reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is a
segment. There are three erase modes selected with the ERASE and MERAS bits listed in Table 7-1.

Table 7-1. Erase Modes

MERAS ERASE Erase Mode

0 1 Segment erase

1 0 Mass erase (all main memory segments)

LOCKA = 0: Erase main and information flash memory.1 1
LOCKA = 1: Erase only main flash memory.

Any erase is initiated by a dummy write into the address range to be erased. The dummy write starts the
flash timing generator and the erase operation. Figure 7-4 shows the erase cycle timing. The BUSY bit is
set immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and
ERASE are automatically cleared when the cycle completes. The erase cycle timing is not dependent on
the amount of flash memory present on a device. Erase cycle times are equivalent for all MSP430F2xx
and MSP430G2xx devices.

Figure 7-4. Erase Cycle Timing

A dummy write to an address not in the range to be erased does not start the erase cycle, does not affect
the flash memory, and is not flagged in any way. This errant dummy write is ignored.

319SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Setup flash controller and erase

mode

Disable watchdog

Set LOCK=1, re-enable watchdog

Dummy write

Flash Memory Operation www.ti.com

7.3.2.1 Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When a flash segment erase
operation is initiated from within flash memory, all timing is controlled by the flash controller, and the CPU
is held while the erase cycle completes. After the erase cycle completes, the CPU resumes code
execution with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase the code needed for
execution after the erase. If this occurs, CPU execution will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 7-5.

Figure 7-5. Erase Cycle from Within Flash Memory

; Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY, &FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE, &FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write, erase S1
MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

320 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller and

erase mode

Dummy write

Set LOCK = 1, re-enable
watchdog

www.ti.com Flash Memory Operation

7.3.2.2 Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held and can continue to execute
code from RAM. The BUSY bit must be polled to determine the end of the erase cycle before the CPU
can access any flash address again. If a flash access occurs while BUSY = 1, it is an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 7-6.

Figure 7-6. Erase Cycle from Within RAM

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY+FSSEL1+FN0, &FCTL2 ; SMCLK/2
MOV #FWKEY&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE, &FCTL1 ; Enable erase
CLR &0FC10h ; Dummy write, erase S1

L2 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY+LOCK&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

321SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BUSY

Programming Operation Active

Programming Time, VCC Current Consumption is Increased

tWord Write = 30/fFTG

Generate
Programming Voltage

Remove
Programming Voltage

Flash Memory Operation www.ti.com

7.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in Table 7-2.

Table 7-2. Write Modes

BLKWRT WRT Write Mode

0 1 Byte/word write

1 1 Block write

Both write modes use a sequence of individual write instructions, but using the block write mode is
approximately twice as fast as byte/word mode, because the voltage generator remains on for the
complete block write. Any instruction that modifies a destination can be used to modify a flash location in
either byte/word mode or block write mode. A flash word (low + high byte) must not be written more than
twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the operation completes. If the
write operation is initiated from RAM, the CPU must not access flash while BUSY = 1. Otherwise, an
access violation occurs, ACCVIFG is set, and the flash write is unpredictable.

7.3.3.1 Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from RAM. When initiating from
within flash memory, all timing is controlled by the flash controller, and the CPU is held while the write
completes. After the write completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 7-7.

Figure 7-7. Byte/Word Write Timing

When a byte/word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY
bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is
set, and the write result is unpredictable.

In byte/word mode, the internally-generated programming voltage is applied to the complete 64-byte block,
each time a byte or word is written, for 27 of the 30 fFTG cycles. With each byte or word write, the amount
of time the block is subjected to the programming voltage accumulates. The cumulative programming
time, tCPT, must not be exceeded for any block. If the cumulative programming time is met, the block must
be erased before performing any further writes to any address within the block. See the device-specific
data sheet for specifications.

322 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Setup flash controller

and set WRT=1

Disable watchdog

Set WRT=0, LOCK=1,

re-enable watchdog

Write byte or word

www.ti.com Flash Memory Operation

7.3.3.2 Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 7-8.

Figure 7-8. Initiating a Byte/Word Write from Flash

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes 0FF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0FF1Eh
MOV #FWKEY,&FCTL1 ; Done. Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

323SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller

and set WRT=1

Write byte or word

Set WRT=0, LOCK = 1
re-enable watchdog

Flash Memory Operation www.ti.com

7.3.3.3 Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 7-9.

Figure 7-9. Initiating a Byte/Word Write from RAM

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes 0FF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write
MOV #0123h,&0FF1Eh ; 0123h -> 0FF1Eh

L2 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY,&FCTL1 ; Clear WRT
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT?

324 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BUSY

WAIT

Generate Programming Operation Active

tBlock, 0 = 25/fFTG tBlock, 1-63 = 18/fFTG

Write to flash e.g.,MOV#123h, &Flash

BLKWRT bit

tBlock, 1-63 = 18/fFTG tend = 6/fFTG

Cumulative Programming Time tCPT ∼=< 4ms, VCC Current Consumption is Increased

Programming Voltage
Remove

Programming Voltage

www.ti.com Flash Memory Operation

7.3.3.4 Block Write

The block write can be used to accelerate the flash write process when many sequential bytes or words
need to be programmed. The flash programming voltage remains on for the duration of writing the 64-byte
block. The cumulative programming time tCPT must not be exceeded for any block during a block write.

A block write cannot be initiated from within flash memory. The block write must be initiated from RAM
only. The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked
between writing each byte or word in the block. When WAIT is set the next byte or word of the block can
be written. When writing successive blocks, the BLKWRT bit must be cleared after the current block is
complete. BLKWRT can be set initiating the next block write after the required flash recovery time given by
tend. BUSY is cleared following each block write completion indicating the next block can be written.
Figure 7-10 shows the block write timing.

Figure 7-10. Block-Write Cycle Timing

325SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

yes
BUSY = 1

Disable watchdog

Setup flash controller

Set BLKWRT=WRT=1

Write byte or word

no
Block Border?

yes
WAIT=0?

yes
BUSY = 1

Set BLKWRT=0

yes Another
Block?

Set WRT=0, LOCK=1
re-enable WDT

Flash Memory Operation www.ti.com

7.3.3.5 Block Write Flow and Example

A block write flow is shown in Figure 7-11 and the following example.

Figure 7-11. Block Write Flow

326 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Flash Memory Operation

; Write one block starting at 0F000h.
; Must be executed from RAM, Assumes Flash is already erased.
; 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value,0(R6) ; Write location
L3 BIT #WAIT,&FCTL3 ; Test WAIT

JZ L3 ; Loop while WAIT = 0
INCD R6 ; Point to next word
DEC R5 ; Decrement write counter
JNZ L2 ; End of block?
MOV #FWKEY,&FCTL1 ; Clear WRT,BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L4 ; Loop while busy
MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK
... ; Re-enable WDT if needed

7.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while BUSY = 1, the CPU may not read
or write to or from any flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the
result is unpredictable. Also if a write to flash is attempted with WRT = 0, the ACCVIFG interrupt flag is
set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash memory, the flash controller
returns op-code 03FFFh to the CPU at the next instruction fetch. Op-code 03FFFh is the JMP PC
instruction. This causes the CPU to loop until the flash operation is finished. When the operation is
finished and BUSY = 0, the flash controller allows the CPU to fetch the proper op-code and program
execution resumes.

The flash access conditions while BUSY = 1 are listed in Table 7-3.

Table 7-3. Flash Access While BUSY = 1

Flash Operation Flash Access WAIT Result

Read 0 ACCVIFG = 0. 03FFFh is the value read.
Any erase, or Write 0 ACCVIFG = 1. Write is ignored.byte/word write

Instruction fetch 0 ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.

Any 0 ACCVIFG = 1, LOCK = 1

Read 1 ACCVIFG = 0. 03FFFh is the value read.
Block write

Write 1 ACCVIFG = 0. Write is written.

Instruction fetch 1 ACCVIFG = 1, LOCK = 1

Interrupts are automatically disabled during any flash operation when EEI = 0 and EEIEX = 0 and on
MSP430x20xx and MSP430G2xx devices where EEI and EEIEX are not present. After the flash operation
has completed, interrupts are automatically re-enabled. Any interrupt that occurred during the operation
will have its associated flag set, and will generate an interrupt request when re-enabled.

When EEIEX = 1 and GIE = 1, an interrupt will immediately abort any flash operation and the FAIL flag will
be set. When EEI = 1, GIE = 1, and EEIEX = 0, a segment erase will be interrupted by a pending interrupt
every 32 fFTG cycles. After servicing the interrupt, the segment erase is continued for at least 32 fFTG cycles
or until it is complete. During the servicing of the interrupt, the BUSY bit remains set but the flash memory
can be accessed by the CPU without causing an access violation occurs. Nested interrupts and using the
RETI instruction inside interrupt service routines are not supported.

327SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Flash Memory Operation www.ti.com

The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset will abort
the erase and the result will be unpredictable. After the erase cycle has completed, the watchdog may be
re-enabled.

7.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by setting the emergency exit
bit EMEX. Setting the EMEX bit stops the active operation immediately and stops the flash controller. All
flash operations cease, the flash returns to read mode, and all bits in the FCTL1 register are reset. The
result of the intended operation is unpredictable.

7.3.6 Marginal Read Mode

The marginal read mode can be used to verify the integrity of the flash memory contents. This feature is
implemented in selected 2xx devices; see the device-specific data sheet for availability. During marginal
read mode marginally programmed flash memory bit locations can be detected. Events that could produce
this situation include improper fFTG settings, or violation of minimum VCC during erase/program operations.
One method for identifying such memory locations would be to periodically perform a checksum
calculation over a section of flash memory (for example, a flash segment) and repeating this procedure
with the marginal read mode enabled. If they do not match, it could indicate an insufficiently programmed
flash memory location. It is possible to refresh the affected Flash memory segment by disabling marginal
read mode, copying to RAM, erasing the flash segment, and writing back to it from RAM.

The program checking the flash memory contents must be executed from RAM. Executing code from flash
will automatically disable the marginal read mode. The marginal read modes are controlled by the MRG0
and MRG1 register bits. Setting MRG1 is used to detect insufficiently programmed flash cells containing a
“1” (erased bits). Setting MRG0 is used to detect insufficiently programmed flash cells containing a “0”
(programmed bits). Only one of these bits should be set at a time. Therefore, a full marginal read check
will require two passes of checking the flash memory content’s integrity. During marginal read mode, the
flash access speed (MCLK) must be limited to 1 MHz (see the device-specific data sheet).

7.3.7 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any read or write access must
use word instructions and write accesses must include the write password 0A5h in the upper byte. Any
write to any FCTLx register with any value other than 0A5h in the upper byte is a security key violation,
sets the KEYV flag and triggers a PUC system reset. Any read of any FCTLx registers reads 096h in the
upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access violation and sets
ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in block
write mode when WAIT = 0 is an access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read will not cause an access violation.

7.3.8 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG. ACCVIFG is set when an access
violation occurs. When the ACCVIE bit is re-enabled after a flash write or erase, a set ACCVIFG flag will
generate an interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE to
be set for ACCVIFG to request an interrupt. ACCVIFG may also be checked by software to determine if
an access violation occurred. ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are written with an incorrect
password. When this occurs, a PUC is generated immediately resetting the device.

7.3.9 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options support in-system
programming:

328 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Host

Flash Memory

UART,

Px.x,
SPI,

etc.

CPU executes
user software

Commands, data, etc.

Read/write flash memory

MSP430

www.ti.com Flash Memory Operation

• Program via JTAG

• Program via the bootstrap loader

• Program via a custom solution

7.3.9.1 Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface requires four signals (five
signals on 20- and 28-pin devices), ground and, optionally, VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not
reversible. Further access to the device via JTAG is not possible. For details, see the MSP430
Programming Via the JTAG Interface User's Guide (SLAU320).

7.3.9.2 Programming Flash Memory via the Bootstrap Loader (BSL)

Most MSP430 flash devices contain a bootstrap loader. See the device-specific data sheet for
implementation details. The BSL enables users to read or program the flash memory or RAM using a
UART serial interface. Access to the MSP430 flash memory via the BSL is protected by a 256-bit
user-defined password. For more details see the MSP430 Programming Via the Bootstrap Loader User's
Guide (SLAU319).

7.3.9.3 Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom
programming solutions as shown in Figure 7-12. The user can choose to provide data to the MSP430
through any means available (UART, SPI, etc.). User-developed software can receive the data and
program the flash memory. Since this type of solution is developed by the user, it can be completely
customized to fit the application needs for programming, erasing, or updating the flash memory.

Figure 7-12. User-Developed Programming Solution

329SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU320
http://www.ti.com/lit/pdf/SLAU319
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Flash Memory Registers www.ti.com

7.4 Flash Memory Registers

The flash memory registers are listed in Table 7-4.

Table 7-4. Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0x0128 0x9600 with PUC

Flash memory control register 2 FCTL2 Read/write 0x012A 0x9642 with PUC

Flash memory control register 3 FCTL3 Read/write 0x012C 0x9658 with PUC (1)

Flash memory control register 4 (2) FCTL4 Read/write 0x01BE 0x0000 with PUC

Interrupt Enable 1 IE1 Read/write 0x0000 Reset with PUC

Interrupt Flag 1 IFG1 Read/write 0x0002
(1) KEYV is reset with POR.
(2) Not present in all devices. See device-specific data sheet.

330 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Flash Memory Registers

7.4.1 FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved EEIEX (1) EEI (1) MERAS ERASE Reserved

rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 r0

FRKEY Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.
FWKEY

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is automatically reset when EMEX
is set.

0 Block-write mode is off

1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset when EMEX is set.

0 Write mode is off

1 Write mode is on

Reserved Bit 5 Reserved. Always read as 0.

EEIEX Bit 4 Enable Emergency Interrupt Exit. Setting this bit enables an interrupt to cause an emergency exit from a
flash operation when GIE = 1. EEIEX is automatically reset when EMEX is set.

0 Exit interrupt disabled.

1 Exit on interrupt enabled.

EEI Bits 3 Enable Erase Interrupts. Setting this bit allows a segment erase to be interrupted by an interrupt request.
After the interrupt is serviced the erase cycle is resumed.

0 Interrupts during segment erase disabled.

1 Interrupts during segment erase enabled.

MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode. MERAS and ERASE are
ERASE Bit 1 automatically reset when EMEX is set.

MERAS ERASE Erase Cycle

0 0 No erase

0 1 Erase individual segment only

1 0 Erase all main memory segments

1 1 LOCKA = 0: Erase main and information flash memory.
LOCKA = 1: Erase only main flash memory.

Reserved Bit 0 Reserved. Always read as 0.

(1) Not present on MSP430x20xx and MSP430G2xx devices.

7.4.2 FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FSSELx FNx

rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

FWKEYx Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.

FSSELx Bits 7-6 Flash controller clock source select

00 ACLK

01 MCLK

10 SMCLK

11 SMCLK

FNx Bits 5-0 Flash controller clock divider. These six bits select the divider for the flash controller clock. The divisor value
is FNx + 1. For example, when FNx = 00h, the divisor is 1. When FNx = 03Fh, the divisor is 64.

331SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Flash Memory Registers www.ti.com

7.4.3 FCTL3, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY

r(w)-0 r(w)-1 rw-0 rw-1 r-1 rw-0 rw-(0) r(w)-0

FWKEYx Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC is generated.

FAIL Bit 7 Operation failure. This bit is set if the fFTG clock source fails, or a flash operation is aborted from an
interrupt when EEIEX = 1. FAIL must be reset with software.

0 No failure

1 Failure

LOCKA Bit 6 SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has no effect.

0 Segment A unlocked and all information memory is erased during a mass erase.

1 Segment A locked and all information memory is protected from erasure during a mass erase.

EMEX Bit 5 Emergency exit

0 No emergency exit

1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit can be set anytime during a
byte/word write or erase operation and the operation will complete normally. In the block write mode if the
LOCK bit is set while BLKWRT = WAIT = 1, then BLKWRT and WAIT are reset and the mode ends
normally.

0 Unlocked

1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.

0 The flash memory is not ready for the next byte/word write

1 The flash memory is ready for the next byte/word write

ACCVIFG Bit 2 Access violation interrupt flag

0 No interrupt pending

1 Interrupt pending

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password was written to any flash control
register and generates a PUC when set. KEYV must be reset with software.

0 FCTLx password was written correctly

1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.

0 Not Busy

1 Busy

332 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Flash Memory Registers

7.4.4 FCTL4, Flash Memory Control Register

This register is not available in all devices. See the device-specific data sheet for details.

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

MRG1 MRG0

r-0 r-0 rw-0 rw-0 r-0 r-0 r-0 r-0

FWKEYx Bits 15-8 FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.

Reserved Bits 7-6 Reserved. Always read as 0.

MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is cleared if the
CPU starts execution from the flash memory. If both MRG1 and MRG0 are set MRG1 is active and MRG0 is
ignored.

0 Marginal 1 read mode is disabled.

1 Marginal 1 read mode is enabled.

MRG0 Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal mode 0 is cleared if the
CPU starts execution from the flash memory. If both MRG1 and MRG0 are set MRG1 is active and MRG0 is
ignored.

0 Marginal 0 read mode is disabled.

1 Marginal 0 read mode is enabled.

Reserved Bits 3-0 Reserved. Always read as 0.

7.4.5 IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

ACCVIE

rw-0

Bits 7-6 These bits may be used by other modules. See the device-specific data sheet.

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Bits 4-0 These bits may be used by other modules. See the device-specific data sheet.

333SLAU144I–December 2004–Revised January 2012 Flash Memory Controller
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

334 Flash Memory Controller SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 8
SLAU144I–December 2004–Revised January 2012

Digital I/O

This chapter describes the operation of the digital I/O ports.

Topic ... Page

8.1 Digital I/O Introduction ... 336
8.2 Digital I/O Operation ... 336
8.3 Digital I/O Registers ... 341

335SLAU144I–December 2004–Revised January 2012 Digital I/O
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Digital I/O Introduction www.ti.com

8.1 Digital I/O Introduction

MSP430 devices have up to eight digital I/O ports implemented, P1 to P8. Each port has up to eight I/O
pins. Every I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually
enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All P1
I/O lines source a single interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

• Independently programmable individual I/Os

• Any combination of input or output

• Individually configurable P1 and P2 interrupts

• Independent input and output data registers

• Individually configurable pullup or pulldown resistors

• Individually configurable pin-oscillator function (some MSP430 devices)

NOTE: MSP430G22x0 : These devices feature digital I/O pins P1.2, P1.5, P1.6 and P1.7. The
GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented on this device but not
available on the device pin-out. To avoid floating inputs, these GPIOs, these digital I/Os
should be properly initialized by running a start-up code. See initialization code below:
mov.b #0x1B, P1REN; ; Terminate unavailable Port1 pins properly ; Config as Input with
pull-down enabled
xor.b #0x20, BCSCTL3; ; Select VLO as low freq clock
The initialization code configures GPIOs P1.0, P1.1, P1.3, and P1.4 as inputs with pull-down
resistor enabled (that is, P1REN.x = 1) and GPIOs P2.6 and P2.7 are terminated by
selecting VLOCLK as ACLK – see the Basic Clock System chapter for details. The register
bits of P1.0, P1.1, P1.3, and P1.4 in registers P1OUT, P1DIR, P1IFG, P1IE, P1IES, P1SEL
and P1REN should not be altered after the initialization code is executed. Also, all Port2
registers are should not be altered.

8.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in
the following sections.

8.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

NOTE: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write
attempt is active.

8.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction, and the pullup/down resistor is disabled.

Bit = 0: The output is low
Bit = 1: The output is high

336 Digital I/O SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Digital I/O Operation

If the pin's pullup/pulldown resistor is enabled, the corresponding bit in the PxOUT register selects pullup
or pulldown.

Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

8.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.

Bit = 0: The port pin is switched to input direction
Bit = 1: The port pin is switched to output direction

8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O
pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled
Bit = 1: Pullup/pulldown resistor enabled

8.2.5 Function Select Registers PxSEL and PxSEL2

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each PxSEL and PxSEL2 bit is used to select the pin function - I/O port or
peripheral module function.

Table 8-1. PxSEL and PxSEL2

PxSEL2 PxSEL Pin Function

0 0 I/O function is selected.

0 1 Primary peripheral module function is selected.

1 0 Reserved. See device-specific data sheet.

1 1 Secondary peripheral module function is selected.

Setting PxSELx = 1 does not automatically set the pin direction. Other peripheral module functions may
require the PxDIRx bits to be configured according to the direction needed for the module function. See
the pin schematics in the device-specific data sheet.

NOTE: Setting PxREN = 1 When PxSEL = 1

On some I/O ports on the MSP430F261x and MSP430F2416/7/8/9, enabling the
pullup/pulldown resistor (PxREN = 1) while the module function is selected (PxSEL = 1) does
not disable the logic output driver. This combination is not recommended and may result in
unwanted current flow through the internal resistor. See the device-specific data sheet pin
schematics for more information.

;Output ACLK on P2.0 on MSP430F21x1
BIS.B #01h,&P2SEL ; Select ACLK function for pin
BIS.B #01h,&P2DIR ; Set direction to output *Required*

NOTE: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin's interrupt function is
disabled. Therefore, signals on these pins will not generate P1 or P2 interrupts, regardless of
the state of the corresponding P1IE or P2IE bit.

337SLAU144I–December 2004–Revised January 2012 Digital I/O
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Divider

1/2/4/8

DVSS

DVCC

TAxCLK

1

0

1

TASSELx

3

2

1

0

ID.x

16-bit Timer
TAR

Capture Register
CCRx

Part of Digital I/OPx.y

Part of Timer_A

PAD

Digital I/O Operation www.ti.com

When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched
representation of the signal at the device pin. While PxSELx = 1, the internal input signal follows the signal
at the pin. However, if the PxSELx = 0, the input to the peripheral maintains the value of the input signal at
the device pin before the PxSELx bit was reset.

8.2.6 Pin Oscillator

Some MSP430 devices have a pin oscillator function built-in to some pins. The pin oscillator function may
be used in capacitive touch sensing applications to eliminate external passive components. Additionally,
the pin oscillator may be used in sensor applications.

No external components to create the oscillation
Capacitive sensors can be connected directly to MSP430 pin
Robust, typical built-in hysteresis of ~0.7 V

When the pin oscillator function is enabled, other pin configurations are overwritten. The output driver is
turned off while the weak pullup/pulldown is enabled and controlled by the voltage level on the pin itself.
The voltage on the I/O is fed into the Schmitt trigger of the pin and then routed to a timer. The connection
to the timer is device specific and, thus, defined in the device-specific data sheet. The Schmitt-trigger
output is inverted and then decides if the pullup or the pulldown is enabled. Due to the inversion, the pin
starts to oscillate as soon as the pin oscillator pin configuration is selected. Some of the pin-oscillator
outputs are combined by a logical OR before routing to a timer clock input or timer capture channel.
Therefore, only one pin oscillator should be enabled at a time. The oscillation frequency of each pin is
defined by the load on the pin and by the I/O type. I/Os with analog functions typically show a lower
oscillation frequency than pure digital I/Os. See the device-specific data sheet for details. Pins without
external load show typical oscillation frequencies of 1 MHz to 3 MHz.

Pin oscillator in a cap touch application

A typical touch pad application using the pin oscilator is shown in Figure 8-1.

Figure 8-1. Example Circuitry and Configuration using the Pin Oscillator

A change of the capacitance of the touch pad (external capacitive load) has an effect on the pin oscillator
frequency. An approaching finger tip increases the capacitance of the touch pad thus leads to a lower
self-oscillation frequency due to the longer charging time. The oscillation frequency can directly be
captured in a built-in Timer channel. The typical sensitivity of a pin is shown in Figure 8-2.

338 Digital I/O SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CLOAD − External Capacitance − pF

F
o
s
c

−
T
y
p
ic

a
l
O

s
c
ill

a
ti
o
n
 F

re
q
u
e
n
c
y

−
M

H
z

−
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

10 50 100

VCC = 3.0 V

www.ti.com Digital I/O Operation

Figure 8-2. Typical Pin-Oscillation Frequency

8.2.7 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. All P1 pins source a single interrupt vector, and all P2 pins source a different single interrupt
vector. The PxIFG register can be tested to determine the source of a P1 or P2 interrupt.

8.2.7.1 Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal
edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit
and the GIE bit are set. Each PxIFG flag must be reset with software. Software can also set each PxIFG
flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt
service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

NOTE: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the corresponding P1IFG
or P2IFG flags.

8.2.7.2 Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

339SLAU144I–December 2004–Revised January 2012 Digital I/O
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Digital I/O Operation www.ti.com

NOTE: Writing to PxIESx

Writing to P1IES, or P2IES can result in setting the corresponding interrupt flags.

PxIESx PxINx PxIFGx
0 → 1 0 May be set
0 → 1 1 Unchanged
1 → 0 0 Unchanged
1 → 0 1 May be set

8.2.7.3 Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled.
Bit = 1: The interrupt is enabled.

8.2.8 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC
board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is irrelevant,
since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by
setting the PxREN bit of the unused pin to prevent the floating input. See the System Resets, Interrupts,
and Operating Modes chapter for termination of unused pins.

340 Digital I/O SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Digital I/O Registers

8.3 Digital I/O Registers

The digital I/O registers are listed in Table 8-2.

Table 8-2. Digital I/O Registers

Port Register Short Form Address Register Type Initial State

Input P1IN 020h Read only -

Output P1OUT 021h Read/write Unchanged

Direction P1DIR 022h Read/write Reset with PUC

Interrupt Flag P1IFG 023h Read/write Reset with PUC

P1 Interrupt Edge Select P1IES 024h Read/write Unchanged

Interrupt Enable P1IE 025h Read/write Reset with PUC

Port Select P1SEL 026h Read/write Reset with PUC

Port Select 2 P1SEL2 041h Read/write Reset with PUC

Resistor Enable P1REN 027h Read/write Reset with PUC

Input P2IN 028h Read only -

Output P2OUT 029h Read/write Unchanged

Direction P2DIR 02Ah Read/write Reset with PUC

Interrupt Flag P2IFG 02Bh Read/write Reset with PUC

P2 Interrupt Edge Select P2IES 02Ch Read/write Unchanged

Interrupt Enable P2IE 02Dh Read/write Reset with PUC

Port Select P2SEL 02Eh Read/write 0C0h with PUC

Port Select 2 P2SEL2 042h Read/write Reset with PUC

Resistor Enable P2REN 02Fh Read/write Reset with PUC

Input P3IN 018h Read only -

Output P3OUT 019h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset with PUC
P3

Port Select P3SEL 01Bh Read/write Reset with PUC

Port Select 2 P3SEL2 043h Read/write Reset with PUC

Resistor Enable P3REN 010h Read/write Reset with PUC

Input P4IN 01Ch Read only -

Output P4OUT 01Dh Read/write Unchanged

Direction P4DIR 01Eh Read/write Reset with PUC
P4

Port Select P4SEL 01Fh Read/write Reset with PUC

Port Select 2 P4SEL2 044h Read/write Reset with PUC

Resistor Enable P4REN 011h Read/write Reset with PUC

Input P5IN 030h Read only -

Output P5OUT 031h Read/write Unchanged

Direction P5DIR 032h Read/write Reset with PUC
P5

Port Select P5SEL 033h Read/write Reset with PUC

Port Select 2 P5SEL2 045h Read/write Reset with PUC

Resistor Enable P5REN 012h Read/write Reset with PUC

Input P6IN 034h Read only -

Output P6OUT 035h Read/write Unchanged

Direction P6DIR 036h Read/write Reset with PUC
P6

Port Select P6SEL 037h Read/write Reset with PUC

Port Select 2 P6SEL2 046h Read/write Reset with PUC

Resistor Enable P6REN 013h Read/write Reset with PUC

341SLAU144I–December 2004–Revised January 2012 Digital I/O
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Digital I/O Registers www.ti.com

Table 8-2. Digital I/O Registers (continued)

Port Register Short Form Address Register Type Initial State

Input P7IN 038h Read only -

Output P7OUT 03Ah Read/write Unchanged

Direction P7DIR 03Ch Read/write Reset with PUC
P7

Port Select P7SEL 03Eh Read/write Reset with PUC

Port Select 2 P7SEL2 047h Read/write Reset with PUC

Resistor Enable P7REN 014h Read/write Reset with PUC

Input P8IN 039h Read only -

Output P8OUT 03Bh Read/write Unchanged

Direction P8DIR 03Dh Read/write Reset with PUC
P8

Port Select P8SEL 03Fh Read/write Reset with PUC

Port Select 2 P8SEL2 048h Read/write Reset with PUC

Resistor Enable P8REN 015h Read/write Reset with PUC

342 Digital I/O SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 9
SLAU144I–December 2004–Revised January 2012

Supply Voltage Supervisor (SVS)

This chapter describes the operation of the SVS. The SVS is implemented in selected MSP430x2xx
devices.

Topic ... Page

9.1 Supply Voltage Supervisor (SVS) Introduction .. 344
9.2 SVS Operation ... 345
9.3 SVS Registers ... 347

343SLAU144I–December 2004–Revised January 2012 Supply Voltage Supervisor (SVS)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

+

−

1.2V

Brownout

Reset

VCC

Set SVSFG

tReset ~ 50us

Reset

SVSCTL Bits

0001

0010

1011

1111

1101

1100

G

D

S

SVSOUT

G

D

S

VLD SVSONPORON SVSOP SVSFG

~ 50us

SVS_POR

SVSIN

AVCC

AVCC

Supply Voltage Supervisor (SVS) Introduction www.ti.com

9.1 Supply Voltage Supervisor (SVS) Introduction

The SVS is used to monitor the AVCC supply voltage or an external voltage. The SVS can be configured to
set a flag or generate a POR reset when the supply voltage or external voltage drops below a
user-selected threshold.

The SVS features include:

• AVCC monitoring

• Selectable generation of POR

• Output of SVS comparator accessible by software

• Low-voltage condition latched and accessible by software

• 14 selectable threshold levels

• External channel to monitor external voltage

The SVS block diagram is shown in Figure 9-1.

Figure 9-1. SVS Block Diagram

344 Supply Voltage Supervisor (SVS) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SVS Operation

9.2 SVS Operation

The SVS detects if the AVCC voltage drops below a selectable level. It can be configured to provide a POR
or set a flag, when a low-voltage condition occurs. The SVS is disabled after a brownout reset to conserve
current consumption.

9.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14 threshold levels (V(SVS_IT-)) for
comparison with AVCC. The SVS is off when VLDx = 0 and on when VLDx > 0. The SVSON bit does not
turn on the SVS. Instead, it reflects the on/off state of the SVS and can be used to determine when the
SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on SVSIN is compared to an
internal level of approximately 1.25 V.

9.2.2 SVS Comparator Operation

A low-voltage condition exists when AVCC drops below the selected threshold or when the external voltage
drops below its 1.25-V threshold. Any low-voltage condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If PORON = 1, a POR is
generated when SVSFG is set. If PORON = 0, a low-voltage condition sets SVSFG, but does not generate
a POR.

The SVSFG bit is latched. This allows user software to determine if a low-voltage condition occurred
previously. The SVSFG bit must be reset by user software. If the low-voltage condition is still present
when SVSFG is reset, it will be immediately set again by the SVS.

9.2.3 Changing the VLDx Bits

When the VLDx bits are changed from zero to any non-zero value there is a automatic settling delay
td(SVSon) implemented that allows the SVS circuitry to settle. The td(SVSon) delay is approximately 50 µs.
During this delay, the SVS will not flag a low-voltage condition or reset the device, and the SVSON bit is
cleared. Software can test the SVSON bit to determine when the delay has elapsed and the SVS is
monitoring the voltage properly. Writing to SVSCTL while SVSON = 0 will abort the SVS automatic settling
delay, td(SVSon), and switch the SVS to active mode immediately. In doing so, the SVS circuitry might not be
settled, resulting in unpredictable behavior.

When the VLDx bits are changed from any non-zero value to any other non-zero value the circuitry
requires the time tsettle to settle. The settling time tsettle is a maximum of ~12 µs. See the device-specific
data sheet. There is no automatic delay implemented that prevents SVSFG to be set or to prevent a reset
of the device. The recommended flow to switch between levels is shown in the following code.
; Enable SVS for the first time:

MOV.B #080h,&SVSCTL ; Level 2.8V, do not cause POR
; ...

; Change SVS level
MOV.B #000h,&SVSCTL ; Temporarily disable SVS
MOV.B #018h,&SVSCTL ; Level 1.9V, cause POR

; ...

345SLAU144I–December 2004–Revised January 2012 Supply Voltage Supervisor (SVS)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

V
CC(start)

AV
CC

V
(B_IT−)

Brownout
Region

V
(SVSstart)

V
(SVS_IT−)

t
d(SVSR)

undefined

V
hys(SVS_IT−)

0

1

td(BOR)

Brownout

0

1

t
d(SVSon)

t
d(BOR)

0

1
Set SVS_POR

Brown-
Out

Region

SVS Circuit Active
SVSOUT

Vhys(B_IT−)

Software Sets VLD>0

SVS Operation www.ti.com

9.2.4 SVS Operating Range

Each SVS level has hysteresis to reduce sensitivity to small supply voltage changes when AVCC is close to
the threshold. The SVS operation and SVS/Brownout interoperation are shown in Figure 9-2.

Figure 9-2. Operating Levels for SVS and Brownout/Reset Circuit

346 Supply Voltage Supervisor (SVS) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SVS Registers

9.3 SVS Registers

The SVS registers are listed in Table 9-1.

Table 9-1. SVS Registers

Register Short Form Register Type Address Initial State

SVS Control Register SVSCTL Read/write 055h Reset with BOR

347SLAU144I–December 2004–Revised January 2012 Supply Voltage Supervisor (SVS)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SVS Registers www.ti.com

9.3.1 SVSCTL, SVS Control Register

7 6 5 4 3 2 1 0

VLDx PORON SVSON SVSOP SVSFG

rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) rw-0 (1) r (1) r (1) rw-0 (1)

VLDx Bits 7-4 Voltage level detect. These bits turn on the SVS and select the nominal SVS threshold voltage level. See
the device-specific data sheet for parameters.

0000 SVS is off

0001 1.9 V

0010 2.1 V

0011 2.2 V

0100 2.3 V

0101 2.4 V

0110 2.5 V

0111 2.65 V

1000 2.8 V

1001 2.9 V

1010 3.05 V

1011 3.2 V

1100 3.35 V

1101 3.5 V

1110 3.7 V

1111 Compares external input voltage SVSIN to 1.25 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.

0 SVSFG does not cause a POR

1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn on the SVS. The SVS is
turned on by setting VLDx > 0.

0 SVS is Off

1 SVS is On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.

0 SVS comparator output is low

1 SVS comparator output is high

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after a low voltage condition until
reset by software.

0 No low voltage condition occurred

1 A low condition is present or has occurred

(1) Reset by a brownout reset only, not by a POR or PUC.

348 Supply Voltage Supervisor (SVS) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 10
SLAU144I–December 2004–Revised January 2012

Watchdog Timer+ (WDT+)

The watchdog timer+ (WDT+) is a 16-bit timer that can be used as a watchdog or as an interval timer.
This chapter describes the WDT+ The WDT+ is implemented in all MSP430x2xx devices.

Topic ... Page

10.1 Watchdog Timer+ (WDT+) Introduction ... 350
10.2 Watchdog Timer+ Operation ... 352
10.3 Watchdog Timer+ Registers .. 354

349SLAU144I–December 2004–Revised January 2012 Watchdog Timer+ (WDT+)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Watchdog Timer+ (WDT+) Introduction www.ti.com

10.1 Watchdog Timer+ (WDT+) Introduction

The primary function of the WDT+ module is to perform a controlled system restart after a software
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function
is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.

Features of the watchdog timer+ module include:

• Four software-selectable time intervals

• Watchdog mode

• Interval mode

• Access to WDT+ control register is password protected

• Control of RST/NMI pin function

• Selectable clock source

• Can be stopped to conserve power

• Clock fail-safe feature

The WDT+ block diagram is shown in Figure 10-1.

NOTE: Watchdog Timer+ Powers Up Active

After a PUC, the WDT+ module is automatically configured in the watchdog mode with an
initial 32768 clock cycle reset interval using the DCOCLK. The user must setup or halt the
WDT+ prior to the expiration of the initial reset interval.

350 Watchdog Timer+ (WDT+) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

WDTQn
Y

0

1

2

3
Q6

Q9

Q13

Q15

16−bit

Counter

CLK

A
B

1

1

A EN

PUC

SMCLK

ACLK

Clear

Password

Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTNMI

WDTNMIES

WDTIS1

WDTSSEL

WDTIS0

WDTHOLD

EQU

EQU
Write Enable

Low Byte
R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.

Flag

Pulse

Generator

SMCLK Active

MCLK Active

ACLK Active

16−bit

Fail-Safe
Logic

Clock
Request

Logic

MCLK

www.ti.com Watchdog Timer+ (WDT+) Introduction

Figure 10-1. Watchdog Timer+ Block Diagram

351SLAU144I–December 2004–Revised January 2012 Watchdog Timer+ (WDT+)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Watchdog Timer+ Operation www.ti.com

10.2 Watchdog Timer+ Operation

The WDT+ module can be configured as either a watchdog or interval timer with the WDTCTL register.
The WDTCTL register also contains control bits to configure the RST/NMI pin. WDTCTL is a 16-bit,
password-protected, read/write register. Any read or write access must use word instructions and write
accesses must include the write password 05Ah in the upper byte. Any write to WDTCTL with any value
other than 05Ah in the upper byte is a security key violation and triggers a PUC system reset regardless of
timer mode. Any read of WDTCTL reads 069h in the upper byte. The WDT+ counter clock should be
slower or equal than the system (MCLK) frequency.

10.2.1 Watchdog Timer+ Counter

The watchdog timer+ counter (WDTCNT) is a 16-bit up-counter that is not directly accessible by software.
The WDTCNT is controlled and time intervals selected through the watchdog timer+ control register
WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is selected with the WDTSSEL
bit.

10.2.2 Watchdog Mode

After a PUC condition, the WDT+ module is configured in the watchdog mode with an initial 32768 cycle
reset interval using the DCOCLK. The user must setup, halt, or clear the WDT+ prior to the expiration of
the initial reset interval or another PUC will be generated. When the WDT+ is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time
interval triggers a PUC. A PUC resets the WDT+ to its default condition and configures the RST/NMI pin
to reset mode.

10.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.

NOTE: Modifying the Watchdog Timer+

The WDT+ interval should be changed together with WDTCNTCL = 1 in a single instruction
to avoid an unexpected immediate PUC or interrupt.

The WDT+ should be halted before changing the clock source to avoid a possible incorrect
interval.

10.2.4 Watchdog Timer+ Interrupts

The WDT+ uses two bits in the SFRs for interrupt control.

• The WDT+ interrupt flag, WDTIFG, located in IFG1.0

• The WDT+ interrupt enable, WDTIE, located in IE1.0

When using the WDT+ in the watchdog mode, the WDTIFG flag sources a reset vector interrupt. The
WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, then the watchdog timer+ initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the WDT+ in interval timer mode, the WDTIFG flag is set after the selected time interval and
requests a WDT+ interval timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt
vector is different from the reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced, or can be reset with software.

352 Watchdog Timer+ (WDT+) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Watchdog Timer+ Operation

10.2.5 Watchdog Timer+ Clock Fail-Safe Operation

The WDT+ module provides a fail-safe clocking feature assuring the clock to the WDT+ cannot be
disabled while in watchdog mode. This means the low-power modes may be affected by the choice for the
WDT+ clock. For example, if ACLK is the WDT+ clock source, LPM4 will not be available, because the
WDT+ will prevent ACLK from being disabled. Also, if ACLK or SMCLK fail while sourcing the WDT+, the
WDT+ clock source is automatically switched to MCLK. In this case, if MCLK is sourced from a crystal,
and the crystal has failed, the fail-safe feature will activate the DCO and use it as the source for MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe feature for the clock source.

10.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals are available in different
low-power modes. The requirements of the user’s application and the type of clocking used determine
how the WDT+ should be configured. For example, the WDT+ should not be configured in watchdog mode
with SMCLK as its clock source if the user wants to use low-power mode 3 because the WDT+ will keep
SMCLK enabled for its clock source, increasing the current consumption of LPM3. When the watchdog
timer+ is not required, the WDTHOLD bit can be used to hold the WDTCNT, reducing power consumption.

10.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:
; Periodically clear an active watchdog
MOV #WDTPW+WDTCNTCL,&WDTCTL

;
; Change watchdog timer+ interval
MOV #WDTPW+WDTCNTL+WDTSSEL,&WDTCTL

;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL

;
; Change WDT+ to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS0,&WDTCTL

353SLAU144I–December 2004–Revised January 2012 Watchdog Timer+ (WDT+)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Watchdog Timer+ Registers www.ti.com

10.3 Watchdog Timer+ Registers

The WDT+ registers are listed in Table 10-1.

Table 10-1. Watchdog Timer+ Registers

Register Short Form Register Type Address Initial State

Watchdog timer+ control register WDTCTL Read/write 0120h 06900h with PUC

SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUC (1)

(1) WDTIFG is reset with POR.

354 Watchdog Timer+ (WDT+) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Watchdog Timer+ Registers

10.3.1 WDTCTL, Watchdog Timer+ Register

15 14 13 12 11 10 9 8

WDTPW, Read as 069h
Must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx

rw-0 rw-0 rw-0 rw-0 r0(w) rw-0 rw-0 rw-0

WDTPW Bits 15-8 Watchdog timer+ password. Always read as 069h. Must be written as 05Ah, or a PUC is generated.

WDTHOLD Bit 7 Watchdog timer+ hold. This bit stops the watchdog timer+. Setting WDTHOLD = 1 when the WDT+ is not in
use conserves power.

0 Watchdog timer+ is not stopped

1 Watchdog timer+ is stopped

WDTNMIES Bit 6 Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the NMI interrupt when WDTNMI =
1. Modifying this bit can trigger an NMI. Modify this bit when WDTIE = 0 to avoid triggering an accidental
NMI.

0 NMI on rising edge

1 NMI on falling edge

WDTNMI Bit 5 Watchdog timer+ NMI select. This bit selects the function for the RST/NMI pin.

0 Reset function

1 NMI function

WDTTMSEL Bit 4 Watchdog timer+ mode select

0 Watchdog mode

1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is
automatically reset.

0 No action

1 WDTCNT = 0000h

WDTSSEL Bit 2 Watchdog timer+ clock source select

0 SMCLK

1 ACLK

WDTISx Bits 1-0 Watchdog timer+ interval select. These bits select the watchdog timer+ interval to set the WDTIFG flag
and/or generate a PUC.

00 Watchdog clock source /32768

01 Watchdog clock source /8192

10 Watchdog clock source /512

11 Watchdog clock source /64

355SLAU144I–December 2004–Revised January 2012 Watchdog Timer+ (WDT+)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Watchdog Timer+ Registers www.ti.com

10.3.2 IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

NMIIE WDTIE

rw-0

Bits 7-5 These bits may be used by other modules. See device-specific data sheet.

NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits in IE1 may be used for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or
CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Bits 3-1 These bits may be used by other modules. See device-specific data sheet.

WDTIE Bit 0 Watchdog timer+ interrupt enable. This bit enables the WDTIFG interrupt for interval timer mode. It is not
necessary to set this bit for watchdog mode. Because other bits in IE1 may be used for other modules, it is
recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.

0 Interrupt not enabled

1 Interrupt enabled

10.3.3 IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

NMIIFG WDTIFG

rw-0 rw-(0)

Bits 7-5 These bits may be used by other modules. See device-specific data sheet.

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in IFG1 may be used for other
modules, it is recommended to clear NMIIFG by using BIS.B or BIC.B instructions, rather than MOV.B or
CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

Bits 3-1 These bits may be used by other modules. See device-specific data sheet.

WDTIFG Bit 0 Watchdog timer+ interrupt flag. In watchdog mode, WDTIFG remains set until reset by software. In interval
mode, WDTIFG is reset automatically by servicing the interrupt, or can be reset by software. Because other
bits in IFG1 may be used for other modules, it is recommended to clear WDTIFG by using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.

0 No interrupt pending

1 Interrupt pending

356 Watchdog Timer+ (WDT+) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 11
SLAU144I–December 2004–Revised January 2012

Hardware Multiplier

This chapter describes the hardware multiplier. The hardware multiplier is implemented in some
MSP430x2xx devices.

Topic ... Page

11.1 Hardware Multiplier Introduction ... 358
11.2 Hardware Multiplier Operation ... 358
11.3 Hardware Multiplier Registers ... 362

357SLAU144I–December 2004–Revised January 2012 Hardware Multiplier
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OP2 138h

16 x 16 Multipiler

32−bitAdder

32−bit Multiplexer

015

15 0

Multiplexer

C

MPY 130h

MPYS 132h

MAC 134h

MACS 136h

RESHI 13ChSSUMEXT 13Eh

OP1

RESLO 13Ah

031

MPY, MPYS MAC, MACS

MACS MPYS

MAC

MPY = 0000

rw

rw

rwrw015 r

Accessible

Register

Hardware Multiplier Introduction www.ti.com

11.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU. This means, its activities do
not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded and
read with CPU instructions.

The hardware multiplier supports:

• Unsigned multiply

• Signed multiply

• Unsigned multiply accumulate

• Signed multiply accumulate

• 16x16 bits, 16x8 bits, 8x16 bits, 8x8 bits

The hardware multiplier block diagram is shown in Figure 11-1.

Figure 11-1. Hardware Multiplier Block Diagram

11.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned multiply accumulate, and
signed multiply accumulate operations. The type of operation is selected by the address the first operand
is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and three result registers,
RESLO, RESHI, and SUMEXT. RESLO stores the low word of the result, RESHI stores the high word of
the result, and SUMEXT stores information about the result. The result is ready in three MCLK cycles and
can be read with the next instruction after writing to OP2, except when using an indirect addressing mode
to access the result. When using indirect addressing for the result, a NOP is required before the result is
ready.

358 Hardware Multiplier SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Hardware Multiplier Operation

11.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 11-1, used to select the multiply mode.
Writing the first operand to the desired address selects the type of multiply operation but does not start
any operation. Writing the second operand to the operand two register OP2 initiates the multiply operation.
Writing OP2 starts the selected operation with the values stored in OP1 and OP2. The result is written into
the three result registers RESLO, RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to re-write the OP1 value to perform the operations.

Table 11-1. OP1 Addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate

0136h MACS Signed multiply accumulate

11.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result. The result high register
RESHI contents depend on the multiply operation and are listed in Table 11-2.

Table 11-2. RESHI Contents

Mode RESHI Contents

MPY Upper 16-bits of the result

The MSB is the sign of the result. The remaining bits are the upper 15-bits of the result. Two's complementMPYS notation is used for the result.

MAC Upper 16-bits of the result

MACS Upper 16-bits of the result. Two's complement notation is used for the result.

The sum extension registers SUMEXT contents depend on the multiply operation and are listed in
Table 11-3.

Table 11-3. SUMEXT Contents

Mode SUMEXT

MPY SUMEXT is always 0000h

SUMEXT contains the extended sign of the result

MPYS 00000h = Result was positive or zero

0FFFFh = Result was negative

SUMEXT contains the carry of the result

MAC 0000h = No carry for result

0001h = Result has a carry

SUMEXT contains the extended sign of the result

MACS 00000h = Result was positive or zero

0FFFFh = Result was negative

359SLAU144I–December 2004–Revised January 2012 Hardware Multiplier
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Hardware Multiplier Operation www.ti.com

11.2.2.1 MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in the MACS mode. The accumulator
range for positive numbers is 0 to 7FFF FFFFh and for negative numbers is 0FFFF FFFFh to 8000 0000h.
An underflow occurs when the sum of two negative numbers yields a result that is in the range for a
positive number. An overflow occurs when the sum of two positive numbers yields a result that is in the
range for a negative number. In both of these cases, the SUMEXT register contains the sign of the result,
0FFFFh for overflow and 0000h for underflow. User software must detect and handle these conditions
appropriately.

11.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute address for the registers
because the assembler will not allow .B access to word registers when using the labels from the standard
definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation will automatically cause a sign extension of the byte within the multiplier module.
; 16x16 Unsigned Multiply

MOV #01234h,&MPY ; Load first operand
MOV #05678h,&OP2 ; Load second operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B #012h,&0130h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply
MOV #01234h,&MPYS ; Load first operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV.B #012h,&0132h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Unsigned Multiply Accumulate
MOV #01234h,&MAC ; Load first operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing
MOV.B #012h,&0134h ; Load first operand
MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply Accumulate
MOV #01234h,&MACS ; Load first operand
MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing
MOV.B #012h,&0136h ; Load first operand
MOV.B #034h,R5 ; Temp. location for 2nd operand
MOV R5,&OP2 ; Load 2nd operand

; ... ; Process results

360 Hardware Multiplier SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Hardware Multiplier Operation

11.2.4 Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the result registers, At least one
instruction is needed between loading the second operand and accessing one of the result registers:
; Access multiplier results with indirect addressing

MOV #RESLO,R5 ; RESLO address in R5 for indirect
MOV &OPER1,&MPY ; Load 1st operand
MOV &OPER2,&OP2 ; Load 2nd operand
NOP ; Need one cycle
MOV @R5+,&xxx ; Move RESLO
MOV @R5,&xxx ; Move RESHI

11.2.5 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the hardware multiplier or do not use the multiplier in interrupt service
routines.
; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts
NOP ; Required for DINT
MOV #xxh,&MPY ; Load 1st operand
MOV #xxh,&OP2 ; Load 2nd operand
EINT ; Interrupts may be enable before

; Process results

361SLAU144I–December 2004–Revised January 2012 Hardware Multiplier
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Hardware Multiplier Registers www.ti.com

11.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 11-4.

Table 11-4. Hardware Multiplier Registers

Register Short Form Register Type Address Initial State

Operand one - multiply MPY Read/write 0130h Unchanged

Operand one - signed multiply MPYS Read/write 0132h Unchanged

Operand one - multiply accumulate MAC Read/write 0134h Unchanged

Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged

Operand two OP2 Read/write 0138h Unchanged

Result low word RESLO Read/write 013Ah Undefined

Result high word RESHI Read/write 013Ch Undefined

Sum extension register SUMEXT Read 013Eh Undefined

362 Hardware Multiplier SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 12
SLAU144I–December 2004–Revised January 2012

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes the
operation of the Timer_A of the MSP430x2xx device family.

Topic ... Page

12.1 Timer_A Introduction ... 364
12.2 Timer_A Operation ... 365
12.3 Timer_A Registers ... 377

363SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_A Introduction www.ti.com

12.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three capture/compare registers. Timer_A can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

• Asynchronous 16-bit timer/counter with four operating modes

• Selectable and configurable clock source

• Two or three configurable capture/compare registers

• Configurable outputs with PWM capability

• Asynchronous input and output latching

• Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 12-1.

NOTE: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action will not take place.

364 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Comparator 2
CCI

15 0

CCISx

OUTMODx

Capture

Mode

CMx

Sync

SCS

COVlogic

Output

Unit2 D Set Q
EQU0

OUT

OUT2 Signal

Reset

GND

VCC

CCI2A

CCI2B

EQU2

Divider

1/2/4/8

Count

Mode

16−bitTimer

TAR

RC
ACLK

SMCLK

TACLK

INCLK Set TAIFG

15 0

TASSELx MCxIDx

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

SCCI Y
A

EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

CAP

1

0

1

0

CCR2

Set TACCR2
CCIFG

TACCR2

www.ti.com Timer_A Operation

Figure 12-1. Timer_A Block Diagram

12.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and operation of Timer_A is discussed in
the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count
direction for up/down mode.

365SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

0FFFFh

TACCR0

Timer_A Operation www.ti.com

NOTE: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, and interrupt flag) to avoid errant operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TAR will take effect immediately.

12.2.1.1 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK or INCLK. The clock source
is selected with the TASSELx bits. The selected clock source may be passed directly to the timer or
divided by 2, 4, or 8, using the IDx bits. The timer clock divider is reset when TACLR is set.

12.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:

• The timer counts when MCx > 0 and the clock source is active.

• When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TACCR0. The
timer may then be restarted by writing a nonzero value to TACCR0. In this scenario, the timer starts
incrementing in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12-1: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

Table 12-1. Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of TACCR0.

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of TACCR0 and back down to zero.

12.2.3.1 Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly
counts up to the value of compare register TACCR0, which defines the period, as shown in Figure 12-2.
The number of timer counts in the period is TACCR0+1. When the timer value equals TACCR0 the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TACCR0, the
timer immediately restarts counting from zero.

Figure 12-2. Up Mode

The TACCR0 CCIFG interrupt flag is set when the timer counts to the TACCR0 value. The TAIFG
interrupt flag is set when the timer counts from TACCR0 to zero. Figure 12-3 shows the flag set cycle.

366 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CCR0−1 CCR0 0h

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

1h CCR0−1 CCR0 0h

0h

0FFFFh

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAIFG

1h FFFEh FFFFh 0h

www.ti.com Timer_A Operation

Figure 12-3. Up Mode Flag Setting

12.2.3.2 Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, if the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

12.2.3.3 Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 12-4. The capture/compare register TACCR0 works the same way as the other capture/compare
registers.

Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 12-5 shows the flag set
cycle.

Figure 12-5. Continuous Mode Flag Setting

12.2.3.4 Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TACCRx
register in the interrupt service routine. Figure 12-6 shows two separate time intervals t0 and t1 being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to three independent time intervals or output
frequencies can be generated using all three capture/compare registers.

367SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0FFFFh

TACCR0a

TACCR0b TACCR0c
TACCR0d

t1

t0 t0

TACCR1a

TACCR1b TACCR1c

TACCR1d

t1 t1

t0

0h

TACCR0

0FFFFh

Timer_A Operation www.ti.com

Figure 12-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TACCR0 is used as the period register.
Their handling is more complex since the sum of the old TACCRx data and the new period can be higher
than the TACCR0 value. When the previous TACCRx value plus tx is greater than the TACCR0 data,
TACCR0 + 1 must be subtracted to obtain the correct time interval.

12.2.3.5 Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh counts, and if a symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TACCR0 and
back down to zero, as shown in Figure 12-7. The period is twice the value in TACCR0.

Figure 12-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. The TACLR bit also clears the TAR value and the timer clock divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once during
a period, separated by 1/2 the timer period. The TACCR0 CCIFG interrupt flag is set when the timer
counts from TACCR0 – 1 to TACCR0, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 12-8 shows the flag set cycle.

368 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CCR0−1 CCR0 CCR0−1

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

CCR0−2 1h 0h

Up/Down

www.ti.com Timer_A Operation

Figure 12-8. Up/Down Mode Flag Setting

12.2.3.6 Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, and counting in the down direction, the timer
continues its descent until it reaches zero. The value in TACCR0 is latched into TACL0 immediately,
however the new period takes effect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old
period, or greater than the current count value, the timer counts up to the new period before counting
down. When the timer is counting in the up direction, and the new period is less than the current count
value, the timer begins counting down. However, one additional count may occur before the counter
begins counting down.

12.2.3.7 Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (See section
Timer_A Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 12-9 the tdead is:

tdead = ttimer (TACCR1 – TACCR2)

Where,
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TACCRx = Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when written to. Therefore, any
required dead time will not be maintained automatically.

369SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

0FFFFh

TAIFG

Output Mode 2:Toggle/Reset

Output Mode 6:Toggle/Set

TACCR0

TACCR1

EQU1
TAIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TACCR2

EQU2 EQU2EQU2 EQU2

Dead Time

n−2 n−1

Timer Clock

Timer

Set TACCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Timer_A Operation www.ti.com

Figure 12-9. Output Unit in Up/Down Mode

12.2.4 Capture/Compare Blocks

Two or three identical capture/compare blocks, TACCRx, are present in Timer_A. Any of the blocks may
be used to capture the timer data, or to generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture occurs:

• The timer value is copied into the TACCRx register

• The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx family devices may have
different signals connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of
these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Figure 12-10.

Figure 12-10. Capture Signal (SCS = 1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure 12-11. COV must be reset with software.

370 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Second

Capture

Taken

COV = 1

Capture

Taken

No

Capture

Taken

Read

Taken

Capture

Clear Bit COV

in Register TACCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

www.ti.com Timer_A Operation

Figure 12-11. Capture Cycle

12.2.4.1 Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:
MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx
XOR #CCIS0,&TACCTLx ; TACCTLx = TAR

12.2.4.2 Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAR counts to the value in a TACCRx:

• Interrupt flag CCIFG is set

• Internal signal EQUx = 1

• EQUx affects the output according to the output mode

• The input signal CCI is latched into SCCI

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUx signals.

12.2.5.1 Output Modes

The output modes are defined by the OUTMODx bits and are described in Table 12-2. The OUTx signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0, because EQUx = EQU0.

371SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

0FFFFh

EQU0

TAIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 EQU0

TAIFG

EQU1 EQU0

TAIFG
Interrupt Events

Timer_A Operation www.ti.com

Table 12-2. Output Modes

OUTMODx Mode Description

The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately000 Output when OUTx is updated.

The output is set when the timer counts to the TACCRx value. It remains set until a reset of001 Set the timer, or until another output mode is selected and affects the output.

The output is toggled when the timer counts to the TACCRx value. It is reset when the timer010 Toggle/Reset counts to the TACCR0 value.

The output is set when the timer counts to the TACCRx value. It is reset when the timer011 Set/Reset counts to the TACCR0 value.

The output is toggled when the timer counts to the TACCRx value. The output period is100 Toggle double the timer period.

The output is reset when the timer counts to the TACCRx value. It remains reset until another101 Reset output mode is selected and affects the output.

The output is toggled when the timer counts to the TACCRx value. It is set when the timer110 Toggle/Set counts to the TACCR0 value.

The output is reset when the timer counts to the TACCRx value. It is set when the timer111 Reset/Set counts to the TACCR0 value.

12.2.5.2 Output Example — Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value, and rolls from TACCR0 to
zero, depending on the output mode. An example is shown in Figure 12-12 using TACCR0 and TACCR1.

Figure 12-12. Output Example—Timer in Up Mode

372 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

www.ti.com Timer_A Operation

12.2.5.3 Output Example — Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and TACCR0 values, depending on the
output mode. An example is shown in Figure 12-13 using TACCR0 and TACCR1.

Figure 12-13. Output Example—Timer in Continuous Mode

373SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR2

EQU2

TAIFG
Interrupt Events

EQU2

EQU0

EQU2 EQU2

EQU0

Timer_A Operation www.ti.com

12.2.5.4 Output Example — Timer in Up/Down Mode

The OUTx signal changes when the timer equals TACCRx in either count direction and when the timer
equals TACCR0, depending on the output mode. An example is shown in Figure 12-14 using TACCR0
and TACCR2.

Figure 12-14. Output Example—Timer in Up/Down Mode

NOTE: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7
BIC #OUTMODx, &TACCTLx ; Clear unwanted bits

374 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt RequestAccepted

CCIE

www.ti.com Timer_A Operation

12.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

• TACCR0 interrupt vector for TACCR0 CCIFG

• TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the associated TACCRx register.
In compare mode, any CCIFG flag is set if TAR counts to the associated TACCRx value. Software may
also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit
and the GIE bit are set.

12.2.6.1 TACCR0 Interrupt

The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure 12-15. The TACCR0 CCIFG flag is automatically reset when the TACCR0 interrupt
request is serviced.

Figure 12-15. Capture/Compare TACCR0 Interrupt Flag

12.2.6.2 TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and combined to source a single
interrupt vector. The interrupt vector register TAIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TACCR2 CCIFG flag will generate another interrupt.

375SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_A Operation www.ti.com

12.2.6.3 TAIV Software Example

The following software example shows the recommended use of TAIV and the handling overhead. The
TAIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• Capture/compare block TACCR0: 11 cycles

• Capture/compare blocks TACCR1, TACCR2: 16 cycles

• Timer overflow TAIFG: 14 cycles
; Interrupt handler for TACCR0 CCIFG Cycles
CCIFG_0_HND
; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG
TA_HND

... ; Interrupt latency 6
ADD &TAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: TACCR1 2
JMP CCIFG_2_HND ; Vector 4: TACCR2 2
RETI ; Vector 6: Reserved 5
RETI ; Vector 8: Reserved 5

TAIFG_HND ; Vector 10: TAIFG Flag
... ; Task starts here
RETI 5

CCIFG_2_HND ; Vector 4: TACCR2
... ; Task starts here
RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TACCR1
... ; Task starts here
RETI ; Back to main program 5

376 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_A Registers

12.3 Timer_A Registers

The Timer_A registers are listed in Table 12-3.

Table 12-3. Timer_A3 Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR

Timer_A counter TAR Read/write 0170h Reset with POR

Timer_A capture/compare control 0 TACCTL0 Read/write 0162h Reset with POR

Timer_A capture/compare 0 TACCR0 Read/write 0172h Reset with POR

Timer_A capture/compare control 1 TACCTL1 Read/write 0164h Reset with POR

Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR

Timer_A capture/compare control 2 TACCTL2 (1) Read/write 0166h Reset with POR

Timer_A capture/compare 2 TACCR2 (1) Read/write 0176h Reset with POR

Timer_A interrupt vector TAIV Read only 012Eh Reset with POR
(1) Not present on MSP430 devices with Timer_A2 like MSP430F20xx and other devices.

377SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_A Registers www.ti.com

12.3.1 TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8

Unused TASSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Unused Bits 15-10 Unused

TASSELx Bits 9-8 Timer_A clock source select

00 TACLK

01 ACLK

10 SMCLK

11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
device-specific data sheet)

IDx Bits 7-6 Input divider. These bits select the divider for the input clock.

00 /1

01 /2

10 /4

11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

00 Stop mode: the timer is halted.

01 Up mode: the timer counts up to TACCR0.

10 Continuous mode: the timer counts up to 0FFFFh.

11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag

0 No interrupt pending

1 Interrupt pending

378 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_A Registers

12.3.2 TAR, Timer_A Register

15 14 13 12 11 10 9 8

TARx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TARx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TARx Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.

12.3.3 TACCRx, Timer_A Capture/Compare Register x

15 14 13 12 11 10 9 8

TACCRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TACCRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TACCRx Bits 15-0 Timer_A capture/compare register.

Compare mode: TACCRx holds the data for the comparison to the timer value in the Timer_A Register,
TAR.

Capture mode: The Timer_A Register, TAR, is copied into the TACCRx register when a capture is
performed.

379SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_A Registers www.ti.com

12.3.4 TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r r0 rw-(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CMx Bit 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCISx Bit 13-12 Capture/compare input select. These bits select the TACCRx input signal. See the device-specific data
sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can
be read via this bit

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0, because EQUx = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

380 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_A Registers

12.3.5 TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIVx 0

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TAIVx Bits 15-0 Timer_A interrupt vector value

TAIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending -

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2 (1) TACCR2 CCIFG

06h Reserved -

08h Reserved -

0Ah Timer overflow TAIFG

0Ch Reserved -

0Eh Reserved - Lowest

(1) Not implemented in MSP430x20xx devices

381SLAU144I–December 2004–Revised January 2012 Timer_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

382 Timer_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 13
SLAU144I–December 2004–Revised January 2012

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes the
operation of the Timer_B of the MSP430x2xx device family.

Topic ... Page

13.1 Timer_B Introduction ... 384
13.2 Timer_B Operation ... 386
13.3 Timer_B Registers ... 399

383SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Introduction www.ti.com

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare registers. Timer_B can support
multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_B features include :

• Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths

• Selectable and configurable clock source

• Three or seven configurable capture/compare registers

• Configurable outputs with PWM capability

• Double-buffered compare latches with synchronized loading

• Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13-1.

NOTE: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter,
then an associated action does not take place.

13.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

• The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

• Timer_B TBCCRx registers are double-buffered and can be grouped.

• All Timer_B outputs can be put into a high-impedance state.

• The SCCI bit function is not implemented in Timer_B.

384 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CCR6

Comparator 6

CCI

15 0

OUTMODx

Capture

Mode

CMx

Sync

COVlogic

Output

Unit6 D Set Q
EQU0

OUT

OUT6 Signal

Reset

POR

EQU6

Divider

1/2/4/8

Count

Mode

16−bitTimer

TBR

Set TBIFG

15 0

MCxIDx

Clear

TBCLR

Timer Clock

CCR0

EQU0

Timer Clock

Timer Clock

VCC

TBR=0

UP/DOWN
EQU0

CLLDx

CNTLx

Load

CCR1

CCR2

CCR3

CCR4

CCR5

Timer Block

TBCCR6

RC

10 12 168

TBCLGRPx

CCR5

CCR4

CCR1

Group

Load Logic

Group

Load Logic

TBSSELx

00

01

10

11

GND

VCC

CCI6A

CCI6B

00

01

10

11

CCISx

00

01

10

11

00

01

10

11
CAP

1

0

SCS

1

0

Set TBCCR6
CCIFG

Compare Latch TBCL6

ACLK

SMCLK

TBCLK

INCLK

www.ti.com Timer_B Introduction

NOTE: INCLK is device-specific, often assigned to the inverted TBCLK, refer to device-specific data sheet.

Figure 13-1. Timer_B Block Diagram

385SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Operation www.ti.com

13.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in
the following sections.

13.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TBR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count
direction for up/down mode.

NOTE: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TBR will take effect immediately.

13.2.1.1 TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTLx bits. The maximum
count value, TBR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data
written to the TBR register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

13.2.1.2 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK or INCLK (INCLK is
device-specific, often assigned to the inverted TBCLK, refer to device-specific data sheet). The clock
source is selected with the TBSSELx bits. The selected clock source may be passed directly to the timer
or divided by 2,4, or 8, using the IDx bits. The clock divider is reset when TBCLR is set.

13.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

• The timer counts when MCx > 0 and the clock source is active.

• When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBCL0. The
timer may then be restarted by loading a nonzero value to TBCL0. In this scenario, the timer starts
incrementing in the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 13-1: stop, up, continuous, and up/down.
The operating mode is selected with the MCx bits.

Table 13-1. Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of compare register TBCL0.

10 Continuous The timer repeatedly counts from zero to the value selected by the CNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of TBCL0 and then back down to zero.

386 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

TBR(max)

TBCL0

TBCL0−1 TBCL0 0h

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

1h TBCL0−1 TBCL0 0h

0h

TBR(max)

www.ti.com Timer_B Operation

13.2.3.1 Up Mode

The up mode is used if the timer period must be different from TBR(max) counts. The timer repeatedly
counts up to the value of compare latch TBCL0, which defines the period, as shown in Figure 13-2. The
number of timer counts in the period is TBCL0+1. When the timer value equals TBCL0 the timer restarts
counting from zero. If up mode is selected when the timer value is greater than TBCL0, the timer
immediately restarts counting from zero.

Figure 13-2. Up Mode

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0 value. The TBIFG interrupt
flag is set when the timer counts from TBCL0 to zero. Figure 13-3 shows the flag set cycle.

Figure 13-3. Up Mode Flag Setting

13.2.3.2 Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load event is immediate, CLLD0 =
00, if the new period is greater than or equal to the old period, or greater than the current count value, the
timer counts up to the new period. If the new period is less than the current count value, the timer rolls to
zero. However, one additional count may occur before the counter rolls to zero.

13.2.3.3 Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts from zero as shown in
Figure 13-4. The compare latch TBCL0 works the same way as the other capture/compare registers.

Figure 13-4. Continuous Mode

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero. Figure 13-5 shows the flag set
cycle.

387SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

TBR (max)−1 TBR (max) 0h

Timer Clock

Timer

Set TBIFG

1h TBR (max) 0hTBR (max)−1

0h

EQU0 Interrupt

TBCL0a

TBCL0b TBCL0c
TBCL0d

t1

t0 t0

TBCL1a

TBCL1b TBCL1c

TBCL1d

t1 t1

t0

EQU1 Interrupt

TBR(max)

Timer_B Operation www.ti.com

Figure 13-5. Continuous Mode Flag Setting

13.2.3.4 Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TBCLx latch
in the interrupt service routine. Figure 13-6 shows two separate time intervals t0 and t1 being added to the
capture/compare registers. The time interval is controlled by hardware, not software, without impact from
interrupt latency. Up to three (Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 13-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TBCL0 is used as the period register.
Their handling is more complex since the sum of the old TBCLx data and the new period can be higher
than the TBCL0 value. When the sum of the previous TBCLx value plus tx is greater than the TBCL0 data,
TBCL0 + 1 must be subtracted to obtain the correct time interval.

13.2.3.5 Up/Down Mode

The up/down mode is used if the timer period must be different from TBR(max) counts, and if a symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBCL0, and
back down to zero, as shown in Figure 13-7. The period is twice the value in TBCL0.

NOTE: TBCL0 > TBR(max)

If TBCL0 > TBR(max), the counter operates as if it were configured for continuous mode. It
does not count down from TBR(max) to zero.

388 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

TBCL0

TBCL0−1 TBCL0 TBCL0−1

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

TBCL0−2 1h 0h 1h

Up/Down

www.ti.com Timer_B Operation

Figure 13-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the
direction. The TBCLR bit also clears the TBR value and the clock divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once during
the period, separated by 1/2 the timer period. The TBCCR0 CCIFG interrupt flag is set when the timer
counts from TBCL0-1 to TBCL0, and TBIFG is set when the timer completes counting down from 0001h to
0000h. Figure 13-8 shows the flag set cycle.

Figure 13-8. Up/Down Mode Flag Setting

13.2.3.6 Changing the Value of Period Register TBCL0

When changing TBCL0 while the timer is running, and counting in the down direction, and when the
TBCL0 load event is immediate, the timer continues its descent until it reaches zero. The value in
TBCCR0 is latched into TBCL0 immediately; however, the new period takes effect after the counter counts
down to zero.

If the timer is counting in the up direction when the new period is latched into TBCL0, and the new period
is greater than or equal to the old period, or greater than the current count value, the timer counts up to
the new period before counting down. When the timer is counting in the up direction, and the new period
is less than the current count value when TBCL0 is loaded, the timer begins counting down. However, one
additional count may occur before the counter begins counting down.

13.2.3.7 Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section
Timer_B Output Unit). For example, to avoid overload conditions, two outputs driving an H-bridge must
never be in a high state simultaneously. In the example shown in Figure 13-9 the tdead is:

tdead = ttimer× (TBCL1 - TBCL3)

Where,
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TBCLx = Content of compare latch x

389SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

TBIFG

0h

TBR(max)

Output Mode 2:Toggle/Reset

Output Mode 6:Toggle/Set

TBCL0

TBCL1

EQU1
TBIFG Interrupt EventsEQU1

EQU0

EQU1 EQU1

EQU0

TBCL3

EQU3 EQU3EQU3 EQU3

Dead Time

n−2 n−1

Timer Clock

Timer

Set TBCCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Timer_B Operation www.ti.com

The ability to simultaneously load grouped compare latches assures the dead times.

Figure 13-9. Output Unit in Up/Down Mode

13.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRx, are present in Timer_B. Any of the blocks
may be used to capture the timer data or to generate time intervals.

13.2.4.1 Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input
signal. If a capture is performed:

• The timer value is copied into the TBCCRx register

• The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx family devices may have
different signals connected to CCIxA and CCIxB. Refer to the device-specific data sheet for the
connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended. This is illustrated in Figure 13-10.

Figure 13-10. Capture Signal (SCS = 1)

390 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Second

Capture

Taken

COV = 1

Capture

Taken

No

Capture

Taken

Read

Taken

Capture

Clear Bit COV

in Register TBCCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

www.ti.com Timer_B Operation

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in
Figure 13-11. COV must be reset with software.

Figure 13-11. Capture Cycle

13.2.4.1.1 Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets bit CCIS1=1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:
MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx
XOR #CCIS0, &TBCCTLx ; TBCCTLx = TBR

391SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Operation www.ti.com

13.2.4.2 Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or
interrupts at specific time intervals. When TBR counts to the value in a TBCLx:

• Interrupt flag CCIFG is set

• Internal signal EQUx = 1

• EQUx affects the output according to the output mode

13.2.4.2.1 Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the timer value in compare
mode. TBCLx is buffered by TBCCRx. The buffered compare latch gives the user control over when a
compare period updates. The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer from TBCCRx to TBCLx is
user-selectable with the CLLDx bits as described in Table 13-2.

Table 13-2. TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when TBCCRx is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

New data is transferred from TBCCRx to TBCLx when TBR counts to 0 for up and continuous modes. New data is10 transferred to from TBCCRx to TBCLx when TBR counts to the old TBCL0 value or to 0 for up/down mode

11 New data is transferred from TBCCRx to TBCLx when TBR counts to the old TBCLx value.

13.2.4.2.2 Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits.
When using groups, the CLLDx bits of the lowest numbered TBCCRx in the group determine the load
event for each compare latch of the group, except when TBCLGRP = 3, as shown in Table 13-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the CLLDx bits of the controlling
TBCCRx are set to zero, all compare latches update immediately when their corresponding TBCCRx is
written; no compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped. First, all TBCCRx registers
of the group must be updated, even when new TBCCRx data = old TBCCRx data. Second, the load event
must occur.

Table 13-3. Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

TBCL1+TBCL2 TBCCR1
01 TBCL3+TBCL4 TBCCR3

TBCL5+TBCL6 TBCCR5

TBCL1+TBCL2+TBCL3 TBCCR110 TBCL4+TBCL5+TBCL6 TBCCR4

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 TBCCR1

392 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_B Operation

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUx signals. The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin, and when the pin is pulled
high, all Timer_B outputs are in a high-impedance state.

13.2.5.1 Output Modes

The output modes are defined by the OUTMODx bits and are described in Table 13-4. The OUTx signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUx = EQU0.

Table 13-4. Output Modes

OUTMODx Mode Description

The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately when000 Output OUTx is updated.

The output is set when the timer counts to the TBCLx value. It remains set until a reset of the001 Set timer, or until another output mode is selected and affects the output.

The output is toggled when the timer counts to the TBCLx value. It is reset when the timer010 Toggle/Reset counts to the TBCL0 value.

The output is set when the timer counts to the TBCLx value. It is reset when the timer counts to011 Set/Reset the TBCL0 value.

The output is toggled when the timer counts to the TBCLx value. The output period is double the100 Toggle timer period.

The output is reset when the timer counts to the TBCLx value. It remains reset until another101 Reset output mode is selected and affects the output.

The output is toggled when the timer counts to the TBCLx value. It is set when the timer counts110 Toggle/Set to the TBCL0 value.

The output is reset when the timer counts to the TBCLx value. It is set when the timer counts to111 Reset/Set the TBCL0 value.

393SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

TBR(max)

EQU0

TBIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 EQU0

TBIFG

EQU1 EQU0

TBIFG
Interrupt Events

Timer_B Operation www.ti.com

13.2.5.1.1 Output Example, Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and rolls from TBCL0 to zero,
depending on the output mode. An example is shown in Figure 13-12 using TBCL0 and TBCL1.

Figure 13-12. Output Example, Timer in Up Mode

394 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0

www.ti.com Timer_B Operation

13.2.5.1.2 Output Example, Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0 values, depending on the
output mode, An example is shown in Figure 13-13 using TBCL0 and TBCL1.

Figure 13-13. Output Example, Timer in Continuous Mode

395SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2:Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4:Toggle

Output Mode 5: Reset

Output Mode 6:Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL3

EQU3

TBIFG
Interrupt Events

EQU3

EQU0

EQU3 EQU3

EQU0

Timer_B Operation www.ti.com

13.2.5.1.3 Output Example, Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count direction and when the timer
equals TBCL0, depending on the output mode. An example is shown in Figure 13-14 using TBCL0 and
TBCL3.

Figure 13-14. Output Example, Timer in Up/Down Mode

NOTE: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7
BIC #OUTMODx, &TBCCTLx ; Clear unwanted bits

396 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

D
Set

Q
IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt RequestAccepted

CCIE

www.ti.com Timer_B Operation

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

• TBCCR0 interrupt vector for TBCCR0 CCIFG

• TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBCCRx
register. In compare mode, any CCIFG flag is set when TBR counts to the associated TBCLx value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.

13.2.6.1 TBCCR0 Interrupt Vector

The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector
as shown in Figure 13-15. The TBCCR0 CCIFG flag is automatically reset when the TBCCR0 interrupt
request is serviced.

Figure 13-15. Capture/Compare TBCCR0 Interrupt Flag

13.2.6.2 TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are prioritized and combined to
source a single interrupt vector. The interrupt vector register TBIV is used to determine which flag
requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates a number in the TBIV
register (see register description). This number can be evaluated or added to the program counter to
automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBIV
value.

Any access, read or write, of the TBIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TBCCR2 CCIFG flag will generate another interrupt.

13.2.6.3 TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the handling overhead. The
TBIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• Capture/compare block CCR0: 11 cycles

• Capture/compare blocks CCR1 to CCR6: 16 cycles

• Timer overflow TBIFG: 14 cycles

Example 13-1 shows the recommended use of TBIV for Timer_B3.

397SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Operation www.ti.com

Example 13-1. Recommended Use of TBIV

; Interrupt handler for TBCCR0 CCIFG. Cycles
CCIFG_0_HND

... ; Start of handler Interrupt latency 6
RETI 5

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.
TB_HND ... ; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1_HND ; Vector 2: Module 1 2
JMP CCIFG_2_HND ; Vector 4: Module 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ; Vector 12

TBIFG_HND ; Vector 14: TIMOV Flag
... ; Task starts here
RETI 5

CCIFG_2_HND ; Vector 4: Module 2
... ; Task starts here
RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCIFG_1_HND ; Vector 6: Module 3

... ; Task starts here
JMP TB_HND ; Look for pending ints 2

398 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_B Registers

13.3 Timer_B Registers

The Timer_B registers are listed in Table 13-5:

Table 13-5. Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR

Timer_B counter TBR Read/write 0190h Reset with POR

Timer_B capture/compare control 0 TBCCTL0 Read/write 0182h Reset with POR

Timer_B capture/compare 0 TBCCR0 Read/write 0192h Reset with POR

Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR

Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR

Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR

Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR

Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR

Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR

Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR

Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR

Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR

Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR

Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR

Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR

Timer_B interrupt vector TBIV Read only 011Eh Reset with POR

399SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Registers www.ti.com

13.3.1 Timer_B Control Register TBCTL

15 14 13 12 11 10 9 8

Unused TBCLGRPx CNTLx Unused TBSSELx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TBCLR TBIE TBIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Unused Bit 15 Unused

TBCLGRP Bit 14-13 TBCLx group

00 Each TBCLx latch loads independently

01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)
TBCL0 independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 (TBCCR1 CLLDx bits control the update)

CNTLx Bits 12-11 Counter length

00 16-bit, TBR(max) = 0FFFFh

01 12-bit, TBR(max) = 0FFFh

10 10-bit, TBR(max) = 03FFh

11 8-bit, TBR(max) = 0FFh

Unused Bit 10 Unused

TBSSELx Bits 9-8 Timer_B clock source select.

00 TBCLK

01 ACLK

10 SMCLK

11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
device-specific data sheet)

IDx Bits 7-6 Input divider. These bits select the divider for the input clock.00 /101 /210 /411 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_B is not in use conserves power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCL0

10 Continuous mode: the timer counts up to the value set by CNTLx

11 Up/down mode: the timer counts up to TBCL0 and down to 0000h

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the clock divider, and the count direction. The TBCLR bit is
automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.

0 Interrupt disabled

1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.

0 No interrupt pending

1 Interrupt pending

400 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_B Registers

13.3.2 TBR, Timer_B Register

15 14 13 12 11 10 9 8

TBRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TBRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TBRx Bits 15-0 Timer_B register. The TBR register is the count of Timer_B.

13.3.3 TBCCRx, Timer_B Capture/Compare Register x

15 14 13 12 11 10 9 8

TBCCRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

TBCCRx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

TBCCRx Bits 15-0 Timer_B capture/compare register.

Compare mode: Compare data is written to each TBCCRx and automatically transferred to TBCLx. TBCLx
holds the data for the comparison to the timer value in the Timer_B Register, TBR.

Capture mode: The Timer_B Register, TBR, is copied into the TBCCRx register when a capture is
performed.

401SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Timer_B Registers www.ti.com

13.3.4 TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS CLLDx CAP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0) rw-(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

CMx Bit 15-14 Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

CCISx Bit 13-12 Capture/compare input select. These bits select the TBCCRx input signal. See the device-specific data
sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

CLLDx Bit 10-9 Compare latch load. These bits select the compare latch load event.

00 TBCLx loads on write to TBCCRx

01 TBCLx loads when TBR counts to 0

10 TBCLx loads when TBR countsto 0 (up or continuous mode)
TBCLx loads when TBR countsto TBCL0 or to 0 (up/down mode)

11 TBCLx loads when TBR countsto TBCLx

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

OUTMODx Bits 7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TBCL0 because EQUx = EQU0.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

0 Output low

1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

402 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Timer_B Registers

13.3.5 TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0

r0 r0 r0 r0 r-(0) r-(0) r-(0) r0

TBIVx Bits 15-0 Timer_B interrupt vector value

TBIV InterruptInterrupt Source Interrupt FlagContents Priority

00h No interrupt pending -

02h Capture/compare 1 TBCCR1 CCIFG Highest

04h Capture/compare 2 TBCCR2 CCIFG

06h Capture/compare 3 (1) TBCCR3 CCIFG

08h Capture/compare 4 (1) TBCCR4 CCIFG

0Ah Capture/compare 5 (1) TBCCR5 CCIFG

0Ch Capture/compare 6 (1) TBCCR6 CCIFG

0Eh Timer overflow TBIFG Lowest

(1) Not available on all devices

403SLAU144I–December 2004–Revised January 2012 Timer_B
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

404 Timer_B SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 14
SLAU144I–December 2004–Revised January 2012

Universal Serial Interface (USI)

The Universal Serial Interface (USI) module provides SPI and I2C serial communication with one hardware
module. This chapter discusses both modes.

Topic ... Page

14.1 USI Introduction .. 406
14.2 USI Operation .. 409
14.3 USI Registers .. 415

405SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI Introduction www.ti.com

14.1 USI Introduction

The USI module provides the basic functionality to support synchronous serial communication. In its
simplest form, it is an 8- or 16-bit shift register that can be used to output data streams, or when combined
with minimal software, can implement serial communication. In addition, the USI includes built-in hardware
functionality to ease the implementation of SPI and I2C communication. The USI module also includes
interrupts to further reduce the necessary software overhead for serial communication and to maintain the
ultra-low-power capabilities of the MSP430.

The USI module features include:

• Three-wire SPI mode support

• I2C mode support

• Variable data length

• Slave operation in LPM4; no internal clock required

• Selectable MSB or LSB data order

• START and STOP detection for I2C mode with automatic SCL control

• Arbitration lost detection in master mode

• Programmable clock generation

• Selectable clock polarity and phase control

Figure 14-1 shows the USI module in SPI mode. Figure 14-2 shows the USI module in I2C mode.

406 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

8/16 Bit Shift Register

USIGE USIOE

SDI

SCLK

Set USIIFG

0

1

USICKPL

USICNTx

Shift Clock

USICKPH

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

USISWCLK

TA0

100

101

110

111

Clock Divider

/1/2/4/8... /128

USIDIVx

0

1
USICLK

HOLD

USIIFG

USIMST

SDO

USI16B

D

G

Q

EN

ENUSISWRST

USILSB

USIPE6

USIPE7

USIPE5

USISR

Bit Counter

USIIFGCC

USII2C = 0

www.ti.com USI Introduction

Figure 14-1. USI Block Diagram: SPI Mode

407SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

8−Bit Shift Register

USISRL

MSB LSB

USIGE

D

G

Q

SDA

D Q
Set USIAL,

Clear USIOE

SCL

USIIFG

USIMST

START

Detect
Set USISTTIFG

Shift Clock

0

1

Set USIIFG

USICNTx

USICKPL
USICKPH

USIOE

STOP

Detect
Set USISTP

USISTTIFG

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

SWCLK

TA0

100

101

110

111

Clock Divider

/1/2/4/8... /128

USIDIVx

0

1

USICLK

HOLD

SCL Hold

EN

ENUSISWRST

USISCLREL

USIPE7

USIPE6

Bit Counter

USIIFGCC

USII2C = 1
USICKPL = 1
USICKPH = 0
USILSB = 0
USI16B = 0

USI Introduction www.ti.com

Figure 14-2. USI Block Diagram: I2C Mode

408 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USI Operation

14.2 USI Operation

The USI module is a shift register and bit counter that includes logic to support SPI and I2C
communication. The USI shift register (USISR) is directly accessible by software and contains the data to
be transmitted or the data that has been received.

The bit counter counts the number of sampled bits and sets the USI interrupt flag USIIFG when the
USICNTx value becomes zero, either by decrementing or by directly writing zero to the USICNTx bits.
Writing USICNTx with a value > 0 automatically clears USIIFG when USIIFGCC = 0, otherwise USIIFG is
not affected. The USICNTx bits stop decrementing when they become 0. They will not underflow to 0FFh.

Both the counter and the shift register are driven by the same shift clock. On a rising shift clock edge,
USICNTx decrements and USISR samples the next bit input. The latch connected to the shift register’s
output delays the change of the output to the falling edge of shift clock. It can be made transparent by
setting the USIGE bit. This setting will immediately output the MSB or LSB of USISR to the SDO pin,
depending on the USILSB bit.

14.2.1 USI Initialization

While the USI software reset bit, USISWRST, is set, the flags USIIFG, USISTTIFG, USISTP, and USIAL
will be held in their reset state. USISR and USICNTx are not clocked and their contents are not affected.
In I2C mode, the SCL line is also released to the idle state by the USI hardware.

To activate USI port functionality the corresponding USIPEx bits in the USI control register must be set.
This will select the USI function for the pin and maintains the PxIN and PxIFG functions for the pin as well.
With this feature, the port input levels can be read via the PxIN register by software and the incoming data
stream can generate port interrupts on data transitions. This is useful, for example, to generate a port
interrupt on a START edge.

14.2.2 USI Clock Generation

The USI clock generator contains a clock selection multiplexer, a divider, and the ability to select the clock
polarity as shown in the block diagrams Figure 14-1 and Figure 14-2.

The clock source can be selected from the internal clocks ACLK or SMCLK, from an external clock SCLK,
as well as from the capture/compare outputs of Timer_A. In addition, it is possible to clock the module by
software using the USISWCLK bit when USISSELx = 100.

The USIDIVx bits can be used to divide the selected clock by a power of 2 up to 128. The generated
clock, USICLK, is stopped when USIIFG = 1 or when the module operates in slave mode.

The USICKPL bit is used to select the polarity of USICLK. When USICKPL = 0, the inactive level of
USICLK is low. When USICKPL = 1 the inactive level of USICLK is high.

409SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI

CKPH

USI

CKPL
USICNTx

SCLK

SCLK

SCLK

SCLK

SDO/SDI

SDO/SDI

USIIFG

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

8 7 6 5 4 3 2 1

LSB

LSB

00

Load USICNTx

USI Operation www.ti.com

14.2.3 SPI Mode

The USI module is configured in SPI mode when USII2C = 0. Control bit USICKPL selects the inactive
level of the SPI clock while USICKPH selects the clock edge on which SDO is updated and SDI is
sampled. Figure 14-3 shows the clock/data relationship for an 8-bit, MSB-first transfer. USIPE5, USIPE6,
and USIPE7 must be set to enable the SCLK, SDO, and SDI port functions.

Figure 14-3. SPI Timing

14.2.3.1 SPI Master Mode

The USI module is configured as SPI master by setting the master bit USIMST and clearing the I2C bit
USII2C. Since the master provides the clock to the slave(s) an appropriate clock source needs to be
selected and SCLK configured as output. When USIPE5 = 1, SCLK is automatically configured as an
output.

When USIIFG = 0 and USICNTx > 0, clock generation is enabled and the master will begin clocking in/out
data using USISR.

Received data must be read from the shift register before new data is written into it for transmission. In a
typical application, the USI software will read received data from USISR, write new data to be transmitted
to USISR, and enable the module for the next transfer by writing the number of bits to be transferred to
USICNTx.

14.2.3.2 SPI Slave Mode

The USI module is configured as SPI slave by clearing the USIMST and the USII2C bits. In this mode,
when USIPE5 = 1 SCLK is automatically configured as an input and the USI receives the clock externally
from the master.

If the USI is to transmit data, the shift register must be loaded with the data before the master provides the
first clock edge. The output must be enabled by setting USIOE. When USICKPH = 1, the MSB will be
visible on SDO immediately after loading the shift register.

The SDO pin can be disabled by clearing the USIOE bit. This is useful if the slave is not addressed in an
environment with multiple slaves on the bus.

Once all bits are received, the data must be read from USISR and new data loaded into USISR before the
next clock edge from the master. In a typical application, after receiving data, the USI software will read
the USISR register, write new data to USISR to be transmitted, and enable the USI module for the next
transfer by writing the number of bits to be transferred to USICNTx.

410 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Transmit data in memory

USISRL

Received data in memory

Transmit data in memory

USISRL

Received data in memory

7-bit SPI Mode, MSB first 7-bit SPI Mode, LSB first

USISRL USISRL

TX TX

RXRX

Shift with software Move

Move Shift with software

7-bit Data 7-bit Data

7-bit Data7-bit Data

www.ti.com USI Operation

14.2.3.3 USISR Operation

The 16-bit USISR is made up of two 8-bit registers, USISRL and USISRH. Control bit USI16B selects the
number of bits of USISR that are used for data transmit and receive. When USI16B = 0, only the lower 8
bits, USISRL, are used.

To transfer < 8 bits, the data must be loaded into USISRL such that unused bits are not shifted out. The
data must be MSB- or LSB-aligned depending on USILSB. Figure 14-4 shows an example of 7-bit data
handling.

Figure 14-4. Data Adjustments for 7-Bit SPI Data

When USI16B = 1, all 16 bits are used for data handling. When using USISR to access both USISRL and
USISRH, the data needs to be properly adjusted when < 16 bits are used in the same manner as shown
in Figure 14-4.

14.2.3.4 SPI Interrupts

There is one interrupt vector associated with the USI module, and one interrupt flag, USIIFG, relevant for
SPI operation. When USIIE and the GIE bit are set, the interrupt flag will generate an interrupt request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly writing 0 to the USICNTx
bits. USIIFG is cleared by writing a value > 0 to the USICNTx bits when USIIFGCC = 0, or directly by
software.

411SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI Operation www.ti.com

14.2.4 I2C Mode

The USI module is configured in I2C mode when USII2C =1, USICKPL = 1, and USICKPH = 0. For I2C
data compatibility, USILSB and USI16B must be cleared. USIPE6 and USIPE7 must be set to enable the
SCL and SDA port functions.

14.2.4.1 I2C Master Mode

To configure the USI module as an I2C master the USIMST bit must be set. In master mode, clocks are
generated by the USI module and output to the SCL line while USIIFG = 0. When USIIFG = 1, the SCL
will stop at the idle, or high, level. Multi-master operation is supported as described in the Arbitration
section.

The master supports slaves that are holding the SCL line low only when USIDIVx > 0. When USIDIVx is
set to /1 clock division (USIDIVx = 0), connected slaves must not hold the SCL line low during data
transmission. Otherwise the communication may fail.

14.2.4.2 I2C Slave Mode

To configure the USI module as an I2C slave the USIMST bit must be cleared. In slave mode, SCL is held
low if USIIFG = 1, USISTTIFG = 1 or if USICNTx = 0. USISTTIFG must be cleared by software after the
slave is setup and ready to receive the slave address from a master.

14.2.4.3 I2C Transmitter

In transmitter mode, data is first loaded into USISRL. The output is enabled by setting USIOE and the
transmission is started by writing 8 into USICNTx. This clears USIIFG and SCL is generated in master
mode or released from being held low in slave mode. After the transmission of all 8 bits, USIIFG is set,
and the clock signal on SCL is stopped in master mode or held low at the next low phase in slave mode.

To receive the I2C acknowledgment bit, the USIOE bit is cleared with software and USICNTx is loaded
with 1. This clears USIIFG and one bit is received into USISRL. When USIIFG becomes set again, the
LSB of USISRL is the received acknowledge bit and can be tested in software.
; Receive ACK/NACK

BIC.B #USIOE,&USICTL0 ; SDA input
MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
JZ TEST_USIIFG
BIT.B #01h,&USISRL ; Test received ACK bit
JNZ HANDLE_NACK ; Handle if NACK

...Else, handle ACK

412 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USI Operation

14.2.4.4 I2C Receiver

In I2C receiver mode the output must be disabled by clearing USIOE and the USI module is prepared for
reception by writing 8 into USICNTx. This clears USIIFG and SCL is generated in master mode or
released from being held low in slave mode. The USIIFG bit will be set after 8 clocks. This stops the clock
signal on SCL in master mode or holds SCL low at the next low phase in slave mode.

To transmit an acknowledge or no-acknowledge bit, the MSB of the shift register is loaded with 0 or 1, the
USIOE bit is set with software to enable the output, and 1 is written to the USICNTx bits. As soon as the
MSB bit is shifted out, USIIFG will be become set and the module can be prepared for the reception of the
next I2C data byte.
; Generate ACK

BIS.B #USIOE,&USICTL0 ; SDA output
MOV.B #00h,&USISRL ; MSB = 0
MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
JZ TEST_USIIFG

...continue...

; Generate NACK
BIS.B #USIOE,&USICTL0 ; SDA output
MOV.B #0FFh,&USISRL ; MSB = 1
MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
JZ TEST_USIIFG

...continue...

14.2.4.5 START Condition

A START condition is a high-to-low transition on SDA while SCL is high. The START condition can be
generated by setting the MSB of the shift register to 0. Setting the USIGE and USIOE bits makes the
output latch transparent and the MSB of the shift register is immediately presented to SDA and pulls the
line low. Clearing USIGE resumes the clocked-latch function and holds the 0 on SDA until data is shifted
out with SCL.
; Generate START

MOV.B #000h,&USISRL ; MSB = 0
BIS.B #USIGE+USIOE,&USICTL0 ; Latch/SDA output enabled
BIC.B #USIGE,&USICTL0 ; Latch disabled

...continue...

14.2.4.6 STOP Condition

A STOP condition is a low-to-high transition on SDA while SCL is high. To finish the acknowledgment bit
and pull SDA low to prepare the STOP condition generation requires clearing the MSB in the shift register
and loading 1 into USICNTx. This will generate a low pulse on SCL and during the low phase SDA is
pulled low. SCL stops in the idle, or high, state since the module is in master mode. To generate the
low-to-high transition, the MSB is set in the shift register and USICNTx is loaded with 1. Setting the
USIGE and USIOE bits makes the output latch transparent and the MSB of USISRL releases SDA to the
idle state. Clearing USIGE stores the MSB in the output latch and the output is disabled by clearing
USIOE. SDA remains high until a START condition is generated because of the external pullup.
; Generate STOP

BIS.B #USIOE,&USICTL0 ; SDA=output
MOV.B #000h,&USISRL ; MSB = 0
MOV.B #001h,&USICNT ; USICNT = 1 for one clock

TEST_USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
JZ test_USIIFG ;
MOV.B #0FFh,&USISRL ; USISRL = 1 to drive SDA high
BIS.B #USIGE,&USICTL0 ; Transparent latch enabled
BIC.B #USIGE+USIOE,&USICTL; Latch/SDA output disabled

...continue...

413SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI Operation www.ti.com

14.2.4.7 Releasing SCL

Setting the USISCLREL bit will release SCL if it is being held low by the USI module without requiring
USIIFG to be cleared. The USISCLREL bit will be cleared automatically if a START condition is received
and the SCL line will be held low on the next clock.

In slave operation this bit should be used to prevent SCL from being held low when the slave has detected
that it was not addressed by the master. On the next START condition USISCLREL will be cleared and
the USISTTIFG will be set.

14.2.4.8 Arbitration

The USI module can detect a lost arbitration condition in multi-master I2C systems. The I2C arbitration
procedure uses the data presented on SDA by the competing transmitters. The first master transmitter
that generates a logic high loses arbitration to the opposing master generating a logic low. The loss of
arbitration is detected in the USI module by comparing the value presented to the bus and the value read
from the bus. If the values are not equal arbitration is lost and the arbitration lost flag, USIAL, is set. This
also clears the output enable bit USIOE and the USI module no longer drives the bus. In this case, user
software must check the USIAL flag together with USIIFG and configure the USI to slave receiver when
arbitration is lost. The USIAL flag must be cleared by software.

To prevent other faster masters from generating clocks during the arbitration procedure SCL is held low if
another master on the bus drives SCL low and USIIFG or USISTTIFG is set, or if USICNTx = 0.

14.2.4.9 I2C Interrupts

There is one interrupt vector associated with the USI module with two interrupt flags relevant for I2C
operation, USIIFG and USISTTIFG. Each interrupt flag has its own interrupt enable bit, USIIE and
USISTTIE. When an interrupt is enabled, and the GIE bit is set, a set interrupt flag will generate an
interrupt request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly writing 0 to the USICNTx
bits. USIIFG is cleared by writing a value > 0 to the USICNTx bits when USIIFGCC = 0, or directly by
software.

USISTTIFG is set when a START condition is detected. The USISTTIFG flag must be cleared by software.

The reception of a STOP condition is indicated with the USISTP flag but there is no interrupt function
associated with the USISTP flag. USISTP is cleared by writing a value > 0 to the USICNTx bits when
USIIFGCC = 0 or directly by software.

414 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USI Registers

14.3 USI Registers

The USI registers are listed in Table 14-1.

Table 14-1. USI Registers

Register Short Form Register Type Address Initial State

USI control register 0 USICTL0 Read/write 078h 01h with PUC

USI control register 1 USICTL1 Read/write 079h 01h with PUC

USI clock control USICKCTL Read/write 07Ah Reset with PUC

USI bit counter USICNT Read/write 07Bh Reset with PUC

USI low byte shift register USISRL Read/write 07Ch Unchanged

USI high byte shift register USISRH Read/write 07Dh Unchanged

The USI registers can be accessed with word instructions as shown in Table 14-2.

Table 14-2. Word Access to USI Registers

Register Short Form High-Byte Register Low-Byte Register Address

USI control register USICTL USICTL1 USICTL0 078h

USI clock and counter control register USICCTL USICNT USICKCTL 07Ah

USI shift register USISR USISRH USISRL 07Ch

415SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI Registers www.ti.com

14.3.1 USICTL0, USI Control Register 0

7 6 5 4 3 2 1 0

USIPE7 USIPE6 USIPE5 USILSB USIMST USIGE USIOE USISWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

USIPE7 Bit 7 USI SDI/SDA port enable. Input in SPI mode, input or open drain output in I2C mode.

0 USI function disabled

1 USI function enabled

USIPE6 Bit 6 USI SDO/SCL port enable. Output in SPI mode, input or open drain output in I2C mode.

0 USI function disabled

1 USI function enabled

USIPE5 Bit 5 USI SCLK port enable. Input in SPI slave mode, or I2C mode, output in SPI master mode.

0 USI function disabled

1 USI function enabled

USILSB Bit 4 LSB first select. This bit controls the direction of the receive and transmit shift register.

0 MSB first

1 LSB first

USIMST Bit 3 Master select

0 Slave mode

1 Master mode

USIGE Bit 2 Output latch control

0 Output latch enable depends on shift clock

1 Output latch always enabled and transparent

USIOE Bit 1 Data output enable

0 Output disabled

1 Output enabled

USISWRST Bit 0 USI software reset

0 USI released for operation.

1 USI logic held in reset state.

416 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USI Registers

14.3.2 USICTL1, USI Control Register 1

7 6 5 4 3 2 1 0

USICKPH USII2C USISTTIE USIIE USIAL USISTP USISTTIFG USIIFG

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

USICKPH Bit 7 Clock phase select

0 Data is changed on the first SCLK edge and captured on the following edge.

1 Data is captured on the first SCLK edge and changed on the following edge.

USII2C Bit 6 I2C mode enable

0 I2C mode disabled

1 I2C mode enabled

USISTTIE Bit 5 START condition interrupt-enable

0 Interrupt on START condition disabled

1 Interrupt on START condition enabled

USIIE Bit 4 USI counter interrupt enable

0 Interrupt disabled

1 Interrupt enabled

USIAL Bit 3 Arbitration lost

0 No arbitration lost condition

1 Arbitration lost

USISTP Bit 2 STOP condition received. USISTP is automatically cleared if USICNTx is loaded with a value > 0 when
USIIFGCC = 0.

0 No STOP condition received

1 STOP condition received

USISTTIFG Bit 1 START condition interrupt flag

0 No START condition received. No interrupt pending.

1 START condition received. Interrupt pending.

USIIFG Bit 0 USI counter interrupt flag. Set when the USICNTx = 0. Automatically cleared if USICNTx is loaded with a
value > 0 when USIIFGCC = 0.

0 No interrupt pending

1 Interrupt pending

417SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USI Registers www.ti.com

14.3.3 USICKCTL, USI Clock Control Register

7 6 5 4 3 2 1 0

USIDIVx USISSELx USICKPL USISWCLK

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

USIDIVx Bits 7-5 Clock divider select

000 Divide by 1

001 Divide by 2

010 Divide by 4

011 Divide by 8

100 Divide by 16

101 Divide by 32

110 Divide by 64

111 Divide by 128

USISSELx Bits 4-2 Clock source select. Not used in slave mode.

000 SCLK (Not used in SPI mode)

001 ACLK

010 SMCLK

011 SMCLK

100 USISWCLK bit

101 TACCR0

110 TACCR1

111 TACCR2 (Reserved on MSP430F20xx devices)

USICKPL Bit 1 Clock polarity select

0 Inactive state is low

1 Inactive state is high

USISWCLK Bit 0 Software clock

0 Input clock is low

1 Input clock is high

14.3.4 USICNT, USI Bit Counter Register

7 6 5 4 3 2 1 0

USISCLREL USI16B USIIFGCC USICNTx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

USISCLREL Bit 7 SCL release. The SCL line is released from low to idle. USISCLREL is cleared if a START condition is
detected.

0 SCL line is held low if USIIFG is set

1 SCL line is released

USI16B Bit 6 16-bit shift register enable

0 8-bit shift register mode. Low byte register USISRL is used.

1 16-bit shift register mode. Both high and low byte registers USISRL and USISRH are used. USISR
addresses all 16 bits simultaneously.

USIIFGCC Bit 5 USI interrupt flag clear control. When USIIFGCC = 1 the USIIFG will not be cleared automatically when
USICNTx is written with a value > 0.

0 USIIFG automatically cleared on USICNTx update

1 USIIFG is not cleared automatically

USICNTx Bits 4-0 USI bit count. The USICNTx bits set the number of bits to be received or transmitted.

418 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USI Registers

14.3.5 USISRL, USI Low Byte Shift Register

7 6 5 4 3 2 1 0

USISRLx

rw rw rw rw rw rw rw rw

USISRLx Bits 7-0 Contents of the USI low byte shift register

14.3.6 USISRH, USI High Byte Shift Register

7 6 5 4 3 2 1 0

USISRHx

rw rw rw rw rw rw rw rw

USISRHx Bits 7-0 Contents of the USI high byte shift register. Ignored when USI16B = 0.

419SLAU144I–December 2004–Revised January 2012 Universal Serial Interface (USI)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

420 Universal Serial Interface (USI) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 15
SLAU144I–December 2004–Revised January 2012

Universal Serial Communication Interface, UART Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the asynchronous UART mode.

Topic ... Page

15.1 USCI Overview .. 422
15.2 USCI Introduction: UART Mode ... 422
15.3 USCI Operation: UART Mode ... 424
15.4 USCI Registers: UART Mode ... 439

421SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Overview www.ti.com

15.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific data sheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

• UART mode

• Pulse shaping for IrDA communications

• Automatic baud rate detection for LIN communications

• SPI mode

The USCI_Bx modules support:

• I2C mode

• SPI mode

15.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an external system via two
external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared.

UART mode features include:

• 7- or 8-bit data with odd, even, or non-parity

• Independent transmit and receive shift registers

• Separate transmit and receive buffer registers

• LSB-first or MSB-first data transmit and receive

• Built-in idle-line and address-bit communication protocols for multiprocessor systems

• Receiver start-edge detection for auto-wake up from LPMx modes

• Programmable baud rate with modulation for fractional baud rate support

• Status flags for error detection and suppression

• Status flags for address detection

• Independent interrupt capability for receive and transmit

Figure 15-1 shows the USCI_Ax when configured for UART mode.

422 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Modulator

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC0CLK

Prescaler/Divider

Receive Baudrate Generator

UC0BRx

16

UCBRFx

4

UCBRSx

3

UCOS16

UCRXERRError Flags

Set Flags

UCPE

UCFE

UCOE

UCABEN

Receive Shift Register

Receive Buffer UC0RXBUF

Receive State Machine

1

0

UCIREN

UCPEN UCPAR UCMSB UC7BIT

UCDORMUCMODEx

2

UCSPB

Set UCBRK

Set UCADDR/UCIDLE

0

1

UCLISTEN

UC0RX

1

0

UCIRRXPL

IrDA Decoder

UCIRRXFE
UCIRRXFLx

6

Transmit Buffer UC 0TXBUF

Transmit State Machine

UCTXADDR

UCTXBRK

Transmit Shift Register

UCPEN UCPAR UCMSB UC7BIT UCIREN

UCIRTXPLx

6

0

1

IrDA Encoder
UC0TX

Transmit Clock

Receive Clock

BRCLK

UCMODEx

2

UCSPB

UCRXEIE

UCRXBRKIE

Set UC0RXIFG

Set UC0TXIFG

Set RXIFG

www.ti.com USCI Introduction: UART Mode

Figure 15-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

423SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEx = 10]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, UCSPB = 1]

[8th Data Bit, UC7BIT = 0]

ST

USCI Operation: UART Mode www.ti.com

15.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device.
Timing for each character is based on the selected baud rate of the USCI. The transmit and receive
functions use the same baud rate frequency.

15.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the
UCAxRXIE, UCAxTXIE, UCAxRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and
UCBTOE bits and sets the UCAxTXIFG bit. Clearing UCSWRST releases the USCI for operation.

NOTE: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1)
2. Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1)
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1)
5. Enable interrupts (optional) via UCAxRXIE and/or UCAxTXIE

15.3.2 Character Format

The UART character format, shown in Figure 15-2, consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit
controls the direction of the transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 15-2. Character Format

15.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is required for the protocol.
When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor
communication formats.

15.3.3.1 Idle-Line Multiprocessor Format

When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an
idle time on the transmit or receive lines as shown in Figure 15-3. An idle receive line is detectedwhen 10
or more continuous ones (marks) are received after the one or two stop bits of a character. The baud rate
generator is switched off after reception of an idle line until the next start edge is detected. When an idle
line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The UCIDLE bit is used as an
address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received
character is an address.

424 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of 10 Bits or More

UCAxTXD/RXD Expanded

UCAxTXD/RXD

First Character Within Block

Is Address. It Follows Idle

Period of 10 Bits or More

Character Within Block

Idle Period Less Than 10 Bits

Character Within Block

UCAxTXD/RXD

www.ti.com USCI Operation: UART Mode

Figure 15-3. Idle-Line Format

The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When
UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and
interrupts are not generated. When an address character is received, the character is transferred into
UCAxRXBUF, UCAxRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When
UCRXEIE = 0 and an address character is received but has a framing error or parity error, the character is
not transferred into UCAxRXBUF and UCAxRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters will be received. When UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
USCI to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag
indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR
is automatically cleared when the start bit is generated.

15.3.3.2 Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address character followed by associated
data:

1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCAxTXIFG = 1).

This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset
automatically when the address character is transferred from UCAxTXBUF into the shift register.

2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

The idle-line time must not be exceeded between address and data transmission or between data
transmissions. Otherwise, the transmitted data will be misinterpreted as an address.

425SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of No Significance

UCAxTXD/UCAxRXD

Expanded

UCAxTXD/UCAxRXD

First Character Within Block

Is an Address. AD Bit Is 1

AD Bit Is 0 for

Data Within Block. Idle Time Is of No Significance

UCAxTXD/UCAxRXD 1 0 0

USCI Operation: UART Mode www.ti.com

15.3.3.3 Address-Bit Multiprocessor Format

When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character
contains an extra bit used as an address indicator shown in Figure 15-4. The first character in a block of
characters carries a set address bit which indicates that the character is an address. The USCI UCADDR
bit is set when a received character has its address bit set and is transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When
UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not
transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCAxRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is
received, but has a framing error or parity error, the character is not transferred into UCAxRXBUF and
UCAxRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters with address bit = 1 will be received.
The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCAxRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
completed.

For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled
by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character
transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the
start bit is generated.

Figure 15-4. Address-Bit Multiprocessor Format

15.3.3.4 Break Reception and Generation

When UCMODEx = 00, 01, or 10 the receiver detects a break when all data, parity, and stop bits are low,
regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK
bit is set. If the break interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCAxRXIFG will also
be set. In this case, the value in UCAxRXBUF is 0h since all data bits were zero.

To transmit a break set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCAxTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared
when the start bit is generated.

426 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Break Delimiter Synch

Synch

Start

Bit

Stop

Bit
0 1 2 3 4 5 6 7

8 Bit Times

www.ti.com USCI Operation: UART Mode

15.3.4 Automatic Baud Rate Detection

When UCMODEx = 11 UART mode with automatic baud rate detection is selected. For automatic baud
rate detection, a data frame is preceded by a synchronization sequence that consists of a break and a
synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of
the break exceeds 22 bit times the break timeout error flag UCBTOE is set. The synch field follows the
break as shown in Figure 15-5.

Figure 15-5. Auto Baud Rate Detection - Break/Synch Sequence

For LIN conformance the character format should be set to 8 data bits, LSB first, no parity and one stop
bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in Figure 15-6. The synchronization
is based on the time measurement between the first falling edge and the last falling edge of the pattern.
The transmit baud rate generator is used for the measurement if automatic baud rate detection is enabled
by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the
measurement is transferred into the baud rate control registers UCAxBR0, UCAxBR1, and UCAxMCTL. If
the length of the synch field exceeds the measurable time the synch timeout error flag UCSTOE is set.

Figure 15-6. Auto Baud Rate Detection - Synch Field

The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are
received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch
field is detected the UCBRK flag is set. The character following the break/synch field is transferred into
UCAxRXBUF and the UCAxRXIFG interrupt flag is set. Any applicable error flag is also set. If the
UCBRKIE bit is set, reception of the break/synch sets the UCAxRXIFG. The UCBRK bit is reset by user
software or by reading the receive buffer UCAxRXBUF.

When a break/synch field is received, user software must reset UCDORM to continue receiving data. If
UCDORM remains set, only the character after the next reception of a break/synch field will be received.
The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCAxRXIFG. If UCDORM is
cleared during the reception of a character the receive interrupt flag will be set after the reception is
complete.

The automatic baud rate detection mode can be used in a full-duplex communication system with some
restrictions. The USCI can not transmit data while receiving the break/sync field and if a 0h byte with
framing error is received any data transmitted during this time gets corrupted. The latter case can be
discovered by checking the received data and the UCFE bit.

427SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

UART

Start

Bit Data Bits

Stop

Bit

IrDA

USCI Operation: UART Mode www.ti.com

15.3.4.1 Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:

• Set UCTXBRK with UMODEx = 11.

• Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCAxTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the synch character. The
length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically
when the synch character is transferred from UCAxTXBUF into the shift register.

• Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

15.3.5 IrDA Encoding and Decoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide hardware bit shaping for
IrDA communication.

15.3.5.1 IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming from the UART as shown
in Figure 15-7. The pulse duration is defined by UCIRTXPLx bits specifying the number of half clock
periods of the clock selected by UCIRTXCLK.

Figure 15-7. UART vs IrDA Data Format

To set the pulse time of 3/16 bit period required by the IrDA standard the BITCLK16 clock is selected with
UCIRTXCLK = 1 and the pulse length is set to 6 half clock cycles with UCIRTXPLx = 6 – 1 = 5.

When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as follows:

UCIRTXPLx = tPULSE × 2 × fBRCLK − 1

When the pulse length is based on BRCLK the prescaler UCBRx must to be set to a value greater or
equal to 5.

15.3.5.2 IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects low pulses. In addition to the
analog deglitch filter an additional programmable digital filter stage can be enabled by setting UCIRRXFE.
When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses
are discarded. The equation to program the filter length UCIRRXFLx is:

UCIRRXFLx = (tPULSE − tWAKE) × 2 × fBRCLK − 4

Where,
tPULSE = Minimum receive pulse width
tWAKE = Wake time from any low power mode. Zero when MSP430 is in active mode.

428 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: UART Mode

15.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAxRXD shorter
than the deglitch time tτ (approximately 150 ns) will be ignored. See the device-specific data sheet for
parameters.

When a low period on UCAxRXD exceeds tτ a majority vote is taken for the start bit. If the majority vote
fails to detect a valid start bit the USCI halts character reception and waits for the next low period on
UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions
when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective
condition is detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is also set. The
error conditions are described in Table 15-1.

Table 15-1. Receive Error Conditions

Error Condition Error Flag Description

A framing error occurs when a low stop bit is detected. When two stop bits are used, bothFraming error UCFE stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set.

A parity error is a mismatch between the number of 1s in a character and the value of the
Parity error UCPE parity bit. When an address bit is included in the character, it is included in the parity

calculation. When a parity error is detected, the UCPE bit is set.

An overrun error occurs when a character is loaded into UCAxRXBUF before the priorReceive overrun UCOE character has been read. When an overrun occurs, the UCOE bit is set.

When not using automatic baud rate detection, a break is detected when all data, parity, and
Break condition UCBRK stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition

can also set the interrupt flag UCAxRXIFG if the break interrupt enable UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error, or parity error is detected, no character is received into
UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error
bit is set.

When UCFE, UCPE, UCOE, UCBRK, or UCRXERR is set, the bit remains set until user software resets it
or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise it will not function
properly. To detect overflows reliably, the following flow is recommended. After a character is received
and UCAxRXIFG is set, first read UCAxSTAT to check the error flags including the overflow flag UCOE.
Read UCAxRXBUF next. This will clear all error flags except UCOE, if UCAxRXBUF was overwritten
between the read access to UCAxSTAT and to UCAxRXBUF. The UCOE flag should be checked after
reading UCAxRXBUF to detect this condition. Note that, in this case, the UCRXERR flag is not set.

15.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state.
The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a
valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud
rate generator is turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the UART state machine checks
for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise
the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and
the baud rate generator is turned off.

429SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

URXDx

URXS

tτ

URXDx

URXS

tτ

Majority Vote Taken

USCI Operation: UART Mode www.ti.com

15.3.7.1 Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAxRXD shorter
than the deglitch time tτ (approximately 150 ns) will be ignored by the USCI and further action will be
initiated as shown in Figure 15-8. See the device-specific data sheet for parameters.

Figure 15-8. Glitch Suppression, USCI Receive Not Started

When a glitch is longer than tτ or a valid start bit occurs on UCAxRXD, the USCI receive operation is
started and a majority vote is taken as shown in Figure 15-9. If the majority vote fails to detect a start bit
the USCI halts character reception.

Figure 15-9. Glitch Suppression, USCI Activated

15.3.8 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle
state. The transmit baud rate generator is ready but is not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud rate generator is
enabled and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the
transmit shift register is empty. UCAxTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte
transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter
returns to its idle state and the baud rate generator is turned off.

15.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates from non-standard source
frequencies. It provides two modes of operation selected by the UCOS16 bit.

15.3.9.1 Low-Frequency Baud Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from
low frequency clock sources (for example, 9600 baud from a 32768-Hz crystal). By using a lower input
frequency the power consumption of the module is reduced. Using this mode with higher frequencies and
higher prescaler settings will cause the majority votes to be taken in an increasingly smaller window and
thus decrease the benefit of the majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one modulator to generate bit
clock timing. This combination supports fractional divisors for baud rate generation. In this mode, the
maximum USCI baud rate is one-third the UART source clock frequency BRCLK.

430 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2−1 N/2−2
1 N/2 N/2−1 1 N/2 N/2−1N/2−2

0 N/2 N/2−11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD : INT(N/2) + R(= 1)

m: corresponding modulation bit

R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

www.ti.com USCI Operation: UART Mode

Timing for each bit is shown in Figure 15-10. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2 - 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the
number of BRCLKs per BITCLK.

Figure 15-10. BITCLK Baud Rate Timing With UCOS16 = 0

Modulation is based on the UCBRSx setting as shown in Table 15-2. A 1 in the table indicates that m = 1
and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The
modulation wraps around after 8 bits but restarts with each new start bit.

Table 15-2. BITCLK Modulation Pattern

Bit 0UCBRSx Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7(Start Bit)

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 0

4 0 1 0 1 0 1 0 1

5 0 1 1 1 0 1 0 1

6 0 1 1 1 0 1 1 1

7 0 1 1 1 1 1 1 1

15.3.9.2 Oversampling Baud Rate Generation

The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bit stream
with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period
apart. This mode also easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and decoder
are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster
than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This
combination supports fractional divisions of both BITCLK16 and BITCLK for baud rate generation. In this
mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRx is
set to 0 or 1 the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in Table 15-3. A 1 in the table
indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m=0. The
modulation restarts with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in Table 15-2 as previously described.

431SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BRCLKf
N =

Baud rate

N
UCBRx = INT()

16

USCI Operation: UART Mode www.ti.com

Table 15-3. BITCLK16 Modulation Pattern

No. of BITCLK16 Clocks After Last Falling BITCLK Edge
UCBRFx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:

The division factor N is often a non-integer value thus at least one divider and one modulator stage is
used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting
UCOS16.

15.3.10.1 Low-Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the prescaler:

UCBRx = INT(N)

and the fractional portion is realized by the modulator with the following nominal formula:

UCBRSx = round((N – INT(N)) × 8)

Incrementing or decrementing the UCBRSx setting by one count may give a lower maximum bit error for
any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit
for each UCBRSx setting.

15.3.10.2 Oversampling Baud Rate Mode Setting

In the oversampling mode the prescaler is set to:

and the first stage modulator is set to:

432 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

N N
UCBRFx = round ((– INT()) × 16)

16 16

bit,TX UCBRSx
BRCLK

1
T [i] = (UCBRx + m [i])

f

()
15

bit,TX UCBRSx UCBRFx
BRCLK

j=0

1
T [i] = 16 + m [i] × UCBRx + m [j]

f

æ ö
ç ÷
ç ÷
ç ÷
è ø

å

15

UCBRFx

j=0

m [j]å

i

bit,TX bit,TX

j=0

t [i] = T [j]å

bit,ideal,TX
1

t [i] = (i + 1)
Baud rate

www.ti.com USCI Operation: UART Mode

When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0
to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error
calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting and
with the UCBRFx setting incremented and decremented by one.

15.3.11 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the modulation features of the
baud rate generator reduces the cumulative bit error. The individual bit error can be calculated using the
following steps.

15.3.11.1 Low-Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the UCBRx and UCBRSx settings:

Where,
mUCBRSx[i] = Modulation of bit i from Table 15-2

15.3.11.2 Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i Tbit,TX[i] based on the baud rate generator
UCBRx, UCBRFx and UCBRSx settings:

Where,

= Sum of ones from the corresponding row in Table 15-3
mUCBRSx[i] = Modulation of bit i from Table 15-2

This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times:

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:

This results in an error normalized to one ideal bit time (1/baudrate):

ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × Baudrate × 100%

15.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the
transmit bit timing error. The second is the error between a start edge occurring and the start edge being
accepted by the USCI module. Figure 15-11 shows the asynchronous timing errors between data on the
UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The
synchronization error tSYNC is between -0.5 BRCLKs and +0.5 BRCLKs independent of the selected baud
rate generation mode.

433SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

1 2 3 4 5 6

0i

t0tideal

7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

t0 t1 t2

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Majority Vote Taken Majority Vote Taken Majority Vote Taken

BRCLK

UCAxRXD

RXD synch.

tactual

Sample

RXD synch.

bit,ideal,RX
1

t [i] = (i + 0.5)
Baud rate

i-1

bit,RX SYNC bit,RX UCBRSx
BRCLK

j=0

1 1
t [i] = t + T [j] + INT UCBRx + m [i]

f 2

æ öæ ö
ç ÷ç ÷ç ÷è øè ø

å

()bit,RX UCBRSx
BRCLK

1
T [i] = UCBRx + m [i]

f

()
UCBRSx7+m [i]i-1

bit,RX SYNC bit,RX UCBRSx UCBRFx
BRCLK

j=0 j=0

1
t [i] = t + T [j] + 8 + m [i] × UCBRx + m [j]

f

æ ö
ç ÷
ç ÷
ç ÷
è ø

å å

()
15

bit,RX UCBRSx UCBRFx
BRCLK

j=0

1
T [i] = 16 + m [i] × UCBRx + m [j]

f

æ ö
ç ÷
ç ÷
ç ÷
è ø

å
UCBRSx7+m [i]

UCBRFx

j=0

m [j]å

USCI Operation: UART Mode www.ti.com

Figure 15-11. Receive Error

The ideal sampling time is in the middle of a bit period:

The real sampling time is equal to the sum of all previous bits according to the formulas shown in the
transmit timing section, plus one half BITCLK for the current bit i, plus the synchronization error tSYNC.

This results in the following for the low-frequency baud rate mode:

Where,

mUCBRSx[i] = Modulation of bit i from Table 15-2

For the oversampling baud rate mode the sampling time of bit i is calculated by:

Where,

= Sum of ones from columns 0 - from the corresponding row in Table 15-3
mUCBRSx[i] = Modulation of bit i from Table 15-2

This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula:

ErrorRX[i] = (tbit,RX[i] − tbit,ideal,RX[i]) × Baudrate × 100%

434 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: UART Mode

15.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx and UCBRFx are listed in Table 15-4 and Table 15-5 for a
32768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Ensure that the selected BRCLK
frequency does not exceed the device-specific maximum USCI input frequency (see the device-specific
data sheet).

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
worst case error is given for the reception of an 8-bit character with parity and one stop bit including
synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst case
error is given for the transmission of an 8-bit character with parity and stop bit.

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK Baud RateFrequency UCBRx UCBRSx UCBRFx Maximum TX Error [%] Maximum RX Error [%][Baud][Hz]

32,768 1200 27 2 0 -2.8 1.4 -5.9 2.0

32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3

32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0

32,768 9600 3 3 0 -21.1 15.2 -44.3 21.3

1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8

1,048,576 19200 54 5 0 -1.1 1.0 -1.5 2.5

1,048,576 38400 27 2 0 -2.8 1.4 -5.9 2.0

1,048,576 56000 18 6 0 -3.9 1.1 -4.6 5.7

1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3

1,048,576 128000 8 1 0 -8.9 7.5 -13.8 14.8

1,048,576 256000 4 1 0 -2.3 25.4 -13.4 38.8

1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2

1,000,000 19200 52 0 0 -1.8 0 -2.6 0.9

1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8

1,000,000 56000 17 7 0 -4.8 0.8 -8.0 3.2

1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1

1,000,000 128000 7 7 0 -10.4 6.4 -18.0 11.6

1,000,000 256000 3 7 0 -29.6 0 -43.6 5.2

4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4

4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8

4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2

4,000,000 56000 71 4 0 -0.6 1.0 -1.7 1.3

4,000,000 115200 34 6 0 -2.1 0.6 -2.5 3.1

4,000,000 128000 31 2 0 -0.8 1.6 -3.6 2.0

4,000,000 256000 15 5 0 -4.0 3.2 -8.4 5.2

8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1

8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4

8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8

8,000,000 56000 142 7 0 -0.6 0.1 -0.7 0.8

8,000,000 115200 69 4 0 -0.6 0.8 -1.8 1.1

8,000,000 128000 62 4 0 -0.8 0 -1.2 1.2

8,000,000 256000 31 2 0 -0.8 1.6 -3.6 2.0

12,000,000 9600 1250 0 0 0 0 -0.05 0.05

12,000,000 19200 625 0 0 0 0 -0.2 0

12,000,000 38400 312 4 0 -0.2 0 -0.2 0.2

12,000,000 56000 214 2 0 -0.3 0.2 -0.4 0.5

435SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Operation: UART Mode www.ti.com

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (continued)

BRCLK Baud RateFrequency UCBRx UCBRSx UCBRFx Maximum TX Error [%] Maximum RX Error [%][Baud][Hz]

12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2

12,000,000 128000 93 6 0 -0.8 0 -1.5 0.4

12,000,000 256000 46 7 0 -1.9 0 -2.0 2.0

16,000,000 9600 1666 6 0 -0.05 0.05 -0.05 0.1

16,000,000 19200 833 2 0 -0.1 0.05 -0.2 0.1

16,000,000 38400 416 6 0 -0.2 0.2 -0.2 0.4

16,000,000 56000 285 6 0 -0.3 0.1 -0.5 0.2

16,000,000 115200 138 7 0 -0.7 0 -0.8 0.6

16,000,000 128000 125 0 0 0 0 -0.8 0

16,000,000 256000 62 4 0 -0.8 0 -1.2 1.2

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK Baud RateFrequency UCBRx UCBRSx UCBRFx Maximum TX Error [%] Maximum RX Error [%][Baud][Hz]

1,048,576 9600 6 0 13 -2.3 0 -2.2 0.8

1,048,576 19200 3 1 6 -4.6 3.2 -5.0 4.7

1,000,000 9600 6 0 8 -1.8 0 -2.2 0.4

1,000,000 19200 3 0 4 -1.8 0 -2.6 0.9

1,000,000 57600 1 7 0 -34.4 0 -33.4 0

4,000,000 9600 26 0 1 0 0.9 0 1.1

4,000,000 19200 13 0 0 -1.8 0 -1.9 0.2

4,000,000 38400 6 0 8 -1.8 0 -2.2 0.4

4,000,000 57600 4 5 3 -3.5 3.2 -1.8 6.4

4,000,000 115200 2 3 2 -2.1 4.8 -2.5 7.3

4,000,000 230400 1 7 0 -34.4 0 -33.4 0

8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1

8,000,000 19200 26 0 1 0 0.9 0 1.1

8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2

8,000,000 57600 8 0 11 0 0.88 0 1.6

8,000,000 115200 4 5 3 -3.5 3.2 -1.8 6.4

8,000,000 230400 2 3 2 -2.1 4.8 -2.5 7.3

8,000,000 460800 1 7 0 -34.4 0 -33.4 0

12,000,000 9600 78 0 2 0 0 -0.05 0.05

12,000,000 19200 39 0 1 0 0 0 0.2

12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1

12,000,000 57600 13 0 0 -1.8 0 -1.9 0.2

12,000,000 115200 6 0 8 -1.8 0 -2.2 0.4

12,000,000 230400 3 0 4 -1.8 0 -2.6 0.9

16,000,000 9600 104 0 3 0 0.2 0 0.3

16,000,000 19200 52 0 1 -0.4 0 -0.4 0.1

16,000,000 38400 26 0 1 0 0.9 0 1.1

16,000,000 57600 17 0 6 0 0.9 -0.1 1.0

16,000,000 115200 8 0 11 0 0.9 0 1.6

16,000,000 230400 4 5 3 -3.5 3.2 -1.8 6.4

16,000,000 460800 2 3 2 -2.1 4.8 -2.5 7.3

436 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: UART Mode

15.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with low-power modes. When
SMCLK is the USCI clock source, and is inactive because the device is in a low-power mode, the USCI
module automatically activates it when needed, regardless of the control-bit settings for the clock source.
The clock remains active until the USCI module returns to its idle condition. After the USCI module returns
to the idle condition, control of the clock source reverts to the settings of its control bits. Automatic clock
activation is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source becomes active for the whole
device and any peripheral configured to use the clock source may be affected. For example, a timer using
SMCLK will increment while the USCI module forces SMCLK active.

15.3.15 USCI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector for reception.

15.3.15.1 USCI Transmit Interrupt Operation

The UCAxTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept
another character. An interrupt request is generated if UCAxTXIE and GIE are also set. UCAxTXIFG is
automatically reset if a character is written to UCAxTXBUF.

UCAxTXIFG is set after a PUC or when UCSWRST = 1. UCAxTXIE is reset after a PUC or when
UCSWRST = 1.

15.3.15.2 USCI Receive Interrupt Operation

The UCAxRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCAxRXIE and GIE are also set. UCAxRXIFG and UCAxRXIE are reset
by a system reset PUC signal or when UCSWRST = 1. UCAxRXIFG is automatically reset when
UCAxRXBUF is read.

Additional interrupt control features include:

• When UCAxRXEIE = 0 erroneous characters will not set UCAxRXIFG.

• When UCDORM = 1, non-address characters will not set UCAxRXIFG in multiprocessor modes. In
plain UART mode, no characters will set UCAxRXIFG.

• When UCBRKIE = 1 a break condition will set the UCBRK bit and the UCAxRXIFG flag.

15.3.15.3 USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive interrupt flags UCAxRXIFG and
UCBxRXIFG are routed to one interrupt vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG
share another interrupt vector.

Example 15-1 shows an extract of an interrupt service routine to handle data receive interrupts from
USCI_A0 in either UART or SPI mode and USCI_B0 in SPI mode.

Example 15-1. Shared Interrupt Vectors Software Example, Data Receive

USCIA0_RX_USCIB0_RX_ISR
BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?
JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?
; Read UCB0RXBUF (clears UCB0RXIFG)
...
RETI

USCIA0_RX_ISR
; Read UCA0RXBUF (clears UCA0RXIFG)
...
RETI

437SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Operation: UART Mode www.ti.com

Example 15-2 shows an extract of an interrupt service routine to handle data transmit interrupts from
USCI_A0 in either UART or SPI mode and USCI_B0 in SPI mode.

Example 15-2. Shared Interrupt Vectors Software Example, Data Transmit

USCIA0_TX_USCIB0_TX_ISR
BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR
USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI
USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

438 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: UART Mode

15.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode are listed in Table 15-6 and Table 15-7.

Table 15-6. USCI_A0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 Baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_A0 Auto baud control register UCA0ABCTL Read/write 05Dh Reset with PUC

USCI_A0 IrDA transmit control register UCA0IRTCTL Read/write 05Eh Reset with PUC

USCI_A0 IrDA receive control register UCA0IRRCTL Read/write 05Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

NOTE: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set or clear the IEx
and IFGx bits using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

Table 15-7. USCI_A1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA1MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_A1 auto baud control register UCA1ABCTL Read/write 0CDh Reset with PUC

USCI_A1 IrDA transmit control register UCA1IRTCTL Read/write 0CEh Reset with PUC

USCI_A1 IrDA receive control register UCA1IRRCTL Read/write 0CFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

439SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: UART Mode www.ti.com

15.4.1 UCAxCTL0, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0

UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCPEN Bit 7 Parity enable

0 Parity disabled.

1 Parity enabled. Parity bit is generated (UCAxTXD) and expected (UCAxRXD). In address-bit
multiprocessor mode, the address bit is included in the parity calculation.

UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.

0 Odd parity

1 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.

0 LSB first

1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 8-bit data

1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.

0 One stop bit

1 Two stop bits

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the asynchronous mode when UCSYNC = 0.

00 UART mode

01 Idle-line multiprocessor mode

10 Address-bit multiprocessor mode

11 UART mode with automatic baud rate detection

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

440 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: UART Mode

15.4.2 UCAxCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0

UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.

00 UCLK

01 ACLK

10 SMCLK

11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt-enable

0 Erroneous characters rejected and UCAxRXIFG is not set

1 Erroneous characters received will set UCAxRXIFG

UCBRKIE Bit 4 Receive break character interrupt-enable

0 Received break characters do not set UCAxRXIFG.

1 Received break characters set UCAxRXIFG.

UCDORM Bit 3 Dormant. Puts USCI into sleep mode.

0 Not dormant. All received characters will set UCAxRXIFG.

1 Dormant. Only characters that are preceded by an idle-line or with address bit set will set
UCAxRXIFG. In UART mode with automatic baud rate detection only the combination of a break
and synch field will set UCAxRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address depending on the selected
multiprocessor mode.

0 Next frame transmitted is data

1 Next frame transmitted is an address

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer. In UART mode with automatic
baud rate detection 055h must be written into UCAxTXBUF to generate the required break/synch fields.
Otherwise 0h must be written into the transmit buffer.

0 Next frame transmitted is not a break

1 Next frame transmitted is a break or a break/synch

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

15.4.3 UCAxBR0, USCI_Ax Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

15.4.4 UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBRx 7-0 Clock prescaler setting of the Baud rate generator. The 16-bit value of (UCAxBR0 + UCAxBR1 × 256) forms
the prescaler value.

441SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: UART Mode www.ti.com

15.4.5 UCAxMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0

UCBRFx UCBRSx UCOS16

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCBRFx Bits 7-4 First modulation stage select. These bits determine the modulation pattern for BITCLK16 when UCOS16 =
1. Ignored with UCOS16 = 0. Table 15-3 shows the modulation pattern.

UCBRSx Bits 3-1 Second modulation stage select. These bits determine the modulation pattern for BITCLK. Table 15-2 shows
the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled

0 Disabled

1 Enabled

15.4.6 UCAxSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR UCBUSY
UCIDLE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled

1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag

0 No error

1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.

0 No error

1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.

0 No error

1 Character received with parity error

UCBRK Bit 3 Break detect flag

0 No break condition

1 Break condition occurred

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or
more error flags (UCFE, UCPE, UCOE) is also set. UCRXERR is cleared when UCAxRXBUF is read.

0 No receive errors detected

1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.

0 Received character is data

1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.

0 No idle line detected

1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive

1 USCI transmitting or receiving

442 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: UART Mode

15.4.7 UCAxRXBUF, USCI_Ax Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

rw rw rw rw rw rw rw rw

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCAxRXIFG.
In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

15.4.8 UCAxTXBUF, USCI_Ax Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCAxTXIFG. The MSB of
UCAxTXBUF is not used for 7-bit data and is reset.

15.4.9 UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register

7 6 5 4 3 2 1 0

UCIRTXPLx UCIRTXCLK UCIREN

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRTXPLx Bits 7-2 Transmit pulse length. Pulse length tPULSE = (UCIRTXPLx + 1) / (2 × fIRTXCLK)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select

0 BRCLK

1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK

UCIREN Bit 0 IrDA encoder/decoder enable.

0 IrDA encoder/decoder disabled

1 IrDA encoder/decoder enabled

15.4.10 UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

7 6 5 4 3 2 1 0

UCIRRXFLx UCIRRXPL UCIRRXFE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCIRRXFLx Bits 7-2 Receive filter length. The minimum pulse length for receive is given by: tMIN = (UCIRRXFLx + 4) / (2 ×
fIRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAxRXD polarity

0 IrDA transceiver delivers a high pulse when a light pulse is seen

1 IrDA transceiver delivers a low pulse when a light pulse is seen

UCIRRXFE Bit 0 IrDA receive filter enabled

0 Receive filter disabled

1 Receive filter enabled

443SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: UART Mode www.ti.com

15.4.11 UCAxABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0

Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN

r-0 r-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0

Reserved Bits 7-6 Reserved

UCDELIMx Bits 5-4 Break/synch delimiter length

00 1 bit time

01 2 bit times

10 3 bit times

11 4 bit times

UCSTOE Bit 3 Synch field time out error

0 No error

1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error

0 No error

1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud rate detect enable

0 Baud rate detection disabled. Length of break and synch field is not measured.

1 Baud rate detection enabled. Length of break and synch field is measured and baud rate settings
are changed accordingly.

15.4.12 IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCA0TXIE UCA0RXIE

rw-0 rw-0

Bits 7-2 These bits may be used by other modules (see the device-specific data sheet).

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

15.4.13 IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCA0TXIFG UCA0RXIFG

rw-1 rw-0

Bits 7-2 These bits may be used by other modules (see the device-specific data sheet).

UCA0TXIFG Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCA0RXIFG Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

444 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: UART Mode

15.4.14 UC1IE, USCI_A1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused UCA1TXIE UCA1RXIE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Unused Bits 7-4 Unused

Bits 3-2 These bits may be used by other USCI modules (see the device-specific data sheet).

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

15.4.15 UC1IFG, USCI_A1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused UCA1TXIFG UCA1RXIFG

rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

Unused Bits 7-4 Unused

Bits 3-2 These bits may be used by other USCI modules (see the device-specific data sheet).

UCA1TXIFG Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCA1RXIFG Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

445SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

446 Universal Serial Communication Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 16
SLAU144I–December 2004–Revised January 2012

Universal Serial Communication Interface, SPI Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the synchronous peripheral interface or
SPI mode.

Topic ... Page

16.1 USCI Overview .. 448
16.2 USCI Introduction: SPI Mode ... 448
16.3 USCI Operation: SPI Mode .. 450
16.4 USCI Registers: SPI Mode .. 456

447SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Overview www.ti.com

16.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter (for example, USCI_A is different from USCI_B). If more than one identical USCI module is
implemented on one device, those modules are named with incrementing numbers. For example, if one
device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific data
sheet to determine which USCI modules, if any, are implemented on each device.

The USCI_Ax modules support:

• UART mode

• Pulse shaping for IrDA communications

• Automatic baud rate detection for LIN communications

• SPI mode

The USCI_Bx modules support:

• I2C mode

• SPI mode

16.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system via three or four pins:
UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set and SPI
mode (3-pin or 4-pin) is selected with the UCMODEx bits.

SPI mode features include:

• 7- or 8-bit data length

• LSB-first or MSB-first data transmit and receive

• 3-pin and 4-pin SPI operation

• Master or slave modes

• Independent transmit and receive shift registers

• Separate transmit and receive buffer registers

• Continuous transmit and receive operation

• Selectable clock polarity and phase control

• Programmable clock frequency in master mode

• Independent interrupt capability for receive and transmit

• Slave operation in LPM4

Figure 16-1 shows the USCI when configured for SPI mode.

448 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

N/A

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

Receive Shift Register

Receive Buffer UCxRXBUF

Receive State Machine

UCMSB UC7BIT

1

0

UCMST

UCxSOMI

Transmit Buffer UC xTXBUF

Transmit State Machine

Transmit Shift Register

UCMSB UC7BIT

BRCLK

Set UCxRXIFG

Set UCxTXIFG

0

1

UCLISTEN

Clock Direction,

Phase and Polarity

UCCKPH UCCKPL

UCxSIMO

UCxCLK

Set UCOE

Transmit Enable

Control

2

UCMODEx

UCxSTE

Set UCFE

www.ti.com USCI Introduction: SPI Mode

Figure 16-1. USCI Block Diagram: SPI Mode

449SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Operation: SPI Mode www.ti.com

16.3 USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin, UCxSTE, is provided to enable a device to receive and transmit data and is
controlled by the master.

Three or four signals are used for SPI data exchange:

• UCxSIMO: Slave in, master out

– Master mode: UCxSIMO is the data output line.

– Slave mode: UCxSIMO is the data input line.

• UCxSOMI: Slave out, master in

– Master mode: UCxSOMI is the data input line.

– Slave mode: UCxSOMI is the data output line.

• UCxCLK: USCI SPI clock

– Master mode: UCxCLK is an output.

– Slave mode: UCxCLK is an input.

• UCxSTE: Slave transmit enable
Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 16-1
describes the UCxSTE operation.

Table 16-1. UCxSTE Operation

UCxSTE ActiveUCMODEx UCxSTE Slave MasterState

0 Inactive Active
01 High

1 Active Inactive

0 Active Inactive
10 Low

1 Inactive Active

16.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set,
keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCxRXIE, UCxTXIE,
UCxRXIFG, UCOE, and UCFE bits and sets the UCxTXIFG flag. Clearing UCSWRST releases the USCI
for operation.

NOTE: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)
2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
3. Configure ports
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)
5. Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

450 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receive Buffer

UCxRXBUF

Receive Shift Register

Transmit Buffer

UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register (DSR)

UCx

SOMI SOMI

UCxSIMO SIMOMASTER SLAVE

Px.x STE

UCxSTE
SS

Port.x

UCxCLK SCLK
MSP430 USCI COMMON SPI

www.ti.com USCI Operation: SPI Mode

16.3.2 Character Format

The USCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In
7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the
direction of the transfer and selects LSB or MSB first.

NOTE: Default Character Format

The default SPI character transmission is LSB first. For communication with other SPI
interfaces it MSB-first mode may be required.

NOTE: Character Format for Figures

Figures throughout this chapter use MSB first format.

16.3.3 Master Mode

Figure 16-2 shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data
transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the
TX shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with
either the most-significant or least-significant bit depending on the UCMSB setting. Data on UCxSOMI is
shifted into the receive shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer UCxRXBUF and the receive
interrupt flag, UCxRXIFG, is set, indicating the RX/TX operation is complete.

Figure 16-2. USCI Master and External Slave

A set transmit interrupt flag, UCxTXIFG, indicates that data has moved from UCxTXBUF to the TX shift
register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to UCxTXBUF because receive and
transmit operations operate concurrently.

451SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receive Buffer
UCxRXBUF

Receive Shift Register

Transmit Buffer
UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register DSR

UCx

SOMISOMI

UCxSIMOSIMOMASTER SLAVE

Px.x UCxSTE

STE
SS

Port.x

UCxCLKSCLK
MSP430 USCICOMMON SPI

USCI Operation: SPI Mode www.ti.com

16.3.3.1 Four-Pin SPI Master Mode

In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the master
as described in Table 16-1. When UCxSTE is in the master-inactive state:

• UCxSIMO and UCxCLK are set to inputs and no longer drive the bus

• The error bit UCFE is set indicating a communication integrity violation to be handled by the user.

• The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it will be transmitted as
soon as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE
transitioning to the master-inactive state, the data must be re-written into UCxTXBUF to be transferred
when UCxSTE transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin
master mode.

16.3.4 Slave Mode

Figure 16-3 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the
input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined
by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX
shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the
receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCxRXIFG interrupt
flag is set, indicating that data has been received. The overrun error bit, UCOE, is set when the previously
received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

Figure 16-3. USCI Slave and External Master

16.3.4.1 Four-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally.
When UCxSTE is in the slave- inactive state:

• Any receive operation in progress on UCxSIMO is halted

• UCxSOMI is set to the input direction

• The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

452 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BRCLK
BitClock

f
f =

UCBRx

www.ti.com USCI Operation: SPI Mode

16.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit it is ready to receive and transmit. In
master mode the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode
the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated.

16.3.5.1 Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator and the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCxSTE is in the slave-active state.

16.3.5.2 Receive Enable

The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

16.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the
USCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the
UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the bit
clock generator is not used, and the UCSSELx bits are don’t care. The SPI receiver and transmitter
operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBR1 and UCxxBR0 is the division factor of
the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAxMCTL should be cleared when using SPI mode for
USCI_A. The UCAxCLK/UCBxCLK frequency is given by:

453SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CKPH CKPL
Cycle#

UCxCLK

UCxCLK

UCxCLK

UCxCLK

UCxSIMO
UCxSOMI

UCxSIMO
UCxSOMI

Move to UCxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

UCxSTE

UC UC

USCI Operation: SPI Mode www.ti.com

16.3.6.1 Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control
bits of the USCI. Timing for each case is shown in Figure 16-4.

Figure 16-4. USCI SPI Timing with UCMSB = 1

16.3.7 Using the SPI Mode With Low-Power Modes

The USCI module provides automatic clock activation for SMCLK for use with low-power modes. When
SMCLK is the USCI clock source, and is inactive because the device is in a low-power mode, the USCI
module automatically activates it when needed, regardless of the control-bit settings for the clock source.
The clock remains active until the USCI module returns to its idle condition. After the USCI module returns
to the idle condition, control of the clock source reverts to the settings of its control bits. Automatic clock
activation is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source becomes active for the whole
device and any peripheral configured to use the clock source may be affected. For example, a timer using
SMCLK increments while the USCI module forces SMCLK active.

In SPI slave mode, no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock
sources are disabled. The receive or transmit interrupt can wake up the CPU from any low power mode.

16.3.8 SPI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector for reception.

16.3.8.1 SPI Transmit Interrupt Operation

The UCxTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept
another character. An interrupt request is generated if UCxTXIE and GIE are also set. UCxTXIFG is
automatically reset if a character is written to UCxTXBUF. UCxTXIFG is set after a PUC or when
UCSWRST = 1. UCxTXIE is reset after a PUC or when UCSWRST = 1.

NOTE: Writing to UCxTXBUF in SPI Mode

Data written to UCxTXBUF when UCxTXIFG = 0 may result in erroneous data transmission.

454 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: SPI Mode

16.3.8.2 SPI Receive Interrupt Operation

The UCxRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An
interrupt request is generated if UCxRXIE and GIE are also set. UCxRXIFG and UCxRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF is
read.

16.3.8.3 USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive interrupt flags UCAxRXIFG and
UCBxRXIFG are routed to one interrupt vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG
share another interrupt vector.

Example 16-1 shows an extract of an interrupt service routine to handle data receive interrupts from
USCI_A0 in either UART or SPI mode and USCI_B0 in SPI mode.

Example 16-1. Shared Receive Interrupt Vectors Software Example

USCIA0_RX_USCIB0_RX_ISR
BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?
JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?
; Read UCB0RXBUF (clears UCB0RXIFG)
...
RETI

USCIA0_RX_ISR
; Read UCA0RXBUF (clears UCA0RXIFG)
...
RETI

Example 16-2 shows an extract of an interrupt service routine to handle data transmit interrupts from
USCI_A0 in either UART or SPI mode and USCI_B0 in SPI mode.

Example 16-2. Shared Transmit Interrupt Vectors Software Example

USCIA0_TX_USCIB0_TX_ISR
BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

455SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: SPI Mode www.ti.com

16.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode for USCI_A0 and USCI_B0 are listed in Table 16-2. Registers
applicable in SPI mode for USCI_A1 and USCI_B1 are listed in Table 16-3.

Table 16-2. USCI_A0 and USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

NOTE: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set or clear the IEx
and IFGx bits using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

Table 16-3. USCI_A1 and USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA10MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h 001h with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 bit rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 bit rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

456 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: SPI Mode

16.4.1 UCAxCTL0, USCI_Ax Control Register 0,
UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC=1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCCKPH Bit 7 Clock phase select.

0 Data is changed on the first UCLK edge and captured on the following edge.

1 Data is captured on the first UCLK edge and changed on the following edge.

UCCKPL Bit 6 Clock polarity select.

0 The inactive state is low.

1 The inactive state is high.

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift register.

0 LSB first

1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 8-bit data

1 7-bit data

UCMST Bit 3 Master mode select

0 Slave mode

1 Master mode

UCMODEx Bits 2-1 USCI mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.

00 3-pin SPI

01 4-pin SPI with UCxSTE active high: slave enabled when UCxSTE = 1

10 4-pin SPI with UCxSTE active low: slave enabled when UCxSTE = 0

11 I2C mode

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

16.4.2 UCAxCTL1, USCI_Ax Control Register 1,
UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCSWRST

rw-0 rw-0 rw-0 (1) rw-0 rw-0 rw-0 rw-0 rw-1
r0 (2)

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock in master mode. UCxCLK is always
used in slave mode.

00 NA

01 ACLK

10 SMCLK

11 SMCLK

Unused Bits 5-1 Unused

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

(1) UCAxCTL1 (USCI_Ax)
(2) UCBxCTL1 (USCI_Bx)

457SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: SPI Mode www.ti.com

16.4.3 UCAxBR0, USCI_Ax Bit Rate Control Register 0,
UCBxBR0, USCI_Bx Bit Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx - low byte

rw rw rw rw rw rw rw rw

16.4.4 UCAxBR1, USCI_Ax Bit Rate Control Register 1,
UCBxBR1, USCI_Bx Bit Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx - high byte

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler setting. The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler value.

16.4.5 UCAxSTAT, USCI_Ax Status Register,
UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE Unused UCBUSY

rw-0 rw-0 rw-0 rw-0 (1) rw-0 rw-0 rw-0 r-0
r0 (2)

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled

1 Enabled. The transmitter output is internally fed back to the receiver.

UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire
master or any slave mode.

0 No error

1 Bus conflict occurred

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCxRXBUF before the previous
character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.

0 No error

1 Overrun error occurred

Unused Bits 4-1 Unused

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive

1 USCI transmitting or receiving

(1) UCAxSTAT (USCI_Ax)
(2) UCBxSTAT (USCI_Bx)

16.4.6 UCAxRXBUF, USCI_Ax Receive Buffer Register,
UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCxRXBUF resets the receive-error bits, and UCxRXIFG. In 7-bit data mode, UCxRXBUF
is LSB justified and the MSB is always reset.

458 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: SPI Mode

16.4.7 UCAxTXBUF, USCI_Ax Transmit Buffer Register,
UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCxTXIFG. The MSB of UCxTXBUF is not
used for 7-bit data and is reset.

16.4.8 IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE

rw-0 rw-0 rw-0 rw-0

Bits 7-4 These bits may be used by other modules (see the device-specific data sheet).

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

16.4.9 IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG

rw-1 rw-0 rw-1 rw-0

Bits 7-4 These bits may be used by other modules (see the device-specific data sheet).

UCB0TXIFG Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCB0RXIFG Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

UCA0TXIFG Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF empty.

0 No interrupt pending

1 Interrupt pending

UCA0RXIFG Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

459SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: SPI Mode www.ti.com

16.4.10 UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused UCB1TXIE UCB1RXIE UCA1TXIE UCA1RXIE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Unused Bits 7-4 Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

16.4.11 UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused UCB1TXIFG UCB1RXIFG UCA1TXIFG UCA1RXIFG

rw-0 rw-0 rw-0 rw-0 rw-1 rw-0 rw-1 rw-0

Unused Bits 7-4 Unused

UCB1TXIFG Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCB1RXIFG Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

UCA1TXIFG Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF empty.

0 No interrupt pending

1 Interrupt pending

UCA1RXIFG Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

460 Universal Serial Communication Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 17
SLAU144I–December 2004–Revised January 2012

Universal Serial Communication Interface, I2C Mode

The universal serial communication interface (USCI) supports multiple serial communication modes with
one hardware module. This chapter discusses the operation of the I2C mode.

Topic ... Page

17.1 USCI Overview .. 462
17.2 USCI Introduction: I2C Mode .. 462
17.3 USCI Operation: I2C Mode ... 463
17.4 USCI Registers: I2C Mode ... 479

461SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Overview www.ti.com

17.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication
modes. Different USCI modules support different modes. Each different USCI module is named with a
different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI
module is implemented on one device, those modules are named with incrementing numbers. For
example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the
device-specific data sheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

• UART mode

• Pulse shaping for IrDA communications

• Automatic baud rate detection for LIN communications

• SPI mode

The USCI_Bx modules support:

• I2C mode

• SPI mode

17.2 USCI Introduction: I2C Mode

In I2C mode, the USCI module provides an interface between the MSP430 and I2C-compatible devices
connected by way of the two-wire I2C serial bus. External components attached to the I2C bus serially
transmit and/or receive serial data to/from the USCI module through the 2-wire I2C interface.

The I2C mode features include:

• Compliance to the Philips Semiconductor I2C specification v2.1

– 7-bit and 10-bit device addressing modes

– General call

– START/RESTART/STOP

– Multi-master transmitter/receiver mode

– Slave receiver/transmitter mode

– Standard mode up to 100 kbps and fast mode up to 400 kbps support

• Programmable UCxCLK frequency in master mode

• Designed for low power

• Slave receiver START detection for auto-wake up from LPMx modes

• Slave operation in LPM4

Figure 17-1 shows the USCI when configured in I2C mode.

462 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC1CLK

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

BRCLK

Slave Address UC1SA

Transmit Shift Register

UCMST

Transmit Buffer UC 1TXBUF

I2C State Machine

Own Address UC1OA

Receive Shift Register

UCA10

Receive Buffer UC1RXBUF

UCGCEN

UCxSDA

UCxSCL

UCSLA10

www.ti.com USCI Operation: I2C Mode

Figure 17-1. USCI Block Diagram: I2C Mode

17.3 USCI Operation: I2C Mode

The I2C mode supports any slave or master I2C-compatible device. Figure 17-2 shows an example of an
I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I2C bus can be considered as the master or the slave when
performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any
device addressed by a master is considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock pin (SCL). Both SDA and
SCL are bidirectional, and must be connected to a positive supply voltage using a pullup resistor.

NOTE: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430 VCC level.

463SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

MSP430

VCC

Serial Data (SDA)

Serial Clock (SCL)

Device A

Device B Device C

SDA

SCL

MSB Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

1 2 7 8 9 1 2 8 9

ACK ACK
START

Condition (S)
STOP

Condition (P)R/W

USCI Operation: I2C Mode www.ti.com

Figure 17-2. I2C Bus Connection Diagram

17.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the USCI in a reset condition. To select I2C operation the UCMODEx bits must
be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and reconfiguring the USCI module should be done when UCSWRST is set to avoid
unpredictable behavior. Setting UCSWRST in I2C mode has the following effects:

• I2C communication stops

• SDA and SCL are high impedance

• UCBxI2CSTAT, bits 6-0 are cleared

• UCBxTXIE and UCBxRXIE are cleared

• UCBxTXIFG and UCBxRXIFG are cleared

• All other bits and registers remain unchanged.

NOTE: Initializing or Reconfiguring the USCI Module

The recommended USCI initialization or reconfiguration process is:
1. Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)
2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
3. Configure ports.
4. Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)
5. Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

17.3.2 I2C Serial Data

One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates
with byte data. Data is transferred most significant bit first as shown in Figure 17-3.

The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0,
the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit
is sent from the receiver after each byte on the 9th SCL clock.

Figure 17-3. I2C Module Data Transfer

464 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Data Line
Stable Data

Change of Data Allowed

SDA

SCL

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

S

1

Slave Address 1st byte

7

Slave Address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

www.ti.com USCI Operation: I2C Mode

START and STOP conditions are generated by the master and are shown in Figure 17-3. A START
condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high
transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in Figure 17-4. The high and low
state of SDA can only change when SCL is low, otherwise START or STOP conditions will be generated.

Figure 17-4. Bit Transfer on the I2C Bus

17.3.3 I2C Addressing Modes

The I2C mode supports 7-bit and 10-bit addressing modes.

17.3.3.1 7-Bit Addressing

In the 7-bit addressing format, shown in Figure 17-5, the first byte is the 7-bit slave address and the R/W
bit. The ACK bit is sent from the receiver after each byte.

Figure 17-5. I2C Module 7-Bit Addressing Format

17.3.3.2 10-Bit Addressing

In the 10-bit addressing format, shown in Figure 17-6, the first byte is made up of 11110b plus the two
MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte.
The next byte is the remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the 8-bit
data.

Figure 17-6. I2C Module 10-Bit Addressing Format

17.3.3.3 Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by
issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave
address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 17-7.

465SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address R/W ACK Data ACK P

1 Any
Number

1 Any Number

...

USCI Master

USCI Slave

Other Master

Other Slave

... Bits set or reset by software

Bits set or reset by hardware

USCI Operation: I2C Mode www.ti.com

Figure 17-7. I2C Module Addressing Format with Repeated START Condition

17.3.4 I2C Module Operating Modes

In I2C mode the USCI module can operate in master transmitter, master receiver, slave transmitter, or
slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate
the modes.

Figure 17-8 shows how to interpret the time line figures. Data transmitted by the master is represented by
grey rectangles, data transmitted by the slave by white rectangles. Data transmitted by the USCI module,
either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the data
stream the action occurs. Actions that must be handled with software are indicated with white rectangles
with an arrow pointing to where in the data stream the action must take place.

Figure 17-8. I2C Time Line Legend

17.3.4.1 Slave Mode

The USCI module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the
I2C address. Afterwards, transmit and receive operations are controlled automatically depending on the
R/W bit received together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing
is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave
responds to a general call.

When a START condition is detected on the bus, the USCI module will receive the transmitted address
and compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address
received matches the USCI slave address.

466 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

S SLA/R A DATA A P

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=?0
UCBxTXBUF discarded

Reception of own

address and
transmission of data

bytes

Bus stalled (SCL held low)
until data available

DATADATA A

UCSTPIFG=1
UCSTTIFG=0

A

A

DATA A S SLA/R

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCBxTXBUF discarded

DATA A S SLA/W

UCTR=0 (Receiver)
UCSTTIFG=1

Arbitration lost as
master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCBxTXIFG=0

Repeated start−
continue as
slave transmitter

Repeated start−

continue as

slave receiver

Write data to UCBxTXBUF

UCBxTXIFG=1

UCBxTXIFG=0

UCBxTXIFG=0

Write data to UCBxTXBUF

www.ti.com USCI Operation: I2C Mode

17.3.4.1.1 I2C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own
address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses
that are generated by the master device. The slave device does not generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been transmitted.

If the master requests data from the slave the USCI module is automatically configured as a transmitter
and UCTR and UCBxTXIFG become set. The SCL line is held low until the first data to be sent is written
into the transmit buffer UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared,
and the data is transmitted. As soon as the data is transferred into the shift register the UCBxTXIFG is set
again. After the data is acknowledged by the master the next data byte written into UCBxTXBUF is
transmitted or if the buffer is empty the bus is stalled during the acknowledge cycle by holding SCL low
until new data is written into UCBxTXBUF. If the master sends a NACK succeeded by a STOP condition
the UCSTPIFG flag is set. If the NACK is succeeded by a repeated START condition the USCI I2C state
machine returns to its address-reception state.

Figure 17-9 shows the slave transmitter operation.

Figure 17-9. I2C Slave Transmitter Mode

467SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Operation: I2C Mode www.ti.com

17.3.4.1.2 I2C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the master is identical to its own
address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are
shifted in with the clock pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been
received.

If the slave should receive data from the master the USCI module is automatically configured as a receiver
and UCTR is cleared. After the first data byte is received the receive interrupt flag UCBxRXIFG is set. The
USCI module automatically acknowledges the received data and can receive the next data byte.

If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus
is stalled by holding SCL low. As soon as UCBxRXBUF is read the new data is transferred into
UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next
acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the
UCTXNACK bit is set while SCL is held low the bus will be released, a NACK is transmitted immediately,
and UCBxRXBUF is loaded with the last received data. Since the previous data was not read that data will
be lost. To avoid loss of data the UCBxRXBUF needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I2C state machine returns to its address
reception state.

Figure 17-10 shows the I2C slave receiver operation.

468 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

S SLA/W A DATA A P or SReception of own

address and data
bytes. All are

acknowledged.

UCBxRXIFG=1

DATADATA A A

UCTXNACK=1

Refer to:
”Slave Transmitter”
Timing Diagram

Bus not stalled even if
UCBxRXBUF not read

P or SDATA A

A
Arbitration lost as

master and

addressed as slave

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

Last byte is not
acknowledged.

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call

address.

UCTXNACK=0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Read data from UCBxRXBUF

www.ti.com USCI Operation: I2C Mode

Figure 17-10. I2C Slave Receiver Mode

469SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

S

S 11110 xx/W A SLA (2.) A P or SReception of own
address and data

bytes. All are
acknowledged.

UCBxRXIFG=1

DATA DATAA A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the

general call
address.

P or S

UCBxRXIFG=1

DATA DATAA A

S 11110 xx/W A SLA (2.) A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

11110 xx/R A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCSTTIFG=0

DATA A P or SReception of own
address and
transmission of data

bytes

Slave Transmitter

Slave Receiver

USCI Operation: I2C Mode www.ti.com

17.3.4.1.3 I2C Slave 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 17-11. In 10-bit
addressing mode, the slave is in receive mode after the full address is received. The USCI module
indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode the master sends a repeated START condition together with the first byte of the address
but with the R/W bit set. This will set the UCSTTIFG flag if it was previously cleared by software and the
USCI modules switches to transmitter mode with UCTR = 1.

Figure 17-11. I2C Slave 10-bit Addressing Mode

470 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: I2C Mode

17.3.4.2 Master Mode

The USCI module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must
be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit
addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the
USCI module responds to a general call.

17.3.4.2.1 I2C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for
transmitter mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. The UCBxTXIFG bit is set when the START condition is generated and the first data to be
transmitted can be written into UCBxTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave
address. UCBxTXIFG is set again as soon as the data is transferred from the buffer into the shift register.
If there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the
acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is
held as long as the UCTXSTP bit or UCTXSTT bit is not set.

Setting UCTXSTP will generate a STOP condition after the next acknowledge from the slave. If UCTXSTP
is set during the transmission of the slave’s address or while the USCI module waits for data to be written
into UCBxTXBUF, a STOP condition is generated even if no data was transmitted to the slave. When
transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted, or
anytime after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the
address will be transmitted. When the data is transferred from the buffer to the shift register, UCBxTXIFG
will become set indicating data transmission has begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge interrupt flag UCNACKIFG is
set. The master must react with either a STOP condition or a repeated START condition. If data was
already written into UCBxTXBUF it will be discarded. If this data should be transmitted after a repeated
START it must be written into UCBxTXBUF again. Any set UCTXSTT is discarded, too. To trigger a
repeated start UCTXSTT needs to be set again.

Figure 17-12 shows the I2C master transmitter operation.

471SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Other master continues

S SLA/W A DATA A P
Successful

transmission to a
slave receiver

UCBxTXIFG=1

DATADATA A A

UCTXSTP=1
UCBxTXIFG=0

Next transfer started
with a repeated start

condition

DATA A S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA A S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1
3) UCBxTXIFG=0

Not acknowledge

received after slave

address

P

S SLA/W

S SLA/R

UCTXSTP=1

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in

slave address or

data byte

A

A

Other master continues

Arbitration lost and

addressed as slave
Other master continuesA

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

USCI continues as Slave Receiver

Not acknowledge

received after a data

byte

UCTXSTT=0 UCTXSTP=0

UCTXSTP=0

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Bus stalled (SCL held low)
until data available

Write data to UCBxTXBUF

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCBxTXIFG=1
UCBxTXBUF discarded

UCTXSTT=0
UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCBxTXIFG=1
UCBxTXBUF discarded

UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

USCI Operation: I2C Mode www.ti.com

Figure 17-12. I2C Master Transmitter Mode

472 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: I2C Mode

17.3.4.2.2 I2C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for
receiver mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave
address. As soon as the slave acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from the slave is received and
acknowledged and the UCBxRXIFG flag is set. Data is received from the slave ss long as UCTXSTP or
UCTXSTT is not set. If UCBxRXBUF is not read the master holds the bus during reception of the last data
bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the not-acknowledge interrupt flag
UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting UCTXSTP, a NACK followed by a
STOP condition is generated after reception of the data from the slave, or immediately if the USCI module
is currently waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being
received. For this case, the UCTXSTT may be polled to determine when it is cleared:

BIS.B #UCTXSTT,&UCBOCTL1 ;Transmit START cond.
POLL_STT BIT.B #UCTXSTT,&UCBOCTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,
BIS.B #UCTXSTP,&UCB0CTL1 ;transmit STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

Figure 17-13 shows the I2C master receiver operation.

NOTE: Consecutive Master Transactions Without Repeated Start

When performing multiple consecutive I2C master transactions without the repeated start
feature, the current transaction must be completed before the next one is initiated. This can
be done by ensuring that the transmit stop condition flag UCTXSTP is cleared before the
next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction
might be affected.

473SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Other master continues

S SLA/R A DATA A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful

reception from a
slave transmitter

UCBxRXIFG=1

DATADATA A

UCTXSTP=1

Next transfer started
with a repeated start
condition

DATA S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Not acknowledge

received after slave
address

UCTXSTT=0
UCNACKIFG=1

P

S SLA/W

S SLA/R

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in

slave address or
data byte

A

Other master continues

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

USCI continues as Slave Transmitter

A

A

A

UCTXSTT=0 UCTXSTP=0

UCBxTXIFG=1

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

UCTXSTP=1

UCTXSTP=0

USCI Operation: I2C Mode www.ti.com

Figure 17-13. I2C Master Receiver Mode

474 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Master Transmitter

S A A P

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

Successful
transmission to a
slave receiver

UCBxTXIFG=1
UCBxTXIFG=1

DATADATA A A

UCTXSTP=1

UCTXSTT=0 UCTXSTP=0

11110 xx/W SLA (2.)

S A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a

slave transmitter

DATADATA A

UCTXSTP=1

A

UCTXSTT=0 UCTXSTP=0

A A11110 xx/W SLA (2.) 11110 xx/R

Master Receiver

S

UCBxRXIFG=1

1

0 0 0

1

0 0 0

1 1

111

n

Device 1 Lost Arbitration
and Switches Off

Bus Line

SCL

Data From

Device 1

Data From

Device 2

Bus Line

SDA

www.ti.com USCI Operation: I2C Mode

17.3.4.2.3 I2C Master 10-Bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 17-14.

Figure 17-14. I2C Master 10-bit Addressing Mode

17.3.4.2.4 Arbitration

If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure
is invoked. Figure 17-15 shows the arbitration procedure between two devices. The arbitration procedure
uses the data presented on SDA by the competing transmitters. The first master transmitter that generates
a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives
priority to the device that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets the arbitration lost flag
UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes.

Figure 17-15. Arbitration Procedure Between Two Master Transmitters

If the arbitration procedure is in progress when a repeated START condition or STOP condition is
transmitted on SDA, the master transmitters involved in arbitration must send the repeated START
condition or STOP condition at the same position in the format frame. Arbitration is not allowed between:

• A repeated START condition and a data bit

• A STOP condition and a data bit

• A repeated START condition and a STOP condition

475SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

BRCLK
BitClock

f
f =

UCBRx

LOW,MIN HIGH,MIN
BRCLK

UCBRx / 2
t = t =

f

LOW,MIN HIGH,MIN
BRCLK

(UCBRx – 1) / 2
t = t =

f

Wait
State

Start HIGH
Period

SCL From

Device 1

SCL From

Device 2

Bus Line

SCL

USCI Operation: I2C Mode www.ti.com

17.3.5 I2C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the I2C bus. When the USCI is in master mode, BITCLK is
provided by the USCI bit clock generator and the clock source is selected with the UCSSELx bits. In slave
mode the bit clock generator is not used and the UCSSELx bits are don’t care.

The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the USCI clock
source, BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In multi-master
mode the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by:

The minimum high and low periods of the generated SCL are

when UCBRx is even and

when UCBRx is odd.

The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the
minimum low and high period times of the I2C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that
first generates a low period on SCL overrules the other devices forcing them to start their own low periods.
SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be
released before starting their high periods. Figure 17-16 shows the clock synchronization. This allows a
slow slave to slow down a fast master.

Figure 17-16. Synchronization of Two I2C Clock Generators During Arbitration

17.3.5.1 Clock Stretching

The USCI module supports clock stretching and also makes use of this feature as described in the
operation mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module
already released SCL due to the following conditions:

• USCI is acting as master and a connected slave drives SCL low.

• USCI is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data
being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes
the external SCL and compares it to the internally generated SCL.

476 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Operation: I2C Mode

17.3.6 Using the USCI Module in I2C Mode with Low-Power Modes

The USCI module provides automatic clock activation for SMCLK for use with low-power modes. When
SMCLK is the USCI clock source, and is inactive because the device is in a low-power mode, the USCI
module automatically activates it when needed, regardless of the control-bit settings for the clock source.
The clock remains active until the USCI module returns to its idle condition. After the USCI module returns
to the idle condition, control of the clock source reverts to the settings of its control bits. Automatic clock
activation is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source becomes active for the whole
device and any peripheral configured to use the clock source may be affected. For example, a timer using
SMCLK will increment while the USCI module forces SMCLK active.

In I2C slave mode no internal clock source is required because the clock is provided by the external
master. It is possible to operate the USCI in I2C slave mode while the device is in LPM4 and all internal
clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low power
mode.

17.3.7 USCI Interrupts in I2C Mode

There are two interrupt vectors for the USCI module in I2C mode. One interrupt vector is associated with
the transmit and receive interrupt flags. The other interrupt vector is associated with the four state change
interrupt flags. Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and the
GIE bit is set, the interrupt flag will generate an interrupt request. DMA transfers are controlled by the
UCBxTXIFG and UCBxRXIFG flags on devices with a DMA controller.

17.3.7.1 I2C Transmit Interrupt Operation

The UCBxTXIFG interrupt flag is set by the transmitter to indicate that UCBxTXBUF is ready to accept
another character. An interrupt request is generated if UCBxTXIE and GIE are also set. UCBxTXIFG is
automatically reset if a character is written to UCBxTXBUF or if a NACK is received. UCBxTXIFG is set
when UCSWRST = 1 and the I2C mode is selected. UCBxTXIE is reset after a PUC or when
UCSWRST = 1.

17.3.7.2 I2C Receive Interrupt Operation

The UCBxRXIFG interrupt flag is set when a character is received and loaded into UCBxRXBUF. An
interrupt request is generated if UCBxRXIE and GIE are also set. UCBxRXIFG and UCBxRXIE are reset
after a PUC signal or when UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF is read.

17.3.7.3 I2C State Change Interrupt Operation

Table 17-1 describes the I2C state change interrupt flags.

Table 17-1. State Change Interrupt Flags

Interrupt Flag Interrupt Condition

Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or
when the USCI operates as master but is addressed as a slave by another master in the system. TheUCALIFG UCALIFG flag is set when arbitration is lost. When UCALIFG is set the UCMST bit is cleared and the I2C
controller becomes a slave.

Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received.UCNACKIFG UCNACKIFG is automatically cleared when a START condition is received.

Start condition detected interrupt. This flag is set when the I2C module detects a START condition together
UCSTTIFG with its own address while in slave mode. UCSTTIFG is used in slave mode only and is automatically

cleared when a STOP condition is received.

Stop condition detected interrupt. This flag is set when the I2C module detects a STOP condition while in
UCSTPIFG slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START condition is

received.

477SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Operation: I2C Mode www.ti.com

17.3.7.4 Interrupt Vector Assignment

USCI_Ax and USCI_Bx share the same interrupt vectors. In I2C mode the state change interrupt flags
UCSTTIFG, UCSTPIFG, UCIFG, UCALIFG from USCI_Bx and UCAxRXIFG from USCI_Ax are routed to
one interrupt vector. The I2C transmit and receive interrupt flags UCBxTXIFG and UCBxRXIFG from
USCI_Bx and UCAxTXIFG from USCI_Ax share another interrupt vector.

Example 17-1 shows an extract of the interrupt service routine to handle data receive interrupts from
USCI_A0 in either UART or SPI mode and state change interrupts from USCI_B0 in I2C mode.

Example 17-1. Shared Receive Interrupt Vectors Software Example

USCIA0_RX_USCIB0_I2C_STATE_ISR
BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?
JNZ USCIA0_RX_ISR

USCIB0_I2C_STATE_ISR
; Decode I2C state changes ...
; Decode I2C state changes ...
...
RETI

USCIA0_RX_ISR
; Read UCA0RXBUF ... - clears UCA0RXIFG
...
RETI

Example 17-2 shows an extract of the interrupt service routine that handles data transmit interrupts from
USCI_A0 in either UART or SPI mode and the data transfer interrupts from USCI_B0 in I2C mode.

Example 17-2. Shared Transmit Interrupt Vectors Software Example

USCIA0_TX_USCIB0_I2C_DATA_ISR
BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_I2C_DATA_ISR
BIT.B #UCB0RXIFG, &IFG2
JNZ USCIB0_I2C_RX

USCIB0_I2C_TX
; Write UCB0TXBUF... - clears UCB0TXIFG
...
RETI

USCIB0_I2C_RX
; Read UCB0RXBUF... - clears UCB0RXIFG
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF ... - clears UCA0TXIFG
...
RETI

478 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: I2C Mode

17.4 USCI Registers: I2C Mode

The USCI registers applicable in I2C mode for USCI_B0 are listed in Table 17-2, and for USCI_B1 in
Table 17-3.

Table 17-2. USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 I2C interrupt enable register UCB0I2CIE Read/write 06Ch Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

USCI_B0 I2C own address register UCB0I2COA Read/write 0118h Reset with PUC

USCI_B0 I2C slave address register UCB0I2CSA Read/write 011Ah Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

NOTE: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set or clear the IEx
and IFGx bits using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

Table 17-3. USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h Reset with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 baud rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 baud rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 I2C interrupt enable register UCB1I2CIE Read/write 0DCh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_B1 I2C own address register UCB1I2COA Read/write 017Ch Reset with PUC

USCI_B1 I2C slave address register UCB1I2CSA Read/write 017Eh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

479SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: I2C Mode www.ti.com

17.4.1 UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCA10 UCSLA10 UCMM Unused UCMST UCMODEx=11 UCSYNC=1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-1

UCA10 Bit 7 Own addressing mode select

0 Own address is a 7-bit address

1 Own address is a 10-bit address

UCSLA10 Bit 6 Slave addressing mode select

0 Address slave with 7-bit address

1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select

0 Single master environment. There is no other master in the system. The address compare unit is
disabled.

1 Multi-master environment

Unused Bit 4 Unused

UCMST Bit 3 Master mode select. When a master loses arbitration in a multi-master environment (UCMM = 1) the
UCMST bit is automatically cleared and the module acts as slave.

0 Slave mode

1 Master mode

UCMODEx Bits 2-1 USCI Mode. The UCMODEx bits select the synchronous mode when UCSYNC = 1.

00 3-pin SPI

01 4-pin SPI (master/slave enabled if STE = 1)

10 4-pin SPI (master/slave enabled if STE = 0)

11 I2C mode

UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode

1 Synchronous mode

480 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: I2C Mode

17.4.2 UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits 7-6 USCI clock source select. These bits select the BRCLK source clock.

00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

Unused Bit 5 Unused

UCTR Bit 4 Transmitter/receiver

0 Receiver

1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is transmitted.

0 Acknowledge normally

1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In master receiver mode the STOP
condition is preceded by a NACK. UCTXSTP is automatically cleared after STOP is generated.

0 No STOP generated

1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In master receiver mode a repeated
START condition is preceded by a NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted. Ignored in slave mode.

0 Do not generate START condition

1 Generate START condition

UCSWRST Bit 0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

17.4.3 UCBxBR0, USCI_Bx Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx - low byte

rw rw rw rw rw rw rw rw

17.4.4 UCBxBR1, USCI_Bx Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx - high byte

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler setting. The 16-bit value of (UCBxBR0 + UCBxBR1 × 256) forms the prescaler value.

481SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: I2C Mode www.ti.com

17.4.5 UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

Unused UCSCLLOW UCGC UCBBUSY UCNACKIFG UCSTPIFG UCSTTIFG UCALIFG

rw-0 r-0 rw-0 r-0 rw-0 rw-0 rw-0 rw-0

Unused Bit 7 Unused.

UCSCLLOW Bit 6 SCL low

0 SCL is not held low

1 SCL is held low

UCGC Bit 5 General call address received. UCGC is automatically cleared when a START condition is received.

0 No general call address received

1 General call address received

UCBBUSY Bit 4 Bus busy

0 Bus inactive

1 Bus busy

UCNACKIFG Bit 3 Not-acknowledge received interrupt flag. UCNACKIFG is automatically cleared when a START condition is
received.

0 No interrupt pending

1 Interrupt pending

UCSTPIFG Bit 2 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a START condition is received.

0 No interrupt pending

1 Interrupt pending

UCSTTIFG Bit 1 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP condition is received.

0 No interrupt pending

1 Interrupt pending

UCALIFG Bit 0 Arbitration lost interrupt flag

0 No interrupt pending

1 Interrupt pending

17.4.6 UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UCBxRXBUF resets UCBxRXIFG.

17.4.7 UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted. Writing to the transmit data buffer clears UCBxTXIFG.

482 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: I2C Mode

17.4.8 UCBxI2COA, USCIBx I2C Own Address Register

15 14 13 12 11 10 9 8

UCGCEN 0 0 0 0 0 I2COAx

rw-0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2COAx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCGCEN Bit 15 General call response enable

0 Do not respond to a general call

1 Respond to a general call

I2COAx Bits 9-0 I2C own address. The I2COAx bits contain the local address of the USCI_Bx I2C controller. The address is
right-justified. In 7-bit addressing mode, bit 6 is the MSB, and bits 9-7 are ignored. In 10-bit addressing
mode, bit 9 is the MSB.

17.4.9 UCBxI2CSA, USCI_Bx I2C Slave Address Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx

r0 r0 r0 r0 r0 r0 rw-0 rw-0

7 6 5 4 3 2 1 0

I2CSAx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

I2CSAx Bits 9-0 I2C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the
USCI_Bx module. It is only used in master mode. The address is right-justified. In 7-bit slave addressing
mode, bit 6 is the MSB, and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the MSB.

17.4.10 UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register

7 6 5 4 3 2 1 0

Reserved UCNACKIE UCSTPIE UCSTTIE UCALIE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Reserved Bits 7-4 Reserved

UCNACKIE Bit 3 Not-acknowledge interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCSTPIE Bit 2 Stop condition interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCSTTIE Bit 1 Start condition interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCALIE Bit 0 Arbitration lost interrupt enable

0 Interrupt disabled

1 Interrupt enabled

483SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USCI Registers: I2C Mode www.ti.com

17.4.11 IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE

rw-0 rw-0

Bits 7-4 These bits may be used by other modules (see the device-specific data sheet).

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

Bits 1-0 These bits may be used by other modules (see the device-specific data sheet).

17.4.12 IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0TXIFG UCB0RXIFG

rw-1 rw-0

Bits 7-4 These bits may be used by other modules (see the device-specific data sheet).

UCB0TXIFG Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCB0RXIFG Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 1-0 These bits may be used by other modules (see the device-specific data sheet).

17.4.13 UC1IE, USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused UCB1TXIE UCB1RXIE

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Unused Bits 7-4 Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

Bits 1-0 These bits may be used by other USCI modules (see the device-specific data sheet).

484 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USCI Registers: I2C Mode

17.4.14 UC1IFG, USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused UCB1TXIFG UCB1RXIFG

rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

Unused Bits 7-4 Unused.

UCB1TXIFG Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

UCB1RXIFG Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 1-0 These bits may be used by other modules (see the device-specific data sheet).

485SLAU144I–December 2004–Revised January 2012 Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

486 SLAU144I–December 2004–Revised January 2012Universal Serial Communication Interface, I2C Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 18
SLAU144I–December 2004–Revised January 2012

USART Peripheral Interface, UART Mode

The universal synchronous/asynchronous receive/transmit (USART) peripheral interface supports two
serial modes with one hardware module. This chapter discusses the operation of the asynchronous UART
mode. USART0 is implemented on the MSP430AFE2xx devices.

Topic ... Page

18.1 USART Introduction: UART Mode .. 488
18.2 USART Operation: UART Mode ... 489
18.3 USART Registers: UART Mode .. 503

487SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Introduction: UART Mode www.ti.com

18.1 USART Introduction: UART Mode

In asynchronous mode, the USART connects the MSP430 to an external system via two external pins,
URXD and UTXD. UART mode is selected when the SYNC bit is cleared.

UART mode features include:

• 7- or 8-bit data with odd parity, even parity, or non-parity

• Independent transmit and receive shift registers

• Separate transmit and receive buffer registers

• LSB-first data transmit and receive

• Built-in idle-line and address-bit communication protocols for multiprocessor systems

• Receiver start-edge detection for auto-wake up from LPMx modes

• Programmable baud rate with modulation for fractional baud rate support

• Status flags for error detection and suppression and address detection

• Independent interrupt capability for receive and transmit

Figure 18-1 shows the USART when configured for UART mode.

488 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receiver Shift Register

Transmit Shift Register

Receiver Buffer UxRXBUF

Transmit Buffer UxTXBUF

LISTEN MM

UCLK

Clock Phase and Polarity

Receive Status

SYNC CKPH CKPL

SSEL1 SSEL0

UCLKI

ACLK

SMCLK

SMCLK

00

01

10

11

OEPE BRK

TXWAKE

UCLKS

UCLKI

Receive Control

RXERR

FE

SWRST URXEx* URXEIE URXWIE

Transmit Control

SWRST UTXEx* TXEPT

RXWAKE

SPB CHAR PENAPEV

SPB CHAR PENAPEV

WUT

UTXD

URXD

SOMI

STE

Prescaler/Divider UxBRx

Modulator UxMCTL

Baud−Rate Generator

UTXIFGx*

* See the device-specific data sheet for SFR locations.

SYNC

URXIFGx*

01

0

0

0

0

1

1

1

1

SIMO1

0

STC

SYNC= 0

www.ti.com USART Operation: UART Mode

Figure 18-1. USART Block Diagram: UART Mode

18.2 USART Operation: UART Mode

In UART mode, the USART transmits and receives characters at a bit rate asynchronous to another
device. Timing for each character is based on the selected baud rate of the USART. The transmit and
receive functions use the same baud rate frequency.

18.2.1 USART Initialization and Reset

The USART is reset by a PUC or by setting the SWRST bit. After a PUC, the SWRST bit is automatically
set, keeping the USART in a reset condition. When set, the SWRST bit resets the URXIEx, UTXIEx,
URXIFGx, RXWAKE, TXWAKE, RXERR, BRK, PE, OE, and FE bits and sets the UTXIFGx and TXEPT
bits. The receive and transmit enable flags, URXEx and UTXEx, are not altered by SWRST. Clearing
SWRST releases the USART for operation. See also chapter USART Module, I2C mode for USART0
when reconfiguring from I2C mode to UART mode.

489SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

[Parity Bit, PENA = 1]

[Address Bit, MM = 1]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, SPB = 1]

[8th Data Bit, CHAR = 1]

ST

USART Operation: UART Mode www.ti.com

NOTE: Initializing or Reconfiguring the USART Module

The required USART initialization/reconfiguration process is:
1. Set SWRST (BIS.B #SWRST,&UxCTL)
2. Initialize all USART registers with SWRST = 1 (including UxCTL)
3. Enable USART module via the MEx SFRs (URXEx and/or UTXEx)
4. Clear SWRST via software (BIC.B #SWRST,&UxCTL)

5. Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx)

Failure to follow this process may result in unpredictable USART behavior.

18.2.2 Character Format

The UART character format, shown in Figure 18-2, consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The bit period is
defined by the selected clock source and setup of the baud rate registers.

Figure 18-2. Character Format

18.2.3 Asynchronous Communication Formats

When two devices communicate asynchronously, the idle-line format is used for the protocol. When three
or more devices communicate, the USART supports the idle-line and address-bit multiprocessor
communication formats.

18.2.3.1 Idle-Line Multiprocessor Format

When MM = 0, the idle-line multiprocessor format is selected. Blocks of data are separated by an idle time
on the transmit or receive lines as shown in Figure 18-3. An idle receive line is detectedwhen 10 or more
continuous ones (marks) are received after the first stop bit of a character. When two stop bits are used
for the idle line the second stop bit is counted as the first mark bit of the idle period.

The first character received after an idle period is an address character. The RXWAKE bit is used as an
address tag for each block of characters. In the idle-line multiprocessor format, this bit is set when a
received character is an address and is transferred to UxRXBUF.

490 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of 10 Bits or More

UTXDx/URXDx Expanded

UTXDx/URXDx

First Character Within Block

Is Address. It Follows Idle

Period of 10 Bits or More

Character Within Block

Idle Period Less Than 10 Bits

Character Within Block

UTXDx/URXDx

www.ti.com USART Operation: UART Mode

Figure 18-3. Idle-Line Format

The URXWIE bit is used to control data reception in the idle-line multiprocessor format. When the
URXWIE bit is set, all non-address characters are assembled but not transferred into the UxRXBUF, and
interrupts are not generated. When an address character is received, the receiver is temporarily activated
to transfer the character to UxRXBUF and sets the URXIFGx interrupt flag. Any applicable error flag is
also set. The user can then validate the received address.

If an address is received, user software can validate the address and must reset URXWIE to continue
receiving data. If URXWIE remains set, only address characters are received. The URXWIE bit is not
modified by the USART hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
USART to generate address character identifiers on UTXDx. The wake-up temporary (WUT) flag is an
internal flag double-buffered with the user-accessible TXWAKE bit. When the transmitter is loaded from
UxTXBUF, WUT is also loaded from TXWAKE resetting the TXWAKE bit.

The following procedure sends out an idle frame to indicate an address character follows:

1. Set TXWAKE, then write any character to UxTXBUF. UxTXBUF must be ready for new data
(UTXIFGx = 1).

The TXWAKE value is shifted to WUT and the contents of UxTXBUF are shifted to the transmit shift
register when the shift register is ready for new data. This sets WUT, which suppresses the start, data,
and parity bits of a normal transmission, then transmits an idle period of exactly 11 bits. When two stop
bits are used for the idle line, the second stop bit is counted as the first mark bit of the idle period.
TXWAKE is reset automatically.

2. Write desired address character to UxTXBUF. UxTXBUF must be ready for new data (UTXIFGx = 1).

The new character representing the specified address is shifted out following the address-identifying
idle period on UTXDx. Writing the first "don't care" character to UxTXBUF is necessary in order to shift
the TXWAKE bit to WUT and generate an idle-line condition. This data is discarded and does not
appear on UTXDx.

18.2.3.2 Address-Bit Multiprocessor Format

When MM = 1, the address-bit multiprocessor format is selected. Each processed character contains an
extra bit used as an address indicator shown in Figure 18-4. The first character in a block of characters
carries a set address bit which indicates that the character is an address. The USART RXWAKE bit is set
when a received character is a valid address character and is transferred to UxRXBUF.

491SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ST Address SP ST Data SP ST Data SP

Blocks of

Characters

Idle Periods of No Significance

UTXDx/URXDx

Expanded

UTXDx/URXDx

First Character Within Block

Is an Address. AD Bit Is 1

AD Bit Is 0 for

Data Within Block.

Idle Time Is of No Significance

UTXDx/URXDx
1 0 0

USART Operation: UART Mode www.ti.com

The URXWIE bit is used to control data reception in the address-bit multiprocessor format. If URXWIE is
set, data characters (address bit = 0) are assembled by the receiver but are not transferred to UxRXBUF
and no interrupts are generated. When a character containing a set address bit is received, the receiver is
temporarily activated to transfer the character to UxRXBUF and set URXIFGx. All applicable error status
flags are also set.

If an address is received, user software must reset URXWIE to continue receiving data. If URXWIE
remains set, only address characters (address bit = 1) are received. The URXWIE bit is not modified by
the USART hardware automatically.

Figure 18-4. Address-Bit Multiprocessor Format

For address transmission in address-bit multiprocessor mode, the address bit of a character can be
controlled by writing to the TXWAKE bit. The value of the TXWAKE bit is loaded into the address bit of the
character transferred from UxTXBUF to the transmit shift register, automatically clearing the TXWAKE bit.
TXWAKE must not be cleared by software. It is cleared by USART hardware after it is transferred to WUT
or by setting SWRST.

18.2.3.3 Automatic Error Detection

Glitch suppression prevents the USART from being accidentally started. Any low-level on URXDx shorter
than the deglitch time tτ (approximately 300 ns) is ignored. See the device-specific data sheet for
parameters.

When a low period on URXDx exceeds tτ a majority vote is taken for the start bit. If the majority vote fails
to detect a valid start bit the USART halts character reception and waits for the next low period on
URXDx. The majority vote is also used for each bit in a character to prevent bit errors.

The USART module automatically detects framing errors, parity errors, overrun errors, and break
conditions when receiving characters. The bits FE, PE, OE, and BRK are set when their respective
condition is detected. When any of these error flags are set, RXERR is also set. The error conditions are
described in Table 18-1.

492 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Idle State

(Receiver

Enabled)

Receive

Disable

Receiver

Collects

Character

URXEx = 0
No Valid Start Bit

Not Completed

URXEx = 1

URXEx = 0

URXEx = 1

Valid Start Bit
Handle Interrupt

Conditions

Character

ReceivedURXEx = 1

URXEx = 0

www.ti.com USART Operation: UART Mode

Table 18-1. Receive Error Conditions

Error Condition Description

A framing error occurs when a low stop bit is detected. When two stop bits are used, only the firstFraming error stop bit is checked for framing error. When a framing error is detected, the FE bit is set.

A parity error is a mismatch between the number of 1s in a character and the value of the parity
Parity error bit. When an address bit is included in the character, it is included in the parity calculation. When

a parity error is detected, the PE bit is set.

An overrun error occurs when a character is loaded into UxRXBUF before the prior character hasReceive overrun error been read. When an overrun occurs, the OE bit is set.

A break condition is a period of 10 or more low bits received on URXDx after a missing stop bit.
Break condition When a break condition is detected, the BRK bit is set. A break condition can also set the

interrupt flag URXIFGx when URXEIE = 0.

When URXEIE = 0 and a framing error, parity error, or break condition is detected, no character is
received into UxRXBUF. When URXEIE = 1, characters are received into UxRXBUF and any applicable
error bit is set.

When any of the FE, PE, OE, BRK, or RXERR bits are set, the bit remains set until user software resets it
or UxRXBUF is read.

18.2.4 USART Receive Enable

The receive enable bit, URXEx, enables or disables data reception on URXDx as shown in Figure 18-5.
Disabling the USART receiver stops the receive operation following completion of any character currently
being received or immediately if no receive operation is active. The receive-data buffer, UxRXBUF,
contains the character moved from the RX shift register after the character is received.

Figure 18-5. State Diagram of Receiver Enable

NOTE: Re-Enabling the Receiver (Setting URXEx): UART Mode

When the receiver is disabled (URXEx = 0), re-enabling the receiver (URXEx = 1) is
asynchronous to any data stream that may be present on URXDx at the time.
Synchronization can be performed by testing for an idle line condition before receiving a valid
character (see URXWIE).

18.2.5 USART Transmit Enable

When UTXEx is set, the UART transmitter is enabled. Transmission is initiated by writing data to
UxTXBUF. The data is then moved to the transmit shift register on the next BITCLK after the TX shift
register is empty, and transmission begins. This process is shown in Figure 18-6.

When the UTXEx bit is reset the transmitter is stopped. Any data moved to UxTXBUF and any active
transmission of data currently in the transmit shift register prior to clearing UTXEx continue until all data
transmission is completed.

493SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Idle State

(Transmitter

Enabled)

Transmit

Disable

Transmission

Active

UTXEx = 0
No Data Written

to Transmit Buffer
Not Completed

UTXEx = 1

UTXEx = 0

UTXEx = 1

Data Written to

Transmit Buffer Handle Interrupt

Conditions

Character

TransmittedUTXEx = 1

UTXEx = 0 And Last Buffer Entry Is Transmitted

Bit Start

mX

BRCLK
88UCLKI

ACLK

SMCLK

SMCLK 11

BITCLK

10

01

00

202728215

Compare (0 or 1)

Modulation Data Shift Register

(LSB first)

16−Bit Counter

Q0............Q15

m0m7

......

8

UxBR1 UxBR0

Toggle

FF

N =

R

R

R

UxMCTL

+0 or 1

SSEL1 SSEL0

USART Operation: UART Mode www.ti.com

Figure 18-6. State Diagram of Transmitter Enable

When the transmitter is enabled (UTXEx = 1), data should not be written to UxTXBUF unless it is ready
for new data indicated by UTXIFGx = 1. Violation can result in an erroneous transmission if data in
UxTXBUF is modified as it is being moved into the TX shift register.

It is recommended that the transmitter be disabled (UTXEx = 0) only after any active transmission is
complete. This is indicated by a set transmitter empty bit (TXEPT = 1). Any data written to UxTXBUF while
the transmitter is disabled are held in the buffer but are not moved to the transmit shift register or
transmitted. Once UTXEx is set, the data in the transmit buffer is immediately loaded into the transmit shift
register and character transmission resumes.

18.2.6 USART Baud Rate Generation

The USART baud rate generator is capable of producing standard baud rates from non-standard source
frequencies. The baud rate generator uses one prescaler/divider and a modulator as shown in
Figure 18-7. This combination supports fractional divisors for baud rate generation. The maximum USART
baud rate is one-third the UART source clock frequency BRCLK.

Figure 18-7. MSP430 Baud Rate Generator

Timing for each bit is shown in Figure 18-8. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2-1, N/2, and N/2+1 BRCLK periods, where N is the number
of BRCLKs per BITCLK.

494 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2−1 N/2−2
1 N/2 N/2−1 1 N/2 N/2−1N/2−2

0 N/2 N/2−11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD : INT(N/2) + R(= 1)

m: corresponding modulation bit

R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

BRCLK
N =

Baud Rate

n–1

i

i=0

1
N = UxBR + m

n å

n–1

i

i=0

BRCLK BRCLK
Baud rate = +

N
1

UxBR + m
n å

www.ti.com USART Operation: UART Mode

Figure 18-8. BITCLK Baud Rate Timing

18.2.6.1 Baud Rate Bit Timing

The first stage of the baud rate generator is the 16-bit counter and comparator. At the beginning of each
bit transmitted or received, the counter is loaded with INT(N/2) where N is the value stored in the
combination of UxBR0 and UxBR1. The counter reloads INT(N/2) for each bit period half-cycle, giving a
total bit period of N BRCLKs. For a given BRCLK clock source, the baud rate used determines the
required division factor N:

The division factor N is often a non-integer value of which the integer portion can be realized by the
prescaler/divider. The second stage of the baud rate generator, the modulator, is used to meet the
fractional part as closely as possible. The factor N is then defined as:

Where,
N = Target division factor
UxBR = 16-bit representation of registers UxBR0 and UxBR1
i = Bit position in the character
n = Total number of bits in the character
mi = Data of each corresponding modulation bit (1 or 0)

The BITCLK can be adjusted from bit to bit with the modulator to meet timing requirements when a
non-integer divisor is needed. Timing of each bit is expanded by one BRCLK clock cycle if the modulator
bit mi is set. Each time a bit is received or transmitted, the next bit in the modulation control register
determines the timing for that bit. A set modulation bit increases the division factor by one while a cleared
modulation bit maintains the division factor given by UxBR.

The timing for the start bit is determined by UxBR plus m0, the next bit is determined by UxBR plus m1,
and so on. The modulation sequence begins with the LSB. When the character is greater than 8 bits, the
modulation sequence restarts with m0 and continues until all bits are processed.

495SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

j

i

i=0

baud rate
Error [%] = × (j + 1) × UxBR + m – (j + 1) × 100%

BRCLK

ì üé ù
ï ïê ú
í ýê ú
ï ïê úë ûî þ

å

USART Operation: UART Mode www.ti.com

18.2.6.2 Determining the Modulation Value

Determining the modulation value is an interactive process. Using the timing error formula provided,
beginning with the start bit , the individual bit errors are calculated with the corresponding modulator bit set
and cleared. The modulation bit setting with the lower error is selected and the next bit error is calculated.
This process is continued until all bit errors are minimized. When a character contains more than 8 bits,
the modulation bits repeat. For example, the ninth bit of a character uses modulation bit 0.

18.2.6.3 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. By modulating each bit, the
cumulative bit error is reduced. The individual bit error can be calculated by:

Where,
baud rate = Desired baud rate
BRCLK = Input frequency - UCLKI, ACLK, or SMCLK
j = Bit position - 0 for the start bit, 1 for data bit D0, and so on
UxBR = Division factor in registers UxBR1 and UxBR0

For example, the transmit errors for the following conditions are calculated:
Baud rate = 2400
BRCLK = 32 768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.65
UxMCTL = 6Bh: m7 = 0, m6 = 1, m5 = 1, m4 = 0, m3 = 1, m2 = 0, m1 = 1, and m0 = 1. The LSB of
UxMCTL is used first.

496 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Start bit Error [%]=()baud rate

BRCLK
×()()0+1 ×UxBR+1 –1 ×100%=2.54%

Data bit D0 Error [%]=()baud rate
BRCLK

×()()1+1 ×UxBR+2 –2 ×100%=5.08%

Data bit D1 Error [%]=()
baud rate

BRCLK
×()()2+1 ×UxBR+2 –3 ×100%=0.29%

Data bit D2 Error [%]=()baud rate

BRCLK
×()()3+1 ×UxBR+3 –4 ×100%=2.83%

Data bit D3 Error [%]=()baud rate

BRCLK
×()()4+1 ×UxBR+3 –5 ×100%=-1.95%

Data bit D4 Error [%]=()baud rate
BRCLK

×()()5+1 ×UxBR+4 –6 ×100%=0.59%

Data bit D5 Error [%]=()baud rate

BRCLK
×()()6+1 ×UxBR+5 –7 ×100%=3.13%

Data bit D6 Error [%]=()baud rate

BRCLK
×()()7+1 ×UxBR+5 –8 ×100%=-1.66%

Data bit D7 Error [%]=()baud rate

BRCLK
×()()8+1 ×UxBR+6 –9 ×100%=0.88%

Parity bit Error [%]=()baud rate
BRCLK

×()()9+1 ×UxBR+7 –10 ×100%=3.42%

Stop bit 1 Error [%]=()baud rate

BRCLK
×()()10+1 ×UxBR+7 –11 ×100%=-1.37%

www.ti.com USART Operation: UART Mode

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

497SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

1 2 3 4 5 6

0i

t0tideal

7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

t0 t1 t2

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Int(UxBR/2)+m0 =

Int (13/2)+1 = 6+1 = 7

Majority Vote Taken Majority Vote Taken

UxBR +m1 = 13+1 = 14 UxBR +m2 = 13+0 = 13

Majority Vote Taken

BRCLK

URXDx

URXDS

tactual

Sample

URXDS

j

i

i=1

baud rate UxBR
Error [%] = × 2 × m0 + int + i × UxBR + m – 1 – j × 100%

BRCLK 2

ì üæ öé ù
é ùï ïæ öç ÷ê ú

í ýê úç ÷ç ÷ê úè øë ûï ïç ÷ê úë ûè øî þ

å

USART Operation: UART Mode www.ti.com

18.2.6.4 Receive Bit Timing

Receive timing is subject to two error sources. The first is the bit-to-bit timing error. The second is the
error between a start edge occurring and the start edge being accepted by the USART. Figure 18-9 shows
the asynchronous timing errors between data on the URXDx pin and the internal baud-rate clock.

Figure 18-9. Receive Error

The ideal start bit timing tideal(0) is half the baud-rate timing tbaudrate, because the bit is tested in the middle of
its period. The ideal baud-rate timing tideal(i) for the remaining character bits is the baud rate timing tbaudrate.
The individual bit errors can be calculated by:

Where,
baud rate = the required baud rate
BRCLK = the input frequency; selected for UCLK, ACLK, or SMCLK
j = 0 for the start bit, 1 for data bit D0, and so on
UxBR = the division factor in registers UxBR1 and UxBR0

For example, the receive errors for the following conditions are calculated:
Baud rate = 2400
BRCLK = 32 768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.65
UxMCTL = 6B: m7 = 0, m6 = 1, m5 = 1, m4 = 0, m3 = 1, m2 = 0, m1 = 1 and m0 = 1. The LSB of
UxMCTL is used first.

498 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Data bit D1 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +2×UxBR+1 -1-2 ×100%=0.29%

Data bit D2 Error [%]=()baud rate
BRCLK

×[]2x()1+6 +3×UxBR+2 -1-3 ×100%=2.83%

Data bit D3 Error [%]=()
baud rate

BRCLK
×[]2x()1+6 +4×UxBR+2 -1-4 ×100%=-1.95%

Data bit D4 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +5×UxBR+3 -1-5 ×100%=0.59%

Data bit D5 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +6×UxBR+4 -1-6 ×100%=3.13%

Data bit D6 Error [%]=()baud rate
BRCLK

×[]2x()1+6 +7×UxBR+4 -1-7 ×100%=-1.66%

Data bit D7 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +8×UxBR+5 -1-8 ×100%=0.88%

Parity bit Error [%]=()baud rate

BRCLK
×[]2x()1+6 +9×UxBR+6 -1-9 ×100%=3.42%

Stop bit 1 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +10×UxBR+6 -1-10 ×100%=-1.37%

Start bit Error [%]=()baud rate
BRCLK

×[]2x()1+6 +0×UxBR+0 -1-0 ×100%=2.54%

Data bit D0 Error [%]=()baud rate

BRCLK
×[]2x()1+6 +1×UxBR+1 -1-1 ×100%=5.08%

www.ti.com USART Operation: UART Mode

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

18.2.6.5 Typical Baud Rates and Errors

Standard baud rate frequency data for UxBRx and UxMCTL are listed in Table 18-2 for a 32 768-Hz watch
crystal (ACLK) and a typical 1 048 576-Hz SMCLK.

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
transmit error is the accumulated timing error versus the ideal time of the bit period.

Table 18-2. Commonly Used Baud Rates, Baud Rate Data, and Errors
Divide by A: BRCLK = 32 768 Hz B: BRCLK = 1 048 576 Hz

SynchBaud Rate Max TX Max RX Max TX Max RXA: B: UxBR1 UxBR0 UxMCTL RX Error UxBR1 UxBR0 UxMCTLError % Error % Error % Error %%

1200 27.31 873.81 0 1B 03 -4/3 -4/3 ±2 03 69 FF 0/0.3 ±2

2400 13.65 436.91 0 0D 6B -6/3 -6/3 ±4 01 B4 FF 0/0.3 ±2

4800 6.83 218.45 0 06 6F -9/11 -9/11 ±7 0 DA 55 0/0.4 ±2

9600 3.41 109.23 0 03 4A -21/12 -21/12 ±15 0 6D 03 -0.4/1 ±2

19 200 54.61 0 36 6B -0.2/2 ±2

38 400 27.31 0 1B 03 -4/3 ±2

76 800 13.65 0 0D 6B -6/3 ±4

115 200 9.1 0 09 08 -5/7 ±7

499SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Clear

UTXIEx

Clear

D

Character Moved From

Buffer to Shift Register

Interrupt Service Requested

SWRST

Data written to UxTXBUF

Q

UTXIFGx

IRQA

VCC

PUC or SWRST

Q
Set

Clear

URXS

Clear

τ

S

SYNC

Valid Start Bit

Receiver Collects Character

URXSE
From URXD

PE
FE

BRK
URXEIE

URXWIE

RXWAKE

Erroneous Character Rejection

Non-Address Character Rejection
Character Received

or

Break Detected

URXIFGx

URXIEx Interrupt Service

Requested

SWRST

PUC

UxRXBUF Read

URXSE

IRQA

S

USART Operation: UART Mode www.ti.com

18.2.7 USART Interrupts

The USART has one interrupt vector for transmission and one interrupt vector for reception.

18.2.7.1 USART Transmit Interrupt Operation

The UTXIFGx interrupt flag is set by the transmitter to indicate that UxTXBUF is ready to accept another
character. An interrupt request is generated if UTXIEx and GIE are also set. UTXIFGx is automatically
reset if the interrupt request is serviced or if a character is written to UxTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEx is reset after a PUC or when SWRST = 1. The
operation is shown is Figure 18-10.

Figure 18-10. Transmit Interrupt Operation

18.2.7.2 USART Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded into UxRXBUF. An
interrupt request is generated if URXIEx and GIE are also set. URXIFGx and URXIEx are reset by a
system reset PUC signal or when SWRST = 1. URXIFGx is automatically reset if the pending interrupt is
served (when URXSE = 0) or when UxRXBUF is read. The operation is shown in Figure 18-11.

Figure 18-11. Receive Interrupt Operation

500 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Operation: UART Mode

URXEIE is used to enable or disable erroneous characters from setting URXIFGx. When using
multiprocessor addressing modes, URXWIE is used to auto-detect valid address characters and reject
unwanted data characters.

Two types of characters do not set URXIFGx:

• Erroneous characters when URXEIE = 0

• Non-address characters when URXWIE = 1

When URXEIE = 1 a break condition sets the BRK bit and the URXIFGx flag.

18.2.7.3 Receive-Start Edge Detect Operation

The URXSE bit enables the receive start-edge detection feature. The recommended usage of the
receive-start edge feature is when BRCLK is sourced by the DCO and when the DCO is off because of
low-power mode operation. The ultra-fast turn-on of the DCO allows character reception after the start
edge detection.

When URXSE, URXIEx and GIE are set and a start edge occurs on URXDx, the internal signal URXS is
set. When URXS is set, a receive interrupt request is generated but URXIFGx is not set. User software in
the receive interrupt service routine can test URXIFGx to determine the source of the interrupt. When
URXIFGx = 0 a start edge was detected, and when URXIFGx = 1 a valid character (or break) was
received.

When the ISR determines the interrupt request was from a start edge, user software toggles URXSE, and
must enable the BRCLK source by returning from the ISR to active mode or to a low-power mode where
the source is active. If the ISR returns to a low-power mode where the BRCLK source is inactive, the
character is not received. Toggling URXSE clears the URXS signal and re-enables the start edge detect
feature for future characters. See chapter System Resets, Interrupts, and Operating Modes for information
on entering and exiting low-power modes.

The now active BRCLK allows the USART to receive the balance of the character. After the full character
is received and moved to UxRXBUF, URXIFGx is set and an interrupt service is again requested. Upon
ISR entry, URXIFGx = 1 indicating a character was received. The URXIFGx flag is cleared when user
software reads UxRXBUF.
; Interrupt handler for start condition and
; Character receive. BRCLK = DCO.

U0RX_Int BIT.B #URXIFG0,&IFG1 ; Test URXIFGx to determine
JZ ST_COND ; If start or character
MOV.B &UxRXBUF,dst ; Read buffer
... ;
RETI ;

ST_COND BIC.B #URXSE,&U0TCTL ; Clear URXS signal
BIS.B #URXSE,&U0TCTL ; Re-enable edge detect
BIC #SCG0+SCG1,0(SP) ; Enable BRCLK = DCO
RETI ;

NOTE: Break Detect With Halted UART Clock

When using the receive start-edge detect feature, a break condition cannot be detected
when the BRCLK source is off.

501SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

URXDx

URXS

tτ

URXDx

URXS

tτ

Majority Vote Taken

USART Operation: UART Mode www.ti.com

18.2.7.4 Receive-Start Edge Detect Conditions

When URXSE = 1, glitch suppression prevents the USART from being accidentally started. Any low-level
on URXDx shorter than the deglitch time tτ (approximately 300 ns) is ignored by the USART and no
interrupt request is generated (see Figure 18-12). See the device-specific data sheet for parameters.

Figure 18-12. Glitch Suppression, USART Receive Not Started

When a glitch is longer than tτ or a valid start bit occurs on URXDx, the USART receive operation is
started and a majority vote is taken as shown in Figure 18-13. If the majority vote fails to detect a start bit,
the USART halts character reception.

If character reception is halted, an active BRCLK is not necessary. A time-out period longer than the
character receive duration can be used by software to indicate that a character was not received in the
expected time, and the software can disable BRCLK.

Figure 18-13. Glitch Suppression, USART Activated

502 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: UART Mode

18.3 USART Registers: UART Mode

Table 18-3 lists the registers for all devices implementing a USART module. Table 18-4 applies only to
devices with a second USART module, USART1.

Table 18-3. USART0 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U0CTL Read/write 070h 001h with PUC

Transmit control register U0TCTL Read/write 071h 001h with PUC

Receive control register U0RCTL Read/write 072h 000h with PUC

Modulation control register U0MCTL Read/write 073h Unchanged

Baud rate control register 0 U0BR0 Read/write 074h Unchanged

Baud rate control register 1 U0BR1 Read/write 075h Unchanged

Receive buffer register U0RXBUF Read 076h Unchanged

Transmit buffer register U0TXBUF Read/write 077h Unchanged

SFR module enable register 1 ME1 Read/write 004h 000h with PUC

SFR interrupt enable register 1 IE1 Read/write 000h 000h with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h 082h with PUC

Table 18-4. USART1 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U1CTL Read/write 078h 001h with PUC

Transmit control register U1TCTL Read/write 079h 001h with PUC

Receive control register U1RCTL Read/write 07Ah 000h with PUC

Modulation control register U1MCTL Read/write 07Bh Unchanged

Baud rate control register 0 U1BR0 Read/write 07Ch Unchanged

Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer register U1RXBUF Read 07Eh Unchanged

Transmit buffer register U1TXBUF Read/write 07Fh Unchanged

SFR module enable register 2 ME2 Read/write 005h 000h with PUC

SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

NOTE: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set or clear the IEx
and IFGx bits using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

503SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: UART Mode www.ti.com

18.3.1 UxCTL, USART Control Register

7 6 5 4 3 2 1 0

PENA PEV SPB CHAR LISTEN SYNC MM SWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

PENA Bit 7 Parity enable

0 Parity disabled

1 Parity enabled. Parity bit is generated (UTXDx) and expected (URXDx). In address-bit
multiprocessor mode, the address bit is included in the parity calculation.

PEV Bit 6 Parity select. PEV is not used when parity is disabled.

0 Odd parity

1 Even parity

SPB Bit 5 Stop bit select. Number of stop bits transmitted. The receiver always checks for one stop bit.

0 One stop bit

1 Two stop bits

CHAR Bit 4 Character length. Selects 7-bit or 8-bit character length.

0 7-bit data

1 8-bit data

LISTEN Bit 3 Listen enable. The LISTEN bit selects loopback mode.

0 Disabled

1 Enabled. UTXDx is internally fed back to the receiver.

SYNC Bit 2 Synchronous mode enable

0 UART mode

1 SPI mode

MM Bit 1 Multiprocessor mode select

0 Idle-line multiprocessor protocol

1 Address-bit multiprocessor protocol

SWRST Bit 0 Software reset enable

0 Disabled. USART reset released for operation

1 Enabled. USART logic held in reset state

504 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: UART Mode

18.3.2 UxTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0

Unused CKPL SSELx URXSE TXWAKE Unused TXEPT

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

Unused Bit 7 Unused

CKPL Bit 6 Clock polarity select

0 UCLKI = UCLK

1 UCLKI = inverted UCLK

SSELx Bits 5-4 Source select. These bits select the BRCLK source clock.

00 UCLKI

01 ACLK

10 SMCLK

11 SMCLK

URXSE Bit 3 UART receive start-edge. The bit enables the UART receive start-edge feature.

0 Disabled

1 Enabled

TXWAKE Bit 2 Transmitter wake

0 Next frame transmitted is data

1 Next frame transmitted is an address

Unused Bit 1 Unused

TXEPT Bit 0 Transmitter empty flag

0 UART is transmitting data and/or data is waiting in UxTXBUF

1 Transmitter shift register and UxTXBUF are empty or SWRST = 1

505SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: UART Mode www.ti.com

18.3.3 UxRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0

FE PE OE BRK URXEIE URXWIE RXWAKE RXERR

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

FE Bit 7 Framing error flag

0 No error

1 Character received with low stop bit

PE Bit 6 Parity error flag. When PENA = 0, PE is read as 0.

0 No error

1 Character received with parity error

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into UxRXBUF before the previous
character was read.

0 No error

1 Overrun error occurred

BRK Bit 4 Break detect flag

0 No break condition

1 Break condition occurred

URXEIE Bit 3 Receive erroneous-character interrupt-enable

0 Erroneous characters rejected and URXIFGx is not set

1 Erroneous characters received set URXIFGx

URXWIE Bit 2 Receive wake-up interrupt-enable. This bit enables URXIFGx to be set when an address character is
received. When URXEIE = 0, an address character does not set URXIFGx if it is received with errors.

0 All received characters set URXIFGx

1 Only received address characters set URXIFGx

RXWAKE Bit 1 Receive wake-up flag

0 Received character is data

1 Received character is an address

RXERR Bit 0 Receive error flag. This bit indicates a character was received with error(s). When RXERR = 1, on or more
error flags (FE, PE, OE, BRK) is also set. RXERR is cleared when UxRXBUF is read.

0 No receive errors detected

1 Receive error detected

18.3.4 UxBR0, USART Baud Rate Control Register 0

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

18.3.5 UxBR1, USART Baud Rate Control Register 1

7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28

rw rw rw rw rw rw rw rw

UxBRx The valid baud-rate control range is 3 ≤ UxBR ≤ 0FFFFh, where UxBR = (UxBR1 + UxBR0). Unpredictable
receive and transmit timing occurs if UxBR < 3.

506 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: UART Mode

18.3.6 UxMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0

m7 m6 m5 m4 m3 m2 m1 m0

rw rw rw rw rw rw rw rw

UxMCTLx Modulation bits. These bits select the modulation for BRCLK.

18.3.7 UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

r r r r r r r r

UxRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UxRXBUF resets the receive-error bits, the RXWAKE bit, and URXIFGx. In 7-bit data
mode, UxRXBUF is LSB justified and the MSB is always reset.

18.3.8 UxTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift
register and transmitted on UTXDx. Writing to the transmit data buffer clears UTXIFGx. The MSB of
UxTXBUF is not used for 7-bit data and is reset.

18.3.9 ME1, Module Enable Register 1

7 6 5 4 3 2 1 0

UTXE0 URXE0

rw-0 rw-0

UTXE0 Bit 7 USART0 transmit enable. This bit enables the transmitter for USART0.

0 Module not enabled

1 Module enabled

URXE0 Bit 6 USART0 receive enable. This bit enables the receiver for USART0.

0 Module not enabled

1 Module enabled

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

18.3.10 ME2, Module Enable Register 2

7 6 5 4 3 2 1 0

UTXE1 URXE1

rw-0 rw-0

Bits 7-6 These bits may be used by other modules. See device-specific data sheet.

UTXE1 Bit 5 USART1 transmit enable. This bit enables the transmitter for USART1.

0 Module not enabled

1 Module enabled

URXE1 Bit 4 USART1 receive enable. This bit enables the receiver for USART1.

0 Module not enabled

1 Module enabled

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

507SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: UART Mode www.ti.com

18.3.11 IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

UTXIE0 URXIE0

rw-0 rw-0

UTXIE0 Bit 7 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

URXIE0 Bit 6 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

18.3.12 IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UTXIE1 URXIE1

rw-0 rw-0

Bits 7-6 These bits may be used by other modules. See device-specific data sheet.

UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

18.3.13 IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

UTXIFG0 URXIFG0

rw-1 rw-0

UTXIFG0 Bit 7 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

URXIFG0 Bit 6 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

508 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: UART Mode

18.3.14 IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UTXIFG1 URXIFG1

rw-1 rw-0

Bits 7-6 These bits may be used by other modules. See device-specific data sheet.

UTXIFG1 Bit 5 USART1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF empty.

0 No interrupt pending

1 Interrupt pending

URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFG1 is set when U1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

509SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, UART Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

510 USART Peripheral Interface, UART Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 19
SLAU144I–December 2004–Revised January 2012

USART Peripheral Interface, SPI Mode

The universal synchronous/asynchronous receive/transmit (USART) peripheral interface supports two
serial modes with one hardware module. This chapter discusses the operation of the synchronous
peripheral interface or SPI mode. USART0 is implemented on the MSP430AFE2xx devices.

Topic ... Page

19.1 USART Introduction: SPI Mode .. 512
19.2 USART Operation: SPI Mode ... 513
19.3 USART Registers: SPI Mode ... 520

511SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receiver Shift Register

Transmit Shift Register

Receiver Buffer UxRXBUF

Transmit Buffer UxTXBUF

LISTEN MM

UCLK

Clock Phase and Polarity

Receive Status

SYNC CKPH CKPL

SSEL1 SSEL0

UCLKI

ACLK

SMCLK

SMCLK

00

01

10

11

OEPE BRK

TXWAKE

UCLKS

UCLKI

Receive Control

RXERR

FE

SWRST USPIEx* URXEIE URXWIE

Transmit Control

SWRST USPIEx* TXEPT

RXWAKE

SPB CHAR PENAPEV

SPB CHAR PENAPEV

WUT SIMO

UTXD

URXD

SOMI

STE

Prescaler/Divider UxBRx

Modulator UxMCTL

Baud−Rate Generator

UTXIFGx*

* See the device-specific data sheet for SFR locations.

SYNC

URXIFGx*

01

0

0

0

1

0

1

1

1

0

1

STC

SYNC= 1

USART Introduction: SPI Mode www.ti.com

19.1 USART Introduction: SPI Mode

In synchronous mode, the USART connects the MSP430 to an external system via three or four pins:
SIMO, SOMI, UCLK, and STE. SPI mode is selected when the SYNC bit is set and the I2C bit is cleared.

SPI mode features include:

• 7-bit or 8-bit data length

• 3-pin and 4-pin SPI operation

• Master or slave modes

• Independent transmit and receive shift registers

• Separate transmit and receive buffer registers

• Selectable UCLK polarity and phase control

• Programmable UCLK frequency in master mode

• Independent interrupt capability for receive and transmit

Figure 19-1 shows the USART when configured for SPI mode.

Figure 19-1. USART Block Diagram: SPI Mode

512 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Operation: SPI Mode

19.2 USART Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin, STE, is provided as to enable a device to receive and transmit data and is
controlled by the master.

Three or four signals are used for SPI data exchange:

• SIMO: Slave in, master out

– Master mode: SIMO is the data output line.

– Slave mode: SIMO is the data input line.

• SOMI: Slave out, master in

– Master mode: SOMI is the data input line.

– Slave mode: SOMI is the data output line.

• UCLK: USART SPI clock

– Master mode: UCLK is an output.

– Slave mode: UCLK is an input.

• STE: Slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not used in
3-pin mode.

– 4-pin master mode:

• When STE is high, SIMO and UCLK operate normally.

• When STE is low, SIMO and UCLK are set to the input direction.

– 4-pin slave mode:

• When STE is high, RX/TX operation of the slave is disabled and SOMI is forced to the input
direction.

• When STE is low, RX/TX operation of the slave is enabled and SOMI operates normally.

19.2.1 USART Initialization and Reset

The USART is reset by a PUC or by the SWRST bit. After a PUC, the SWRST bit is automatically set,
keeping the USART in a reset condition. When set, the SWRST bit resets the URXIEx, UTXIEx,
URXIFGx, OE, and FE bits and sets the UTXIFGx flag. The USPIEx bit is not altered by SWRST. Clearing
SWRST releases the USART for operation.

NOTE: Initializing or Reconfiguring the USART Module

The required USART initialization/reconfiguration process is:
1. Set SWRST (BIS.B #SWRST,&UxCTL)
2. Initialize all USART registers with SWRST=1 (including UxCTL)
3. Enable USART module via the MEx SFRs (USPIEx)
4. Clear SWRST via software (BIC.B #SWRST,&UxCTL)

5. Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx)

Failure to follow this process may result in unpredictable USART behavior.

513SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receive Buffer UxRXBUF

Receive Shift Register

MSB LSB

Transmit Buffer UxTXBUF

Transmit Shift Register

MSB LSB

SPI Receive Buffer

Data Shift Register (DSR)

MSB LSB

SOMI SOMI

SIMO SIMOMASTER SLAVE

Px.x STE

STE
SS

Port.x

UCLK SCLK
MSP430 USART COMMON SPI

USART Operation: SPI Mode www.ti.com

19.2.2 Master Mode

Figure 19-2 shows the USART as a master in both 3-pin and 4-pin configurations. The USART initiates a
data transfer when data is moved to the transmit data buffer UxTXBUF. The UxTXBUF data is moved to
the TX shift register when the TX shift register is empty, initiating data transfer on SIMO starting with the
most significant bit. Data on SOMI is shifted into the receive shift register on the opposite clock edge,
starting with the most significant bit. When the character is received, the receive data is moved from the
RX shift register to the received data buffer UxRXBUF and the receive interrupt flag, URXIFGx, is set,
indicating the RX/TX operation is complete.

Figure 19-2. USART Master and External Slave

A set transmit interrupt flag, UTXIFGx, indicates that data has moved from UxTXBUF to the TX shift
register and UxTXBUF is ready for new data. It does not indicate RX/TX completion. In master mode, the
completion of an active transmission is indicated by a set transmitter empty bit TXEPT = 1.

To receive data into the USART in master mode, data must be written to UxTXBUF because receive and
transmit operations operate concurrently.

19.2.2.1 Four-Pin SPI Master Mode

In 4-pin master mode, STE is used to prevent conflicts with another master. The master operates normally
when STE is high. When STE is low:

• SIMO and UCLK are set to inputs and no longer drive the bus

• The error bit FE is set indicating a communication integrity violation to be handled by the user

A low STE signal does not reset the USART module. The STE input signal is not used in 3-pin master
mode.

19.2.3 Slave Mode

Figure 19-3 shows the USART as a slave in both 3-pin and 4-pin configurations. UCLK is used as the
input for the SPI clock and must be supplied by the external master. The data transfer rate is determined
by this clock and not by the internal baud rate generator. Data written to UxTXBUF and moved to the TX
shift register before the start of UCLK is transmitted on SOMI. Data on SIMO is shifted into the receive
shift register on the opposite edge of UCLK and moved to UxRXBUF when the set number of bits are
received. When data is moved from the RX shift register to UxRXBUF, the URXIFGx interrupt flag is set,
indicating that data has been received. The overrun error bit, OE, is set when the previously received data
is not read from UxRXBUF before new data is moved to UxRXBUF.

514 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Receive Buffer UxRXBUF

Receive Shift Register

LSBMSB

Transmit Buffer UxTXBUF

Transmit Shift Register

LSBMSB

SPI Receive Buffer

Data Shift Register DSR

LSBMSB

SOMISOMI

SIMOSIMOMASTER SLAVE

Px.x STE

STE
SS

Port.x

UCLKSCLK
MSP430 USARTCOMMON SPI

Idle State

(Transmitter

Enabled)

Transmit

Disable
Transmission

Active

USPIEx = 0
No Data Written

to Transfer Buffer
Not Completed

USPIEx = 1

USPIEx = 0

USPIEx = 1,

Data Written to

Transmit Buffer Handle Interrupt
Conditions

Character
TransmittedUSPIEx = 1

USPIEx = 0 And Last Buffer
Entry Is Transmitted

SWRST
PUC

USPIEx = 0

www.ti.com USART Operation: SPI Mode

Figure 19-3. USART Slave and External Master

19.2.3.1 Four-Pin SPI Slave Mode

In 4-pin slave mode, STE is used by the slave to enable the transmit and receive operations and is
provided by the SPI master. When STE is low, the slave operates normally. When STE is high:

• Any receive operation in progress on SIMO is halted

• SOMI is set to the input direction

A high STE signal does not reset the USART module. The STE input signal is not used in 3-pin slave
mode.

19.2.4 SPI Enable

The SPI transmit/receive enable bit USPIEx enables or disables the USART in SPI mode. When USPIEx
= 0, the USART stops operation after the current transfer completes, or immediately if no operation is
active. A PUC or set SWRST bit disables the USART immediately and any active transfer is terminated.

19.2.4.1 Transmit Enable

When USPIEx = 0, any further write to UxTXBUF does not transmit. Data written to UxTXBUF begin to
transmit when USPIEx = 1 and the BRCLK source is active. Figure 19-4 and Figure 19-5 show the
transmit enable state diagrams.

Figure 19-4. Master Transmit Enable State Diagram

515SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Idle State

(Transmitter

Enabled)

Transmit

Disable
Transmission

Active

USPIEx = 0 No Clock at UCLK Not Completed

USPIEx = 1

USPIEx = 0

USPIEx = 1
Handle Interrupt

Conditions

Character

TransmittedUSPIEx = 1

USPIEx = 0

SWRST
PUC

External Clock

Present

Idle State

(Receiver

Enabled)

Receive

Disable

Receiver

Collects

Character

USPIEx = 0
No Data Written

to UxTXBUF
Not Completed

USPIEx = 1

USPIEx = 0

USPIEx = 1 Handle Interrupt

Conditions

Character

Received
USPIEx = 1

USPIEx = 0

SWRST
PUC

Data Written

to UxTXBUF

Idle State

(Receive

Enabled)

Receive

Disable

Receiver

Collects

Character

USPIEx = 0
No Clock at UCLK

Not Completed

USPIEx = 1

USPIEx = 0

USPIEx = 1 Handle Interrupt

Conditions

Character

ReceivedUSPIEx = 1

USPIEx = 0

SWRST
PUC

External Clock

Present

USART Operation: SPI Mode www.ti.com

Figure 19-5. Slave Transmit Enable State Diagram

19.2.4.2 Receive Enable

The SPI receive enable state diagrams are shown in Figure 19-6 and Figure 19-7. When USPIEx = 0,
UCLK is disabled from shifting data into the RX shift register.

Figure 19-6. SPI Master Receive-Enable State Diagram

Figure 19-7. SPI Slave Receive-Enable State Diagram

19.2.5 Serial Clock Control

UCLK is provided by the master on the SPI bus. When MM = 1, BITCLK is provided by the USART baud
rate generator on the UCLK pin as shown in Figure 19-8. When MM = 0, the USART clock is provided on
the UCLK pin by the master and, the baud rate generator is not used and the SSELx bits are “don’t care”.
The SPI receiver and transmitter operate in parallel and use the same clock source for data transfer.

516 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Bit Start

mX

BRCLK
88UCLKI

ACLK

SMCLK

SMCLK 11

BITCLK

10

01

00

202728215

Compare (0 or 1)

Modulation Data Shift Register

(LSB first)

16−Bit Counter

Q0............Q15

m0m7

......

8

UxBR1 UxBR0

Toggle

FF

N =

R

R

R

UxMCTL

SSEL1 SSEL0

BRCLK
Baud rate = with UxBR= [UxBR1, UxBR0]

UxBR

CKPH CKPL
Cycle#

UCLK

UCLK

UCLK

UCLK

SIMO/

SOMI

SIMO/

SOMI

Move to UxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

STE

www.ti.com USART Operation: SPI Mode

Figure 19-8. SPI Baud Rate Generator

The 16-bit value of UxBR0+UxBR1 is the division factor of the USART clock source, BRCLK. The
maximum baud rate that can be generated in master mode is BRCLK/2. The maximum baud rate that can
be generated in slave mode is BRCLK The modulator in the USART baud rate generator is not used for
SPI mode and is recommended to be set to 000h. The UCLK frequency is given by:

19.2.5.1 Serial Clock Polarity and Phase

The polarity and phase of UCLK are independently configured via the CKPL and CKPH control bits of the
USART. Timing for each case is shown in Figure 19-9.

Figure 19-9. USART SPI Timing

517SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Clear

UTXIEx

Clear

D

Character Moved From

Buffer to Shift Register

Interrupt Service Requested

SWRST

Data moved to UxTXBUF

Q

UTXIFGx

IRQA

VCC

PUC or SWRST

Q
Set

SYNC = 1

USART Operation: SPI Mode www.ti.com

19.2.6 SPI Interrupts

The USART has one interrupt vector for transmission and one interrupt vector for reception.

19.2.6.1 SPI Transmit Interrupt Operation

The UTXIFGx interrupt flag is set by the transmitter to indicate that UxTXBUF is ready to accept another
character. An interrupt request is generated if UTXIEx and GIE are also set. UTXIFGx is automatically
reset if the interrupt request is serviced or if a character is written to UxTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEx is reset after a PUC or when SWRST = 1. The
operation is shown is Figure 19-10.

Figure 19-10. Transmit Interrupt Operation

NOTE: Writing to UxTXBUF in SPI Mode

Data written to UxTXBUF when UTXIFGx = 0 and USPIEx = 1 may result in erroneous data
transmission.

518 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

URXS

Clear

τ

(S)

SYNC

Valid Start Bit

Receiver Collects Character

URXSE

From URXD

PE
FE

BRK
URXEIE

URXWIE

RXWAKE

Character Received

URXIFGx

URXIEx Interrupt Service

Requested

SWRST

PUC

UxRXBUF Read

URXSE

IRQA

SYNC = 1

Clear

Receive

Character

Completed

Interrupt

Service Started,

GIE = 0

URXIFGx = 0

USPIEx = 0

URXIFGx = 1
USPIEx = 1 and

URXIEx = 1 and

GIE = 1 and

Priority Valid
GIE = 0

Priority

Too

Low

URXIFGx = 0Wait For Next

Start

USPIEx = 0

SWRST = 1

PUC

USPIEx = 1

URXIEx = 0

SWRST = 1

Receive

Character

www.ti.com USART Operation: SPI Mode

19.2.6.2 SPI Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded into UxRXBUF as shown
in Figure 19-11 and Figure 19-12. An interrupt request is generated if URXIEx and GIE are also set.
URXIFGx and URXIEx are reset by a system reset PUC signal or when SWRST = 1. URXIFGx is
automatically reset if the pending interrupt is served or when UxRXBUF is read.

Figure 19-11. Receive Interrupt Operation

Figure 19-12. Receive Interrupt State Diagram

519SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: SPI Mode www.ti.com

19.3 USART Registers: SPI Mode

Table 19-1 lists the registers for all devices implementing a USART module. Table 19-2 applies only to
devices with a second USART module, USART1.

Table 19-1. USART0 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U0CTL Read/write 070h 001h with PUC

Transmit control register U0TCTL Read/write 071h 001h with PUC

Receive control register U0RCTL Read/write 072h 000h with PUC

Modulation control register U0MCTL Read/write 073h Unchanged

Baud rate control register 0 U0BR0 Read/write 074h Unchanged

Baud rate control register 1 U0BR1 Read/write 075h Unchanged

Receive buffer register U0RXBUF Read 076h Unchanged

Transmit buffer register U0TXBUF Read/write 077h Unchanged

SFR module enable register 1 ME1 Read/write 004h 000h with PUC

SFR interrupt enable register 1 IE1 Read/write 000h 000h with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h 082h with PUC

Table 19-2. USART1 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U1CTL Read/write 078h 001h with PUC

Transmit control register U1TCTL Read/write 079h 001h with PUC

Receive control register U1RCTL Read/write 07Ah 000h with PUC

Modulation control register U1MCTL Read/write 07Bh Unchanged

Baud rate control register 0 U1BR0 Read/write 07Ch Unchanged

Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer register U1RXBUF Read 07Eh Unchanged

Transmit buffer register U1TXBUF Read/write 07Fh Unchanged

SFR module enable register 2 ME2 Read/write 005h 000h with PUC

SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

NOTE: Modifying the SFR bits

To avoid modifying control bits for other modules, it is recommended to set or clear the IEx
and IFGx bits using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

520 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: SPI Mode

19.3.1 UxCTL, USART Control Register

7 6 5 4 3 2 1 0

Unused I2C CHAR LISTEN SYNC MM SWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

Unused Bits 7-6 Unused

I2C Bit 5 I2C mode enable. This bit selects I2C or SPI operation when SYNC = 1.

0 SPI mode

1 I2C mode

CHAR Bit 4 Character length

0 7-bit data

1 8-bit data

LISTEN Bit 3 Listen enable. The LISTEN bit selects the loopback mode

0 Disabled

1 Enabled. The transmit signal is internally fed back to the receiver.

SYNC Bit 2 Synchronous mode enable

0 UART mode

1 SPI mode

MM Bit 1 Master mode

0 USART is slave

1 USART is master

SWRST Bit 0 Software reset enable

0 Disabled. USART reset released for operation.

1 Enabled. USART logic held in reset state.

19.3.2 UxTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0

CKPH CKPL SSELx Unused STC TXEPT

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

CKPH Bit 7 Clock phase select.

0 Data is changed on the first UCLK edge and captured on the following edge.

1 Data is captured on the first UCLK edge and changed on the following edge.

CKPL Bit 6 Clock polarity select

0 The inactive state is low.

1 The inactive state is high.

SSELx Bits 5-4 Source select. These bits select the BRCLK source clock.

00 External UCLK (valid for slave mode only)

01 ACLK (valid for master mode only)

10 SMCLK (valid for master mode only)

11 SMCLK (valid for master mode only)

Unused Bits 3-2 Unused

STC Bit 1 Slave transmit control.

0 4-pin SPI mode: STE enabled.

1 3-pin SPI mode: STE disabled.

TXEPT Bit 0 Transmitter empty flag. The TXEPT flag is not used in slave mode.

0 Transmission active and/or data waiting in UxTXBUF

1 UxTXBUF and TX shift register are empty

521SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: SPI Mode www.ti.com

19.3.3 UxRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0

FE Unused OE Unused

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

FE Bit 7 Framing error flag. This bit indicates a bus conflict when MM = 1 and STC = 0. FE is unused in slave mode.

0 No conflict detected

1 A negative edge occurred on STE, indicating bus conflict

Unused Bit 6 Unused

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into UxRXBUF before the previous
character was read. OE is automatically reset when UxRXBUF is read, when SWRST = 1, or can be reset
by software.

0 No error

1 Overrun error occurred

Unused Bits 4-0 Unused

19.3.4 UxBR0, USART Baud Rate Control Register 0

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

19.3.5 UxBR1, USART Baud Rate Control Register 1

7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28

rw rw rw rw rw rw rw rw

UxBRx The baud-rate generator uses the content of {UxBR1+UxBR0} to set the baud rate. Unpredictable SPI
operation occurs if UxBR < 2.

19.3.6 UxMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0

m7 m6 m5 m4 m3 m2 m1 m0

rw rw rw rw rw rw rw rw

UxMCTLx Bits 7-0 The modulation control register is not used for SPI mode and should be set to 000h.

19.3.7 UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

r r r r r r r r

UxRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift
register. Reading UxRXBUF resets the OE bit and URXIFGx flag. In 7-bit data mode, UxRXBUF is LSB
justified and the MSB is always reset.

522 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com USART Registers: SPI Mode

19.3.8 UxTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxTXBUFx Bits 7-0 The transmit data buffer is user accessible and contains current data to be transmitted. When seven-bit
character-length is used, the data should be MSB justified before being moved into UxTXBUF. Data is
transmitted MSB first. Writing to UxTXBUF clears UTXIFGx.

19.3.9 ME1, Module Enable Register 1

7 6 5 4 3 2 1 0

USPIE0

rw-0

Bit 7 This bit may be used by other modules. See device-specific data sheet.

USPIE0 Bit 6 USART0 SPI enable. This bit enables the SPI mode for USART0.

0 Module not enabled

1 Module enabled

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

19.3.10 ME2, Module Enable Register 2

7 6 5 4 3 2 1 0

USPIE1

rw-0

Bits 7-5 These bits may be used by other modules. See device-specific data sheet.

USPIE1 Bit 4 USART1 SPI enable. This bit enables the SPI mode for USART1.

0 Module not enabled

1 Module enabled

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

19.3.11 IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

UTXIE0 URXIE0

rw-0 rw-0

UTXIE0 Bit 7 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

URXIE0 Bit 6 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

523SLAU144I–December 2004–Revised January 2012 USART Peripheral Interface, SPI Mode
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

USART Registers: SPI Mode www.ti.com

19.3.12 IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UTXIE1 URXIE1

rw-0 rw-0

Bits 7-6 These bits may be used by other modules. See device-specific data sheet.

UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.

0 Interrupt not enabled

1 Interrupt enabled

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

19.3.13 IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

UTXIFG0 URXIFG0

rw-1 rw-0

UTXIFG0 Bit 7 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.

0 No interrupt pending

1 Interrupt pending

URXIFG0 Bit 6 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 5-0 These bits may be used by other modules. See device-specific data sheet.

19.3.14 IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UTXIFG1 URXIFG1

rw-1 rw-0

Bits 7-6 These bits may be used by other modules. See device-specific data sheet.

UTXIFG1 Bit 5 USART1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF empty.

0 No interrupt pending

1 Interrupt pending

URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFG1 is set when U1RXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

Bits 3-0 These bits may be used by other modules. See device-specific data sheet.

524 USART Peripheral Interface, SPI Mode SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 20
SLAU144I–December 2004–Revised January 2012

OA

The OA is a general purpose operational amplifier. This chapter describes the OA. Two OA modules are
implemented in the MSP430x22x4 devices.

Topic ... Page

20.1 OA Introduction ... 526
20.2 OA Operation .. 527
20.3 OA Registers ... 534

525SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA Introduction www.ti.com

20.1 OA Introduction

The OA operational amplifiers support front-end analog signal conditioning prior to analog-to-digital
conversion.

Features of the OA include:

• Single supply, low-current operation

• Rail-to-rail output

• Programmable settling time vs. power consumption

• Software selectable configurations

• Software selectable feedback resistor ladder for PGA implementations

NOTE: Multiple OA Modules

Some devices may integrate more than one OA module. If more than one OA is present on a
device, the multiple OA modules operate identically.

Throughout this chapter, nomenclature appears such as OAxCTL0 to describe register
names. When this occurs, the x is used to indicate which OA module is being discussed. In
cases where operation is identical, the register is simply referred to as OAxCTL0.

The block diagram of the OA module is shown in Figure 20-1.

526 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

000

001

100

011

010

111

110

101

3

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx

OAxTAP

OAFCx

OAxRBOTTOM

OA1RBOTTOM
(OA0)

OA2RBOTTOM
(OA1)

OA0RBOTTOM
(OA2)

000

001

100

011

010

111

110

101

OAPMx

OAxOUT

OAx

+

−

A1 (OA0)

A3 (OA1)

A5 (OA2)

A12 (OA0)

A13 (OA1)

A14 (OA2)

001

else

OAFCx = 6

0

1

OANx = 3

OAPx = 3

OA1TAP (OA0)

OA2TAP (OA1)

OA0TAP (OA2)

OAxRTOP

000

1

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB

OA2OUT (OA0)

OA0OUT (OA1)

OA1OUT (OA2)

0

1

OAFCx = 5 OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

OAxIB

OANEXT
OAFCx = 6

OAxRBOTTOM

A12/OA0O

A13/OA1O

A14/OA2O

A1/OA0O

A3/OA1O

A5/OA2O

OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

AVCC

1

0

OARRIP

0

1

OAFBRx > 0

1

OAFCx = 0

OAADCx

OAxFB
OA2OUT (OA0)

OA0OUT (OA1)

OA1OUT (OA2)

2
F

e
e
b
a
c
k
 S

w
it
c
h
 M

a
tr

ix

www.ti.com OA Operation

Figure 20-1. OA Block Diagram

20.2 OA Operation

The OA module is configured with user software. The setup and operation of the OA is discussed in the
following sections.

527SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA Operation www.ti.com

20.2.1 OA Amplifier

The OA is a configurable, low-current, rail-to-rail output operational amplifier. It can be configured as an
inverting amplifier, or a non-inverting amplifier, or can be combined with other OA modules to form
differential amplifiers. The output slew rate of the OA can be configured for optimized settling time vs
power consumption with the OAPMx bits. When OAPMx = 00 the OA is off and the output is
high-impedance. When OAPMx > 0, the OA is on. See the device-specific data sheet for parameters.

20.2.2 OA Input

The OA has configurable input selection. The signals for the + and - inputs are individually selected with
the OANx and OAPx bits and can be selected as external signals or internal signals. OAxI0 and OAxI1 are
external signals provided for each OA module. OA0I1 provides a non-inverting input that is tied together
internally for all OA modules. OAxIA and OAxIB provide device-dependent inputs. See the device data
sheet for signal connections.

When the external inverting input is not needed for a mode, setting the OANEXT bit makes the internal
inverting input externally available.

20.2.3 OA Output and Feedback Routing

The OA has configurable output selection controlled by the OAADCx bits and the OAFCx bits. The OA
output signals can be routed to ADC inputs A12 (OA0), A13 (OA1), or A14 (OA2) internally, or can be
routed to these ADC inputs and their external pins. The OA output signals can also be routed to ADC
inputs A1 (OA0), A3 (OA1), or A5 (OA2) and the corresponding external pin. The OA output is also
connected to an internal R-ladder with the OAFCx bits. The R-ladder tap is selected with the OAFBRx bits
to provide programmable gain amplifier functionality.

Table 20-1 shows the OA output and feedback routing configurations. When OAFCx = 0 the OA is in
general-purpose mode and feedback is achieved externally to the device. When OAFCx > 0 and when
OAADCx = 00 or 11, the output of the OA is kept internal to the device. When OAFCx > 0 and
OAADCx = 01 or 10, the OA output is routed both internally and externally.

Table 20-1. OA Output Configurations

OAFCx OAADCx OA Output and Feedback Routing

= 0 x0 OAxOUT connected to external pins and ADC input A1, A3, or A5.

= 0 x1 OAxOUT connected to external pins and ADC input A12, A13, or A14.

> 0 00 OAxOUT used for internal routing only.

> 0 01 OAxOUT connected to external pins and ADC input A12, A13, or A14.

> 0 10 OAxOUT connected to external pins and ADC input A1, A3, or A5.

OAxOUT connected internally to ADC input A12, A13 , or A14. External A12, A13, or A14 pin> 0 11 connections are disconnected from the ADC.

20.2.4 OA Configurations

The OA can be configured for different amplifier functions with the OAFCx bits as listed in Table 20-2.

Table 20-2. OA Mode Select

OAFCx OA Mode

000 General-purpose opamp

001 Unity gain buffer for three-opamp differential amplifier

010 Unity gain buffer

011 Comparator

100 Non-inverting PGA amplifier

101 Cascaded non-inverting PGA amplifier

110 Inverting PGA amplifier

111 Differential amplifier

528 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com OA Operation

20.2.4.1 General Purpose Opamp Mode

In this mode the feedback resistor ladder is isolated from the OAx and the OAxCTL0 bits define the signal
routing. The OAx inputs are selected with the OAPx and OANx bits. The OAx output is connected to the
ADC input channel as selected by the OAxCTL0 bits.

20.2.4.2 Unity Gain Mode for Differential Amplifier

In this mode the output of the OAx is connected to the inverting input of the OAx providing a unity gain
buffer. The non-inverting input is selected by the OAPx bits. The external connection for the inverting input
is disabled and the OANx bits are don’t care. The output of the OAx is also routed through the resistor
ladder as part of the three-opamp differential amplifier. This mode is only for construction of the
three-opamp differential amplifier.

20.2.4.3 Unity Gain Mode

In this mode the output of the OAx is connected to the inverting input of the OAx providing a unity gain
buffer. The non-inverting input is selected by the OAPx bits. The external connection for the inverting input
is disabled and the OANx bits are don’t care. The OAx output is connected to the ADC input channel as
selected by the OAxCTL0 bits.

20.2.4.4 Comparator Mode

In this mode the output of the OAx is isolated from the resistor ladder. RTOP is connected to AVSS and
RBOTTOM is connected to AVCC when OARRIP = 0. When OARRIP = 1, the connection of the resistor ladder
is reversed. RTOP is connected to AVCC and RBOTTOM is connected to AVSS. The OAxTAP signal is connected
to the inverting input of the OAx providing a comparator with a programmable threshold voltage selected
by the OAFBRx bits. The non-inverting input is selected by the OAPx bits. Hysteresis can be added by an
external positive feedback resistor. The external connection for the inverting input is disabled and the
OANx bits are don’t care. The OAx output is connected to the ADC input channel as selected by the
OAxCTL0 bits.

20.2.4.5 Non-Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is connected to AVSS. The OAxTAP
signal is connected to the inverting input of the OAx providing a non-inverting amplifier configuration with a
programmable gain of [1+OAxTAP ratio]. The OAxTAP ratio is selected by the OAFBRx bits. If the
OAFBRx bits = 0, the gain is unity. The non-inverting input is selected by the OAPx bits. The external
connection for the inverting input is disabled and the OANx bits are don’t care. The OAx output is
connected to the ADC input channel as selected by the OAxCTL0 bits.

20.2.4.6 Cascaded Non-Inverting PGA Mode

This mode allows internal routing of the OA signals to cascade two or three OA in non-inverting mode. In
this mode the non-inverting input of the OAx is connected to OA2OUT (OA0), OA0OUT (OA1), or
OA1OUT (OA2) when OAPx = 11. The OAx outputs are connected to the ADC input channel as selected
by the OAxCTL0 bits.

20.2.4.7 Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is connected to an analog multiplexer
that multiplexes the OAxI0, OAxI1, OAxIA, or the output of one of the remaining OAs, selected with the
OANx bits. The OAxTAP signal is connected to the inverting input of the OAx providing an inverting
amplifier with a gain of -OAxTAP ratio. The OAxTAP ratio is selected by the OAFBRx bits. The
non-inverting input is selected by the OAPx bits. The OAx output is connected to the ADC input channel
as selected by the OAxCTL0 bits.

529SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA0

+

−

OA1

+

−
(V2 − V1) × R2

R1
Vdiff =

R2R1

V2

V1

OA Operation www.ti.com

NOTE: Using OAx Negative Input Simultaneously as ADC Input

When the pin connected to the negative input multiplexer is also used as an input to the
ADC, conversion errors up to 5 mV may be observed due to internal wiring voltage drops.

20.2.4.8 Differential Amplifier Mode

This mode allows internal routing of the OA signals for a two-opamp or three-opamp instrumentation
amplifier. Figure 20-2 shows a two-opamp configuration with OA0 and OA1. In this mode the output of the
OAx is connected to RTOP by routing through another OAx in the Inverting PGA mode. RBOTTOM is
unconnected providing a unity gain buffer. This buffer is combined with one or two remaining OAx to form
the differential amplifier. The OAx output is connected to the ADC input channel as selected by the
OAxCTL0 bits.

Figure 20-2 shows an example of a two-opamp differential amplifier using OA0 and OA1. The control
register settings and are shown in Table 20-3. The gain for the amplifier is selected by the OAFBRx bits
for OA1 and is shown in Table 20-4. The OAx interconnections are shown in Figure 20-3.

Table 20-3. Two-Opamp Differential Amplifier Control
Register Settings

SettingsRegister (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 000 111 0 x

OA1CTL0 11 xx xx x x

OA1CTL1 xxx 110 0 x

Table 20-4. Two-Opamp Differential Amplifier Gain
Settings

OA1 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 20-2. Two-Opamp Differential Amplifier

530 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

+

−

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB

0

1
OA0

000

001

100

011

010

111

110

101

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx

000

001

100

011

010

111

110

101

OAPMx

OA1

+

−

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB

0

1

00

01

10

11

OAxFB

OAADCx

2

www.ti.com OA Operation

Figure 20-3. Two-Opamp Differential Amplifier OAx Interconnections

531SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA1

+

−

OA2

+

−

R2R1

V2

V1

OA0

+

−

R2R1

(V2 − V1) × R2

R1
Vdiff =

OA Operation www.ti.com

Figure 20-4 shows an example of a three-opamp differential amplifier using OA0, OA1 and OA2 (Three
opamps are not available on all devices. See device-specific data sheet for implementation.). The control
register settings are shown in Table 20-5. The gain for the amplifier is selected by the OAFBRx bits of
OA0 and OA2. The OAFBRx settings for both OA0 and OA2 must be equal. The gain settings are shown
in Table 20-6. The OAx interconnections are shown in Figure 20-5.

Table 20-5. Three-Opamp Differential Amplifier Control
Register Settings

SettingsRegister (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 xxx 001 0 x

OA1CTL0 xx xx xx 0 0

OA1CTL1 000 111 0 x

OA2CTL0 11 11 xx x x

OA2CTL1 xxx 110 0 x

Table 20-6. Three-Opamp Differential Amplifier Gain
Settings

OA0/OA2 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 20-4. Three-Opamp Differential Amplifier

532 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

000

001

100

011

010

111

110

101

OAPMx

OA0

+

−

001

else

0

1

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

OA1

+

−001

else

0

1
OAxR

TOP

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx
000

001

100

011

010

111

110

101

001

else

0

1
OA0TAP (OA2)

OAxRTOP

000

00

01

10

11

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

4R

4R

2R

2R

R

R

R

R

OAPMx

OA2

+

−

OAxFB

OAADCx

2

3

OAFBRx

www.ti.com OA Operation

Figure 20-5. Three-Opamp Differential Amplifier OAx Interconnections

533SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA Registers www.ti.com

20.3 OA Registers

The OA registers are listed in Table 20-7.

Table 20-7. OA Registers

Register Short Form Register Type Address Initial State

OA0 control register 0 OA0CTL0 Read/write 0C0h Reset with POR

OA0 control register 1 OA0CTL1 Read/write 0C1h Reset with POR

OA1 control register 0 OA1CTL0 Read/write 0C2h Reset with POR

OA1 control register 1 OA1CTL1 Read/write 0C3h Reset with POR

OA2 control register 0 OA2CTL0 Read/write 0C4h Reset with POR

OA2 control register 1 OA2CTL1 Read/write 0C5h Reset with POR

534 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com OA Registers

20.3.1 OAxCTL0, Opamp Control Register 0

7 6 5 4 3 2 1 0

OANx OAPx OAPMx OAADCx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

OANx Bits 7-6 Inverting input select. These bits select the input signal for the OA inverting input.

00 OAxI0

01 OAxI1

10 OAxIA (see the device-specific data sheet for connected signal)

11 OAxIB (see the device-specific data sheet for connected signal)

OAPx Bits 5-4 Non-inverting input select. These bits select the input signal for the OA non-inverting input.

00 OAxI0

01 OA0I1

10 OAxIA (see the device-specific data sheet for connected signal)

11 OAxIB (see the device-specific data sheet for connected signal)

OAPMx Bits 3-2 Slew rate select. These bits select the slew rate vs. current consumption for the OA.

00 Off, output high Z

01 Slow

10 Medium

11 Fast

OAADCx Bits 1-0 OA output select. These bits, together with the OAFCx bits, control the routing of the OAx output when
OAPMx > 0.

When OAFCx = 0:

00 OAxOUT connected to external pins and ADC input A1, A3, or A5

01 OAxOUT connected to external pins and ADC input A12, A13, or A14

10 OAxOUT connected to external pins and ADC input A1, A3, or A5

11 OAxOUT connected to external pins and ADC input A12, A13, or A14

When OAFCx > 0:

00 OAxOUT used for internal routing only

01 OAxOUT connected to external pins and ADC input A12, A13, or A14

10 OAxOUT connected to external pins and ADC input A1, A3, or A5

11 OAxOUT connected internally to ADC input A12, A13 , or A14. External A12, A13, or A14 pin
connections are disconnected from the ADC.

535SLAU144I–December 2004–Revised January 2012 OA
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OA Registers www.ti.com

20.3.2 OAxCTL1, Opamp Control Register 1

7 6 5 4 3 2 1 0

OAFBRx OAFCx OANEXT OARRIP

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

OAFBRx Bits 7-5 OAx feedback resistor select

000 Tap 0 - 0R/16R

001 Tap 1 - 4R/12R

010 Tap 2 - 8R/8R

011 Tap 3 - 10R/6R

100 Tap 4 - 12R/4R

101 Tap 5 - 13R/3R

110 Tap 6 - 14R/2R

111 Tap 7 - 15R/1R

OAFCx Bits 4-2 OAx function control. This bit selects the function of OAx

000 General purpose opamp

001 Unity gain buffer for three-opamp differential amplifier

010 Unity gain buffer

011 Comparator

100 Non-inverting PGA amplifier

101 Cascaded non-inverting PGA amplifier

110 Inverting PGA amplifier

111 Differential amplifier

OANEXT Bit 1 OAx inverting input externally available. This bit, when set, connects the inverting OAx input to the external
pin when the integrated resistor network is used.

0 OAx inverting input not externally available

1 OAx inverting input externally available

OARRIP Bit 0 OAx reverse resistor connection in comparator mode

0 RTOP is connected to AVSS and RBOTTOM is connected to AVCC when OAFCx = 3

1 RTOP is connected to AVCC and RBOTTOM is connected to AVSS when OAFCx = 3.

536 OA SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 21
SLAU144I–December 2004–Revised January 2012

Comparator_A+

Comparator_A+ is an analog voltage comparator. This chapter describes the operation of the
Comparator_A+ of the 2xx family.

Topic ... Page

21.1 Comparator_A+ Introduction ... 538
21.2 Comparator_A+ Operation .. 539
21.3 Comparator_A+ Registers ... 544

537SLAU144I–December 2004–Revised January 2012 Comparator_A+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CAOUT

+

−

CAEX

0.5xVCC

0.25xVCC

Set_CAIFG

CCI1B
+

−

0V

G
D

S

P2CA0

CAF

CARSEL

CAON

CAREFx

1 0

00

01

10

11

00

01

10

11

1

0

1

0

1

0

1

0

1

0

0V

1 0

Tau ~ 2.0ns

VCAREF

VCC

P2CA4

P2CA1

000

001

010

011

100

101

110

111

CASHORT

P2CA2
P2CA3

CA0

CA1

CA2

00

01

10

11

Comparator_A+ Introduction www.ti.com

21.1 Comparator_A+ Introduction

The Comparator_A+ module supports precision slope analog-to-digital conversions, supply voltage
supervision, and monitoring of external analog signals.

Features of Comparator_A+ include:

• Inverting and non-inverting terminal input multiplexer

• Software selectable RC-filter for the comparator output

• Output provided to Timer_A capture input

• Software control of the port input buffer

• Interrupt capability

• Selectable reference voltage generator

• Comparator and reference generator can be powered down

• Input Multiplexer

The Comparator_A+ block diagram is shown in Figure 21-1.

Figure 21-1. Comparator_A+ Block Diagram

NOTE: MSP430G2210: Channels 2, 5, 6, and 7 are available. Other channels should not be
enabled.

538 Comparator_A+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Comparator_A+ Operation

21.2 Comparator_A+ Operation

The Comparator_A+ module is configured with user software. The setup and operation of Comparator_A+
is discussed in the following sections.

21.2.1 Comparator

The comparator compares the analog voltages at the + and - input terminals. If the + terminal is more
positive than the - terminal, the comparator output CAOUT is high. The comparator can be switched on or
off using control bit CAON. The comparator should be switched off when not in use to reduce current
consumption. When the comparator is switched off, the CAOUT is always low.

21.2.2 Input Analog Switches

The analog input switches connect or disconnect the two comparator input terminals to associated port
pins using the P2CAx bits. Both comparator terminal inputs can be controlled individually. The P2CAx bits
allow:

• Application of an external signal to the + and - terminals of the comparator

• Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion in the signal path.

NOTE: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a signal, power, or
ground. Otherwise, floating levels may cause unexpected interrupts and increased current
consumption.

NOTE: MSP430G2210: Comparator channels 0, 1, 3, and 4 are implemented but not available at
the device pins. To avoid floating inputs, these comparator inputs should not be enabled.

The CAEX bit controls the input multiplexer, exchanging which input signals are connected to the
comparator’s + and - terminals. Additionally, when the comparator terminals are exchanged, the output
signal from the comparator is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.

539SLAU144I–December 2004–Revised January 2012 Comparator_A+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Sampling Capacitor, Cs

CASHORT

Analog Inputs

Comparator_A+ Operation www.ti.com

21.2.3 Input Short Switch

The CASHORT bit shorts the comparator_A+ inputs. This can be used to build a simple sample-and-hold
for the comparator as shown in Figure 21-2.

Figure 21-2. Comparator_A+ Sample-And-Hold

The required sampling time is proportional to the size of the sampling capacitor (CS), the resistance of the
input switches in series with the short switch (Ri), and the resistance of the external source (RS). The total
internal resistance (RI) is typically in the range of 2 to 10 kΩ. The sampling capacitor CS should be greater
than 100 pF. The time constant, Tau, to charge the sampling capacitor CS can be calculated with the
following equation:

Tau = (RI + RS) x CS

Depending on the required accuracy 3 to 10 Tau should be used as a sampling time. With 3 Tau the
sampling capacitor is charged to approximately 95% of the input signals voltage level, with 5 Tau it is
charge to more than 99% and with 10 Tau the sampled voltage is sufficient for 12-bit accuracy.

21.2.4 Output Filter

The output of the comparator can be used with or without internal filtering. When control bit CAF is set, the
output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input terminals is small. Internal and
external parasitic effects and cross coupling on and between signal lines, power supply lines, and other
parts of the system are responsible for this behavior as shown in Figure 21-3. The comparator output
oscillation reduces accuracy and resolution of the comparison result. Selecting the output filter can reduce
errors associated with comparator oscillation.

540 Comparator_A+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

+ Terminal

− Terminal Comparator Inputs

Comparator Output

Unfiltered at CAOUT

Comparator Output

Filtered at CAOUT

VCC

VSS

ICCVOVI

0 VCC

VI
VCC

ICC

CAPD.x = 1

www.ti.com Comparator_A+ Operation

Figure 21-3. RC-Filter Response at the Output of the Comparator

21.2.5 Voltage Reference Generator

The voltage reference generator is used to generate VCAREF,which can be applied to either comparator
input terminal. The CAREFx bits control the output of the voltage generator. The CARSEL bit selects the
comparator terminal to which VCAREF is applied. If external signals are applied to both comparator input
terminals, the internal reference generator should be turned off to reduce current consumption. The
voltage reference generator can generate a fraction of the device’s VCC or a fixed transistor threshold
voltage of ~0.55 V.

21.2.6 Comparator_A+, Port Disable Register CAPD

The comparator input and output functions are multiplexed with the associated I/O port pins, which are
digital CMOS gates. When analog signals are applied to digital CMOS gates, parasitic current can flow
from VCC to GND. This parasitic current occurs if the input voltage is near the transition level of the gate.
Disabling the port pin buffer eliminates the parasitic current flow and therefore reduces overall current
consumption.

The CAPDx bits, when set, disable the corresponding pin input and output buffers as shown in
Figure 21-4. When current consumption is critical, any port pin connected to analog signals should be
disabled with its CAPDx bit.

Selecting an input pin to the comparator multiplexer with the P2CAx bits automatically disables the input
and output buffers for that pin, regardless of the state of the associated CAPDx bit.

Figure 21-4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

NOTE: MSP430G2210:The channels 0, 1, 3, an 4 are implemented by not available at pins. To
avoid floating inputs these inputs should not be used.

541SLAU144I–December 2004–Revised January 2012 Comparator_A+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

D Q
IRQ, Interrupt Service Requested

Reset

VCC

POR

SET_CAIFG

IRACC, Interrupt RequestAccepted

CAIE

CAIES

0

1

+

−

CA0 CCI1B

Capture

Input

Of Timer_A

+

−

Rmeas

Rref
Px.x

Px.y

0.25xVCC

Comparator_A+ Operation www.ti.com

21.2.7 Comparator_A+ Interrupts

One interrupt flag and one interrupt vector are associated with the Comparator_A+ as shown in
Figure 21-5. The interrupt flag CAIFG is set on either the rising or falling edge of the comparator output,
selected by the CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag generates an
interrupt request. The CAIFG flag is automatically reset when the interrupt request is serviced or may be
reset with software.

Figure 21-5. Comparator_A+ Interrupt System

21.2.8 Comparator_A+ Used to Measure Resistive Elements

The Comparator_A+ can be optimized to precisely measure resistive elements using single slope
analog-to-digital conversion. For example, temperature can be converted into digital data using a
thermistor, by comparing the thermistor’s capacitor discharge time to that of a reference resistor as shown
in Figure 21-6. A reference resister Rref is compared to Rmeas.

Figure 21-6. Temperature Measurement System

The MSP430 resources used to calculate the temperature sensed by Rmeas are:

• Two digital I/O pins to charge and discharge the capacitor.

• I/O set to output high (VCC) to charge capacitor, reset to discharge.

• I/O switched to high-impedance input with CAPDx set when not in use.

• One output charges and discharges the capacitor via Rref.

• One output discharges capacitor via Rmeas.

• The + terminal is connected to the positive terminal of the capacitor.

• The - terminal is connected to a reference level, for example 0.25 x VCC.

• The output filter should be used to minimize switching noise.

• CAOUT used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are connected to CA0 with
available I/O pins and switched to high impedance when not being measured.

542 Comparator_A+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

VC

VCC

0.25 × VCC

Phase I:

Charge
Phase II:

Discharge

Phase III:

Charge

tref

Phase IV:

Discharge

tmeas

t

Rmeas

Rref

ref

CC

ref

CC

V

meas Vmeas

V
ref

ref V

–R × C × ln
N

=
N –R × C × ln

meas meas

ref ref

N R
=

N R

meas
meas ref

ref

N
R = R ×

N

www.ti.com Comparator_A+ Operation

The thermistor measurement is based on a ratiometric conversion principle. The ratio of two capacitor
discharge times is calculated as shown in Figure 21-7.

Figure 21-7. Timing for Temperature Measurement Systems

The VCC voltage and the capacitor value should remain constant during the conversion, but are not critical
since they cancel in the ratio:

543SLAU144I–December 2004–Revised January 2012 Comparator_A+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Comparator_A+ Registers www.ti.com

21.3 Comparator_A+ Registers

The Comparator_A+ registers are listed in Table 21-1.

Table 21-1. Comparator_A+ Registers

Register Short Form Register Type Address Initial State

Comparator_A+ control register 1 CACTL1 Read/write 059h Reset with POR

Comparator_A+ control register 2 CACTL2 Read/write 05Ah Reset with POR

Comparator_A+ port disable CAPD Read/write 05Bh Reset with POR

544 Comparator_A+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Comparator_A+ Registers

21.3.1 CACTL1, Comparator_A+ Control Register 1

7 6 5 4 3 2 1 0

CAEX CARSEL CAREFx CAON CAIES CAIE CAIFG

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

CAEX Bit 7 Comparator_A+ exchange. This bit exchanges the comparator inputs and inverts the comparator output.

CARSEL Bit 6 Comparator_A+ reference select. This bit selects which terminal the VCAREF is applied to.

When CAEX = 0:

0 VCAREF is applied to the + terminal

1 VCAREF is applied to the - terminal

When CAEX = 1:

0 VCAREF is applied to the - terminal

1 VCAREF is applied to the + terminal

CAREF Bits 5-4 Comparator_A+ reference. These bits select the reference voltage VCAREF.

00 Internal reference off. An external reference can be applied.

01 0.25 × VCC

10 0.50 × VCC

11 Diode reference is selected

CAON Bit 3 Comparator_A+ on. This bit turns on the comparator. When the comparator is off it consumes no current.
The reference circuitry is enabled or disabled independently.

0 Off

1 On

CAIES Bit 2 Comparator_A+ interrupt edge select

0 Rising edge

1 Falling edge

CAIE Bit 1 Comparator_A+ interrupt enable

0 Disabled

1 Enabled

CAIFG Bit 0 The Comparator_A+ interrupt flag

0 No interrupt pending

1 Interrupt pending

545SLAU144I–December 2004–Revised January 2012 Comparator_A+
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Comparator_A+ Registers www.ti.com

21.3.2 CACTL2, Comparator_A+, Control Register

7 6 5 4 3 2 1 0

CASHORT P2CA4 P2CA3 P2CA2 P2CA1 P2CA0 CAF CAOUT

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

CASHORT Bit 7 Input short. This bit shorts the + and - input terminals.

0 Inputs not shorted

1 Inputs shorted

P2CA4 Bit 6 Input select. This bit together with P2CA0 selects the + terminal input when CAEX = 0 and the - terminal
input when CAEX = 1.

P2CA3 (1) Bits 5-3 Input select. These bits select the - terminal input when CAEX = 0 and the + terminal input when CAEX = 1.
P2CA2 000 No connection
P2CA1

001 CA1

010 CA2

011 CA3

100 CA4

101 CA5

110 CA6

111 CA7

P2CA0 Bit 2 Input select. This bit, together with P2CA4, selects the + terminal input when CAEX = 0 and the - terminal
input when CAEX = 1.

00 No connection

01 CA0

10 CA1

11 CA2

CAF Bit 1 Comparator_A+ output filter

0 Comparator_A+ output is not filtered

1 Comparator_A+ output is filtered

CAOUT Bit 0 Comparator_A+ output. This bit reflects the value of the comparator output. Writing this bit has no effect.

(1) MSP430G2210: Only channels 2, 5, 6, and 7 are available. Other channels should not be selected.

21.3.3 CAPD, Comparator_A+, Port Disable Register

7 6 5 4 3 2 1 0

CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPD0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

CAPDx (1) Bits 7-0 Comparator_A+ port disable. These bits individually disable the input buffer for the pins of the port
associated with Comparator_A+. For example, if CA0 is on pin P2.3, the CAPDx bits can be used to
individually enable or disable each P2.x pin buffer. CAPD0 disables P2.0, CAPD1 disables P2.1, etc.

0 The input buffer is enabled.

1 The input buffer is disabled.

(1) MSP430G2210: Channels 2, 5, 6, and 7 are available. Other channels should not be disabled.

546 Comparator_A+ SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 22
SLAU144I–December 2004–Revised January 2012

ADC10

The ADC10 module is a high-performance 10-bit analog-to-digital converter. This chapter describes the
operation of the ADC10 module of the 2xx family in general. There are device with less than eight external
input channels.

Topic ... Page

22.1 ADC10 Introduction ... 548
22.2 ADC10 Operation ... 550
22.3 ADC10 Registers ... 566

547SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Introduction www.ti.com

22.1 ADC10 Introduction

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit
SAR core, sample select control, reference generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in memory without CPU
intervention. The module can be configured with user software to support a variety of applications.

ADC10 features include:

• Greater than 200-ksps maximum conversion rate

• Monotonic 10-bit converter with no missing codes

• Sample-and-hold with programmable sample periods

• Conversion initiation by software or Timer_A

• Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

• Software selectable internal or external reference

• Up to eight external input channels (twelve on MSP430F22xx devices)

• Conversion channels for internal temperature sensor, VCC, and external references

• Selectable conversion clock source

• Single-channel, repeated single-channel, sequence, and repeated sequence conversion modes

• ADC core and reference voltage can be powered down separately

• Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 22-1.

548 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Sample

and

Hold 10−bit SAR
Divider

/1 .. /8

AVCC

ACLK

MCLK

SMCLK

ADC10SC

TA1

TA0

Data Transfer

Controller RAM, Flash, Peripherials

VR− VR+

VeREF+

VREF+

ADC10ON

INCHx

REFBURST

ADC10SSELx

ADC10DIVx

SHSx

ADC10SHTx MSC

ENC
BUSY

ADC10DF

ADC10CLK

SREF2

ADC10TB ADC10B1ADC10CT

ISSH

ADC10SR

ADC10OSC

Ref_x

S/H Convert

SAMPCON

1

0

Sync

Sample Timer

/4/8/16/64

SHI

ADC10SA

n

4

A0
A1
A2
A3
A4
A5
A6
A7

REFON
INCHx=0Ah

2_5V

1.5V or 2.5V

Reference

on

Ref_x

SREF1

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

000111

01

SREF0
10

CONSEQx

AVSS

1

0

INCHx=0Bh

Auto

ADC10MEM

R

R

0

1

REFOUT
SREF1

1001
1000

0010
0001

0011
0100
0101
0110
0111

0000

1011
1010

0001

1111
1110
1101
1100A12†

A13†

A14†

A15†

† MSP430F22xx devices only.Channels A12-A15 are available in Channels A12-A15 tied to channel A11 in other devices. Not
all channels are available in all devices.
‡TA1 on MSP430F20x2, MSP430G2x31, and MSP430G2x30 devices

VREF−/VeREF−

AVCC

AVSS

AVCC

TA2‡

†
†
†
†

†
†
†
†

www.ti.com ADC10 Introduction

Figure 22-1. ADC10 Block Diagram

549SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

IN R–
ADC

R+ R–

V – V
N = 1023 ×

V – V

R ~ 100Ohm

ESD Protection

INCHx

Input
Ax

ADC10 Operation www.ti.com

22.2 ADC10 Operation

The ADC10 module is configured with user software. The setup and operation of the ADC10 is discussed
in the following sections.

22.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and stores the result in the
ADC10MEM register. The core uses two programmable/selectable voltage levels (VR+ and VR-) to define
the upper and lower limits of the conversion. The digital output (NADC) is full scale (03FFh) when the input
signal is equal to or higher than VR+, and zero when the input signal is equal to or lower than VR-. The
input channel and the reference voltage levels (VR+ and VR-) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format. The conversion formula for
the ADC result when using straight binary format is:

The ADC10 core is configured by two control registers, ADC10CTL0 and ADC10CTL1. The core is
enabled with the ADC10ON bit. With few exceptions the ADC10 control bits can only be modified when
ENC = 0. ENC must be set to 1 before any conversion can take place.

22.2.1.1 Conversion Clock Selection

The ADC10CLK is used both as the conversion clock and to generate the sampling period. The ADC10
source clock is selected using the ADC10SSELx bits and can be divided from 1 to 8 using the
ADC10DIVx bits. Possible ADC10CLK sources are SMCLK, MCLK, ACLK, and internal oscillator
ADC10OSC .

The ADC10OSC, generated internally, is in the 5-MHz range, but varies with individual devices, supply
voltage, and temperature. See the device-specific data sheet for the ADC10OSC specification.

The user must ensure that the clock chosen for ADC10CLK remains active until the end of a conversion. If
the clock is removed during a conversion, the operation does not complete, and any result is invalid.

22.2.2 ADC10 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel for conversion by the
analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise
injection that can result from channel switching (see Figure 22-2). The input multiplexer is also a T-switch
to minimize the coupling between channels. Channels that are not selected are isolated from the A/D, and
the intermediate node is connected to analog ground (VSS) so that the stray capacitance is grounded to
help eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are internally switched, the switching
action may cause transients on the input signal. These transients decay and settle before causing errant
conversion.

Figure 22-2. Analog Multiplexer

550 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC10 Operation

22.2.2.1 Analog Port Selection

The ADC10 external inputs Ax, VeREF+,and VREF- share terminals with general purpose I/O ports, which are
digital CMOS gates (see device-specific data sheet). When analog signals are applied to digital CMOS
gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is
near the transition level of the gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption. The ADC10AEx bits provide the ability to disable the port
pin input and output buffers.
; P2.3 on MSP430F22xx device configured for analog input

BIS.B #08h,&ADC10AE0 ; P2.3 ADC10 function and enable

Devices which don’t have all the ADC10 external inputs channels Ax or VeREF+/VREF+ and VeREF-/VREF-

available at device pins must not alter the default register bit configuration of the not available pins. See
device specific datasheet.

22.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable voltage levels. Setting
REFON = 1 enables the internal reference. When REF2_5V = 1, the internal reference is 2.5 V. When
REF2_5V = 0, the reference is 1.5 V. The internal reference voltage may be used internally (REFOUT = 0)
and, when REFOUT = 1, externally on pin VREF+. REFOUT = 1 should only be used if the pins VREF+and
VREF- are available as device pins.

External references may be supplied for VR+ and VR- through pins A4 and A3 respectively. When external
references are used, or when VCC is used as the reference, the internal reference may be turned off to
save power.

An external positive reference VeREF+ can be buffered by setting SREF0 = 1 and SREF1 = 1 (only devices
with VeREF+ pin). This allows using an external reference with a large internal resistance at the cost of the
buffer current. When REFBURST = 1 the increased current consumption is limited to the sample and
conversion period.

External storage capacitance is not required for the ADC10 reference source as on the ADC12.

22.2.3.1 Internal Reference Low-Power Features

The ADC10 internal reference generator is designed for low power applications. The reference generator
includes a band-gap voltage source and a separate buffer. The current consumption of each is specified
separately in the device-specific data sheet. When REFON = 1, both are enabled and when REFON = 0
both are disabled. The total settling time when REFON becomes set is approximately 30 µs.

When REFON = 1, but no conversion is active, the buffer is automatically disabled and automatically
re-enabled when needed. When the buffer is disabled, it consumes no current. In this case, the bandgap
voltage source remains enabled.

When REFOUT = 1, the REFBURST bit controls the operation of the internal reference buffer. When
REFBURST = 0, the buffer is on continuously, allowing the reference voltage to be present outside the
device continuously. When REFBURST = 1, the buffer is automatically disabled when the ADC10 is not
actively converting and is automatically re-enabled when needed.

The internal reference buffer also has selectable speed versus power settings. When the maximum
conversion rate is below 50 ksps, setting ADC10SR = 1 reduces the current consumption of the buffer
approximately 50%.

22.2.4 Auto Power-Down

The ADC10 is designed for low power applications. When the ADC10 is not actively converting, the core is
automatically disabled and is automatically re-enabled when needed. The ADC10OSC is also
automatically enabled when needed and disabled when not needed. When the core or oscillator is
disabled, it consumes no current.

551SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC10CLKs

Start

Conversion

ADC10CLK

RS RI

VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax

VS = External source voltage

RS = External source resistance

RI = Internal MUX-on input resistance

CI = Input capacitance

VC = Capacitance-charging voltage

ADC10 Operation www.ti.com

22.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of sample input signal SHI. The source for
SHI is selected with the SHSx bits and includes the following:

• The ADC10SC bit

• The Timer_A Output Unit 1

• The Timer_A Output Unit 0

• The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The SHTx bits select the sample
period tsample to be 4, 8, 16, or 64 ADC10CLK cycles. The sampling timer sets SAMPCON high for the
selected sample period after synchronization with ADC10CLK.Total sampling time is tsample plus tsync.The
high-to-low SAMPCON transition starts the analog-to-digital conversion, which requires 13 ADC10CLK
cycles as shown in Figure 22-3.

Figure 22-3. Sample Timing

22.2.5.1 Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample, as shown in Figure 22-4. An internal
MUX-on input resistance RI (2 kΩ maximum) in series with capacitor CI (27 pF maximum) is seen by the
source. The capacitor CI voltage VC must be charged to within ½ LSB of the source voltage VS for an
accurate 10-bit conversion.

Figure 22-4. Analog Input Equivalent Circuit

The resistance of the source RS and RI affect tsample.The following equations can be used to calculate the
minimum sampling time for a 10-bit conversion.

tsample > (RS + RI) × ln(211) × CI

Substituting the values for RI and CI given above, the equation becomes:
tsample > (RS + 2 kΩ) × 7.625 × 27 pF

552 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

t >sample

(R + R) × ln(2) × CS I I

11

tREFBURST
{

www.ti.com ADC10 Operation

For example, if RS is 10 kΩ, tsample must be greater than 2.47 µs.

When the reference buffer is used in burst mode, the sampling time must be greater than the sampling
time calculated and the settling time of the buffer, tREFBURST:

For example, if VRef is 1.5 V and RS is 10 kΩ, tsample must be greater than 2.47 µs when ADC10SR = 0, or
2.5 µs when ADC10SR = 1. See the device-specific data sheet for parameters.

To calculate the buffer settling time when using an external reference, the formula is:
tREFBURST = SR × VRef − 0.5 µs

Where:
SR = Buffer slew rate (~1 µs/V when ADC10SR = 0 and ~2 µs/V when ADC10SR = 1)
VRef = External reference voltage

22.2.6 Conversion Modes

The ADC10 has four operating modes selected by the CONSEQx bits as discussed in Table 22-1.

Table 22-1. Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel single-conversion A single channel is converted once.

01 Sequence-of-channels A sequence of channels is converted once.

10 Repeat single channel A single channel is converted repeatedly.

11 Repeat sequence-of-channels A sequence of channels is converted repeatedly.

553SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10

Off

x = INCHx

Wait for Enable

ENC =

Wait for Trigger

Sample, Input

Channel

ENC =

ENC =
SHS = 0

and

ENC = 1 or

and

ADC10SC =

SAMPCON =

Convert

ENC = 0

ENC = 0†

12 x ADC10CLK

Conversion

Completed,

Result to

ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

† Conversion result is unpredictable

ENC = 0†

ADC10ON = 1

CONSEQx = 00

(4/8/16/64) x ADC10CLK

x = input channel Ax

ADC10 Operation www.ti.com

22.2.6.1 Single-Channel Single-Conversion Mode

A single channel selected by INCHx is sampled and converted once. The ADC result is written to
ADC10MEM. Figure 22-5 shows the flow of the single-channel, single-conversion mode. When ADC10SC
triggers a conversion, successive conversions can be triggered by the ADC10SC bit. When any other
trigger source is used, ENC must be toggled between each conversion.

Figure 22-5. Single-Channel Single-Conversion Mode

554 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10

Off

x = INCHx

Wait for Enable

ENC =

Wait for Trigger

Sample,
Input Channel Ax

ENC =

ENC =

SHS = 0

and

ENC = 1 or

and

ADC10SC =

SAMPCON =

Convert

12 x ADC10CLK

Conversion

Completed,

Result to ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 01

MSC = 1

and

x ≠ 0

x = 0

If x > 0 then x = x −1

MSC = 0

and

x ≠ 0

(4/8/16/64) x ADC10CLK

If x > 0 then x = x −1

x = input channel Ax

www.ti.com ADC10 Operation

22.2.6.2 Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence begins with the channel selected
by INCHx and decrements to channel A0. Each ADC result is written to ADC10MEM. The sequence stops
after conversion of channel A0. Figure 22-6 shows the sequence-of-channels mode. When ADC10SC
triggers a sequence, successive sequences can be triggered by the ADC10SC bit. When any other trigger
source is used, ENC must be toggled between each sequence.

Figure 22-6. Sequence-of-Channels Mode

555SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10

Off

x = INCHx

Wait for Enable

ENC =

Wait for Trigger

ENC =

ENC =

SHS = 0

and

ENC = 1 or

and

ADC10SC =

SAMPCON =

(4/8/16/64) × ADC10CLK

Convert

12 x ADC10CLK

Conversion

Completed,

Result to ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 10

MSC = 1

and

ENC = 1

ENC = 0

MSC = 0

and

ENC = 1

Sample,

Input Channel Ax

x = input channel Ax

ADC10 Operation www.ti.com

22.2.6.3 Repeat-Single-Channel Mode

A single channel selected by INCHx is sampled and converted continuously. Each ADC result is written to
ADC10MEM. Figure 22-7 shows the repeat-single-channel mode.

Figure 22-7. Repeat-Single-Channel Mode

556 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10

Off

x = INCHx

Wait for Enable

ENC =

Wait for Trigger

Sample

Input Channel Ax

ENC =

ENC =

SHS = 0

and

ENC = 1 or

and

ADC10SC =

Convert

12 x ADC10CLK

Conversion

Completed,

Result to ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 11

MSC = 1

and

(ENC = 1

or

x ≠ 0)

ENC = 0

and

x = 0MSC = 0

and

(ENC = 1

or

x ≠ 0)

If x = 0 then x = INCH

else x = x −1

(4/8/16/64) x ADC10CLK

If x = 0 then x = INCH

else x = x −1

x = input channel Ax

SAMPCON =

www.ti.com ADC10 Operation

22.2.6.4 Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence begins with the channel
selected by INCHx and decrements to channel A0. Each ADC result is written to ADC10MEM. The
sequence ends after conversion of channel A0, and the next trigger signal re-starts the sequence.
Figure 22-8 shows the repeat-sequence-of-channels mode.

Figure 22-8. Repeat-Sequence-of-Channels Mode

557SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Operation www.ti.com

22.2.6.5 Using the MSC Bit

To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When MSC = 1 and CONSEQx > 0, the first rising edge
of the SHI signal triggers the first conversion. Successive conversions are triggered automatically as soon
as the prior conversion is completed. Additional rising edges on SHI are ignored until the sequence is
completed in the single-sequence mode or until the ENC bit is toggled in repeat-single-channel, or
repeated-sequence modes. The function of the ENC bit is unchanged when using the MSC bit.

22.2.6.6 Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The recommended ways to stop an active
conversion or conversion sequence are:

• Resetting ENC in single-channel single-conversion mode stops a conversion immediately and the
results are unpredictable. For correct results, poll the ADC10BUSY bit until reset before clearing ENC.

• Resetting ENC during repeat-single-channel operation stops the converter at the end of the current
conversion.

• Resetting ENC during a sequence or repeat sequence mode stops the converter at the end of the
sequence.

• Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting the
ENC bit. Conversion data is unreliable.

22.2.7 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer conversion results from
ADC10MEM to other on-chip memory locations. The DTC is enabled by setting the ADC10DTC1 register
to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and loads the result to
ADC10MEM, a data transfer is triggered. No software intervention is required to manage the ADC10 until
the predefined amount of conversion data has been transferred. Each DTC transfer requires one CPU
MCLK. To avoid any bus contention during the DTC transfer, the CPU is halted, if active, for the one
MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must ensure that no active
conversion or sequence is in progress when the DTC is configured:
; ADC10 activity test

BIC.W #ENC,&ADC10CTL0 ;
busy_test BIT.W #BUSY,&ADC10CTL1 ;

JNZ busy_test ;
MOV.W #xxx,&ADC10SA ; Safe
MOV.B #xx,&ADC10DTC1 ;

; continue setup

558 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10SA

ADC10SA+2

ADC10SA+2n−2

ADC10SA+2n−4

1st transfer

’n’th transfer

2nd transfer

TB=0

DTC

www.ti.com ADC10 Operation

22.2.7.1 One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in ADC10DTC1 defines the total
number of transfers for a block. The block start address is defined anywhere in the MSP430 address
range using the 16-bit register ADC10SA. The block ends at ADC10SA + 2n – 2. The one-block transfer
mode is shown in Figure 22-9.

Figure 22-9. One-Block Transfer

The internal address pointer is initially equal to ADC10SA and the internal transfer counter is initially equal
to 'n'. The internal pointer and counter are not visible to software. The DTC transfers the word-value of
ADC10MEM to the address pointer ADC10SA. After each DTC transfer, the internal address pointer is
incremented by two and the internal transfer counter is decremented by one.

The DTC transfers continue with each loading of ADC10MEM, until the internal transfer counter becomes
equal to zero. No additional DTC transfers occur until a write to ADC10SA. When using the DTC in the
one-block mode, the ADC10IFG flag is set only after a complete block has been transferred. Figure 22-10
shows a state diagram of the one-block mode.

559SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DTC idle

DTC reset

n=0 (ADC10DTC1)

Initialize
Start Address inADC10SA

Wait untilADC10MEM
is written

Wait

for

CPU ready

Write toADC10MEM
completed

Transfer data to

Address AD

AD = AD + 2

x = x − 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare

DTC

DTC

operation

Write toADC10SA
or

n = 0

Write toADC10SA

x = n

AD = SA

n = 0

ADC10IFG=1

ADC10TB = 0

and

ADC10CT = 0

ADC10TB = 0

and

ADC10CT = 1

n ≠ 0

ADC10 Operation www.ti.com

Figure 22-10. State Diagram for Data Transfer Control in One-Block Transfer Mode

560 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10SA

ADC10SA+2

ADC10SA+2n−2

ADC10SA+2n−4

1st transfer

’n’th transfer

2nd transfer

ADC10SA+4n−2

ADC10SA+4n−4

2 x ’n’th transfer

TB=1

DTC

www.ti.com ADC10 Operation

22.2.7.2 Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in ADC10DTC1 defines the number
of transfers for one block. The address range of the first block is defined anywhere in the MSP430
address range with the 16-bit register ADC10SA. The first block ends at ADC10SA+2n-2. The address
range for the second block is defined as SA+2n to SA+4n-2. The two-block transfer mode is shown in
Figure 22-11.

Figure 22-11. Two-Block Transfer

The internal address pointer is initially equal to ADC10SA and the internal transfer counter is initially equal
to 'n'. The internal pointer and counter are not visible to software. The DTC transfers the word-value of
ADC10MEM to the address pointer ADC10SA. After each DTC transfer the internal address pointer is
incremented by two and the internal transfer counter is decremented by one.

The DTC transfers continue, with each loading of ADC10MEM, until the internal transfer counter becomes
equal to zero. At this point, block one is full and both the ADC10IFG flag the ADC10B1 bit are set. The
user can test the ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is automatically reloaded with 'n'. At the
next load of the ADC10MEM, the DTC begins transferring conversion results to block two. After n
transfers have completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit is cleared.
User software can test the cleared ADC10B1 bit to determine that block two is full. Figure 22-12 shows a
state diagram of the two-block mode.

561SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DTC idle

DTC reset

ADC10B1 = 0
ADC10TB = 1

n=0 (ADC10DTC1)

Initialize
Start Address inADC10SA

Wait untilADC10MEM
is written

Wait

for
CPU ready

Write toADC10MEM
completed

Transfer data to

Address AD

AD = AD + 2

x = x − 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare
DTC

DTC
operation

Write toADC10SA
or

n = 0

ADC10IFG=1

Toggle
ADC10B1

Write toADC10SA

x = n

If ADC10B1 = 0
then AD = SA

ADC10B1 = 1
or

ADC10CT=1

ADC10CT = 0
and

ADC10B1 = 0

n = 0
n ≠ 0

ADC10 Operation www.ti.com

Figure 22-12. State Diagram for Data Transfer Control in Two-Block Transfer Mode

562 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC10 Operation

22.2.7.3 Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC does not stop after block one (in
one-block mode) or block two (in two-block mode) has been transferred. The internal address pointer and
transfer counter are set equal to ADC10SA and n respectively. Transfers continue starting in block one. If
the ADC10CT bit is reset, DTC transfers cease after the current completion of transfers into block one (in
one-block mode) or block two (in two-block mode) have been transferred.

22.2.7.4 DTC Transfer Cycle Time

For each ADC10MEM transfer, the DTC requires one or two MCLK clock cycles to synchronize, one for
the actual transfer (while the CPU is halted), and one cycle of wait time. Because the DTC uses MCLK,
the DTC cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active but the CPU is off, the DTC uses the MCLK source for each transfer, without
re-enabling the CPU. If the MCLK source is off, the DTC temporarily restarts MCLK, sourced with
DCOCLK, only during a transfer. The CPU remains off, and MCLK is again turned off after the DTC
transfer. The maximum DTC cycle time for all operating modes is show in Table 22-2.

Table 22-2. Maximum DTC Cycle Time

CPU Operating Mode Clock Source Maximum DTC Cycle Time

Active mode MCLK = DCOCLK 3 MCLK cycles

Active mode MCLK = LFXT1CLK 3 MCLK cycles

Low-power mode LPM0/1 MCLK = DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK = DCOCLK 4 MCLK cycles + 2 µs (1)

Low-power mode LPM0/1 MCLK = LFXT1CLK 4 MCLK cycles

Low-power mode LPM3 MCLK = LFXT1CLK 4 MCLK cycles

Low-power mode LPM4 MCLK = LFXT1CLK 4 MCLK cycles + 2 µs (1)

(1) The additional 2 µs are needed to start the DCOCLK. See the device-specific data sheet for
parameters.

22.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, select the analog input channel INCHx = 1010. Any other
configuration is done as if an external channel was selected, including reference selection,
conversion-memory selection, etc.

The typical temperature sensor transfer function is shown in Figure 22-13. When using the temperature
sensor, the sample period must be greater than 30 µs. The temperature sensor offset error is large.
Deriving absolute temperature values in the application requires calibration. See the device-specific data
sheet for the parameters.

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the VREF+ output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.

563SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Celsius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

−50

0.700

VTEMP=0.00355(TEMPC)+0.986

Digital
Power Supply
Decoupling

100nF10uF

Analog
Power Supply
Decoupling
(if available)

100nF10uF

DVCC

DVSS

AVCC

AVSS

ADC10 Operation www.ti.com

Figure 22-13. Typical Temperature Sensor Transfer Function

22.2.9 ADC10 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset
voltages that can add to or subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 22-14 and Figure 22-15 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design is important to achieve
high accuracy.

Figure 22-14. ADC10 Grounding and Noise Considerations (Internal VREF)

564 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Digital
Power Supply
Decoupling

100nF10uF

100nF10uF

Using an External
Positive Reference

Using an External
Negative Reference

DVCC

DVSS

AVCC

AVSS

VREF- /VeREF-

VREF+/VeREF+

Analog
Power Supply
Decoupling
(if available)

D Q
IRQ, Interrupt Service Requested

Reset
ADC10CLK

POR

’n’ = 0
Set ADC10IFG

IRACC, Interrupt RequestAccepted

ADC10IE

www.ti.com ADC10 Operation

Figure 22-15. ADC10 Grounding and Noise Considerations (External VREF)

22.2.10 ADC10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as shown in Figure 22-16. When the
DTC is not used (ADC10DTC1 = 0), ADC10IFG is set when conversion results are loaded into
ADC10MEM. When DTC is used (ADC10DTC1 > 0), ADC10IFG is set when a block transfer completes
and the internal transfer counter n = 0. If both the ADC10IE and the GIE bits are set, then the ADC10IFG
flag generates an interrupt request. The ADC10IFG flag is automatically reset when the interrupt request
is serviced, or it may be reset by software.

Figure 22-16. ADC10 Interrupt System

565SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Registers www.ti.com

22.3 ADC10 Registers

The ADC10 registers are listed in Table 22-3.

Table 22-3. ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 input enable register 0 ADC10AE0 Read/write 04Ah Reset with POR

ADC10 input enable register 1 ADC10AE1 Read/write 04Bh Reset with POR

ADC10 control register 0 ADC10CTL0 Read/write 01B0h Reset with POR

ADC10 control register 1 ADC10CTL1 Read/write 01B2h Reset with POR

ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTC0 Read/write 048h Reset with POR

ADC10 data transfer control register 1 ADC10DTC1 Read/write 049h Reset with POR

ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR

566 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC10 Registers

22.3.1 ADC10CTL0, ADC10 Control Register 0

15 14 13 12 11 10 9 8

SREFx ADC10SHTx ADC10SR REFOUT REFBURST

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC10ON ADC10IE ADC10IFG ENC ADC10SC

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Can be modified only when ENC = 0

SREFx Bits 15-13 Select reference.

000 VR+ = VCC and VR- = VSS

001 VR+ = VREF+ and VR- = VSS

010 VR+ = VeREF+ and VR- = VSS. Devices with VeREF+ only.

011 VR+ = Buffered VeREF+ and VR- = VSS. Devices with VeREF+ pin only.

100 VR+ = VCC and VR- = VREF-/ VeREF-. Devices with VeREF- pin only.

101 VR+ = VREF+ and VR- = VREF-/ VeREF-. Devices with VeREF+/- pins only.

110 VR+ = VeREF+ and VR- = VREF-/ VeREF-. Devices with VeREF+/- pins only.

111 VR+ = Buffered VeREF+ and VR- = VREF-/ VeREF-. Devices with VeREF+/- pins only.

ADC10SHTx Bits 12-11 ADC10 sample-and-hold time

00 4 × ADC10CLKs

01 8 × ADC10CLKs

10 16 × ADC10CLKs

11 64 × ADC10CLKs

ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate.
Setting ADC10SR reduces the current consumption of the reference buffer.

0 Reference buffer supports up to ~200 ksps

1 Reference buffer supports up to ~50 ksps

REFOUT Bit 9 Reference output

0 Reference output off

1 Reference output on. Devices with VeREF+ / VREF+ pin only.

REFBURST Bit 8 Reference burst.

0 Reference buffer on continuously

1 Reference buffer on only during sample-and-conversion

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion.

1 The first rising edge of the SHI signal triggers the sampling timer, but further
sample-and-conversions are performed automatically as soon as the prior conversion is completed

REF2_5V Bit 6 Reference-generator voltage. REFON must also be set.

0 1.5 V

1 2.5 V

REFON Bit 5 Reference generator on

0 Reference off

1 Reference on

ADC10ON Bit 4 ADC10 on

0 ADC10 off

1 ADC10 on

ADC10IE Bit 3 ADC10 interrupt enable

0 Interrupt disabled

1 Interrupt enabled

567SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Registers www.ti.com

ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset
when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set
when a block of transfers is completed.

0 No interrupt pending

1 Interrupt pending

ENC Bit 1 Enable conversion

0 ADC10 disabled

1 ADC10 enabled

ADC10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together
with one instruction. ADC10SC is reset automatically.

0 No sample-and-conversion start

1 Start sample-and-conversion

568 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC10 Registers

22.3.2 ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11 10 9 8

INCHx SHSx ADC10DF ISSH

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC10DIVx ADC10SSELx CONSEQx ADC10BUSY

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-0

Can be modified only when ENC = 0

INCHx Bits 15-12 Input channel select. These bits select the channel for a single-conversion or the highest channel for a
sequence of conversions. Only available ADC channels should be selected. See device specific datasheet.

0000 A0

0001 A1

0010 A2

0011 A3

0100 A4

0101 A5

0110 A6

0111 A7

1000 VeREF+

1001 VREF-/VeREF-

1010 Temperature sensor

1011 (VCC - VSS) / 2

1100 (VCC - VSS) / 2, A12 on MSP430F22xx devices

1101 (VCC - VSS) / 2, A13 on MSP430F22xx devices

1110 (VCC - VSS) / 2, A14 on MSP430F22xx devices

1111 (VCC - VSS) / 2, A15 on MSP430F22xx devices

SHSx Bits 11-10 Sample-and-hold source select.

00 ADC10SC bit

01 Timer_A.OUT1 (1)

10 Timer_A.OUT0 (1)

11 Timer_A.OUT2 (Timer_A.OUT1 on MSP430F20x0, MSP430G2x31, and MSP430G2x30 devices) (1)

ADC10DF Bit 9 ADC10 data format

0 Straight binary

1 2s complement

ISSH Bit 8 Invert signal sample-and-hold

0 The sample-input signal is not inverted.

1 The sample-input signal is inverted.

ADC10DIVx Bits 7-5 ADC10 clock divider

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

ADC10SSELx Bits 4-3 ADC10 clock source select

00 ADC10OSC

01 ACLK

10 MCLK

11 SMCLK
(1) Timer triggers are from Timer0_Ax if more than one timer module exists on the device.

569SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Registers www.ti.com

CONSEQx Bits 2-1 Conversion sequence mode select

00 Single-channel-single-conversion

01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC10BUSY Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation

0 No operation is active.

1 A sequence, sample, or conversion is active.

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

7 6 5 4 3 2 1 0

ADC10AE0x

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC10AE0x Bits 7-0 ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT0 corresponds to A0,
BIT1 corresponds to A1, etc. The analog enable bit of not implemented channels should not be programmed
to 1.

0 Analog input disabled

1 Analog input enabled

22.3.4 ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430F22xx only)

7 6 5 4 3 2 1 0

ADC10AE1x Reserved

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC10AE1x Bits 7-4 ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT4 corresponds to A12,
BIT5 corresponds to A13, BIT6 corresponds to A14, and BIT7 corresponds to A15. The analog enable bit of
not implemented channels should not be programmed to 1.

0 Analog input disabled

1 Analog input enabled

Reserved Bits 3-0 Reserved

22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format

15 14 13 12 11 10 9 8

0 0 0 0 0 0 Conversion Results

r0 r0 r0 r0 r0 r0 r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion Bits 15-0 The 10-bit conversion results are right justified, straight-binary format. Bit 9 is the MSB. Bits 15-10 are
Results always 0.

570 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC10 Registers

22.3.6 ADC10MEM, Conversion-Memory Register, 2s Complement Format

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0 0 0

r r r0 r0 r0 r0 r0 r0

Conversion Bits 15-0 The 10-bit conversion results are left-justified, 2s complement format. Bit 15 is the MSB. Bits 5-0 are always
Results 0.

22.3.7 ADC10DTC0, Data Transfer Control Register 0

7 6 5 4 3 2 1 0

Reserved ADC10TB ADC10CT ADC10B1 ADC10FETCH

r0 r0 r0 r0 rw-(0) rw-(0) r-(0) rw-(0)

Reserved Bits 7-4 Reserved. Always read as 0.

ADC10TB Bit 3 ADC10 two-block mode

0 One-block transfer mode

1 Two-block transfer mode

ADC10CT Bit 2 ADC10 continuous transfer

0 Data transfer stops when one block (one-block mode) or two blocks (two-block mode) have
completed.

1 Data is transferred continuously. DTC operation is stopped only if ADC10CT cleared, or ADC10SA
is written to.

ADC10B1 Bit 1 ADC10 block one. This bit indicates for two-block mode which block is filled with ADC10 conversion results.
ADC10B1 is valid only after ADC10IFG has been set the first time during DTC operation. ADC10TB must
also be set.

0 Block 2 is filled

1 Block 1 is filled

ADC10FETCH Bit 0 This bit should normally be reset.

22.3.8 ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0

DTC Transfers

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

DTC Transfers Bits 7-0 DTC transfers. These bits define the number of transfers in each block.

0 DTC is disabled

01h-0FFh Number of transfers per block

571SLAU144I–December 2004–Revised January 2012 ADC10
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC10 Registers www.ti.com

22.3.9 ADC10SA, Start Address Register for Data Transfer

15 14 13 12 11 10 9 8

ADC10SAx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC10SAx 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r0

ADC10SAx Bits 15-1 ADC10 start address. These bits are the start address for the DTC. A write to register ADC10SA is required
to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.

572 ADC10 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 23
SLAU144I–December 2004–Revised January 2012

ADC12

The ADC12 module is a high-performance 12-bit analog-to-digital converter. This chapter describes the
ADC12 of the MSP430x2xx device family.

Topic ... Page

23.1 ADC12 Introduction ... 574
23.2 ADC12 Operation ... 576
23.3 ADC12 Registers ... 588

573SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Introduction www.ti.com

23.1 ADC12 Introduction

The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored
without any CPU intervention.

ADC12 features include:

• Greater than 200-ksps maximum conversion rate

• Monotonic 12-bit converter with no missing codes

• Sample-and-hold with programmable sampling periods controlled by software or timers

• Conversion initiation by software, Timer_A, or Timer_B

• Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

• Software selectable internal or external reference

• Eight individually configurable external input channels

• Conversion channels for internal temperature sensor, AVCC, and external references

• Independent channel-selectable reference sources for both positive and negative references

• Selectable conversion clock source

• Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes

• ADC core and reference voltage can be powered down separately

• Interrupt vector register for fast decoding of 18 ADC interrupts

• 16 conversion-result storage registers

The block diagram of ADC12 is shown in Figure 23-1.

574 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Sample
and
Hold

VeREF+

12-bit SAR

VR−

−
16 x 12
Memory
Buffer

−

VR+

VREF+

V /VeREF− REF−

ADC12SC

TA1

TB1

TB0

Divider
/1 ... /8

ADC12DIVx

ADC12CLK

ENC

MSC

SHP
SHT0x

SAMPCON

SHI

S/H Convert

Sync

Sample Timer
/4 ... /1024

INCHx

4

A0
A1
A2
A3
A4
A5
A6
A7

ADC12MEM0

ADC12MEM15

ADC12MCTL0

ADC12MCTL15

CSTARTADDx

4

4

SHT1x

CONSEQx

ACLK

MCLK

SMCLK

ADC12SSELx

ADC12OSC

00

01

10

11

00

01

10

11

SHSx

00

01

10

11

00

01

10

11

ISSH

1

0

0

1

SREF2 01

SREF1
0001

SREF0
10

ADC12ON

BUSY

REFON
INCHx=0Ah

1.5 V or 2.5 V
Reference

on

Ref_x

Ref_x

INCHx=0Bh

11

R

R

0000

1001
1000

0010
0001

0011
0100
0101
0110
0111

1011
1010

1111
1110
1101
1100

REF2_5V

AVCC

AVSS

Floating
Floating
Floating

Floating

AVCC

−
16 x 8

Memory
Control

−

AVCC

AVSS

www.ti.com ADC12 Introduction

Figure 23-1. ADC12 Block Diagram

575SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

IN R-
ADC

R+ R-

V - V
N = 4095 ×

V - V

R ~ 100 Ohm

ESD Protection

ADC12MCTLx.0−3

Input
Ax

ADC12 Operation www.ti.com

23.2 ADC12 Operation

The ADC12 module is configured with user software. The setup and operation of the ADC12 is discussed
in the following sections.

23.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and stores the result in
conversion memory. The core uses two programmable/selectable voltage levels (VR+ and VR-) to define the
upper and lower limits of the conversion. The digital output (NADC) is full scale (0FFFh) when the input
signal is equal to or higher than VR+, and the digital output is zero when the input signal is equal to or
lower than VR-. The input channel and the reference voltage levels (VR+ and VR-) are defined in the
conversion-control memory. The conversion formula for the ADC result NADC is:

The ADC12 core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The core is
enabled with the ADC12ON bit. The ADC12 can be turned off when not in use to save power. With few
exceptions, the ADC12 control bits can only be modified when ENC = 0. ENC must be set to 1 before any
conversion can take place.

23.2.1.1 Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse
sampling mode is selected. The ADC12 source clock is selected using the ADC12SSELx bits and can be
divided from 1 through 8 using the ADC12DIVx bits. Possible ADC12CLK sources are SMCLK, MCLK,
ACLK, and an internal oscillator ADC12OSC.

The ADC12OSC is generated internally and is in the 5-MHz range, but the frequency varies with individual
devices, supply voltage, and temperature. See the device-specific datasheet for the ADC12OSC
specification.

The application must ensure that the clock chosen for ADC12CLK remains active until the end of a
conversion. If the clock is removed during a conversion, the operation does not complete and any result is
invalid.

23.2.2 ADC12 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel for conversion by the
analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise
injection that can result from channel switching (see Figure 23-2). The input multiplexer is also a T-switch
to minimize the coupling between channels. Channels that are not selected are isolated from the A/D, and
the intermediate node is connected to analog ground (AVSS) so that the stray capacitance is grounded to
help eliminate crosstalk.

The ADC12 uses the charge redistribution method. When the inputs are internally switched, the switching
action may cause transients on the input signal. These transients decay and settle before causing errant
conversion.

Figure 23-2. Analog Multiplexer

576 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC12 Operation

23.2.2.1 Analog Port Selection

The ADC12 inputs are multiplexed with the port P6 pins, which are digital CMOS gates. When analog
signals are applied to digital CMOS gates, parasitic current can flow from VCC to GND. This parasitic
current occurs if the input voltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and, therefore, reduces overall current consumption. The P6SELx bits
provide the ability to disable the port pin input and output buffers.
; P6.0 and P6.1 configured for analog input

BIS.B #3h,&P6SEL ; P6.1 and P6.0 ADC12 function

23.2.3 Voltage Reference Generator

The ADC12 module contains a built-in voltage reference with two selectable voltage levels, 1.5 V and
2.5 V. Either of these reference voltages may be used internally and externally on pin VREF+.

Setting REFON = 1 enables the internal reference. When REF2_5V = 1, the internal reference is 2.5 V.
When REF2_5V = 0, the reference is 1.5 V. The reference can be turned off to save power when not in
use.

For proper operation, the internal voltage reference generator must be supplied with storage capacitance
across VREF+ and AVSS. The recommended storage capacitance is a parallel combination of 10-µF and
0.1-µF capacitors. From turn-on, a maximum of 17 ms must be allowed for the voltage reference generator
to bias the recommended storage capacitors. If the internal reference generator is not used for the
conversion, the storage capacitors are not required.

NOTE: Reference Decoupling

Approximately 200 µA is required from any reference used by the ADC12 while the two LSBs
are being resolved during a conversion. A parallel combination of 10-µF and 0.1-µF
capacitors is recommended for any reference as shown in Figure 23-11.

External references may be supplied for VR+ and VR- through pins VeREF+ and VREF-/VeREF- respectively.

23.2.4 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source
for SHI is selected with the SHSx bits and includes the following:

• The ADC12SC bit

• The Timer_A Output Unit 1

• The Timer_B Output Unit 0

• The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ISSH bit. The SAMPCON signal controls the
sample period and start of conversion. When SAMPCON is high, sampling is active. The high-to-low
SAMPCON transition starts the analog-to-digital conversion, which requires 13 ADC12CLK cycles. Two
different sample-timing methods are defined by control bit SHP, extended sample mode and pulse mode.

577SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

t sync

13 x ADC12CLK

Start

Conversion

ADC12CLK

Start

Sampling

Stop

Sampling

Conversion

Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC12CLK

Start

Conversion

ADC12CLK

ADC12 Operation www.ti.com

23.2.4.1 Extended Sample Mode

The extended sample mode is selected when SHP = 0. The SHI signal directly controls SAMPCON and
defines the length of the sample period tsample. When SAMPCON is high, sampling is active. The
high-to-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see
Figure 23-3).

Figure 23-3. Extended Sample Mode

23.2.4.2 Pulse Sample Mode

The pulse sample mode is selected when SHP = 1. The SHI signal is used to trigger the sampling timer.
The SHT0x and SHT1x bits in ADC12CTL0 control the interval of the sampling timer that defines the
SAMPCON sample period tsample. The sampling timer keeps SAMPCON high after synchronization with
AD12CLK for a programmed interval tsample. The total sampling time is tsample plus tsync (see Figure 23-4).

The SHTx bits select the sampling time in 4x multiples of ADC12CLK. SHT0x selects the sampling time
for ADC12MCTL0 to 7 and SHT1x selects the sampling time for ADC12MCTL8 to 15.

Figure 23-4. Pulse Sample Mode

578 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

RS RI

VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax

VS = External source voltage

RS = External source resistance

RI = Internal MUX-on input resistance

CI = Input capacitance

VC = Capacitance-charging voltage

www.ti.com ADC12 Operation

23.2.4.3 Sample Timing Considerations

When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample, as shown in Figure 23-5. An internal
MUX-on input resistance RI (maximum of 2 kΩ) in series with capacitor CI (maximum of 40 pF) is seen by
the source. The capacitor CI voltage (VC) must be charged to within 1/2 LSB of the source voltage (VS) for
an accurate 12-bit conversion.

Figure 23-5. Analog Input Equivalent Circuit

The resistance of the source RS and RI affect tsample. The following equation can be used to calculate the
minimum sampling time tsample for a 12-bit conversion:

tsample > (RS + RI) × ln(213) × CI + 800 ns

Substituting the values for RI and CI given above, the equation becomes:
tsample > (RS + 2 kΩ) × 9.011 × 40 pF + 800 ns

For example, if RS is 10 kΩ, tsample must be greater than 5.13 µs.

23.2.5 Conversion Memory

There are 16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx
is configured with an associated ADC12MCTLx control register. The SREFx bits define the voltage
reference and the INCHx bits select the input channel. The EOS bit defines the end of sequence when a
sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEM0 when
the EOS bit in ADC12MCTL15 is not set.

The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is
single-channel or repeat-single-channel the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in a sequence when each conversion
completes. The sequence continues until an EOS bit in ADC12MCTLx is processed; this is the last control
byte processed.

When conversion results are written to a selected ADC12MEMx, the corresponding flag in the ADC12IFGx
register is set.

23.2.6 ADC12 Conversion Modes

The ADC12 has four operating modes selected by the CONSEQx bits as shown in Table 23-1.

Table 23-1. Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel single-conversion A single channel is converted once.

01 Sequence-of-channels A sequence of channels is converted once.

10 Repeat-single-channel A single channel is converted repeatedly.

11 Repeat-sequence-of-channels A sequence of channels is converted repeatedly.

579SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12

off

x = CSTARTADDx

Wait for Enable

ENC =

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ENC =

ENC =

SHSx = 0

and

ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

ENC = 0

ENC = 0†

12 x ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ENC = 0†

ADC12ON = 1

CONSEQx = 00

x = pointer to ADC12MCTLx
† Conversion result is unpredictable

ADC12 Operation www.ti.com

23.2.6.1 Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined
by the CSTARTADDx bits. Figure 23-6 shows the flow of the single-channel, single-conversion mode.
When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit.
When any other trigger source is used, ENC must be toggled between each conversion.

Figure 23-6. Single-Channel, Single-Conversion Mode

580 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12

off

x = CSTARTADDx

Wait for Enable

ENC =

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ENC =

ENC =

SHSx = 0

and

ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

12 x ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 01

MSC = 1

and

SHP = 1

and

EOS.x = 0

EOS.x = 1

If x < 15 then x = x + 1

else x = 0

If x < 15 then x = x + 1

else x = 0

(MSC = 0

or

SHP = 0)

and

EOS.x = 0

x = pointer to ADC12MCTLx

www.ti.com ADC12 Operation

23.2.6.2 Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are written to the conversion
memories starting with the ADCMEMx defined by the CSTARTADDx bits. The sequence stops after the
measurement of the channel with a set EOS bit. Figure 23-7 shows the sequence-of-channels mode.
When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC bit. When
any other trigger source is used, ENC must be toggled between each sequence.

Figure 23-7. Sequence-of-Channels Mode

581SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12

off

x = CSTARTADDx

Wait for Enable

ENC =

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ENC =

ENC =

SHSx = 0

and

ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

12 x ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 10

MSC = 1

and

SHP = 1

and

ENC = 1

ENC = 0

(MSC = 0

or

SHP = 0)

and

ENC = 1

x = pointer to ADC12MCTLx

ADC12 Operation www.ti.com

23.2.6.3 Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx
defined by the CSTARTADDx bits. It is necessary to read the result after the completed conversion,
because only one ADC12MEMx memory is used and is overwritten by the next conversion. Figure 23-8
shows repeat-single-channel mode.

Figure 23-8. Repeat-Single-Channel Mode

582 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12

off

x = CSTARTADDx

Wait for Enable

ENC =

Wait for Trigger

Sample, Input

Channel Defined in

ADC12MCTLx

ENC =

ENC =

SHSx = 0

and

ENC = 1 or

and

ADC12SC =

SAMPCON =

SAMPCON = 1

SAMPCON =

12 x ADC12CLK

Conversion

Completed,

Result Stored Into

ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 11

MSC = 1

and

SHP = 1

and

(ENC = 1

or

EOS.x = 0)

ENC = 0

and

EOS.x = 1

(MSC = 0

or

SHP = 0)

and

(ENC = 1

or

EOS.x = 0)

If EOS.x = 1 then x =

CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

If EOS.x = 1 then x =

CSTARTADDx

else {if x < 15 then x = x + 1 else

x = 0}

x = pointer to ADC12MCTLx

Convert

www.ti.com ADC12 Operation

23.2.6.4 Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC results are written to the
conversion memories starting with the ADC12MEMx defined by the CSTARTADDx bits. The sequence
ends after the measurement of the channel with a set EOS bit, and the next trigger signal re-starts the
sequence. Figure 23-9 shows the repeat-sequence-of-channels mode.

Figure 23-9. Repeat-Sequence-of-Channels Mode

583SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Operation www.ti.com

23.2.6.5 Using the Multiple Sample and Convert (MSC) Bit

To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When MSC = 1, CONSEQx > 0, and the sample timer is
used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions are
triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI are
ignored until the sequence is completed in the single-sequence mode or until the ENC bit is toggled in
repeat-single-channel or repeated-sequence modes. The function of the ENC bit is unchanged when using
the MSC bit.

23.2.6.6 Stopping Conversions

Stopping ADC12 activity depends on the mode of operation. The recommended ways to stop an active
conversion or conversion sequence are:

• Resetting ENC in single-channel single-conversion mode stops a conversion immediately and the
results are unpredictable. For correct results, poll the busy bit until it is reset before clearing ENC.

• Resetting ENC during repeat-single-channel operation stops the converter at the end of the current
conversion.

• Resetting ENC during a sequence or repeat-sequence mode stops the converter at the end of the
sequence.

• Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting ENC
bit. In this case, conversion data are unreliable.

NOTE: No EOS Bit Set For Sequence

If no EOS bit is set and a sequence mode is selected, resetting the ENC bit does not stop
the sequence. To stop the sequence, first select a single-channel mode and then reset ENC.

23.2.7 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, select the analog input channel INCHx = 1010. Any other
configuration is done as if an external channel was selected, including reference selection,
conversion-memory selection, etc.

The typical temperature sensor transfer function is shown in Figure 23-10. When using the temperature
sensor, the sample period must be greater than 30 µs. The temperature sensor offset error can be large
and needs to be calibrated for most applications. See device-specific datasheet for parameters.

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the VREF+ output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.

584 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Celsius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

−50

0.700

VTEMP=0.00355(TEMPC)+0.986

www.ti.com ADC12 Operation

Figure 23-10. Typical Temperature Sensor Transfer Function

23.2.8 ADC12 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset
voltages that can add to or subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 23-11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and
digital ground planes with a single-point connection is recommend to achieve high accuracy.

585SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DVCC

DVSS

AVCC

AVSS

VeREF+

Digital

Power Supply

Decoupling

10 uF 100 nF

+Using an External

Positive

Reference

VREF+

VREF− / VeREF−

Using the Internal

Reference

Generator

10 uF 100 nF

100 nF

+

+

10 uF 100 nF

+

Using an External

Negative

Reference

10 uF

+Analog

Power Supply

Decoupling

10 uF 100 nF

ADC12 Operation www.ti.com

Figure 23-11. ADC12 Grounding and Noise Considerations

23.2.9 ADC12 Interrupts

The ADC12 has 18 interrupt sources:

• ADC12IFG0 to ADC12IFG15

• ADC12OV, ADC12MEMx overflow

• ADC12TOV, ADC12 conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a
conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are
set. The ADC12OV condition occurs when a conversion result is written to any ADC12MEMx before its
previous conversion result was read. The ADC12TOV condition is generated when another
sample-and-conversion is requested before the current conversion is completed. The DMA is triggered
after the conversion in single channel modes or after the completion of a sequence-of-channel modes.

23.2.9.1 ADC12IV, Interrupt Vector Generator

All ADC12 interrupt sources are prioritized and combined to source a single interrupt vector. The interrupt
vector register ADC12IV is used to determine which enabled ADC12 interrupt source requested an
interrupt.

The highest priority enabled ADC12 interrupt generates a number in the ADC12IV register (see
Section 23.3.7). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled ADC12 interrupts do not affect the ADC12IV value.

Any access (read or write) of the ADC12IV register automatically resets the ADC12OV condition or the
ADC12TOV condition if either was the highest pending interrupt. Neither interrupt condition has an
accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits are
reset automatically by accessing their associated ADC12MEMx register or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the
ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

586 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC12 Operation

23.2.9.2 ADC12 Interrupt Handling Software Example

Example 23-1 shows the recommended use of ADC12IV and the handling overhead. The ADC12IV value
is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• ADC12IFG0 to ADC12IFG14, ADC12TOV, and ADC12OV: 16 cycles

• ADC12IFG15: 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher prioritized interrupt
occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12 interrupt is
pending.

Example 23-1. Interrupt Handling

; Interrupt handler for ADC12.
INT_ADC12 ; Enter Interrupt Service Routine 6

ADD &ADC12IV,PC ; Add offset to PC 3
RETI ; Vector 0: No interrupt 5
JMP ADOV ; Vector 2: ADC overflow 2
JMP ADTOV ; Vector 4: ADC timing overflow 2
JMP ADM0 ; Vector 6: ADC12IFG0 2

... ; Vectors 8-32 2
JMP ADM14 ; Vector 34: ADC12IFG14 2

;
; Handler for ADC12IFG15 starts here. No JMP required.
;
ADM15 MOV &ADC12MEM15,xxx ; Move result, flag is reset

... ; Other instruction needed?
JMP INT_ADC12 ; Check other int pending

;
; ADC12IFG14-ADC12IFG1 handlers go here
;
ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset

... ; Other instruction needed?
RETI ; Return 5

;
ADTOV ... ; Handle Conv. time overflow

RETI ; Return 5
;
ADOV ... ; Handle ADCMEMx overflow

RETI ; Return 5

587SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Registers www.ti.com

23.3 ADC12 Registers

The ADC12 registers are listed in Table 23-2.

Table 23-2. ADC12 Registers

Register Short Form Register Type Address Initial State

ADC12 control register 0 ADC12CTL0 Read/write 01A0h Reset with POR

ADC12 control register 1 ADC12CTL1 Read/write 01A2h Reset with POR

ADC12 interrupt flag register ADC12IFG Read/write 01A4h Reset with POR

ADC12 interrupt enable register ADC12IE Read/write 01A6h Reset with POR

ADC12 interrupt vector word ADC12IV Read 01A8h Reset with POR

ADC12 memory 0 ADC12MEM0 Read/write 0140h Unchanged

ADC12 memory 1 ADC12MEM1 Read/write 0142h Unchanged

ADC12 memory 2 ADC12MEM2 Read/write 0144h Unchanged

ADC12 memory 3 ADC12MEM3 Read/write 0146h Unchanged

ADC12 memory 4 ADC12MEM4 Read/write 0148h Unchanged

ADC12 memory 5 ADC12MEM5 Read/write 014Ah Unchanged

ADC12 memory 6 ADC12MEM6 Read/write 014Ch Unchanged

ADC12 memory 7 ADC12MEM7 Read/write 014Eh Unchanged

ADC12 memory 8 ADC12MEM8 Read/write 0150h Unchanged

ADC12 memory 9 ADC12MEM9 Read/write 0152h Unchanged

ADC12 memory 10 ADC12MEM10 Read/write 0154h Unchanged

ADC12 memory 11 ADC12MEM11 Read/write 0156h Unchanged

ADC12 memory 12 ADC12MEM12 Read/write 0158h Unchanged

ADC12 memory 13 ADC12MEM13 Read/write 015Ah Unchanged

ADC12 memory 14 ADC12MEM14 Read/write 015Ch Unchanged

ADC12 memory 15 ADC12MEM15 Read/write 015Eh Unchanged

ADC12 memory control 0 ADC12MCTL0 Read/write 080h Reset with POR

ADC12 memory control 1 ADC12MCTL1 Read/write 081h Reset with POR

ADC12 memory control 2 ADC12MCTL2 Read/write 082h Reset with POR

ADC12 memory control 3 ADC12MCTL3 Read/write 083h Reset with POR

ADC12 memory control 4 ADC12MCTL4 Read/write 084h Reset with POR

ADC12 memory control 5 ADC12MCTL5 Read/write 085h Reset with POR

ADC12 memory control 6 ADC12MCTL6 Read/write 086h Reset with POR

ADC12 memory control 7 ADC12MCTL7 Read/write 087h Reset with POR

ADC12 memory control 8 ADC12MCTL8 Read/write 088h Reset with POR

ADC12 memory control 9 ADC12MCTL9 Read/write 089h Reset with POR

ADC12 memory control 10 ADC12MCTL10 Read/write 08Ah Reset with POR

ADC12 memory control 11 ADC12MCTL11 Read/write 08Bh Reset with POR

ADC12 memory control 12 ADC12MCTL12 Read/write 08Ch Reset with POR

ADC12 memory control 13 ADC12MCTL13 Read/write 08Dh Reset with POR

ADC12 memory control 14 ADC12MCTL14 Read/write 08Eh Reset with POR

ADC12 memory control 15 ADC12MCTL15 Read/write 08Fh Reset with POR

588 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC12 Registers

23.3.1 ADC12CTL0, ADC12 Control Register 0

15 14 13 12 11 10 9 8

SHT1x SHT0x

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC120N ADC12OVIE ADC12TOVIE ENC ADC12SC

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Can be modified only when ENC = 0

SHT1x Bits 15-12 Sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for
registers ADC12MEM8 to ADC12MEM15.

0000 4 ADC12CLK cycles

0001 8 ADC12CLK cycles

0010 16 ADC12CLK cycles

0011 32 ADC12CLK cycles

0100 64 ADC12CLK cycles

0101 96 ADC12CLK cycles

0110 128 ADC12CLK cycles

0111 192 ADC12CLK cycles

1000 256 ADC12CLK cycles

1001 384 ADC12CLK cycles

1010 512 ADC12CLK cycles

1011 768 ADC12CLK cycles

1100 1024 ADC12CLK cycles

1101 1024 ADC12CLK cycles

1110 1024 ADC12CLK cycles

1111 1024 ADC12CLK cycles

SHT0x Bits 11-8 Sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for
registers ADC12MEM0 to ADC12MEM7.

0000 4 ADC12CLK cycles

0001 8 ADC12CLK cycles

0010 16 ADC12CLK cycles

0011 32 ADC12CLK cycles

0100 64 ADC12CLK cycles

0101 96 ADC12CLK cycles

0110 128 ADC12CLK cycles

0111 192 ADC12CLK cycles

1000 256 ADC12CLK cycles

1001 384 ADC12CLK cycles

1010 512 ADC12CLK cycles

1011 768 ADC12CLK cycles

1100 1024 ADC12CLK cycles

1101 1024 ADC12CLK cycles

1110 1024 ADC12CLK cycles

1111 1024 ADC12CLK cycles

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling timer requires a rising edge of the SHI signal to trigger each sample-and-conversion.

1 The first rising edge of the SHI signal triggers the sampling timer, but further
sample-and-conversions are performed automatically as soon as the prior conversion is completed.

REF2_5V Bit 6 Reference generator voltage. REFON must also be set.

0 1.5 V

1 2.5 V

589SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Registers www.ti.com

REFON Bit 5 Reference generator on

0 Reference off

1 Reference on

ADC12ON Bit 4 ADC12 on

0 ADC12 off

1 ADC12 on

ADC12OVIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable the interrupt.

0 Overflow interrupt disabled

1 Overflow interrupt enabled

ADC12TOVIE Bit 2 ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the interrupt.

0 Conversion time overflow interrupt disabled

1 Conversion time overflow interrupt enabled

ENC Bit 1 Enable conversion

0 ADC12 disabled

1 ADC12 enabled

ADC12SC Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC12SC and ENC may be set together
with one instruction. ADC12SC is reset automatically.

0 No sample-and-conversion-start

1 Start sample-and-conversion

590 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC12 Registers

23.3.2 ADC12CTL1, ADC12 Control Register 1

15 14 13 12 11 10 9 8

CSTARTADDx SHSx SHP ISSH

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12DIVx ADC12SSELx CONSEQx ADC12BUSY

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Can be modified only when ENC = 0

CSTARTADDx Bits 15-12 Conversion start address. These bits select which ADC12 conversion-memory register is used for a single
conversion or for the first conversion in a sequence. The value of CSTARTADDx is 0 to 0Fh, corresponding
to ADC12MEM0 to ADC12MEM15.

SHSx Bits 11-10 Sample-and-hold source select

00 ADC12SC bit

01 Timer_A.OUT1

10 Timer_B.OUT0

11 Timer_B.OUT1

SHP Bit 9 Sample-and-hold pulse-mode select. This bit selects the source of the sampling signal (SAMPCON) to be
either the output of the sampling timer or the sample-input signal directly.

0 SAMPCON signal is sourced from the sample-input signal.

1 SAMPCON signal is sourced from the sampling timer.

ISSH Bit 8 Invert signal sample-and-hold

0 The sample-input signal is not inverted.

1 The sample-input signal is inverted.

ADC12DIVx Bits 7-5 ADC12 clock divider

000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

ADC12SSELx Bits 4-3 ADC12 clock source select

00 ADC12OSC

01 ACLK

10 MCLK

11 SMCLK

CONSEQx Bits 2-1 Conversion sequence mode select

00 Single-channel, single-conversion

01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC12BUSY Bit 0 ADC12 busy. This bit indicates an active sample or conversion operation.

0 No operation is active.

1 A sequence, sample, or conversion is active.

591SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Registers www.ti.com

23.3.3 ADC12MEMx, ADC12 Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results

r0 r0 r0 r0 rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results

rw rw rw rw rw rw rw rw

Conversion Bits 15-0 The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12 are always 0. Writing to the
Results conversion memory registers corrupts the results.

23.3.4 ADC12MCTLx, ADC12 Conversion Memory Control Registers

7 6 5 4 3 2 1 0

EOS SREFx INCHx

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Can be modified only when ENC = 0

EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.

0 Not end of sequence

1 End of sequence

SREFx Bits 6-4 Select reference

000 VR+ = AVCC and VR- = AVSS

001 VR+ = VREF+ and VR- = AVSS

010 VR+ = VeREF+ and VR- = AVSS

011 VR+ = VeREF+ and VR- = AVSS

100 VR+ = AVCC and VR- = VREF-/ VeREF-

101 VR+ = VREF+ and VR- = VREF-/ VeREF-

110 VR+ = VeREF+ and VR- = VREF-/ VeREF-

111 VR+ = VeREF+ and VR- = VREF-/ VeREF-

INCHx Bits 3-0 Input channel select

0000 A0

0001 A1

0010 A2

0011 A3

0100 A4

0101 A5

0110 A6

0111 A7

1000 VeREF+

1001 VREF- /VeREF-

1010 Temperature diode

1011 (AVCC - AVSS) / 2

1100 GND

1101 GND

1110 GND

1111 GND

592 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com ADC12 Registers

23.3.5 ADC12IE, ADC12 Interrupt Enable Register

15 14 13 12 11 10 9 8

ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IFG9 ADC12IE8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IEx Bits 15-0 Interrupt enable. These bits enable or disable the interrupt request for the ADC12IFGx bits.

0 Interrupt disabled

1 Interrupt enabled

23.3.6 ADC12IFG, ADC12 Interrupt Flag Register

15 14 13 12 11 10 9 8

ADC12IFG15 ADC12IFG14 ADC12IFG13 ADC12IFG12 ADC12IFG11 ADC12IFG10 ADC12IFG9 ADC12IFG8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

ADC12IFG7 ADC12IFG6 ADC12IFG5 ADC12IFG4 ADC12IFG3 ADC12IFG2 ADC12IFG1 ADC12IFG0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC12IFGx Bits 15-0 ADC12MEMx Interrupt flag. These bits are set when corresponding ADC12MEMx is loaded with a
conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMx is accessed, or may be
reset with software.

0 No interrupt pending

1 Interrupt pending

593SLAU144I–December 2004–Revised January 2012 ADC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

ADC12 Registers www.ti.com

23.3.7 ADC12IV, ADC12 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 ADC12IVx 0

r0 r0 r-(0) r-(0) r-(0) r-(0) r-(0) r0

ADC12IVx Bits 15-0 ADC12 interrupt vector value

ADC12IV Interrupt Source Interrupt Flag Interrupt PriorityContents

000h No interrupt pending -

002h ADC12MEMx overflow - Highest

004h Conversion time overflow -

006h ADC12MEM0 interrupt flag ADC12IFG0

008h ADC12MEM1 interrupt flag ADC12IFG1

00Ah ADC12MEM2 interrupt flag ADC12IFG2

00Ch ADC12MEM3 interrupt flag ADC12IFG3

00Eh ADC12MEM4 interrupt flag ADC12IFG4

010h ADC12MEM5 interrupt flag ADC12IFG5

012h ADC12MEM6 interrupt flag ADC12IFG6

014h ADC12MEM7 interrupt flag ADC12IFG7

016h ADC12MEM8 interrupt flag ADC12IFG8

018h ADC12MEM9 interrupt flag ADC12IFG9

01Ah ADC12MEM10 interrupt flag ADC12IFG10

01Ch ADC12MEM11 interrupt flag ADC12IFG11

01Eh ADC12MEM12 interrupt flag ADC12IFG12

020h ADC12MEM13 interrupt flag ADC12IFG13

022h ADC12MEM14 interrupt flag ADC12IFG14

024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest

594 ADC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 24
SLAU144I–December 2004–Revised January 2012

TLV Structure

The Tag-Length-Value (TLV) structure is used in selected MSP430x2xx devices to provide device-specific
information in the device's flash memory SegmentA, such as calibration data. For the device-dependent
implementation, see the device-specific data sheet.

Topic ... Page

24.1 TLV Introduction .. 596
24.2 Supported Tags ... 597
24.3 Checking Integrity of SegmentA .. 600
24.4 Parsing TLV Structure of Segment A .. 600

595SLAU144I–December 2004–Revised January 2012 TLV Structure
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

TLV Introduction www.ti.com

24.1 TLV Introduction

The TLV structure stores device-specific data in SegmentA. The SegmentA content of an example device
is shown in Table 24-1.

Table 24-1. Example SegmentA Structure

Word Address Upper Byte Lower Byte Tag Address and Offset

0x10FE CALBC1_1MHZ CALDCO_1MHZ 0x10F6 + 0x0008

0x10FC CALBC1_8MHZ CALDCO_8MHZ 0x10F6 + 0x0006

0x10FA CALBC1_12MHZ CALDCO_12MHZ 0x10F6 + 0x0004

0x10F8 CALBC1_16MHZ CALDCO_16MHZ 0x10F6 + 0x0002

0x10F6 0x08 (LENGTH) TAG_DCO_30 0x10F6

0x10F4 0xFF 0xFF

0x10F2 0xFF 0xFF

0x10F0 0xFF 0xFF

0x10EE 0xFF 0xFF

0x10EC 0x08 (LENGTH) TAG_EMPTY 0x10EC

0x10EA CAL_ADC_25T85 0x10DA + 0x0010

0x10E8 CAL_ADC_25T30 0x10DA + 0x000E

0x10E6 CAL_ADC_25VREF_FACTOR 0x10DA + 0x000C

0x10E4 CAL_ADC_15T85 0x10DA + 0x000A

0x10E2 CAL_ADC_15T30 0x10DA + 0x0008

0x10E0 CAL_ADC_15VREF_FACTOR 0x10DA + 0x0006

0x10DE CAL_ADC_OFFSET 0x10DA + 0x0004

0x10DC CAL_ADC_GAIN_FACTOR 0x10DA + 0x0002

0x10DA 0x10 (LENGTH) TAG_ADC12_1 0x10DA

0x10D8 0xFF 0xFF

0x10D6 0xFF 0xFF

0x10D4 0xFF 0xFF

0x10D2 0xFF 0xFF

0x10D0 0xFF 0xFF

0x10CE 0xFF 0xFF

0x10CC 0xFF 0xFF

0x10CA 0xFF 0xFF

0x10C8 0xFF 0xFF

0x10C6 0xFF 0xFF

0x10C4 0xFF 0xFF

0x10C2 0x16 (LENGTH) TAG_EMPTY 0x10C2

0x10C0 2s complement of bit-wise XOR 0x10C0

The first two bytes of SegmentA (0x10C0 and 0x10C1) hold the checksum of the remainder of the
segment (addresses 0x10C2 to 0x10FF).

The first tag is located at address 0x10C2 and, in this example, is the TAG_EMPTY tag. The following
byte (0x10C3) holds the length of the following structure. The length of this TAG_EMPTY structure is 0x16
and, therefore, the next tag, TAG_ADC12_1, is found at address 0x10DA. Again, the following byte holds
the length of the TAG_ADC12_1 structure.

The TLV structure maps the entire address range 0x10C2 to 0x10FF of the SegmentA. A program routine
looking for tags starting at the SegmentA address 0x10C2 can extract all information even if it is stored at
a different (device-specific) absolute address.

596 TLV Structure SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Supported Tags

24.2 Supported Tags

Each device contains a subset of the tags shown in Table 24-2. See the device-specific data sheet for
details.

Table 24-2. Supported Tags (Device Specific)

Tag Description Value

TAG_EMPTY Identifies an unused memory area 0xFE

TAG_DCO_30 Calibration values for the DCO at room temperature and DVCC = 3 V 0x01

TAG_ADC12_1 Calibration values for the ADC12 module 0x08

TAG_ADC10_1 Calibration values for the ADC10 module 0x08

24.2.1 DCO Calibration TLV Structure

For DCO calibration, the BCS+ registers (BCSCTL1 and DCOCTL) are used. The values stored in the
flash information memory SegmentA are written to the BCS+ registers (see Table 24-3).

Table 24-3. DCO Calibration Data (Device Specific)

Label Description Offset

CALBC1_1MHZ Value for the BCSCTL1 register for 1 MHz, TA = 25°C 0x07

CALDCO_1MHZ Value for the DCOCTL register for 1 MHz, TA = 25°C 0x06

CALBC1_8MHZ Value for the BCSCTL1 register for 8 MHz, TA = 25°C 0x05

CALDCO_8MHZ Value for the DCOCTL register for 8 MHz, TA = 25°C 0x04

CALBC1_12MHZ Value for the BCSCTL1 register for 12 MHz, TA = 25°C 0x03

CALDCO_12MHZ Value for the DCOCTL register for 12 MHz, TA = 25°C 0x02

CALBC1_16MHZ Value for the BCSCTL1 register for 16 MHz, TA = 25°C 0x01

CALDCO_16MHZ Value for the DCOCTL register for 16 MHz, TA = 25°C 0x00

The calibration data for the DCO is available in all 2xx devices and is stored at the same absolute
addresses. The device-specific SegmentA content is applied using the absolute addressing mode if the
sample code shown in Example 24-1 is used.

Example 24-1. Code Example Using Absolute Addressing Mode

; Calibrate the DCO to 1 MHz
CLR.B &DCOCTL ; Select lowest DCOx

; and MODx settings
MOV.B &CALBC1_1MHZ,&BCSCTL1 ; Set RSELx
MOV.B &CALDCO_1MHZ,&DCOCTL ; Set DCOx and MODx

The TLV structure allows use of the address of the TAG_DCO_30 tag to address the DCO registers.
Example 24-2 shows how to address the DCO calibration data using the TAG_DCO_30 tag.

Example 24-2. Code Example Using the TLV Structure

; Calibrate the DCO to 8 MHz
; It is assumed that R10 contains the address of the TAG_DCO_30 tag

CLR.B &DCOCTL ; Select lowest DCOx and
; MODx settings

MOV.B 7(R10),&BCSCTL1 ; Set RSEL
MOV.B 6(R10),&DCOCTL ; Set DCOx and MODx

597SLAU144I–December 2004–Revised January 2012 TLV Structure
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Supported Tags www.ti.com

24.2.2 TAG_ADC12_1 Calibration TLV Structure

The calibration data for the ADC12 module consists of eight words (see Table 24-4).

Table 24-4. TAG_ADC12_1 Calibration Data (Device Specific)

Label Description Offset

CAL_ADC_25T85 VREF2_5 = 1, TA = 85°C ± 2K, 12-bit conversion result 0x0E

CAL_ADC_25T30 VREF2_5 = 1, TA = 30°C ± 2K, 12-bit conversion result 0x0C

CAL_ADC_25VREF_FACTOR VREF2_5 = 1, TA = 30°C ± 2K 0x0A

CAL_ADC_15T85 VREF2_5 = 0, TA = 85°C ± 2K, 12-bit conversion result 0x08

CAL_ADC_15T30 VREF2_5 = 0, TA = 30°C ± 2K, 12-bit conversion result 0x06

CAL_ADC_15VREF_FACTOR VREF2_5 = 0, TA = 30°C ± 2K 0x04

CAL_ADC_OFFSET VeREF = 2.5 V, TA = 85°C ± 2K, fADC12CLK = 5 MHz 0x02

CAL_ADC_GAIN_FACTOR VeREF = 2.5 V, TA = 85°C ± 2K, fADC12CLK = 5 MHz 0x00

24.2.2.1 Temperature Sensor Calibration Data

The temperature sensor is calibrated using the internal voltage references. At VREF2_5 = 0 and 1, the
conversion result at 30°C and 85°C is written at the respective SegmentA location (see Table 24-4).

24.2.2.2 Integrated Voltage Reference Calibration Data

The reference voltages (VREF2_5 = 0 and 1) are measured at room temperature. The measured value is
normalized by 1.5 V or 2.5 V before stored into the flash information memory SegmentA.

CAL_ADC_15VREF_FACTOR = (VeREF / 1.5 V) × 215

The conversion result is corrected by multiplying it with the CAL_ADC_15VREF_FACTOR (or
CAL_ADC_25VREF_FACTOR) and dividing the result by 215.

ADC(corrected) = ADC(raw) × CAL_ADC_15VREF_FACTOR × (1 / 215)

24.2.2.3 Example Using the Reference Calibration

In the following example, the integrated 1.5-V reference voltage is used during a conversion.

• Conversion result: 0x0100

• Reference voltage calibration factor (CAL_ADC_15VREF_FACTOR): 0x7BBB

The following steps show an example of how the ADC12 conversion result can be corrected by using the
hardware multiplier:

• Multiply the conversion result by 2 (this step simplifies the final division).

• Multiply the result by CAL_ADC_15VREF_FACTOR.

• Divide the result by 216 (use the upper word of the 32-bit multiplication result RESHI).

In the example:

• 0x0100 × 0x0002 = 0x0200

• 0x0200 × 0x7BBB = 0x00F7_7600

• 0x00F7_7600 ÷ 0x0001_0000 = 0x0000_00F7 (= 247)

The code example using the hardware multiplier follows.
; The ADC conversion result is stored in ADC12MEM0
; It is assumed that R9 contains the address of the
; TAG_ADC12_1.
; The corrected value is available in ADC_COR

MOV.W &ADC12MEM0,R10 ; move result to R10
RLA.W R10 ; R10 x 2
MOV.W R10,&MPY ; unsigned multiply OP1
MOV.W CAL_ADC_15VREF_FACTOR(R9),&OP2

; calibration value OP2

598 TLV Structure SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Supported Tags

MOV.W &RESHI,&ADC_COR ; result: upper 16-bit MPY

24.2.2.4 Offset and Gain Calibration Data

The offset of the ADC12 is determined and stored as a twos-complement number in SegmentA. The offset
error correction is done by adding the CAL_ADC_OFFSET to the conversion result.

ADC(offset_corrected) = ADC(raw) + CAL_ADC_OFFSET

The gain of the ADC12, stored at offset 0x00, is calculated by the following equation.
CAL_ADC_GAIN_FACTOR = (1 / GAIN) × 215

The conversion result is gain corrected by multiplying it with the CAL_ADC_GAIN_FACTOR and dividing
the result by 215.

ADC(gain_corrected) = ADC(raw) × CAL_ADC_GAIN_FACTOR × (1 / 215)

If both gain and offset are corrected, the gain correction is done first.
ADC(gain_corrected) = ADC(raw) × CAL_ADC_GAIN_FACTOR × (1 / 215)
ADC(final) = ADC(gain_corrected) + CAL_ADC_OFFSET

24.2.2.5 Example Using Gain and Offset Calibration

In the following example, an external reference voltage is used during a conversion.

• Conversion result: 0x0800 (= 2048)

• Gain calibration factor: 0x7FE0 (gain error: +2 LSB)

• Offset calibration: 0xFFFE (2s complement of -2)

The following steps show an example of how the ADC12 conversion result is corrected by using the
hardware multiplier:

• Multiply the conversion result by 2 (this step simplifies the final division).

• Multiply the result by CAL_ADC_GAIN_FACTOR.

• Divide the result by 216 (use the upper word of the 32-bit multiplication result RESHI)

• Add CAL_ADC_OFFSET to the result.

In the example:

• 0x0800 × 0x0002 = 0x1000

• 0x1000 × 0x8010 = 0x0801_0000

• 0x0801_0000 ÷ 0x0001_0000 = 0x0000_0801 (= 2049)

• 0x801 + 0xFFFE = 0x07FF (= 2047)

The code example using the hardware multiplier follows.
; The ADC conversion result is stored in ADC12MEM0
; It is assumed that R9 contains the address of the TAG_ADC12_1.
; The corrected value is available in ADC_COR

MOV.W &ADC12MEM0,R10 ; move result to R10
RLA.W R10 ; R10 * 2
MOV.W R10,&MPY ; unsigned multiply OP1
MOV.W CAL_ADC_GAIN_FACTOR(R9),&OP2

; calibration value OP2
MOV.W &RESHI,&ADC_COR ; use upper 16-bit MPY
ADD.W CAL_ADC_OFFSET(R9),&ADC_COR

; add offset correction

599SLAU144I–December 2004–Revised January 2012 TLV Structure
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Checking Integrity of SegmentA www.ti.com

24.3 Checking Integrity of SegmentA

The 64-byte SegmentA contains a 2-byte checksum of the data stored at 0x10C2 up to 0x10FF at
addresses 0x10C0 and 0x10C1. The checksum is a bit-wise XOR of 31 words stored in the
twos-complement data format.

A code example to calculate the checksum follows.
; Checking the SegmentA integrity by calculating the 2's
; complement of the 31 words at 0x10C2 - 0x10FE.
; It is assumed that the SegmentA Start Address is stored
; in R10. R11 is initialized to 0x00.
; The label TLV_CHKSUM is set to 0x10C0.

ADD.W #2,R10 ; Skip the checksum
LP0 XOR.W @R10+,R11 ; Add a word to checksum

CMP.W #0x10FF,R10 ; Last word included?
JN LP0 ; No, add more data
ADD.W &TLV_CHKSUM,R11 ; Add checksum
JNZ CSNOK ; Checksum not ok
... ; Use SegmentA data

CSNOK ... ; Do not use SegmentA Data

24.4 Parsing TLV Structure of Segment A

Example code to analyze SegmentA follows.
; It is assumed that the SegmentA start address
; is stored in R10.

LP1 ADD.W #2,R10 ; Skip two bytes
CMP.W #0x10FF,R10 ; SegmentA end reached?
JGE DONE ; Yes, done

CMP.B #TAG_EMPTY,0(R10) ; TAG_EMPTY?
JNZ T1 ; No, continue
JMP LP2 ; Yes, done with TAG_EMPTY

T1 CMP.B #TAG_ADC12_1,0(R10) ; TAG_ADC12_1?
JNZ T2 ; No, continue
... ; Yes, found TAG_ADC12_1
JMP LP2 ; Done with TAG_ADC12_1

T2 CMP.B #DCO_30,0(R10) ; TAG_DCO_30?
JNZ T3 ; No, continue
CLR.B &DCOCTL ; Select lowest DCOx
MOV.B 7(R10),&BCSCTL1 ; Yes, use e.g. 8MHz data and
MOV.B 6(R10),&DCOCTL ; set DCOx and MODx
JMP LP2 ; Done with TAG_DCO_30

T3 ... ; Test for "next tag"
... ;
JMP LP2 ; Done with "next tag"

LP2 MOV.B 1(R10),R11 ; Store LENGTH in R11
ADD.W R11,R10 ; Add LENGTH to R10
JMP LP1 ; Jump to continue analysis

DONE ;

600 TLV Structure SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 25
SLAU144I–December 2004–Revised January 2012

DAC12

The DAC12 module is a 12-bit voltage-output digital-to-analog converter (DAC). This chapter describes
the operation of the DAC12 module of the MSP430x2xx device family.

Topic ... Page

25.1 DAC12 Introduction ... 602
25.2 DAC12 Operation ... 604
25.3 DAC12 Registers ... 608

601SLAU144I–December 2004–Revised January 2012 DAC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DAC12 Introduction www.ti.com

25.1 DAC12 Introduction

The DAC12 module is a 12-bit voltage-output DAC. The DAC12 can be configured in 8-bit or 12-bit mode
and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they
may be grouped together for synchronous update operation.

Features of the DAC12 include:

• 12-bit monotonic output

• 8-bit or 12-bit voltage output resolution

• Programmable settling time vs power consumption

• Internal or external reference selection

• Straight binary or 2s compliment data format

• Self-calibration option for offset correction

• Synchronized update capability for multiple DAC12 modules

NOTE: Multiple DAC12 Modules

Some devices may integrate more than one DAC12 module. If more than one DAC12 is
present on a device, the multiple DAC12 modules operate identically.

Throughout this chapter, nomenclature appears such as DAC12_xDAT or DAC12_xCTL to
describe register names. When this occurs, the x is used to indicate which DAC12 module is
being discussed. In cases where operation is identical, the register is simply referred to as
DAC12_xCTL.

The block diagram of the DAC12 module is shown in Figure 25-1.

602 DAC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DAC12_0
DAC12_0OUT

2.5V or 1.5V reference fromADC12

DAC12SREFx

VR− VR+

DAC12_0DAT

DAC12_0Latch

DAC12_1

DAC12LSELx
VR− VR+

DAC12_1DAT

DAC12_1Latch
TB2

TA1

DAC12DF

DAC12RES

AVSS

00

01

10

11

00

01

10

11

00

01

10

11

VeREF+

VREF+

DAC12DF

DAC12RES

Latch Bypass

DAC12LSELx

TB2

TA1

00

01

10

11

00

01

10

11

Latch Bypass

DAC12IR

To ADC12 module

DAC12_1DAT Updated

DAC12_0DAT Updated

1

0

0

1

DAC12ENC

0

1

DAC12ENC

DAC12GRP

1

0

DAC12GRP

DAC12SREFx

AVSS

00

01

10

11

x3

/3

DAC12_1OUT

DAC12AMPx

3

x3

DAC12IR

/3

Group

Load

Logic

DAC12AMPx

3

www.ti.com DAC12 Introduction

Figure 25-1. DAC12 Block Diagram

603SLAU144I–December 2004–Revised January 2012 DAC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

OUT REF
DAC12_xDAT

V = V × 3 ×
4096

OUT REF
DAC12_xDAT

V = V ×
4096

OUT REF
DAC12_xDAT

V = V × 3 ×
256

OUT REF
DAC12_xDAT

V = V ×
256

DAC12 Operation www.ti.com

25.2 DAC12 Operation

The DAC12 module is configured with user software. The setup and operation of the DAC12 is discussed
in the following sections.

25.2.1 DAC12 Core

The DAC12 can be configured to operate in 8-bit or 12-bit mode using the DAC12RES bit. The full-scale
output is programmable to be 1x or 3x the selected reference voltage via the DAC12IR bit. This feature
allows the user to control the dynamic range of the DAC12. The DAC12DF bit allows the user to select
between straight binary data and 2s-compliment data for the DAC. When using straight binary data format,
the formula for the output voltage is given in Table 25-1.

Table 25-1. DAC12 Full-Scale Range (VREF = VeREF+ or VREF+)

Resolution DAC12RES DAC12IR Output Voltage Formula

12 bit 0 0

12 bit 0 1

8 bit 1 0

8 bit 1 1

In 8-bit mode, the maximum useable value for DAC12_xDAT is 0FFh. In 12-bit mode, the maximum
useable value for DAC12_xDAT is 0FFFh. Values greater than these may be written to the register, but all
leading bits are ignored.

25.2.1.1 DAC12 Port Selection

The DAC12 outputs are multiplexed with the port P6 pins and ADC12 analog inputs, and also the VeREF+

pins. When DAC12AMPx > 0, the DAC12 function is automatically selected for the pin, regardless of the
state of the associated PxSELx and PxDIRx bits. The DAC12OPS bit selects between the P6 pins and the
VeREF+ pins for the DAC outputs. For example, when DAC12OPS = 0, DAC12_0 outputs on P6.6 and
DAC12_1 outputs on P6.7. When DAC12OPS = 1, DAC12_0 outputs on VeREF+ and DAC12_1 outputs on
P6.5. See the port pin schematic in the device-specific data sheet for more details.

25.2.2 DAC12 Reference

The reference for the DAC12 is configured to use either an external reference voltage or the internal
1.5-V/2.5-V reference from the ADC12 module with the DAC12SREFx bits. When DAC12SREFx = {0,1}
the VREF+ signal is used as the reference and when DAC12SREFx = {2,3} the VeREF+ signal is used as the
reference.

To use the ADC12 internal reference, it must be enabled and configured via the applicable ADC12 control
bits.

25.2.2.1 DAC12 Reference Input and Voltage Output Buffers

The reference input and voltage output buffers of the DAC12 can be configured for optimized settling time
vs power consumption. Eight combinations are selected using the DAC12AMPx bits. In the low/low
setting, the settling time is the slowest, and the current consumption of both buffers is the lowest. The
medium and high settings have faster settling times, but the current consumption increases. See the
device-specific data sheet for parameters.

25.2.3 Updating the DAC12 Voltage Output

The DAC12_xDAT register can be connected directly to the DAC12 core or double buffered. The trigger
for updating the DAC12 voltage output is selected with the DAC12LSELx bits.

604 DAC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Full-Scale Output

0 0FFFh

0

Output Voltage

DAC Data

Full-Scale Output

0800h (−2048) 07FFh (+2047)0

0

Output Voltage

DAC Data

Mid-Scale Output

www.ti.com DAC12 Operation

When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT register is applied directly to
the DAC12 core. the DAC12 output updates immediately when new DAC12 data is written to the
DAC12_xDAT register, regardless of the state of the DAC12ENC bit.

When DAC12LSELx = 1, DAC12 data is latched and applied to the DAC12 core after new data is written
to DAC12_xDAT. When DAC12LSELx = 2 or 3, data is latched on the rising edge from the Timer_A CCR1
output or Timer_B CCR2 output respectively. DAC12ENC must be set to latch the new data when
DAC12LSELx > 0.

25.2.4 DAC12_xDAT Data Format

The DAC12 supports both straight binary and 2s compliment data formats. When using straight binary
data format, the full-scale output value is 0FFFh in 12-bit mode (0FFh in 8-bit mode) as shown in
Figure 25-2.

Figure 25-2. Output Voltage vs DAC12 Data, 12-Bit, Straight Binary Mode

When using 2s-compliment data format, the range is shifted such that a DAC12_xDAT value of 0800h
(0080h in 8-bit mode) results in a zero output voltage, 0000h is the mid-scale output voltage, and 07FFh
(007Fh for 8-bit mode) is the full-scale voltage output (see Figure 25-3).

Figure 25-3. Output Voltage vs DAC12 Data, 12-Bit, 2s-Compliment Mode

25.2.5 DAC12 Output Amplifier Offset Calibration

The offset voltage of the DAC12 output amplifier can be positive or negative. When the offset is negative,
the output amplifier attempts to drive the voltage negative but cannot do so. The output voltage remains at
zero until the DAC12 digital input produces a sufficient positive output voltage to overcome the negative
offset voltage, resulting in the transfer function shown in Figure 25-4.

605SLAU144I–December 2004–Revised January 2012 DAC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Output Voltage

0

DAC DataNegative Offset

Vcc

Output Voltage

0

DAC Data Full-Scale Code

DAC12 Operation www.ti.com

Figure 25-4. Negative Offset

When the output amplifier has a positive offset, a digital input of zero does not result in a zero output
voltage. The DAC12 output voltage reaches the maximum output level before the DAC12 data reaches
the maximum code. This is shown in Figure 25-5.

Figure 25-5. Positive Offset

The DAC12 has the capability to calibrate the offset voltage of the output amplifier. Setting the
DAC12CALON bit initiates the offset calibration. The calibration should complete before using the DAC12.
When the calibration is complete, the DAC12CALON bit is automatically reset. The DAC12AMPx bits
should be configured before calibration. For best calibration results, port and CPU activity should be
minimized during calibration.

25.2.6 Grouping Multiple DAC12 Modules

Multiple DAC12s can be grouped together with the DAC12GRP bit to synchronize the update of each
DAC12 output. Hardware ensures that all DAC12 modules in a group update simultaneously independent
of any interrupt or NMI event.

DAC12_0 and DAC12_1 are grouped by setting the DAC12GRP bit of DAC12_0. The DAC12GRP bit of
DAC12_1 is don’t care. When DAC12_0 and DAC12_1 are grouped:

• The DAC12_1 DAC12LSELx bits select the update trigger for both DACs

• The DAC12LSELx bits for both DACs must be > 0

• The DAC12ENC bits of both DACs must be set to 1

When DAC12_0 and DAC12_1 are grouped, both DAC12_xDAT registers must be written to before the
outputs update, even if data for one or both of the DACs is not changed. Figure 25-6 shows a latch-update
timing example for grouped DAC12_0 and DAC12_1.

When DAC12_0 DAC12GRP = 1 and both DAC12_x DAC12LSELx > 0 and either DAC12ENC = 0,
neither DAC12 updates.

606 DAC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DAC12_0

DAC12GRP

DAC12_0
DAC12ENC

TimerA_OUT1

DAC12_0
Latch Trigger

DAC12_0 Updated

DAC12_0 DAC12LSELx = 2 DAC12_0 DAC12LSELx > 0AND

DAC12_1 DAC12LSELx = 2

DAC12_0DAT
New Data

DAC12_1DAT
New Data

DAC12_0 and DAC12_1

Updated Simultaneously

www.ti.com DAC12 Operation

Figure 25-6. DAC12 Group Update Example, Timer_A3 Trigger

NOTE: DAC12 Settling Time

The DMA controller is capable of transferring data to the DAC12 faster than the DAC12
output can settle. The user must assure the DAC12 settling time is not violated when using
the DMA controller. See the device-specific data sheet for parameters.

25.2.7 DAC12 Interrupts

The DAC12 interrupt vector is shared with the DMA controller on some devices (see device-specific data
sheet for interrupt assignment). In this case, software must check the DAC12IFG and DMAIFG flags to
determine the source of the interrupt.

The DAC12IFG bit is set when DAC12LSELx > 0 and DAC12 data is latched from the DAC12_xDAT
register into the data latch. When DAC12LSELx = 0, the DAC12IFG flag is not set.

A set DAC12IFG bit indicates that the DAC12 is ready for new data. If both the DAC12IE and GIE bits are
set, the DAC12IFG generates an interrupt request. The DAC12IFG flag is not reset automatically. It must
be reset by software.

607SLAU144I–December 2004–Revised January 2012 DAC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DAC12 Registers www.ti.com

25.3 DAC12 Registers

The DAC12 registers are listed in Table 25-2.

Table 25-2. DAC12 Registers

Register Short Form Register Type Address Initial State

DAC12_0 control DAC12_0CTL Read/write 01C0h Reset with POR

DAC12_0 data DAC12_0DAT Read/write 01C8h Reset with POR

DAC12_1 control DAC12_1CTL Read/write 01C2h Reset with POR

DAC12_1 data DAC12_1DAT Read/write 01CAh Reset with POR

608 DAC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com DAC12 Registers

25.3.1 DAC12_xCTL, DAC12 Control Register

15 14 13 12 11 10 9 8

DAC12OPS DAC12SREFx DAC12RES DAC12LSELx DAC12CALON DAC12IR

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DAC12AMPx DAC12DF DAC12IE DAC12IFG DAC12ENC DAC12GRP

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Can be modified only when DAC12ENC = 0

DAC12OPS Bit 15 DAC12 output select

0 DAC12_0 output on P6.6, DAC12_1 output on P6.7

1 DAC12_0 output on VeREF+, DAC12_1 output on P6.5

DAC12SREFx Bits 14-13 DAC12 select reference voltage

00 VREF+

01 VREF+

10 VeREF+

11 VeREF+

DAC12RES Bit 12 DAC12 resolution select

0 12-bit resolution

1 8-bit resolution

DAC12LSELx Bits 11-10 DAC12 load select. Selects the load trigger for the DAC12 latch. DAC12ENC must be set for the DAC to
update, except when DAC12LSELx = 0.

00 DAC12 latch loads when DAC12_xDAT written (DAC12ENC is ignored)

01 DAC12 latch loads when DAC12_xDAT written, or, when grouped, when all DAC12_xDAT registers
in the group have been written.

10 Rising edge of Timer_A.OUT1 (TA1)

11 Rising edge of Timer_B.OUT2 (TB2)

DAC12CALON Bit 9 DAC12 calibration on. This bit initiates the DAC12 offset calibration sequence and is automatically reset
when the calibration completes.

0 Calibration is not active

1 Initiate calibration/calibration in progress

DAC12IR Bit 8 DAC12 input range. This bit sets the reference input and voltage output range.

0 DAC12 full-scale output = 3x reference voltage

1 DAC12 full-scale output = 1x reference voltage

DAC12AMPx Bits 7-5 DAC12 amplifier setting. These bits select settling time vs current consumption for the DAC12 input and
output amplifiers.

DAC12AMPx Input Buffer Output Buffer

000 Off DAC12 off, output high Z

001 Off DAC12 off, output 0 V

010 Low speed/current Low speed/current

011 Low speed/current Medium speed/current

100 Low speed/current High speed/current

101 Medium speed/current Medium speed/current

110 Medium speed/current High speed/current

111 High speed/current High speed/current

DAC12DF Bit 4 DAC12 data format

0 Straight binary

1 2s complement

DAC12IE Bit 3 DAC12 interrupt enable

0 Disabled

1 Enabled

609SLAU144I–December 2004–Revised January 2012 DAC12
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

DAC12 Registers www.ti.com

DAC12IFG Bit 2 DAC12 Interrupt flag

0 No interrupt pending

1 Interrupt pending

DAC12ENC Bit 1 DAC12 enable conversion. This bit enables the DAC12 module when DAC12LSELx > 0. when
DAC12LSELx = 0, DAC12ENC is ignored.

0 DAC12 disabled

1 DAC12 enabled

DAC12GRP Bit 0 DAC12 group. Groups DAC12_x with the next higher DAC12_x. Not used for DAC12_1.

0 Not grouped

1 Grouped

25.3.2 DAC12_xDAT, DAC12 Data Register

15 14 13 12 11 10 9 8

0 0 0 0 DAC12 Data

r(0) r(0) r(0) r(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

DAC12 Data

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Unused Bits 15-12 Unused. These bits are always 0 and do not affect the DAC12 core.

DAC12 Data Bits 11-0 DAC12 data

DAC12 Data Format DAC12 Data

12-bit binary The DAC12 data are right-justified. Bit 11 is the MSB.

12-bit 2s complement The DAC12 data are right-justified. Bit 11 is the MSB (sign).

8-bit binary The DAC12 data are right-justified. Bit 7 is the MSB. Bits 11-8 are don’t care and do not affect the DAC12 core.

8-bit 2s complement The DAC12 data are right-justified. Bit 7 is the MSB (sign). Bits 11-8 are don’t care and do not affect the
DAC12 core.

610 DAC12 SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 26
SLAU144I–December 2004–Revised January 2012

SD16_A

The SD16_A module is a single-converter 16-bit sigma-delta analog-to-digital conversion module with high
impedance input buffer. This chapter describes the SD16_A. The SD16_A module is implemented in the
MSP430x20x3 devices.

Topic ... Page

26.1 SD16_A Introduction .. 612
26.2 SD16_A Operation ... 614
26.3 SD16_A Registers .. 624

611SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD16_A Introduction www.ti.com

26.1 SD16_A Introduction

The SD16_A module consists of one sigma-delta analog-to-digital converter with a high-impedance input
buffer and an internal voltage reference. It has up to eight fully differential multiplexed analog input pairs
including a built-in temperature sensor and a divided supply voltage. The converter is based on a
second-order oversampling sigma-delta modulator and digital decimation filter. The decimation filter is a
comb type filter with selectable oversampling ratios of up to 1024. Additional filtering can be done in
software.

The high impedance input buffer is not implemented in MSP430x20x3 devices.

Features of the SD16_A include:

• 16-bit sigma-delta architecture

• Up to eight multiplexed differential analog inputs per channel(The number of inputs is device
dependent, see the device-specific data sheet.)

• Software selectable on-chip reference voltage generation (1.2 V)

• Software selectable internal or external reference

• Built-in temperature sensor

• Up to 1.1-MHz modulator input frequency

• High impedance input buffer(not implemented on all devices, see the device-specific data sheet)

• Selectable low-power conversion mode

The block diagram of the SD16_A module is shown in Figure 26-1.

612 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

SD16DIVx

ACLK

TACLK

SD16SSELx

00

01

10

11

00

01

10

11

MCLK

SMCLK

AVCC
VREF

Divider

1/2/4/8

A0 000

SD16INCHx

+
−

001+
−

010+
−

011+
−

100+
−

101+
−

110+
−

111+
−

A1

A2

A3

A4

A5

A6

2ndOrder

Σ∆ Modulator

SD16GAINx

SD16DF

SD16LP

SD16SC

SD16OSRx

SD16SNGL

SD16MEM0

Reference

A7

SD16VMIDON

SD16REFON

fM

Reference

1.2V

Start Conversion

Logic

AVSS

SD16XDIVx

Divider

1/3/16/48

SD16XOSR

BUF

1

0

SD16UNI

1

AVCC

SD16INCHx=101
Temp.

sensor

PGA

1..32

5R

R

5R

SD16BUFx†

† Not Implemented in MSP430x20x3 devices

Reference

www.ti.com SD16_A Introduction

Figure 26-1. SD16_A Block Diagram

613SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

REF

FSR
PGA

V

2
V =

GAIN

FSR

1.2 V
2

±V = = ±0.6 V
1

SD16_A Operation www.ti.com

26.2 SD16_A Operation

The SD16_A module is configured with user software. The setup and operation of the SD16_A is
discussed in the following sections.

26.2.1 ADC Core

The analog-to-digital conversion is performed by a 1-bit second-order sigma-delta modulator. A single-bit
comparator within the modulator quantizes the input signal with the modulator frequency fM. The resulting
1-bit data stream is averaged by the digital filter for the conversion result.

26.2.2 Analog Input Range and PGA

The full-scale input voltage range for each analog input pair is dependent on the gain setting of the
programmable gain amplifier of each channel. The maximum full-scale range is ±VFSR where VFSR is
defined by:

For a 1.2-V reference, the maximum full-scale input range for a gain of 1 is:

See the device-specific data sheet for full-scale input specifications.

26.2.3 Voltage Reference Generator

The SD16_A module has a built-in 1.2-V reference. It is enabled by the SD16REFON bit. When using the
internal reference an external 100-nF capacitor connected from VREF to AVSS is recommended to reduce
noise. The internal reference voltage can be used off-chip when SD16VMIDON = 1. The buffered output
can provide up to 1 mA of drive. When using the internal reference off-chip, a 470-nF capacitor connected
from VREF to AVSS is required. See the device-specific data sheet for parameters.

An external voltage reference can be applied to the VREF input when SD16REFON and SD16VMIDON are
both reset.

26.2.4 Auto Power-Down

The SD16_A is designed for low power applications. When the SD16_A is not actively converting, it is
automatically disabled and automatically re-enabled when a conversion is started. The reference is not
automatically disabled, but can be disabled by setting SD16REFON = 0. When the SD16_A or reference
are disabled, they consume no current.

26.2.5 Analog Input Pair Selection

The SD16_A can convert up to 8 differential input pairs multiplexed into the PGA. Up to five analog input
pairs (A0-A4) are available externally on the device. A resistive divider to measure the supply voltage is
available using the A5 multiplexer input. An internal temperature sensor is available using the A6
multiplexer input. Input A7 is a shorted connection between the + and - input pair and can be used to
calibrate the offset of the SD16_A input stage.

26.2.5.1 Analog Input Setup

The analog input is configured using the SD16INCTL0 and the SD16AE registers. The SD16INCHx bits
select one of eight differential input pairs of the analog multiplexer. The gain for the PGA is selected by
the SD16GAINx bits. A total of six gain settings are available. The SD16AEx bits enable or disable the
analog input pin. Setting any SD16AEx bit disables the multiplexed digital circuitry for the associated pin.
See the device-specific data sheet for pin diagrams.

614 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

RS 1 k

VS+

MSP430

CS

VS+ = Positive external source voltage

VS− = Negative external source voltage

RS = External source resistance

CS = Sampling capacitance

RS 1 k

VS−

CS

AVCC / 2

† Not implemented in MSP430x20x3 devices

†

†

17
Ax

Settling S S
REF

GAIN × 2 × V
t (R + 1 k) × C × ln

V

æ ö
ç ÷³ W
ç ÷
è ø

CC CC
S Ax S+ S–

Settling

AV AV1
f = and V = max – V , – V

2 × t 2 2

æ ö
ç ÷ç ÷
è ø

www.ti.com SD16_A Operation

During conversion any modification to the SD16INCHx and SD16GAINx bits will become effective with the
next decimation step of the digital filter. After these bits are modified, the next three conversions may be
invalid due to the settling time of the digital filter. This can be handled automatically with the
SD16INTDLYx bits. When SD16INTDLY = 00h, conversion interrupt requests will not begin until the fourth
conversion after a start condition.

On devices implementing the high impedance input buffer it can be enabled using the SD16BUFx bits.
The speed settings are selected based on the SD16_A modulator frequency as shown in Table 26-1.

Table 26-1. High Input Impedance Buffer

SD16BUFx Buffer SD16 Modulator Frequency fM

00 Buffer disabled

01 Low speed/current fM < 200 kHz

10 Medium speed/current 200 kHz < fM < 700 kHz

11 High speed/current 700 kHz < fM < 1.1 MHz

An external RC anti-aliasing filter is recommended for the SD16_A to prevent aliasing of the input signal.
The cutoff frequency should be < 10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff
frequency may set to a lower frequency for applications that have lower bandwidth requirements.

26.2.6 Analog Input Characteristics

The SD16_A uses a switched-capacitor input stage that appears as an impedance to external circuitry as
shown in Figure 26-2.

Figure 26-2. Analog Input Equivalent Circuit

When the buffers are used, RS does not affect the sampling frequency fS. However, when the buffers are
not used or are not present on the device, the maximum sampling frequency fS may be calculated from the
minimum settling time tSettling of the sampling circuit given by:

where

with VS+ and VS- referenced to AVSS.

CS varies with the gain setting as shown in Table 26-2.

615SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

3
-OSR

-1

1 1 – z
H(z) = ×

OSR 1 – z

æ ö
ç ÷
ç ÷
è ø

3 3

M M

M M

f f
sinc OSR × × sin OSR × ×

f f1
H(f) = = ×

OSRf f
sinc × sin ×

f f

p p

p p

é ù é ùæ ö æ ö
ê ú ê úç ÷ ç ÷ç ÷ ç ÷
ê ú ê úè ø è ø
ê ú ê úæ ö æ ö
ê ú ê úç ÷ ç ÷ç ÷ ç ÷ê ú ê úè ø è øë û ë û

−140

−120

−100

−80

−60

−40

−20

0

Frequency

G
A

IN
 [
d
B

]

fS fM

SD16_A Operation www.ti.com

Table 26-2. Sampling Capacitance

PGA Gain Sampling Capacitance, CS

1 1.25 pF

2, 4 2.5 pF

8 5 pF

16, 32 10 pF

26.2.7 Digital Filter

The digital filter processes the 1-bit data stream from the modulator using a SINC3 comb filter. The
transfer function is described in the z-Domain by:

and in the frequency domain by:

where the oversampling rate, OSR, is the ratio of the modulator frequency fM to the sample frequency fS.
Figure 26-3 shows the filter's frequency response for an OSR of 32. The first filter notch is at fS = fM/OSR.
The notch's frequency can be adjusted by changing the modulator's frequency, fM, using SD16SSELx and
SD16DIVx and the oversampling rate using the SD16OSRx and SD16XOSR bits.

The digital filter for each enabled ADC channel completes the decimation of the digital bit-stream and
outputs new conversion results to the SD16MEM0 register at the sample frequency fS.

Figure 26-3. Comb Filter Frequency Response With OSR = 32

Figure 26-4 shows the digital filter step response and conversion points. For step changes at the input
after start of conversion a settling time must be allowed before a valid conversion result is available. The
SD16INTDLYx bits can provide sufficient filter settling time for a full-scale change at the ADC input. If the
step occurs synchronously to the decimation of the digital filter the valid data will be available on the third
conversion. An asynchronous step will require one additional conversion before valid data is available.

616 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

1

2

3

4
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2

3

Asynchronous Step Synchronous Step

%
 V

F
S

R

Conversion Conversion

www.ti.com SD16_A Operation

Figure 26-4. Digital Filter Step Response and Conversion Points

26.2.7.1 Digital Filter Output

The number of bits output by the digital filter is dependent on the oversampling ratio and ranges from 15
to 30 bits. Figure 26-5 shows the digital filter output and their relation to SD16MEM0 for each OSR,
LSBACC, and SD16UNI setting. For example, for OSR = 1024, LSBACC = 0, and SD16UNI = 1, the
SD16MEM0 register contains bits 28 - 13 of the digital filter output. When OSR = 32, the one (SD16UNI =
0) or two (SD16UNI=1) LSBs are always zero.

The SD16LSBACC and SD16LSBTOG bits give access to the least significant bits of the digital filter
output. When SD16LSBACC = 1 the 16 least significant bits of the digital filter's output are read from
SD16MEM0 using word instructions. The SD16MEM0 register can also be accessed with byte instructions
returning only the 8 least significant bits of the digital filter output.

When SD16LSBTOG = 1 the SD16LSBACC bit is automatically toggled each time SD16MEM0 is read.
This allows the complete digital filter output result to be read with two reads of SD16MEM0. Setting or
clearing SD16LSBTOG does not change SD16LSBACC until the next SD16MEM0 access.

617SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=1

SD16_A Operation www.ti.com

618 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=32, LSBACC=x, SD16UNI=1

OSR=32, LSBACC=x, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=1

www.ti.com SD16_A Operation

Figure 26-5. Used Bits of Digital Filter Output

619SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Input
Voltage

SD16MEMx

−VFSR

+V FSR

7FFFh

8000h

Bipolar Output: 2’s complement

Input
Voltage

SD16MEMx

−VFSR +V FSR

FFFFh

8000h

Bipolar Output: Offset Binary

0000h

0000h

Input
Voltage

SD16MEMx

−VFSR +V FSR

FFFFh

Unipolar Output

0000h

SD16_A Operation www.ti.com

26.2.8 Conversion Memory Register: SD16MEM0

The SD16MEM0 register is associated with the SD16_A channel. Conversion results are moved to the
SD16MEM0 register with each decimation step of the digital filter. The SD16IFG bit is set when new data
is written to SD16MEM0. SD16IFG is automatically cleared when SD16MEM0 is read by the CPU or may
be cleared with software.

26.2.8.1 Output Data Format

The output data format is configurable in two's complement, offset binary or unipolar mode as shown in
Table 26-3. The data format is selected by the SD16DF and SD16UNI bits.

Table 26-3. Data Format

Digital Filter OutputSD16UNI SD16DF Format Analog Input SD16MEM0 (1)

(OSR = 256)

+FSR FFFF FFFFFF

0 0 Bipolar Offset Binary ZERO 8000 800000

-FSR 0000 000000

+FSR 7FFF 7FFFFF

0 1 Bipolar Twos Compliment ZERO 0000 000000

-FSR 8000 800000

+FSR FFFF FFFFFF

1 0 Unipolar ZERO 0000 800000

-FSR 0000 000000
(1) Independent of SD16OSRx and SD16XOSR settings; SD16LSBACC = 0.

NOTE: Offset Measurements and Data Format

Any offset measurement done either externally or using the internal differential pair A7 would
be appropriate only when the channel is operating under bipolar mode with SD16UNI = 0.

Figure 26-6 shows the relationship between the full-scale input voltage range from -VFSR to +VFSR and the
conversion result. The data formats are illustrated.

Figure 26-6. Input Voltage vs Digital Output

620 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD16SNGL = 1

Time

Conversion

SD16SC

SD16SNGL = 0

Conversion

SD16SC

Conversion Conversion

Set by SW Auto−clear

Set by SW

Conv

Cleared by SW

= Result written to SD16MEM0

www.ti.com SD16_A Operation

26.2.9 Conversion Modes

The SD16_A module can be configured for two modes of operation, listed in Table 26-4. The SD16SNGL
bit selects the conversion mode.

Table 26-4. Conversion Mode Summary

SD16SNGL Mode Operation

1 Single conversion The channel is converted once.

0 Continuous conversion The channel is converted continuously.

26.2.9.1 Single Conversion

Setting the SD16SC bit of the channel initiates one conversion on that channel when SD16SNGL = 1. The
SD16SC bit will automatically be cleared after conversion completion.

Clearing SD16SC before the conversion is completed immediately stops conversion of the channel, the
channel is powered down and the corresponding digital filter is turned off. The value in SD16MEM0 can
change when SD16SC is cleared. It is recommended that the conversion data in SD16MEM0 be read
prior to clearing SD16SC to avoid reading an invalid result.

26.2.9.2 Continuous Conversion

When SD16SNGL = 0 continuous conversion mode is selected. Conversion of the channel will begin when
SD16SC is set and continue until the SD16SC bit is cleared by software.

Clearing SD16SC immediately stops conversion of the selected channel, the channel is powered down
and the corresponding digital filter is turned off. The value in SD16MEM0 can change when SD16SC is
cleared. It is recommended that the conversion data in SD16MEM0 be read prior to clearing SD16SC to
avoid reading an invalid result.

Figure 26-7 shows conversion operation.

Figure 26-7. Single Channel Operation

26.2.10 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input pair SD16INCHx = 110 and sets
SD16REFON = 1. Any other configuration is done as if an external analog input pair was selected,
including SD16INTDLYx and SD16GAINx settings. Because the internal reference must be on to use the
temperature sensor, it is not possible to use an external reference for the conversion of the temperature
sensor voltage. Also, the internal reference will be in contention with any used external reference. In this
case, the SD16VMIDON bit may be set to minimize the affects of the contention on the conversion.

The typical temperature sensor transfer function is shown in Figure 26-8. When switching inputs of an
SD16_A channel to the temperature sensor, adequate delay must be provided using SD16INTDLYx to
allow the digital filter to settle and assure that conversion results are valid. The temperature sensor offset
error can be large, and may need to be calibrated for most applications. See device-specific data sheet for
temperature sensor parameters.

621SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Celsius

Volts

0 50 100

0.350

0.250

0.300

0.400

0.450

0.500

−50

0.200

VSensor,typ = TCSensor(273 + T[oC]) + VOffset, sensor [mV]

SD16_A Operation www.ti.com

Figure 26-8. Typical Temperature Sensor Transfer Function

26.2.11 Interrupt Handling

The SD16_A has 2 interrupt sources for its ADC channel:

• SD16IFG

• SD16OVIFG

The SD16IFG bit is set when the SD16MEM0 memory register is written with a conversion result. An
interrupt request is generated if the corresponding SD16IE bit and the GIE bit are set. The SD16_A
overflow condition occurs when a conversion result is written to SD16MEM0 location before the previous
conversion result was read.

26.2.11.1 SD16IV, Interrupt Vector Generator

All SD16_A interrupt sources are prioritized and combined to source a single interrupt vector. SD16IV is
used to determine which enabled SD16_A interrupt source requested an interrupt. The highest priority
SD16_A interrupt request that is enabled generates a number in the SD16IV register (see register
description). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled SD16_A interrupts do not affect the SD16IV value.

Any access, read or write, of the SD16IV register has no effect on the SD16OVIFG or SD16IFG flags. The
SD16IFG flags are reset by reading the SD16MEM0 register or by clearing the flags in software.
SD16OVIFG bits can only be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the SD16OVIFG and one or more SD16IFG interrupts are pending when the interrupt service routine
accesses the SD16IV register, the SD16OVIFG interrupt condition is serviced first and the corresponding
flag(s) must be cleared in software. After the RETI instruction of the interrupt service routine is executed,
the highest priority SD16IFG pending generates another interrupt request.

622 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD16_A Operation

26.2.11.2 Interrupt Delay Operation

The SD16INTDLYx bits control the timing for the first interrupt service request for the corresponding
channel. This feature delays the interrupt request for a completed conversion by up to four conversion
cycles allowing the digital filter to settle prior to generating an interrupt request. The delay is applied each
time the SD16SC bit is set or when the SD16GAINx or SD16INCHx bits for the channel are modified.
SD16INTDLYx disables overflow interrupt generation for the channel for the selected number of delay
cycles. Interrupt requests for the delayed conversions are not generated during the delay.

623SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD16_A Registers www.ti.com

26.3 SD16_A Registers

The SD16_A registers are listed in Table 26-5.

Table 26-5. SD16_A Registers

Register Short Form Register Type Address Initial State

SD16_A control SD16CTL Read/write 0100h Reset with PUC

SD16_A interrupt vector SD16IV Read/write 0110h Reset with PUC

SD16_A channel 0 control SD16CCTL0 Read/write 0102h Reset with PUC

SD16_A conversion memory SD16MEM0 Read/write 0112h Reset with PUC

SD16_A input control SD16INCTL0 Read/write 0B0h Reset with PUC

SD16_A analog enable SD16AE Read/write 0B7h Reset with PUC

624 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD16_A Registers

26.3.1 SD16CTL, SD16_A Control Register

15 14 13 12 11 10 9 8

Reserved SD16XDIVx SD16LP

r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

SD16DIVx SD16SSELx SD16VMIDON SD16REFON SD16OVIE Reserved

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r0

Reserved Bits 15-12 Reserved

SD16XDIVx Bits 11-9 SD16_A clock divider

000 /1

001 /3

010 /16

011 /48

1xx Reserved

SD16LP Bit 8 Low power mode. This bit selects a reduced speed, reduced power mode

0 Low-power mode is disabled

1 Low-power mode is enabled. The maximum clock frequency for the SD16_A is reduced.

SD16DIVx Bits 7-6 SD16_A clock divider

00 /1

01 /2

10 /4

11 /8

SD16SSELx Bits 5-4 SD16_A clock source select

00 MCLK

01 SMCLK

10 ACLK

11 External TACLK

SD16VMIDON Bit 3 VMID buffer on

0 Off

1 On

SD16REFON Bit 2 Reference generator on

0 Reference off

1 Reference on

SD16OVIE Bit 1 SD16_A overflow interrupt enable. The GIE bit must also be set to enable the interrupt.

0 Overflow interrupt disabled

1 Overflow interrupt enabled

Reserved Bit 0 Reserved

625SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD16_A Registers www.ti.com

26.3.2 SD16CCTL0, SD16_A Control Register 0

15 14 13 12 11 10 9 8

Reserved SD16BUFx (1) SD16UNI SD16XOSR SD16SNGL SD16OSRx

r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

SD16LSBTOG SD16LSBACC SD16OVIFG SD16DF SD16IE SD16IFG SD16SC Reserved

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

Reserved Bit 15 Reserved

SD16BUFx Bits 14-13 High-impedance input buffer mode

00 Buffer disabled

01 Slow speed/current

10 Medium speed/current

11 High speed/current

SD16UNI Bit 12 Unipolar mode select

0 Bipolar mode

1 Unipolar mode

SD16XOSR Bit 11 Extended oversampling ratio. This bit, along with the SD16OSRx bits, select the oversampling ratio. See
SD16OSRx bit description for settings.

SD16SNGL Bit 10 Single conversion mode select

0 Continuous conversion mode

1 Single conversion mode

SD16OSRx Bits 9-8 Oversampling ratio

When SD16XOSR = 0

00 256

01 128

10 64

11 32

When SD16XOSR = 1

00 512

01 1024

10 Reserved

11 Reserved

SD16LSBTOG Bit 7 LSB toggle. This bit, when set, causes SD16LSBACC to toggle each time the SD16MEM0 register is read.

0 SD16LSBACC does not toggle with each SD16MEM0 read

1 SD16LSBACC toggles with each SD16MEM0 read

SD16LSBACC Bit 6 LSB access. This bit allows access to the upper or lower 16-bits of the SD16_A conversion result.

0 SD16MEMx contains the most significant 16-bits of the conversion.

1 SD16MEMx contains the least significant 16-bits of the conversion.

SD16OVIFG Bit 5 SD16_A overflow interrupt flag

0 No overflow interrupt pending

1 Overflow interrupt pending

SD16DF Bit 4 SD16_A data format

0 Offset binary

1 2's complement

SD16IE Bit 3 SD16_A interrupt enable

0 Disabled

1 Enabled

SD16IFG Bit 2 SD16_A interrupt flag. SD16IFG is set when new conversion results are available. SD16IFG is automatically
reset when the corresponding SD16MEMx register is read, or may be cleared with software.

0 No interrupt pending

1 Interrupt pending
(1) Reserved in MSP430x20x3 devices

626 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD16_A Registers

SD16SC Bit 1 SD16_A start conversion

0 No conversion start

1 Start conversion

Reserved Bit 0 Reserved

26.3.3 SD16INCTL0, SD16_A Input Control Register

7 6 5 4 3 2 1 0

SD16INTDLYx SD16GAINx SD16INCHx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SD16INTDLYx Bits 7-6 Interrupt delay generation after conversion start. These bits select the delay for the first interrupt after
conversion start.

00 Fourth sample causes interrupt

01 Third sample causes interrupt

10 Second sample causes interrupt

11 First sample causes interrupt

SD16GAINx Bits 5-3 SD16_A preamplifier gain

000 x1

001 x2

010 x4

011 x8

100 x16

101 x32

110 Reserved

111 Reserved

SD16INCHx Bits 2-0 SD16_A channel differential pair input

000 A0

001 A1

010 A2

011 A3

100 A4

101 A5 - (AVCC - AVSS) / 11

110 A6 - Temperature Sensor

111 A7 - Short for PGA offset measurement

627SLAU144I–December 2004–Revised January 2012 SD16_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD16_A Registers www.ti.com

26.3.4 SD16MEM0, SD16_A Conversion Memory Register

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion Bits 15-0 Conversion Results. The SD16MEMx register holds the upper or lower 16-bits of the digital filter output,
Results depending on the SD16LSBACC bit.

26.3.5 SD16AE, SD16_A Analog Input Enable Register

7 6 5 4 3 2 1 0

SD16AE7 SD16AE6 SD16AE5 SD16AE4 SD16AE3 SD16AE2 SD16AE1 SD16AE0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SD16AEx Bits 7-0 SD16_A analog enable

0 External input disabled. Negative inputs are internally connected to VSS.

1 External input enabled.

26.3.6 SD16IV, SD16_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SD16IVx 0

r0 r0 r0 r0

SD16IVx Bits 15-0 SD16_A interrupt vector value

SD16IV InterruptInterrupt Source Interrupt FlagContents Priority

000h No interrupt pending -

SD16CCTLx002h SD16MEMx overflow HighestSD16OVIFG

SD16CCTL0004h SD16_A interrupt SD16IFG

006h Reserved -

008h Reserved -

00Ah Reserved -

00Ch Reserved -

00Eh Reserved -

010h Reserved - Lowest

628 SD16_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 27
SLAU144I–December 2004–Revised January 2012

SD24_A

The SD24_A module is a multichannel 24-bit sigma-delta analog-to-digital converter (ADC). This chapter
describes the SD24_A of the MSP430x2xx family.

Topic ... Page

27.1 SD24_A Introduction .. 630
27.2 SD24_A Operation ... 632
27.3 SD24_A Registers .. 645

629SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD24_A Introduction www.ti.com

27.1 SD24_A Introduction

The SD24_A module consists of up to seven independent sigma-delta analog-to-digital converters,
referred to as channels, and an internal voltage reference. Each channel has up to eight fully differential
multiplexed analog input pairs including a built-in temperature sensor and a divided supply voltage. The
converters are based on second-order oversampling sigma-delta modulators and digital decimation filters.
The decimation filters are comb-type filters with selectable oversampling ratios of up to 1024. Additional
filtering can be done in software.

The digital filter output of SD24_A can range from 15 bits to 30 bits, based on the oversampling ratio. The
default oversampling ratio is 256, which results in 24-bit output from the digital filter. The 16 most
significant bits of the filter are captured in the SD24_A conversion memory register and, by setting
SD24LSBACC = 1, the 16 least significant bits of the filter output can be read (see Section 27.2.7 for
details).

Features of the SD24_A include:

• Up to seven independent, simultaneously-sampling ADC channels (the number of channels is device
dependent, see the device-specific data sheet)

• Up to eight multiplexed differential analog inputs per channel (the number of inputs is device
dependent, see the device-specific data sheet)

• Software selectable on-chip reference voltage generation (1.2 V)

• Software selectable internal or external reference

• Built-in temperature sensor accessible by all channels

• Up to 1.1-MHz modulator input frequency

• High impedance input buffer (not implemented on all devices, see the device-specific data sheet)

• Selectable low-power conversion mode

The block diagram of the SD24_A module is shown in Figure 27-1.

630 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

15 0

SD24DIVx

ACLK

TACLK

SD24SSELx

00

01

10

11

00

01

10

11

MCLK

SMCLK

AVCC
VREF

Divider
1/2/4/8

A1.0 000

SD24INCHx

+
−

001+
−

010+
−

011+
−

100+
−

101+
−

110+
−

111+
−

A1.1

A1.2

A1.3

A1.4

A1.5

A1.6

2
nd

Order

Σ∆ Modulator

SD24GAINx

SD24DF

SD24LP

SD24OSRx

SD24MEM1

Reference

A1.7

SD24VMIDON

SD24REFON

fM

Reference
1.2V

AVSS

SD24XDIVx

Divider
1/3/16/48

SD24XOSR

1

0

SD24UNI

1

AVCC

SD24INCHx=101
Temp.

sensor

PGA
1..32

5R

R

5R

Reference

SD24_A Control Block

SD24SC

Conversion Control
(to prior channel)

SD24SGNL

Conversion Control
(from next channel)

SD24GRP
Group/Start

Conversion Logic

SD24PRE1

Channel 1

Temperature . and Vcc Sense

Channel 0

Channel 2

Channel 3 (up to Channel 6)

www.ti.com SD24_A Introduction

NOTE: Ax.1 to Ax.4 not available on all devices. See device-specific data sheet.

Figure 27-1. Block Diagram of the SD24_A

631SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

REF

FSR
PGA

V

2
V =

GAIN

FSR

1.2 V
2

±V = = ±0.6 V
1

SD24_A Operation www.ti.com

27.2 SD24_A Operation

The SD24_A module is configured with user software. The setup and operation of the SD24_A is
discussed in the following sections.

27.2.1 ADC Core

The analog-to-digital conversion is performed by a 1-bit second-order sigma-delta modulator. A single-bit
comparator within the modulator quantizes the input signal with the modulator frequency fM. The resulting
1-bit data stream is averaged by the digital filter for the conversion result.

27.2.2 Analog Input Range and PGA

The full-scale input voltage range for each analog input pair is dependent on the gain setting of the
programmable gain amplifier of each channel. The maximum full-scale range is ±VFSR where VFSR is
defined by:

For a 1.2-V reference, the maximum full-scale input range for a gain of 1 is:

See the device-specific data sheet for full-scale input specifications.

27.2.3 Voltage Reference Generator

The SD24_A module has a built-in 1.2-V reference. It can be used for each SD24_A channel and is
enabled by the SD24REFON bit. When using the internal reference an external 100-nF capacitor
connected from VREF to AVSS is recommended to reduce noise. The internal reference voltage can be used
off-chip when SD24VMIDON = 1. The buffered output can provide up to 1 mA of drive. When using the
internal reference off-chip, a 470-nF capacitor connected from VREF to AVSS is required. See
device-specific data sheet for parameters.

An external voltage reference can be applied to the VREF input when SD24REFON and SD24VMIDON are
both reset.

27.2.4 Auto Power-Down

The SD24_A is designed for low-power applications. When the SD24_A is not actively converting, it is
automatically disabled and automatically re-enabled when a conversion is started. The reference is not
automatically disabled, but it can be disabled by setting SD24REFON = 0. When the SD24_A or reference
are disabled, they consume no current.

27.2.5 Analog Input Pair Selection

The SD24_A can convert up to eight differential input pairs multiplexed into the PGA. Up to five analog
input pairs (A0 to A4) are available externally on the device. A resistive divider to measure the supply
voltage is available using the A5 multiplexer input. An internal temperature sensor is available using the
A6 multiplexer input. Input A7 is a shorted connection between the + and – input pair and can be used to
calibrate the offset of the SD24_A input stage.

27.2.5.1 Analog Input Setup

The analog input of each channel is configured using the SD24INCTLx register. These settings can be
independently configured for each SD24_A channel.

The SD24INCHx bits select one of eight differential input pairs of the analog multiplexer. The gain for each
PGA is selected by the SD24GAINx bits. A total of six gain settings are available.

632 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

RS 1 k

VS+

MSP430

CS

VS+ = Positive external source voltage

VS− = Negative external source voltage

RS = External source resistance

CS = Sampling capacitance

RS 1 k

VS−

CS

AVCC / 2

† Not implemented on all devices − see the device-specific data sheet

†

†

www.ti.com SD24_A Operation

On some devices SD24AEx bits are available to enable or disable the analog input pin. Setting any
SD24AEx bit disables the multiplexed digital circuitry for the associated pin. See the device-specific data
sheet for pin diagrams.

During conversion any modification to the SD24INCHx and SD24GAINx bits will become effective with the
next decimation step of the digital filter. After these bits are modified, the next three conversions may be
invalid due to the settling time of the digital filter. This can be handled automatically with the
SD24INTDLYx bits. When SD24INTDLY = 00h, conversion interrupt requests will not begin until the fourth
conversion after a start condition.

On devices implementing the high impedance input buffer it can be enabled using the SD24BUFx bits.
The speed settings are selected based on the SD24_A modulator frequency as shown in Table 27-1.

Table 27-1. High Input Impedance Buffer

SD24BUFx Buffer SD24 Modulator Frequency, fM

00 Buffer disabled

01 Low speed/current fM < 200 kHz

10 Medium speed/current 200 kHz < fM < 700 kHz

11 High speed/current 700 kHz < fM < 1.1 MHz

An external RC anti-aliasing filter is recommended for the SD24_A to prevent aliasing of the input signal.
The cutoff frequency should be less than 10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff
frequency may set to a lower frequency for applications that have lower bandwidth requirements.

27.2.6 Analog Input Characteristics

The SD24_A uses a switched-capacitor input stage that appears as an impedance to external circuitry as
shown in Figure 27-2.

Figure 27-2. Analog Input Equivalent Circuit

633SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

17
Ax

Settling S S
REF

GAIN × 2 × V
t (R + 1 k) × C × ln

V

æ ö
ç ÷³ W
ç ÷
è ø

CC CC
M Ax S+ S–

Settling

AV AV1
f = and V = max – V , – V

2 × t 2 2

æ ö
ç ÷ç ÷
è ø

3
-OSR

-1

1 1 – z
H(z) = ×

OSR 1 – z

æ ö
ç ÷
ç ÷
è ø

3 3

M M

M M

f f
sinc OSR × × sin OSR × ×

f f1
H(f) = = ×

OSRf f
sinc × sin ×

f f

p p

p p

é ù é ùæ ö æ ö
ê ú ê úç ÷ ç ÷ç ÷ ç ÷
ê ú ê úè ø è ø
ê ú ê úæ ö æ ö
ê ú ê úç ÷ ç ÷ç ÷ ç ÷ê ú ê úè ø è øë û ë û

SD24_A Operation www.ti.com

When the buffers are used, RS does not affect the sampling frequency fS. However, when the buffers are
not used or are not present on the device, the maximum modulator frequency fM may be calculated from
the minimum settling time tSettling of the sampling circuit given by:

Where,

with VS+ and VS- referenced to AVSS.

CS varies with the gain setting as shown in Table 27-2.

Table 27-2. Sampling Capacitance

PGA Gain Sampling Capacitance (CS)

1 1.25 pF

2, 4 2.5 pF

8 5 pF

16, 32 10 pF

27.2.7 Digital Filter

The digital filter processes the 1-bit data stream from the modulator using a SINC3 comb filter. The
transfer function is described in the z-Domain by:

and in the frequency domain by:

where the oversampling rate, OSR, is the ratio of the modulator frequency fM to the sample frequency fS.
Figure 27-3 shows the filter's frequency response for an OSR of 32. The first filter notch is at fS = fM/OSR.
The notch frequency can be adjusted by changing the modulator frequency, fM, using SD24SSELx and
SD24DIVx and the oversampling rate using the SD24OSRx and SD24XOSR bits.

The digital filter for each enabled ADC channel completes the decimation of the digital bit-stream and
outputs new conversion results to the corresponding SD24MEMx register at the sample frequency fS.

634 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

−140

−120

−100

−80

−60

−40

−20

0

Frequency

G
A

IN
 [
d
B

]

fS fM

1

2

3

4
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2

3

Asynchronous Step Synchronous Step

%
 V

F
S

R

Conversion Conversion

www.ti.com SD24_A Operation

Figure 27-3. Comb Filter Frequency Response With OSR = 32

Figure 27-4 shows the digital filter step response and conversion points. For step changes at the input
after start of conversion a settling time must be allowed before a valid conversion result is available. The
SD24INTDLYx bits can provide sufficient filter settling time for a full-scale change at the ADC input. If the
step occurs synchronously to the decimation of the digital filter the valid data will be available on the third
conversion. An asynchronous step will require one additional conversion before valid data is available.

Figure 27-4. Digital Filter Step Response and Conversion Points

635SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD24UNI=1

SD24_A Operation www.ti.com

27.2.7.1 Digital Filter Output

The number of bits output by the digital filter is dependent on the oversampling ratio and ranges from 15
to 30 bits. Figure 27-5 shows the digital filter output and their relation to SD24MEMx for each OSR,
LSBACC, and SD24UNI setting. For example, for OSR = 1024, LSBACC = 0, and SD24UNI = 1, the
SD24MEMx register contains bits 28 to 13 of the digital filter output. When OSR = 32, the one (SD24UNI
= 0) or two (SD24UNI = 1) LSBs are always zero.

The SD24LSBACC and SD24LSBTOG bits give access to the least significant bits of the digital filter
output. When SD24LSBACC = 1 the 16 least significant bits of the digital filter's output are read from
SD24MEMx using word instructions. The SD24MEMx register can also be accessed with byte instructions
returning only the 8 least significant bits of the digital filter output.

When SD24LSBTOG = 1 the SD24LSBACC bit is automatically toggled each time SD24MEMx is read.
This allows the complete digital filter output result to be read with two reads of SD24MEMx. Setting or
clearing SD24LSBTOG does not change SD24LSBACC until the next SD24MEMx access.

636 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=32, LSBACC=x, SD24UNI=1

OSR=32, LSBACC=x, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD24UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD24UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD24UNI=1

www.ti.com SD24_A Operation

Figure 27-5. Used Bits of Digital Filter Output

637SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Input
Voltage

SD24MEMx

−VFSR

+V FSR

7FFFh

8000h

Bipolar Output: 2’s complement

Input
Voltage

SD24MEMx

−VFSR +V FSR

FFFFh

8000h

Bipolar Output: Offset Binary

0000h

0000h

SD24MEMx

−VFSR

FFFFh

Unipolar Output

Input
Voltage

+V FSR

0000h

SD24_A Operation www.ti.com

27.2.8 Conversion Memory Register: SD24MEMx

One SD24MEMx register is associated with each SD24_A channel. Conversion results are moved to the
corresponding SD24MEMx register with each decimation step of the digital filter. The SD24IFG bit is set
when new data is written to SD24MEMx. SD24IFG is automatically cleared when SD24MEMx is read by
the CPU or may be cleared with software.

27.2.8.1 Output Data Format

The output data format is configurable in twos complement, offset binary or unipolar mode as shown in
Table 27-3. The data format is selected by the SD24DF and SD24UNI bits.

Table 27-3. Data Format

Digital Filter OutputSD24UNI SD24DF Format Analog Input SD24MEMx (1)

(OSR = 256)

+FSR FFFF FFFFFF

0 0 Bipolar offset binary ZERO 8000 800000

-FSR 0000 000000

+FSR 7FFF 7FFFFF

0 1 Bipolar twos compliment ZERO 0000 000000

-FSR 8000 800000

+FSR FFFF FFFFFF

1 0 Unipolar ZERO 0000 800000

-FSR 0000 000000
(1) Independent of SD24OSRx and SD24XOSR settings; SD24LSBACC = 0.

NOTE: Offset Measurements and Data Format

Any offset measurement done either externally or using the internal differential pair A7 would
be appropriate only when the channel is operating under bipolar mode with SD24UNI = 0.

If the measured value is to be used in the unipolar mode for offset correction it needs to be
multiplied by two.

Figure 27-6 shows the relationship between the full-scale input voltage range from -VFSR to +VFSR and the
conversion result. The data formats are illustrated.

Figure 27-6. Input Voltage vs Digital Output

638 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Channel 0

SD24SNGL = 1

SD24GRP = 0

Time

Conversion

SD24SC

Channel 1

SD24SNGL = 1

SD24GRP = 0

Conversion

Channel 2

SD24SNGL = 0

SD24GRP = 0

Conversion

SD24SC

SD24SC

Conversion Conversion

Conversion

Set by SW Auto−clear

Set by SW Auto−clear Set by SW Auto−clear

Set by SW

Conv

Cleared by SW

= Result written to SD24MEMx

www.ti.com SD24_A Operation

27.2.9 Conversion Modes

The SD24_A module can be configured for four modes of operation, listed in Table 27-4. The SD24SNGL
and SD24GRP bits for each channel selects the conversion mode.

Table 27-4. Conversion Mode Summary

SD24SNGL SD24GRP (1) Mode Operation

1 0 Single channel, Single conversion A single channel is converted once.

0 0 Single channel, Continuous conversion A single channel is converted continuously.

1 1 Group of channels, Single conversion A group of channels is converted once.

A group of channels is converted0 1 Group of channels, Continuous conversion continuously.
(1) A channel is grouped and is the master channel of the group when SD24GRP = 0 if SD24GRP for the prior channel(s) is set.

27.2.9.1 Single Channel, Single Conversion

Setting the SD24SC bit of a channel initiates one conversion on that channel when SD24SNGL = 1 and it
is not grouped with any other channels. The SD24SC bit will automatically be cleared after conversion
completion.

Clearing SD24SC before the conversion is completed immediately stops conversion of the selected
channel, the channel is powered down and the corresponding digital filter is turned off. The value in
SD24MEMx can change when SD24SC is cleared. It is recommended that the conversion data in
SD24MEMx be read prior to clearing SD24SC to avoid reading an invalid result.

27.2.9.2 Single Channel, Continuous Conversion

When SD24SNGL = 0 continuous conversion mode is selected. Conversion of the selected channel will
begin when SD24SC is set and continue until the SD24SC bit is cleared by software when the channel is
not grouped with any other channel.

Clearing SD24SC immediately stops conversion of the selected channel, the channel is powered down
and the corresponding digital filter is turned off. The value in SD24MEMx can change when SD24SC is
cleared. It is recommended that the conversion data in SD24MEMx be read prior to clearing SD24SC to
avoid reading an invalid result.

Figure 27-7 shows single channel operation for single conversion mode and continuous conversion mode.

Figure 27-7. Single Channel Operation - Example

639SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Channel 0

SD24SNGL = 1

SD24GRP = 1

Time

Conversion

SD24SC

Channel 1

SD24SNGL = 0

SD24GRP = 1

Conversion

Channel 2

SD24SNGL = 0

SD24GRP = 0

Conversion

SD24SC

SD24SC

Conversion Conversion

Set by Ch2 Auto−clear

Set by Ch2

Conv

Set by SW Cleared by SW

Conversion Conv

Cleared by Ch2

Set by SW Auto−clear

Conversion

(syncronized to master)

Cleared by SW

Conv

Set by SW

(syncronized to master)

= Result written to SD24MEMx

SD24_A Operation www.ti.com

27.2.9.3 Group of Channels, Single Conversion

Consecutive SD24_A channels can be grouped together with the SD24GRP bit to synchronize
conversions. Setting SD24GRP for a channel groups that channel with the next channel in the module.
For example, setting SD24GRP for channel 0 groups that channel with channel 1. In this case, channel 1
is the master channel, enabling and disabling conversion of all channels in the group with its SD24SC bit.
The SD24GRP bit of the master channel is always 0. The SD24GRP bit of last channel in SD24_A has no
function and is always 0.

When SD24SNGL = 1 for a channel in a group, single conversion mode is selected. A single conversion of
that channel will occur synchronously when the master channel SD24SC bit is set. The SD24SC bit of all
channels in the group will automatically be set and cleared by SD24SC of the master channel. SD24SC
for each channel can also be cleared in software independently.

Clearing SD24SC of the master channel before the conversions are completed immediately stops
conversions of all channels in the group, the channels are powered down and the corresponding digital
filters are turned off. Values in SD24MEMx can change when SD24SC is cleared. It is recommended that
the conversion data in SD24MEMx be read prior to clearing SD24SC to avoid reading an invalid result.

27.2.9.4 Group of Channels, Continuous Conversion

When SD24SNGL = 0 for a channel in a group, continuous conversion mode is selected. Continuous
conversion of that channel will occur synchronously when the master channel SD24SC bit is set. SD24SC
bits for all grouped channels will be automatically set and cleared with the master channel's SD24SC bit.
SD24SC for each channel in the group can also be cleared in software independently.

When SD24SC of a grouped channel is set by software independently of the master, conversion of that
channel will automatically synchronize to conversions of the master channel. This ensures that
conversions for grouped channels are always synchronous to the master.

Clearing SD24SC of the master channel immediately stops conversions of all channels in the group the
channels are powered down and the corresponding digital filters are turned off. Values in SD24MEMx can
change when SD24SC is cleared. It is recommended that the conversion data in SD24MEMx be read prior
to clearing SD24SC to avoid reading an invalid result.

Figure 27-8 shows grouped channel operation for three SD24_A channels. Channel 0 is configured for
single conversion mode, SD24SNGL = 1, and channels 1 and 2 are in continuous conversion mode,
SD24SNGL = 0. Channel two, the last channel in the group, is the master channel. Conversions of all
channels in the group occur synchronously to the master channel regardless of when each SD24SC bit is
set using software.

Figure 27-8. Grouped Channel Operation - Example

640 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Conversion

32

SD24OSRx = 32

Load SD24PREx

SD24PREx = 8
Preload

applied Time

Delayed Conversion

40

Delayed Conversion

Result

Conversion

32fM cycles:

Delayed Conversion

40

SD24OSRx = 32

Start of

Conversion
Time

Conversion

32

Conversion

32fM cycles:

1stSample Ch1

SD24PRE0 = 8

SD24PRE1 = 0 Conversion

32

Conversion

32

Conversion

32

Conversion

1stSample Ch0

www.ti.com SD24_A Operation

27.2.10 Conversion Operation Using Preload

When multiple channels are grouped the SD24PREx registers can be used to delay the conversion time
frame for each channel. Using SD24PREx, the decimation time of the digital filter is increased by the
specified number of fM clock cycles and can range from 0 to 255. Figure 27-9 shows an example using
SD24PREx.

Figure 27-9. Conversion Delay Using Preload - Example

The SD24PREx delay is applied to the beginning of the next conversion cycle after being written. The
delay is used on the first conversion after SD24SC is set and on the conversion cycle following each write
to SD24PREx. Following conversions are not delayed. After modifying SD24PREx, the next write to
SD24PREx should not occur until the next conversion cycle is completed, otherwise the conversion results
may be incorrect.

The accuracy of the result for the delayed conversion cycle using SD24PREx is dependent on the length
of the delay and the frequency of the analog signal being sampled. For example, when measuring a DC
signal, SD24PREx delay has no effect on the conversion result regardless of the duration. The user must
determine when the delayed conversion result is useful in their application.

Figure 27-10 shows the operation of grouped channels 0 and 1. The preload register of channel 1 is
loaded with zero resulting in immediate conversion whereas the conversion cycle of channel 0 is delayed
by setting SD24PRE0 = 8. The first channel 0 conversion uses SD24PREx = 8, shifting all subsequent
conversions by eight fM clock cycles.

Figure 27-10. Start of Conversion Using Preload - Example

When channels are grouped, care must be taken when a channel or channels operate in single
conversion mode or are disabled in software while the master channel remains active. Each time channels
in the group are re-enabled and re-synchronize with the master channel, the preload delay for that
channel will be reintroduced. Figure 27-11 shows the re-synchronization and preload delays for channels
in a group. It is recommended that SD24PREx = 0 for the master channel to maintain a consistent delay
between the master and remaining channels in the group when they are re-enabled.

641SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Channel 0

SD24SNGL = 0

SD24GRP = 1

Time

Conversion

SD24SC

Channel 1

SD24SNGL = 1

SD24GRP = 1

Conversion

Channel 2

SD24SNGL = 0

SD24GRP = 0

Conversion

SD24SC

SD24SC

Conversion Conversion

Set by Ch2 Auto−clear

Set by Ch2

Conv

Set by SW

Conversion

Set by SW Auto−clear

(syncronized to master)

Cleared by SW

Conv

Set by SW

(syncronized to master)

= Result written to SD24MEMx

PRE1 PRE1

PRE0

Conversion

PRE0 Conv

Celsius

Volts

0 50 100

0.350

0.250

0.300

0.400

0.450

0.500

−50

0.200

VSensor,typ = TCSensor(273 + T[oC]) + VOffset, sensor [mV]

SD24_A Operation www.ti.com

Figure 27-11. Preload and Channel Synchronization

27.2.11 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input pair SD24INCHx = 110 and sets
SD24REFON = 1. Any other configuration is done as if an external analog input pair was selected,
including SD24INTDLYx and SD24GAINx settings. Because the internal reference must be on to use the
temperature sensor, it is not possible to use an external reference for the conversion of the temperature
sensor voltage. Also, the internal reference will be in contention with any used external reference. In this
case, the SD24VMIDON bit may be set to minimize the affects of the contention on the conversion.

The typical temperature sensor transfer function is shown in Figure 27-12. When switching inputs of an
SD24_A channel to the temperature sensor, adequate delay must be provided using SD24INTDLYx to
allow the digital filter to settle and assure that conversion results are valid. The temperature sensor offset
error can be large, and may need to be calibrated for most applications. See device-specific data sheet for
temperature sensor parameters.

Figure 27-12. Typical Temperature Sensor Transfer Function

642 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD24_A Operation

27.2.12 Interrupt Handling

The SD24_A has 2 interrupt sources for each ADC channel:

• SD24IFG

• SD24OVIFG

The SD24IFG bits are set when their corresponding SD24MEMx memory register is written with a
conversion result. An interrupt request is generated if the corresponding SD24IE bit and the GIE bit are
set. The SD24_A overflow condition occurs when a conversion result is written to any SD24MEMx location
before the previous conversion result was read.

27.2.12.1 SD24IV, Interrupt Vector Generator

All SD24_A interrupt sources are prioritized and combined to source a single interrupt vector. SD24IV is
used to determine which enabled SD24_A interrupt source requested an interrupt. The highest priority
SD24_A interrupt request that is enabled generates a number in the SD24IV register (see register
description). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled SD24_A interrupts do not affect the SD24IV value.

Any access, read or write, of the SD24IV register has no effect on the SD24OVIFG or SD24IFG flags. The
SD24IFG flags are reset by reading the associated SD24MEMx register or by clearing the flags in
software. SD24OVIFG bits can only be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the SD24OVIFG and one or more SD24IFG interrupts are pending when the interrupt service routine
accesses the SD24IV register, the SD24OVIFG interrupt condition is serviced first and the corresponding
flag(s) must be cleared in software. After the RETI instruction of the interrupt service routine is executed,
the highest priority SD24IFG pending generates another interrupt request.

27.2.12.2 Interrupt Delay Operation

The SD24INTDLYx bits control the timing for the first interrupt service request for the corresponding
channel. This feature delays the interrupt request for a completed conversion by up to four conversion
cycles allowing the digital filter to settle prior to generating an interrupt request. The delay is applied each
time the SD24SC bit is set or when the SD24GAINx or SD24INCHx bits for the channel are modified.
SD24INTDLYx disables overflow interrupt generation for the channel for the selected number of delay
cycles. Interrupt requests for the delayed conversions are not generated during the delay.

643SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD24_A Operation www.ti.com

27.2.12.3 SD24_A Interrupt Handling Software Example

The following software example shows the recommended use of SD24IV and the handling overhead. The
SD24IV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:

• SD24OVIFG, CH0 SD24IFG, CH1 SD24IFG: 16 cycles

• CH2 SD24IFG: 14 cycles

The interrupt handler for channel 2 SD24IFG shows a way to check immediately if a higher prioritized
interrupt occurred during the processing of the ISR. This saves nine cycles if another SD24_A interrupt is
pending.
; Interrupt handler for SD24_A.
INT_SD24 ; Enter Interrupt Service Routine 6

ADD &SD24IV,PC ; Add offset to PC 3
RETI ; Vector 0: No interrupt 5
JMP ADOV ; Vector 2: ADC overflow 2
JMP ADM0 ; Vector 4: CH_0 SD24IFG 2
JMP ADM1 ; Vector 6: CH_1 SD24IFG 2

;
; Handler for CH_2 SD24IFG starts here. No JMP required.
;
ADM2 MOV &SD24MEM2,xxx ; Move result, flag is reset

... ; Other instruction needed?
JMP INT_SD24 ; Check other int pending 2

;
; Remaining Handlers
;
ADM1 MOV &SD24MEM1,xxx ; Move result, flag is reset

... ; Other instruction needed?
RETI ; Return 5

;
ADM0 MOV &SD24MEM0,xxx ; Move result, flag is reset

RETI ; Return 5
;
ADOV ... ; Handle SD24MEMx overflow

RETI ; Return 5

644 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD24_A Registers

27.3 SD24_A Registers

The SD24_A registers are listed in Table 27-5 (registers for channels not implemented are unavailable;
see the device-specific data sheet).

Table 27-5. SD24_A Registers

Register Short Form Register Type Address Initial State

SD24_A Control SD24CTL Read/write 0100h Reset with PUC

SD24_A Interrupt Vector SD24IV Read/write 0110h Reset with PUC

SD24_A Analog Enable (1) SD24AE Read/write 0B7h Reset with PUC

SD24_A Channel 0 Control SD24CCTL0 Read/write 0102h Reset with PUC

SD24_A Channel 0 Conversion Memory SD24MEM0 Read/write 0112h Reset with PUC

SD24_A Channel 0 Input Control SD24INCTL0 Read/write 0B0h Reset with PUC

SD24_A Channel 0 Preload SD24PRE0 Read/write 0B8h Reset with PUC

SD24_A Channel 1 Control SD24CCTL1 Read/write 0104h Reset with PUC

SD24_A Channel 1 Conversion Memory SD24MEM1 Read/write 0114h Reset with PUC

SD24_A Channel 1 Input Control SD24INCTL1 Read/write 0B1h Reset with PUC

SD24_A Channel 1 Preload SD24PRE1 Read/write 0B9h Reset with PUC

SD24_A Channel 2 Control SD24CCTL2 Read/write 0106h Reset with PUC

SD24_A Channel 2 Conversion Memory SD24MEM2 Read/write 0116h Reset with PUC

SD24_A Channel 2 Input Control SD24INCTL2 Read/write 0B2h Reset with PUC

SD24_A Channel 2 Preload SD24PRE2 Read/write 0BAh Reset with PUC

SD24_A Channel 3 Control SD24CCTL3 Read/write 0108h Reset with PUC

SD24_A Channel 3 Conversion Memory SD24MEM3 Read/write 0118h Reset with PUC

SD24_A Channel 3 Input Control SD24INCTL3 Read/write 0B3h Reset with PUC

SD24_A Channel 3 Preload SD24PRE3 Read/write 0BBh Reset with PUC

SD24_A Channel 4 Control SD24CCTL4 Read/write 010Ah Reset with PUC

SD24_A Channel 4 Conversion Memory SD24MEM4 Read/write 011Ah Reset with PUC

SD24_A Channel 4 Input Control SD24INCTL4 Read/write 0B4h Reset with PUC

SD24_A Channel 4 Preload SD24PRE4 Read/write 0BCh Reset with PUC

SD24_A Channel 5 Control SD24CCTL5 Read/write 010Ch Reset with PUC

SD24_A Channel 5 Conversion Memory SD24MEM5 Read/write 011Ch Reset with PUC

SD24_A Channel 5 Input Control SD24INCTL5 Read/write 0B5h Reset with PUC

SD24_A Channel 5 Preload SD24PRE5 Read/write 0BDh Reset with PUC

SD24_A Channel 6 Control SD24CCTL6 Read/write 010Eh Reset with PUC

SD24_A Channel 6 Conversion Memory SD24MEM6 Read/write 011Eh Reset with PUC

SD24_A Channel 6 Input Control SD24INCTL6 Read/write 0B6h Reset with PUC

SD24_A Channel 6 Preload SD24PRE6 Read/write 0BEh Reset with PUC
(1) Not implemented on all devices; see the device-specific data sheet.

645SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD24_A Registers www.ti.com

27.3.1 SD24CTL, SD24_A Control Register

15 14 13 12 11 10 9 8

Reserved SD24XDIVx SD24LP

r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

SD24DIVx SD24SSELx SD24VMIDON SD24REFON SD24OVIE Reserved

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r0

Reserved Bits 15-12 Reserved

SD24XDIVx Bits 11-9 SD24_A clock divider

00 /1

01 /3

10 /16

11 /48

1xx Reserved

SD24LP Bit 8 Low-power mode. This bit selects a reduced-speed reduced-power mode

0 Low-power mode is disabled

1 Low-power mode is enabled. The maximum clock frequency for the SD24_A is reduced.

SD24DIVx Bits 7-6 SD24_A clock divider

00 /1

01 /2

10 /4

11 /8

SD24SSELx Bits 5-4 SD24_A clock source select

00 MCLK

01 SMCLK

10 ACLK

11 External TACLK

SD24VMIDON Bit 3 VMID buffer on

0 Off

1 On

SD24REFON Bit 2 Reference generator on

0 Reference off

1 Reference on

SD24OVIE Bit 1 SD24_A overflow interrupt enable. The GIE bit must also be set to enable the interrupt.

0 Overflow interrupt disabled

1 Overflow interrupt enabled

Reserved Bit 0 Reserved

646 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD24_A Registers

27.3.2 SD24CCTLx, SD24_A Channel x Control Register

15 14 13 12 11 10 9 8

Reserved SD24BUFx (1) SD24UNI SD24XOSR SD24SNGL SD24OSRx

r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

SD24LSBTOG SD24LSBACC SD24OVIFG SD24DF SD24IE SD24IFG SD24SC SD24GRP

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r(w)-0

Reserved Bit 15 Reserved

SD24BUFx Bits 14-13 High-impedance input buffer mode

00 Buffer disabled

01 Slow speed/current

10 Medium speed/current

11 High speed/current

SD24UNI Bit 12 Unipolar mode select

0 Bipolar mode

1 Unipolar mode

SD24XOSR Bit 11 Extended oversampling ratio. This bit, along with the SD24OSRx bits, select the oversampling ratio. See
SD24OSRx bit description for settings.

SD24SNGL Bit 10 Single conversion mode select

0 Continuous conversion mode

1 Single conversion mode

SD24OSRx Bits 9-8 Oversampling ratio

When SD24XOSR = 0

00 256

01 128

10 64

11 32

When SD24XOSR = 1

00 512

01 1024

10 Reserved

11 Reserved

SD24LSBTOG Bit 7 LSB toggle. This bit, when set, causes SD24LSBACC to toggle each time the SD24MEMx register is read.

0 SD24LSBACC does not toggle with each SD24MEMx read

1 SD24LSBACC toggles with each SD24MEMx read

SD24LSBACC Bit 6 LSB access. This bit allows access to the upper or lower 16-bits of the SD24_A conversion result.

0 SD24MEMx contains the most significant 16-bits of the conversion.

1 SD24MEMx contains the least significant 16-bits of the conversion.

SD24OVIFG Bit 5 SD24_A overflow interrupt flag

0 No overflow interrupt pending

1 Overflow interrupt pending

SD24DF Bit 4 SD24_A data format

0 Offset binary

1 2s complement

SD24IE Bit 3 SD24_A interrupt enable

0 Disabled

1 Enabled
(1) Not implemented on all devices (see the device-specific data sheet).Reserved with r0 access if high-impedance buffer not implemented.

647SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD24_A Registers www.ti.com

SD24IFG Bit 2 SD24_A interrupt flag. SD24IFG is set when new conversion results are available. SD24IFG is automatically
reset when the corresponding SD24MEMx register is read, or may be cleared with software.

0 No interrupt pending

1 Interrupt pending

SD24SC Bit 1 SD24_A start conversion

0 No conversion start

1 Start conversion

SD24GRP Bit 0 SD24_A group. Groups SD24_A channel with next higher channel. Not used for the last channel.

0 Not grouped

1 Grouped

27.3.3 SD24INCTLx, SD24_A Channel x Input Control Register

7 6 5 4 3 2 1 0

SD24INTDLYx SD24GAINx SD24INCHx

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SD24INTDLYx Bits 7-6 Interrupt delay generation after conversion start. These bits select the delay for the first interrupt after
conversion start.

00 Fourth sample causes interrupt

01 Third sample causes interrupt

10 Second sample causes interrupt

11 First sample causes interrupt

SD24GAINx Bits 5-3 SD24_A preamplifier gain

000 x1

001 x2

010 x4

011 x8

100 x16

101 x32

110 Reserved

111 Reserved

SD24INCHx Bits 2-0 SD24_A channel differential pair input. The available selections are device dependent. See the
device-specific data sheet.

000 Ax.0

001 Ax.1 (1)

010 Ax.2 (1)

011 Ax.3 (1)

100 Ax.4 (1)

101 (AVCC - AVSS) / 11

110 Temperature sensor

111 Short for PGA offset measurement

(1) Ax.1 to Ax.4 not available on all devices (see device-specific data sheet).

648 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com SD24_A Registers

27.3.4 SD24MEMx, SD24_A Channel x Conversion Memory Register

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion Bits 15-0 Conversion results. The SD24MEMx register holds the upper or lower 16-bits of the digital filter output,
Results depending on the SD24LSBACC bit.

27.3.5 SD24PREx, SD24_A Channel x Preload Register

7 6 5 4 3 2 1 0

Preload Value

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Preload Value Bits 7-0 SD24_A digital filter preload value

27.3.6 SD24AE, SD24_A Analog Input Enable Register

7 6 5 4 3 2 1 0

SD24AE7 SD24AE6 SD24AE5 SD24AE4 SD24AE3 SD24AE2 SD24AE1 SD24AE0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

SD24AEx Bits 7-0 SD24_A analog enable

0 External input disabled. Negative inputs are internally connected to VSS.

1 External input enabled

649SLAU144I–December 2004–Revised January 2012 SD24_A
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

SD24_A Registers www.ti.com

27.3.7 SD24IV, SD24_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SD24IVx 0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

SD24IVx Bits 15-0 SD24_A interrupt vector value

SD24IV InterruptInterrupt Source Interrupt FlagContents Priority

000h No interrupt pending -

SD24CCTLx002h SD24MEMx overflow HighestSD24OVIFG (1)

SD24CCTL0004h SD24_A Channel 0 Interrupt SD24IFG

SD24CCTL1006h SD24_A Channel 1 Interrupt SD24IFG

SD24CCTL2008h SD24_A Channel 2 Interrupt SD24IFG

SD24CCTL300Ah SD24_A Channel 3 Interrupt SD24IFG

SD24CCTL400Ch SD24_A Channel 4 Interrupt SD24IFG

SD24CCTL500Eh SD24_A Channel 5 Interrupt SD24IFG

SD24CCTL6010h SD24_A Channel 6 Interrupt LowestSD24IFG

(1) When an SD24_A overflow occurs, the user must check all SD24CCTLx SD24OVIFG flags to determine which channel overflowed.

650 SD24_A SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

Chapter 28
SLAU144I–December 2004–Revised January 2012

Embedded Emulation Module (EEM)

This chapter describes the Embedded Emulation Module (EEM) that is implemented in all MSP430 flash
devices.

Topic ... Page

28.1 EEM Introduction ... 652
28.2 EEM Building Blocks .. 654
28.3 EEM Configurations ... 655

651SLAU144I–December 2004–Revised January 2012 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

EEM Introduction www.ti.com

28.1 EEM Introduction

Every MSP430 flash-based microcontroller implements an embedded emulation module (EEM). It is
accessed and controlled through JTAG. Each implementation is device dependent and is described in
section 1.3 EEM Configurations and the device-specific data sheet.

In general, the following features are available:

• Non-intrusive code execution with real-time breakpoint control

• Single step, step into and step over functionality

• Full support of all low-power modes

• Support for all system frequencies, for all clock sources

• Up to eight (device dependent) hardware triggers/breakpoints on memory address bus (MAB) or
memory data bus (MDB)

• Up to two (device dependent) hardware triggers/breakpoints on CPU register write accesses

• MAB, MDB ,and CPU register access triggers can be combined to form up to eight (device dependent)
complex triggers/breakpoints

• Trigger sequencing (device dependent)

• Storage of internal bus and control signals using an integrated trace buffer (device dependent)

• Clock control for timers, communication peripherals, and other modules on a global device level or on
a per-module basis during an emulation stop

Figure 28-1 shows a simplified block diagram of the largest currently available 2xx EEM implementation.

For more details on how the features of the EEM can be used together with the IAR Embedded
Workbench™ debugger see the application report Advanced Debugging Using the Enhanced Emulation
Module (SLAA263) at www.msp430.com. Code Composer Essentials (CCE) and most other debuggers
supporting MSP430 have the same or a similar feature set. For details see the user’s guide of the
applicable debugger.

652 Embedded Emulation Module (EEM) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA263
http://www.msp430.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

CPU Stop

Trigger
Blocks

MB0

MB1

MB2

MB3

MB4

MB5

MB6

MB7

CPU0

CPU1

&

0

Trigger Sequencer

”AND” Matrix −CombinationTriggers

&

1

&

2

&

3

&

4

&

5

&

6

&

7

Start/Stop State Storage

OR

OR

www.ti.com EEM Introduction

Figure 28-1. Large Implementation of the Embedded Emulation Module (EEM)

653SLAU144I–December 2004–Revised January 2012 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

EEM Building Blocks www.ti.com

28.2 EEM Building Blocks

28.2.1 Triggers

The event control in the EEM of the MSP430 system consists of triggers, which are internal signals
indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is
also possible to combine two or more triggers to allow detection of complex events and trigger various
reactions besides stopping the CPU.

In general, the triggers can be used to control the following functional blocks of the EEM:

• Breakpoints (CPU stop)

• State storage

• Sequencer

There are two different types of triggers, the memory trigger and the CPU register write trigger.

Each memory trigger block can be independently selected to compare either the MAB or the MDB with a
given value. Depending on the implemented EEM the comparison can be =, ≠, ≥, or ≤. The comparison
can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the comparison, the condition under which
the trigger is active can be selected. The conditions include read access, write access, DMA access, and
instruction fetch.

Each CPU register write trigger block can be independently selected to compare what is written into a
selected register with a given value. The observed register can be selected for each trigger independently.
The comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a
bit mask.

Both types of triggers can be combined to form more complex triggers. For example, a complex trigger
can signal when a particular value is written into a user-specified address.

28.2.2 Trigger Sequencer

The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is
accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following
features:

• Four states (State 0 to State 3)

• Two transitions per state to any other state

• Reset trigger that resets the sequencer to State 0.

The Trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If State
1 or State 2 are not required, they can be bypassed.

28.2.3 State Storage (Internal Trace Buffer)

The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information
(that is, read, write, or instruction fetch) in a non-intrusive manner. The built-in buffer can hold up to eight
entries. The flexible configuration allows the user to record the information of interest very efficiently.

28.2.4 Clock Control

The EEM provides device dependent flexible clock control. This is useful in applications where a running
clock is needed for peripherals after the CPU is stopped (for example, to allow a UART module to
complete its transfer of a character or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running clock and modules that must
be stopped when the CPU is stopped due to a breakpoint.

654 Embedded Emulation Module (EEM) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com EEM Configurations

28.3 EEM Configurations

Table 28-1 gives an overview of the EEM configurations in the MSP430 2xx family. The implemented
configuration is device dependent - see the device data sheet.

Table 28-1. 2xx EEM Configurations

Feature XS S M L

Memory Bus Triggers 2(=, ≠ only) 3 5 8

1) Low byte 1) Low byte 1) Low byte
Memory Bus Trigger Mask for All 16 or 20 bits

2) High byte 2) High byte 2) High byte

CPU Register-Write Triggers 0 1 1 2

Combination Triggers 2 4 6 8

Sequencer No No Yes Yes

State Storage No No No Yes

In general the following features can be found on any 2xx device:

• At least two MAB/MDB triggers supporting:

– Distinction between CPU, DMA, read, and write accesses

– =, ≠, ≥, or ≤ comparison (in XS only =, ≠)

• At least two trigger Combination registers

• Hardware breakpoints using the CPU Stop reaction

• Clock control with individual control of module clocks (in some XS configurations the control of module
clocks is hardwired)

655SLAU144I–December 2004–Revised January 2012 Embedded Emulation Module (EEM)
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

EEM Configurations www.ti.com

656 Embedded Emulation Module (EEM) SLAU144I–December 2004–Revised January 2012
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

www.ti.com Revision History

Revision History
Revision Comments

SLAU144G Chapter 5 Basic Clock Module+, Added information specific to the MSP430AFE2xx devices:

Figure 5-2. Basic Clock Module+ Block Diagram − MSP430AFE2xx

Section 5.3, Register BCSCTL3 default

Section 5.3.2, 5.3.3, 5.3.4, Available register bits, defaults, and definitions
Added chapters:

Chapter 18 USART Peripheral Interface, UART Mode

Chapter 19 USART Peripheral Interface, SPI Mode

Chapter 27 SD24_A
Made editorial and format changes throughout.

SLAU144H Section 2.4, Corrected DCO startup time.
Section 8.2.6, Updated pin oscillator information; added Figure 8-1.
Section 3.4.6.5, Corrected typo in BIC description.
Section 7.2.1, Corrected typo in code example.

SLAU144I Table 2-3, Changed comments on crystal pins.
Section 1.4.1, Corrected addresses for end of Flash/ROM.
Section 3.3.5, Changed example figure.
Updated descriptions in the following sections: Section 5.1, Section 5.2.1, Section 5.2.2, Section 5.2.3,
Section 5.2.5.2,Section 5.2.7.1,Section 5.3.3 (DCOR bit), Section 5.3.4 (FLST1Sx bit).
Section 7.3.2 and Section 7.3.4, Added information regarding MSP430G2xx.
Section 8.1, Added note regarding MSP430G22x0.
Chapter 21, Added notes throughout regarding MSP430G2210.
Figure 22-1, Updated block diagram.
Section 22.2.2.1, Changed Analog Port Selection description.
Section 22.2.3, Changed Voltage Reference Generator description.
Section 22.3.1, Updated SREF bit description.
Section 22.3.2, Updated INCHx bit description.
Figure 23-1, Changed four inputs on center left mux from GND to Floating.
Table 24-1, Corrected CALDCO... names.
Made editorial changes throughout.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

657SLAU144I–December 2004–Revised January 2012 Revision History
Submit Documentation Feedback

Copyright © 2004–2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU144I

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Table of Contents
	Preface
	1 Introduction
	1.1 Architecture
	1.2 Flexible Clock System
	1.3 Embedded Emulation
	1.4 Address Space
	1.4.1 Flash/ROM
	1.4.2 RAM
	1.4.3 Peripheral Modules
	1.4.4 Special Function Registers (SFRs)
	1.4.5 Memory Organization

	1.5 MSP430x2xx Family Enhancements

	2 System Resets, Interrupts, and Operating Modes
	2.1 System Reset and Initialization
	2.1.1 Brownout Reset (BOR)
	2.1.2 Device Initial Conditions After System Reset
	2.1.2.1 Software Initialization

	2.2 Interrupts
	2.2.1 (Non)-Maskable Interrupts (NMI)
	2.2.1.1 Reset/NMI Pin
	2.2.1.2 Flash Access Violation
	2.2.1.3 Oscillator Fault
	2.2.1.4 Example of an NMI Interrupt Handler

	2.2.2 Maskable Interrupts
	2.2.3 Interrupt Processing
	2.2.3.1 Interrupt Acceptance
	2.2.3.2 Return From Interrupt
	2.2.3.3 Interrupt Nesting

	2.2.4 Interrupt Vectors

	2.3 Operating Modes
	2.3.1 Entering and Exiting Low-Power Modes

	2.4 Principles for Low-Power Applications
	2.5 Connection of Unused Pins

	3 CPU
	3.1 CPU Introduction
	3.2 CPU Registers
	3.2.1 Program Counter (PC)
	3.2.2 Stack Pointer (SP)
	3.2.3 Status Register (SR)
	3.2.4 Constant Generator Registers CG1 and CG2
	3.2.4.1 Constant Generator - Expanded Instruction Set

	3.2.5 General-Purpose Registers R4 to R15

	3.3 Addressing Modes
	3.3.1 Register Mode
	3.3.2 Indexed Mode
	3.3.3 Symbolic Mode
	3.3.4 Absolute Mode
	3.3.5 Indirect Register Mode
	3.3.6 Indirect Autoincrement Mode
	3.3.7 Immediate Mode

	3.4 Instruction Set
	3.4.1 Double-Operand (Format I) Instructions
	3.4.2 Single-Operand (Format II) Instructions
	3.4.3 Jumps
	3.4.4 Instruction Cycles and Lengths
	3.4.4.1 Interrupt and Reset Cycles
	3.4.4.2 Format-II (Single Operand) Instruction Cycles and Lengths
	3.4.4.3 Format-III (Jump) Instruction Cycles and Lengths
	3.4.4.4 Format-I (Double Operand) Instruction Cycles and Lengths

	3.4.5 Instruction Set Description
	3.4.6 Instruction Set Details
	3.4.6.1 ADC
	3.4.6.2 ADD
	3.4.6.3 ADDC
	3.4.6.4 AND
	3.4.6.5 BIC
	3.4.6.6 BIS
	3.4.6.7 BIT
	3.4.6.8 BR, BRANCH
	3.4.6.9 CALL
	3.4.6.10 CLR
	3.4.6.11 CLRC
	3.4.6.12 CLRN
	3.4.6.13 CLRZ
	3.4.6.14 CMP
	3.4.6.15 DADC
	3.4.6.16 DADD
	3.4.6.17 DEC
	3.4.6.18 DECD
	3.4.6.19 DINT
	3.4.6.20 EINT
	3.4.6.21 INC
	3.4.6.22 INCD
	3.4.6.23 INV
	3.4.6.24 JC, JHS
	3.4.6.25 JEQ, JZ
	3.4.6.26 JGE
	3.4.6.27 JL
	3.4.6.28 JMP
	3.4.6.29 JN
	3.4.6.30 JNC, JLO
	3.4.6.31 JNE, JNZ
	3.4.6.32 MOV
	3.4.6.33 NOP
	3.4.6.34 POP
	3.4.6.35 PUSH
	3.4.6.36 RET
	3.4.6.37 RETI
	3.4.6.38 RLA
	3.4.6.39 RLC
	3.4.6.40 RRA
	3.4.6.41 RRC
	3.4.6.42 SBC
	3.4.6.43 SETC
	3.4.6.44 SETN
	3.4.6.45 SETZ
	3.4.6.46 SUB
	3.4.6.47 SUBC, SBB
	3.4.6.48 SWPB
	3.4.6.49 SXT
	3.4.6.50 TST
	3.4.6.51 XOR

	4 CPUX
	4.1 CPU Introduction
	4.2 Interrupts
	4.3 CPU Registers
	4.3.1 Program Counter (PC)
	4.3.2 Stack Pointer (SP)
	4.3.3 Status Register (SR)
	4.3.4 Constant Generator Registers (CG1 and CG2)
	4.3.4.1 Constant Generator – Expanded Instruction Set

	4.3.5 General-Purpose Registers (R4 to R15)

	4.4 Addressing Modes
	4.4.1 Register Mode
	4.4.2 Indexed Mode
	4.4.2.1 Indexed Mode in Lower 64-KB Memory
	4.4.2.2 MSP430 Instruction With Indexed Mode in Upper Memory
	4.4.2.3 MSP430X Instruction With Indexed Mode

	4.4.3 Symbolic Mode
	4.4.3.1 Symbolic Mode in Lower 64KB
	4.4.3.2 MSP430 Instruction With Symbolic Mode in Upper Memory
	4.4.3.3 MSP430X Instruction With Symbolic Mode

	4.4.4 Absolute Mode
	4.4.4.1 Absolute Mode in Lower 64KB
	4.4.4.2 MSP430X Instruction With Absolute Mode

	4.4.5 Indirect Register Mode
	4.4.6 Indirect Autoincrement Mode
	4.4.7 Immediate Mode
	4.4.7.1 MSP430 Instructions With Immediate Mode
	4.4.7.2 MSP430X Instructions With Immediate Mode

	4.5 MSP430 and MSP430X Instructions
	4.5.1 MSP430 Instructions
	4.5.1.1 MSP430 Double-Operand (Format I) Instructions
	4.5.1.2 MSP430 Single-Operand (Format II) Instructions
	4.5.1.3 Jump Instructions
	4.5.1.4 Emulated Instructions
	4.5.1.5 MSP430 Instruction Execution
	4.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines
	4.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths
	4.5.1.5.3 Jump Instructions Cycles and Lengths
	4.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths

	4.5.2 MSP430X Extended Instructions
	4.5.2.1 Register Mode Extension Word
	4.5.2.2 Non-Register Mode Extension Word
	4.5.2.3 Extended Double-Operand (Format I) Instructions
	4.5.2.4 Extended Single-Operand (Format II) Instructions
	4.5.2.4.1 Extended Format II Instruction Format Exceptions

	4.5.2.5 Extended Emulated Instructions
	4.5.2.6 MSP430X Address Instructions
	4.5.2.7 MSP430X Instruction Execution
	4.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths
	4.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths
	4.5.2.7.3 MSP430X Address Instruction Cycles and Lengths

	4.6 Instruction Set Description
	4.6.1 Extended Instruction Binary Descriptions
	4.6.2 MSP430 Instructions
	4.6.2.1 ADC
	4.6.2.2 ADD
	4.6.2.3 ADDC
	4.6.2.4 AND
	4.6.2.5 BIC
	4.6.2.6 BIS
	4.6.2.7 BIT
	4.6.2.8 BR, BRANCH
	4.6.2.9 CALL
	4.6.2.10 CLR
	4.6.2.11 CLRC
	4.6.2.12 CLRN
	4.6.2.13 CLRZ
	4.6.2.14 CMP
	4.6.2.15 DADC
	4.6.2.16 DADD
	4.6.2.17 DEC
	4.6.2.18 DECD
	4.6.2.19 DINT
	4.6.2.20 EINT
	4.6.2.21 INC
	4.6.2.22 INCD
	4.6.2.23 INV
	4.6.2.24 JC, JHS
	4.6.2.25 JEQ, JZ
	4.6.2.26 JGE
	4.6.2.27 JL
	4.6.2.28 JMP
	4.6.2.29 JN
	4.6.2.30 JNC, JLO
	4.6.2.31 JNZ, JNE
	4.6.2.32 MOV
	4.6.2.33 NOP
	4.6.2.34 POP
	4.6.2.35 PUSH
	4.6.2.36 RET
	4.6.2.37 RETI
	4.6.2.38 RLA
	4.6.2.39 RLC
	4.6.2.40 RRA
	4.6.2.41 RRC
	4.6.2.42 SBC
	4.6.2.43 SETC
	4.6.2.44 SETN
	4.6.2.45 SETZ
	4.6.2.46 SUB
	4.6.2.47 SUBC
	4.6.2.48 SWPB
	4.6.2.49 SXT
	4.6.2.50 TST
	4.6.2.51 XOR

	4.6.3 MSP430X Extended Instructions
	4.6.3.1 ADCX
	4.6.3.2 ADDX
	4.6.3.3 ADDCX
	4.6.3.4 ANDX
	4.6.3.5 BICX
	4.6.3.6 BISX
	4.6.3.7 BITX
	4.6.3.8 CLRX
	4.6.3.9 CMPX
	4.6.3.10 DADCX
	4.6.3.11 DADDX
	4.6.3.12 DECX
	4.6.3.13 DECDX
	4.6.3.14 INCX
	4.6.3.15 INCDX
	4.6.3.16 INVX
	4.6.3.17 MOVX
	4.6.3.18 POPM
	4.6.3.19 PUSHM
	4.6.3.20 POPX
	4.6.3.21 PUSHX
	4.6.3.22 RLAM
	4.6.3.23 RLAX
	4.6.3.24 RLCX
	4.6.3.25 RRAM
	4.6.3.26 RRAX
	4.6.3.27 RRCM
	4.6.3.28 RRCX
	4.6.3.29 RRUM
	4.6.3.30 RRUX
	4.6.3.31 SBCX
	4.6.3.32 SUBX
	4.6.3.33 SUBCX
	4.6.3.34 SWPBX
	4.6.3.35 SXTX
	4.6.3.36 TSTX
	4.6.3.37 XORX

	4.6.4 MSP430X Address Instructions
	4.6.4.1 ADDA
	4.6.4.2 BRA
	4.6.4.3 CALLA
	4.6.4.4 CLRA
	4.6.4.5 CMPA
	4.6.4.6 DECDA
	4.6.4.7 INCDA
	4.6.4.8 MOVA
	4.6.4.9 RETA
	4.6.4.10 TSTA
	4.6.4.11 SUBA

	5 Basic Clock Module+
	5.1 Basic Clock Module+ Introduction
	5.2 Basic Clock Module+ Operation
	5.2.1 Basic Clock Module+ Features for Low-Power Applications
	5.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
	5.2.3 LFXT1 Oscillator
	5.2.4 XT2 Oscillator
	5.2.5 Digitally-Controlled Oscillator (DCO)
	5.2.5.1 Disabling the DCO
	5.2.5.2 Adjusting the DCO Frequency
	5.2.5.3 Using an External Resistor (ROSC) for the DCO

	5.2.6 DCO Modulator
	5.2.7 Basic Clock Module+ Fail-Safe Operation
	5.2.7.1 Sourcing MCLK from a Crystal

	5.2.8 Synchronization of Clock Signals

	5.3 Basic Clock Module+ Registers
	5.3.1 DCOCTL, DCO Control Register
	5.3.2 BCSCTL1, Basic Clock System Control Register 1
	5.3.3 BCSCTL2, Basic Clock System Control Register 2
	5.3.4 BCSCTL3, Basic Clock System Control Register 3
	5.3.5 IE1, Interrupt Enable Register 1
	5.3.6 IFG1, Interrupt Flag Register 1

	6 DMA Controller
	6.1 DMA Introduction
	6.2 DMA Operation
	6.2.1 DMA Addressing Modes
	6.2.2 DMA Transfer Modes
	6.2.2.1 Single Transfer
	6.2.2.2 Block Transfers
	6.2.2.3 Burst-Block Transfers

	6.2.3 Initiating DMA Transfers
	6.2.3.1 Edge-Sensitive Triggers
	6.2.3.2 Level-Sensitive Triggers
	6.2.3.3 Halting Executing Instructions for DMA Transfers

	6.2.4 Stopping DMA Transfers
	6.2.5 DMA Channel Priorities
	6.2.6 DMA Transfer Cycle Time
	6.2.7 Using DMA With System Interrupts
	6.2.8 DMA Controller Interrupts
	6.2.9 Using the USCI_B I2C Module with the DMA Controller
	6.2.10 Using ADC12 with the DMA Controller
	6.2.11 Using DAC12 With the DMA Controller
	6.2.12 Writing to Flash With the DMA Controller

	6.3 DMA Registers
	6.3.1 DMACTL0, DMA Control Register 0
	6.3.2 DMACTL1, DMA Control Register 1
	6.3.3 DMAxCTL, DMA Channel x Control Register
	6.3.4 DMAxSA, DMA Source Address Register
	6.3.5 DMAxDA, DMA Destination Address Register
	6.3.6 DMAxSZ, DMA Size Address Register
	6.3.7 DMAIV, DMA Interrupt Vector Register

	7 Flash Memory Controller
	7.1 Flash Memory Introduction
	7.2 Flash Memory Segmentation
	7.2.1 SegmentA

	7.3 Flash Memory Operation
	7.3.1 Flash Memory Timing Generator
	7.3.1.1 Flash Timing Generator Clock Selection

	7.3.2 Erasing Flash Memory
	7.3.2.1 Initiating an Erase from Within Flash Memory
	7.3.2.2 Initiating an Erase from RAM

	7.3.3 Writing Flash Memory
	7.3.3.1 Byte/Word Write
	7.3.3.2 Initiating a Byte/Word Write from Within Flash Memory
	7.3.3.3 Initiating a Byte/Word Write from RAM
	7.3.3.4 Block Write
	7.3.3.5 Block Write Flow and Example

	7.3.4 Flash Memory Access During Write or Erase
	7.3.5 Stopping a Write or Erase Cycle
	7.3.6 Marginal Read Mode
	7.3.7 Configuring and Accessing the Flash Memory Controller
	7.3.8 Flash Memory Controller Interrupts
	7.3.9 Programming Flash Memory Devices
	7.3.9.1 Programming Flash Memory via JTAG
	7.3.9.2 Programming Flash Memory via the Bootstrap Loader (BSL)
	7.3.9.3 Programming Flash Memory via a Custom Solution

	7.4 Flash Memory Registers
	7.4.1 FCTL1, Flash Memory Control Register
	7.4.2 FCTL2, Flash Memory Control Register
	7.4.3 FCTL3, Flash Memory Control Register
	7.4.4 FCTL4, Flash Memory Control Register
	7.4.5 IE1, Interrupt Enable Register 1

	8 Digital I/O
	8.1 Digital I/O Introduction
	8.2 Digital I/O Operation
	8.2.1 Input Register PxIN
	8.2.2 Output Registers PxOUT
	8.2.3 Direction Registers PxDIR
	8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN
	8.2.5 Function Select Registers PxSEL and PxSEL2
	8.2.6 Pin Oscillator
	8.2.7 P1 and P2 Interrupts
	8.2.7.1 Interrupt Flag Registers P1IFG, P2IFG
	8.2.7.2 Interrupt Edge Select Registers P1IES, P2IES
	8.2.7.3 Interrupt Enable P1IE, P2IE

	8.2.8 Configuring Unused Port Pins

	8.3 Digital I/O Registers

	9 Supply Voltage Supervisor (SVS)
	9.1 Supply Voltage Supervisor (SVS) Introduction
	9.2 SVS Operation
	9.2.1 Configuring the SVS
	9.2.2 SVS Comparator Operation
	9.2.3 Changing the VLDx Bits
	9.2.4 SVS Operating Range

	9.3 SVS Registers
	9.3.1 SVSCTL, SVS Control Register

	10 Watchdog Timer+ (WDT+)
	10.1 Watchdog Timer+ (WDT+) Introduction
	10.2 Watchdog Timer+ Operation
	10.2.1 Watchdog Timer+ Counter
	10.2.2 Watchdog Mode
	10.2.3 Interval Timer Mode
	10.2.4 Watchdog Timer+ Interrupts
	10.2.5 Watchdog Timer+ Clock Fail-Safe Operation
	10.2.6 Operation in Low-Power Modes
	10.2.7 Software Examples

	10.3 Watchdog Timer+ Registers
	10.3.1 WDTCTL, Watchdog Timer+ Register
	10.3.2 IE1, Interrupt Enable Register 1
	10.3.3 IFG1, Interrupt Flag Register 1

	11 Hardware Multiplier
	11.1 Hardware Multiplier Introduction
	11.2 Hardware Multiplier Operation
	11.2.1 Operand Registers
	11.2.2 Result Registers
	11.2.2.1 MACS Underflow and Overflow

	11.2.3 Software Examples
	11.2.4 Indirect Addressing of RESLO
	11.2.5 Using Interrupts

	11.3 Hardware Multiplier Registers

	12 Timer_A
	12.1 Timer_A Introduction
	12.2 Timer_A Operation
	12.2.1 16-Bit Timer Counter
	12.2.1.1 Clock Source Select and Divider

	12.2.2 Starting the Timer
	12.2.3 Timer Mode Control
	12.2.3.1 Up Mode
	12.2.3.2 Changing the Period Register TACCR0
	12.2.3.3 Continuous Mode
	12.2.3.4 Use of the Continuous Mode
	12.2.3.5 Up/Down Mode
	12.2.3.6 Changing the Period Register TACCR0
	12.2.3.7 Use of the Up/Down Mode

	12.2.4 Capture/Compare Blocks
	12.2.4.1 Capture Initiated by Software
	12.2.4.2 Compare Mode

	12.2.5 Output Unit
	12.2.5.1 Output Modes
	12.2.5.2 Output Example — Timer in Up Mode
	12.2.5.3 Output Example — Timer in Continuous Mode
	12.2.5.4 Output Example — Timer in Up/Down Mode

	12.2.6 Timer_A Interrupts
	12.2.6.1 TACCR0 Interrupt
	12.2.6.2 TAIV, Interrupt Vector Generator
	12.2.6.3 TAIV Software Example

	12.3 Timer_A Registers
	12.3.1 TACTL, Timer_A Control Register
	12.3.2 TAR, Timer_A Register
	12.3.3 TACCRx, Timer_A Capture/Compare Register x
	12.3.4 TACCTLx, Capture/Compare Control Register
	12.3.5 TAIV, Timer_A Interrupt Vector Register

	13 Timer_B
	13.1 Timer_B Introduction
	13.1.1 Similarities and Differences From Timer_A

	13.2 Timer_B Operation
	13.2.1 16-Bit Timer Counter
	13.2.1.1 TBR Length
	13.2.1.2 Clock Source Select and Divider

	13.2.2 Starting the Timer
	13.2.3 Timer Mode Control
	13.2.3.1 Up Mode
	13.2.3.2 Changing the Period Register TBCL0
	13.2.3.3 Continuous Mode
	13.2.3.4 Use of the Continuous Mode
	13.2.3.5 Up/Down Mode
	13.2.3.6 Changing the Value of Period Register TBCL0
	13.2.3.7 Use of the Up/Down Mode

	13.2.4 Capture/Compare Blocks
	13.2.4.1 Capture Mode
	13.2.4.1.1 Capture Initiated by Software

	13.2.4.2 Compare Mode
	13.2.4.2.1 Compare Latch TBCLx
	13.2.4.2.2 Grouping Compare Latches

	13.2.5 Output Unit
	13.2.5.1 Output Modes
	13.2.5.1.1 Output Example, Timer in Up Mode
	13.2.5.1.2 Output Example, Timer in Continuous Mode
	13.2.5.1.3 Output Example, Timer in Up/Down Mode

	13.2.6 Timer_B Interrupts
	13.2.6.1 TBCCR0 Interrupt Vector
	13.2.6.2 TBIV, Interrupt Vector Generator
	13.2.6.3 TBIV, Interrupt Handler Examples

	13.3 Timer_B Registers
	13.3.1 Timer_B Control Register TBCTL
	13.3.2 TBR, Timer_B Register
	13.3.3 TBCCRx, Timer_B Capture/Compare Register x
	13.3.4 TBCCTLx, Capture/Compare Control Register
	13.3.5 TBIV, Timer_B Interrupt Vector Register

	14 Universal Serial Interface (USI)
	14.1 USI Introduction
	14.2 USI Operation
	14.2.1 USI Initialization
	14.2.2 USI Clock Generation
	14.2.3 SPI Mode
	14.2.3.1 SPI Master Mode
	14.2.3.2 SPI Slave Mode
	14.2.3.3 USISR Operation
	14.2.3.4 SPI Interrupts

	14.2.4 I2C Mode
	14.2.4.1 I2C Master Mode
	14.2.4.2 I2C Slave Mode
	14.2.4.3 I2C Transmitter
	14.2.4.4 I2C Receiver
	14.2.4.5 START Condition
	14.2.4.6 STOP Condition
	14.2.4.7 Releasing SCL
	14.2.4.8 Arbitration
	14.2.4.9 I2C Interrupts

	14.3 USI Registers
	14.3.1 USICTL0, USI Control Register 0
	14.3.2 USICTL1, USI Control Register 1
	14.3.3 USICKCTL, USI Clock Control Register
	14.3.4 USICNT, USI Bit Counter Register
	14.3.5 USISRL, USI Low Byte Shift Register
	14.3.6 USISRH, USI High Byte Shift Register

	15 Universal Serial Communication Interface, UART Mode
	15.1 USCI Overview
	15.2 USCI Introduction: UART Mode
	15.3 USCI Operation: UART Mode
	15.3.1 USCI Initialization and Reset
	15.3.2 Character Format
	15.3.3 Asynchronous Communication Formats
	15.3.3.1 Idle-Line Multiprocessor Format
	15.3.3.2 Transmitting an Idle Frame
	15.3.3.3 Address-Bit Multiprocessor Format
	15.3.3.4 Break Reception and Generation

	15.3.4 Automatic Baud Rate Detection
	15.3.4.1 Transmitting a Break/Synch Field

	15.3.5 IrDA Encoding and Decoding
	15.3.5.1 IrDA Encoding
	15.3.5.2 IrDA Decoding

	15.3.6 Automatic Error Detection
	15.3.7 USCI Receive Enable
	15.3.7.1 Receive Data Glitch Suppression

	15.3.8 USCI Transmit Enable
	15.3.9 UART Baud Rate Generation
	15.3.9.1 Low-Frequency Baud Rate Generation
	15.3.9.2 Oversampling Baud Rate Generation

	15.3.10 Setting a Baud Rate
	15.3.10.1 Low-Frequency Baud Rate Mode Setting
	15.3.10.2 Oversampling Baud Rate Mode Setting

	15.3.11 Transmit Bit Timing
	15.3.11.1 Low-Frequency Baud Rate Mode Bit Timing
	15.3.11.2 Oversampling Baud Rate Mode Bit Timing

	15.3.12 Receive Bit Timing
	15.3.13 Typical Baud Rates and Errors
	15.3.14 Using the USCI Module in UART Mode with Low Power Modes
	15.3.15 USCI Interrupts
	15.3.15.1 USCI Transmit Interrupt Operation
	15.3.15.2 USCI Receive Interrupt Operation
	15.3.15.3 USCI Interrupt Usage

	15.4 USCI Registers: UART Mode
	15.4.1 UCAxCTL0, USCI_Ax Control Register 0
	15.4.2 UCAxCTL1, USCI_Ax Control Register 1
	15.4.3 UCAxBR0, USCI_Ax Baud Rate Control Register 0
	15.4.4 UCAxBR1, USCI_Ax Baud Rate Control Register 1
	15.4.5 UCAxMCTL, USCI_Ax Modulation Control Register
	15.4.6 UCAxSTAT, USCI_Ax Status Register
	15.4.7 UCAxRXBUF, USCI_Ax Receive Buffer Register
	15.4.8 UCAxTXBUF, USCI_Ax Transmit Buffer Register
	15.4.9 UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register
	15.4.10 UCAxIRRCTL, USCI_Ax IrDA Receive Control Register
	15.4.11 UCAxABCTL, USCI_Ax Auto Baud Rate Control Register
	15.4.12 IE2, Interrupt Enable Register 2
	15.4.13 IFG2, Interrupt Flag Register 2
	15.4.14 UC1IE, USCI_A1 Interrupt Enable Register
	15.4.15 UC1IFG, USCI_A1 Interrupt Flag Register

	16 Universal Serial Communication Interface, SPI Mode
	16.1 USCI Overview
	16.2 USCI Introduction: SPI Mode
	16.3 USCI Operation: SPI Mode
	16.3.1 USCI Initialization and Reset
	16.3.2 Character Format
	16.3.3 Master Mode
	16.3.3.1 Four-Pin SPI Master Mode

	16.3.4 Slave Mode
	16.3.4.1 Four-Pin SPI Slave Mode

	16.3.5 SPI Enable
	16.3.5.1 Transmit Enable
	16.3.5.2 Receive Enable

	16.3.6 Serial Clock Control
	16.3.6.1 Serial Clock Polarity and Phase

	16.3.7 Using the SPI Mode With Low-Power Modes
	16.3.8 SPI Interrupts
	16.3.8.1 SPI Transmit Interrupt Operation
	16.3.8.2 SPI Receive Interrupt Operation
	16.3.8.3 USCI Interrupt Usage

	16.4 USCI Registers: SPI Mode
	16.4.1 UCAxCTL0, USCI_Ax Control Register 0, UCBxCTL0, USCI_Bx Control Register 0
	16.4.2 UCAxCTL1, USCI_Ax Control Register 1, UCBxCTL1, USCI_Bx Control Register 1
	16.4.3 UCAxBR0, USCI_Ax Bit Rate Control Register 0, UCBxBR0, USCI_Bx Bit Rate Control Register 0
	16.4.4 UCAxBR1, USCI_Ax Bit Rate Control Register 1, UCBxBR1, USCI_Bx Bit Rate Control Register 1
	16.4.5 UCAxSTAT, USCI_Ax Status Register, UCBxSTAT, USCI_Bx Status Register
	16.4.6 UCAxRXBUF, USCI_Ax Receive Buffer Register, UCBxRXBUF, USCI_Bx Receive Buffer Register
	16.4.7 UCAxTXBUF, USCI_Ax Transmit Buffer Register, UCBxTXBUF, USCI_Bx Transmit Buffer Register
	16.4.8 IE2, Interrupt Enable Register 2
	16.4.9 IFG2, Interrupt Flag Register 2
	16.4.10 UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register
	16.4.11 UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

	17 Universal Serial Communication Interface, I2C Mode
	17.1 USCI Overview
	17.2 USCI Introduction: I2C Mode
	17.3 USCI Operation: I2C Mode
	17.3.1 USCI Initialization and Reset
	17.3.2 I2C Serial Data
	17.3.3 I2C Addressing Modes
	17.3.3.1 7-Bit Addressing
	17.3.3.2 10-Bit Addressing
	17.3.3.3 Repeated Start Conditions

	17.3.4 I2C Module Operating Modes
	17.3.4.1 Slave Mode
	17.3.4.1.1 I2C Slave Transmitter Mode
	17.3.4.1.2 I2C Slave Receiver Mode
	17.3.4.1.3 I2C Slave 10-bit Addressing Mode

	17.3.4.2 Master Mode
	17.3.4.2.1 I2C Master Transmitter Mode
	17.3.4.2.2 I2C Master Receiver Mode
	17.3.4.2.3 I2C Master 10-Bit Addressing Mode
	17.3.4.2.4 Arbitration

	17.3.5 I2C Clock Generation and Synchronization
	17.3.5.1 Clock Stretching

	17.3.6 Using the USCI Module in I2C Mode with Low-Power Modes
	17.3.7 USCI Interrupts in I2C Mode
	17.3.7.1 I2C Transmit Interrupt Operation
	17.3.7.2 I2C Receive Interrupt Operation
	17.3.7.3 I2C State Change Interrupt Operation
	17.3.7.4 Interrupt Vector Assignment

	17.4 USCI Registers: I2C Mode
	17.4.1 UCBxCTL0, USCI_Bx Control Register 0
	17.4.2 UCBxCTL1, USCI_Bx Control Register 1
	17.4.3 UCBxBR0, USCI_Bx Baud Rate Control Register 0
	17.4.4 UCBxBR1, USCI_Bx Baud Rate Control Register 1
	17.4.5 UCBxSTAT, USCI_Bx Status Register
	17.4.6 UCBxRXBUF, USCI_Bx Receive Buffer Register
	17.4.7 UCBxTXBUF, USCI_Bx Transmit Buffer Register
	17.4.8 UCBxI2COA, USCIBx I2C Own Address Register
	17.4.9 UCBxI2CSA, USCI_Bx I2C Slave Address Register
	17.4.10 UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register
	17.4.11 IE2, Interrupt Enable Register 2
	17.4.12 IFG2, Interrupt Flag Register 2
	17.4.13 UC1IE, USCI_B1 Interrupt Enable Register
	17.4.14 UC1IFG, USCI_B1 Interrupt Flag Register

	18 USART Peripheral Interface, UART Mode
	18.1 USART Introduction: UART Mode
	18.2 USART Operation: UART Mode
	18.2.1 USART Initialization and Reset
	18.2.2 Character Format
	18.2.3 Asynchronous Communication Formats
	18.2.3.1 Idle-Line Multiprocessor Format
	18.2.3.2 Address-Bit Multiprocessor Format
	18.2.3.3 Automatic Error Detection

	18.2.4 USART Receive Enable
	18.2.5 USART Transmit Enable
	18.2.6 USART Baud Rate Generation
	18.2.6.1 Baud Rate Bit Timing
	18.2.6.2 Determining the Modulation Value
	18.2.6.3 Transmit Bit Timing
	18.2.6.4 Receive Bit Timing
	18.2.6.5 Typical Baud Rates and Errors

	18.2.7 USART Interrupts
	18.2.7.1 USART Transmit Interrupt Operation
	18.2.7.2 USART Receive Interrupt Operation
	18.2.7.3 Receive-Start Edge Detect Operation
	18.2.7.4 Receive-Start Edge Detect Conditions

	18.3 USART Registers: UART Mode
	18.3.1 UxCTL, USART Control Register
	18.3.2 UxTCTL, USART Transmit Control Register
	18.3.3 UxRCTL, USART Receive Control Register
	18.3.4 UxBR0, USART Baud Rate Control Register 0
	18.3.5 UxBR1, USART Baud Rate Control Register 1
	18.3.6 UxMCTL, USART Modulation Control Register
	18.3.7 UxRXBUF, USART Receive Buffer Register
	18.3.8 UxTXBUF, USART Transmit Buffer Register
	18.3.9 ME1, Module Enable Register 1
	18.3.10 ME2, Module Enable Register 2
	18.3.11 IE1, Interrupt Enable Register 1
	18.3.12 IE2, Interrupt Enable Register 2
	18.3.13 IFG1, Interrupt Flag Register 1
	18.3.14 IFG2, Interrupt Flag Register 2

	19 USART Peripheral Interface, SPI Mode
	19.1 USART Introduction: SPI Mode
	19.2 USART Operation: SPI Mode
	19.2.1 USART Initialization and Reset
	19.2.2 Master Mode
	19.2.2.1 Four-Pin SPI Master Mode

	19.2.3 Slave Mode
	19.2.3.1 Four-Pin SPI Slave Mode

	19.2.4 SPI Enable
	19.2.4.1 Transmit Enable
	19.2.4.2 Receive Enable

	19.2.5 Serial Clock Control
	19.2.5.1 Serial Clock Polarity and Phase

	19.2.6 SPI Interrupts
	19.2.6.1 SPI Transmit Interrupt Operation
	19.2.6.2 SPI Receive Interrupt Operation

	19.3 USART Registers: SPI Mode
	19.3.1 UxCTL, USART Control Register
	19.3.2 UxTCTL, USART Transmit Control Register
	19.3.3 UxRCTL, USART Receive Control Register
	19.3.4 UxBR0, USART Baud Rate Control Register 0
	19.3.5 UxBR1, USART Baud Rate Control Register 1
	19.3.6 UxMCTL, USART Modulation Control Register
	19.3.7 UxRXBUF, USART Receive Buffer Register
	19.3.8 UxTXBUF, USART Transmit Buffer Register
	19.3.9 ME1, Module Enable Register 1
	19.3.10 ME2, Module Enable Register 2
	19.3.11 IE1, Interrupt Enable Register 1
	19.3.12 IE2, Interrupt Enable Register 2
	19.3.13 IFG1, Interrupt Flag Register 1
	19.3.14 IFG2, Interrupt Flag Register 2

	20 OA
	20.1 OA Introduction
	20.2 OA Operation
	20.2.1 OA Amplifier
	20.2.2 OA Input
	20.2.3 OA Output and Feedback Routing
	20.2.4 OA Configurations
	20.2.4.1 General Purpose Opamp Mode
	20.2.4.2 Unity Gain Mode for Differential Amplifier
	20.2.4.3 Unity Gain Mode
	20.2.4.4 Comparator Mode
	20.2.4.5 Non-Inverting PGA Mode
	20.2.4.6 Cascaded Non-Inverting PGA Mode
	20.2.4.7 Inverting PGA Mode
	20.2.4.8 Differential Amplifier Mode

	20.3 OA Registers
	20.3.1 OAxCTL0, Opamp Control Register 0
	20.3.2 OAxCTL1, Opamp Control Register 1

	21 Comparator_A+
	21.1 Comparator_A+ Introduction
	21.2 Comparator_A+ Operation
	21.2.1 Comparator
	21.2.2 Input Analog Switches
	21.2.3 Input Short Switch
	21.2.4 Output Filter
	21.2.5 Voltage Reference Generator
	21.2.6 Comparator_A+, Port Disable Register CAPD
	21.2.7 Comparator_A+ Interrupts
	21.2.8 Comparator_A+ Used to Measure Resistive Elements

	21.3 Comparator_A+ Registers
	21.3.1 CACTL1, Comparator_A+ Control Register 1
	21.3.2 CACTL2, Comparator_A+, Control Register
	21.3.3 CAPD, Comparator_A+, Port Disable Register

	22 ADC10
	22.1 ADC10 Introduction
	22.2 ADC10 Operation
	22.2.1 10-Bit ADC Core
	22.2.1.1 Conversion Clock Selection

	22.2.2 ADC10 Inputs and Multiplexer
	22.2.2.1 Analog Port Selection

	22.2.3 Voltage Reference Generator
	22.2.3.1 Internal Reference Low-Power Features

	22.2.4 Auto Power-Down
	22.2.5 Sample and Conversion Timing
	22.2.5.1 Sample Timing Considerations

	22.2.6 Conversion Modes
	22.2.6.1 Single-Channel Single-Conversion Mode
	22.2.6.2 Sequence-of-Channels Mode
	22.2.6.3 Repeat-Single-Channel Mode
	22.2.6.4 Repeat-Sequence-of-Channels Mode
	22.2.6.5 Using the MSC Bit
	22.2.6.6 Stopping Conversions

	22.2.7 ADC10 Data Transfer Controller
	22.2.7.1 One-Block Transfer Mode
	22.2.7.2 Two-Block Transfer Mode
	22.2.7.3 Continuous Transfer
	22.2.7.4 DTC Transfer Cycle Time

	22.2.8 Using the Integrated Temperature Sensor
	22.2.9 ADC10 Grounding and Noise Considerations
	22.2.10 ADC10 Interrupts

	22.3 ADC10 Registers
	22.3.1 ADC10CTL0, ADC10 Control Register 0
	22.3.2 ADC10CTL1, ADC10 Control Register 1
	22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0
	22.3.4 ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430F22xx only)
	22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format
	22.3.6 ADC10MEM, Conversion-Memory Register, 2s Complement Format
	22.3.7 ADC10DTC0, Data Transfer Control Register 0
	22.3.8 ADC10DTC1, Data Transfer Control Register 1
	22.3.9 ADC10SA, Start Address Register for Data Transfer

	23 ADC12
	23.1 ADC12 Introduction
	23.2 ADC12 Operation
	23.2.1 12-Bit ADC Core
	23.2.1.1 Conversion Clock Selection

	23.2.2 ADC12 Inputs and Multiplexer
	23.2.2.1 Analog Port Selection

	23.2.3 Voltage Reference Generator
	23.2.4 Sample and Conversion Timing
	23.2.4.1 Extended Sample Mode
	23.2.4.2 Pulse Sample Mode
	23.2.4.3 Sample Timing Considerations

	23.2.5 Conversion Memory
	23.2.6 ADC12 Conversion Modes
	23.2.6.1 Single-Channel Single-Conversion Mode
	23.2.6.2 Sequence-of-Channels Mode
	23.2.6.3 Repeat-Single-Channel Mode
	23.2.6.4 Repeat-Sequence-of-Channels Mode
	23.2.6.5 Using the Multiple Sample and Convert (MSC) Bit
	23.2.6.6 Stopping Conversions

	23.2.7 Using the Integrated Temperature Sensor
	23.2.8 ADC12 Grounding and Noise Considerations
	23.2.9 ADC12 Interrupts
	23.2.9.1 ADC12IV, Interrupt Vector Generator
	23.2.9.2 ADC12 Interrupt Handling Software Example

	23.3 ADC12 Registers
	23.3.1 ADC12CTL0, ADC12 Control Register 0
	23.3.2 ADC12CTL1, ADC12 Control Register 1
	23.3.3 ADC12MEMx, ADC12 Conversion Memory Registers
	23.3.4 ADC12MCTLx, ADC12 Conversion Memory Control Registers
	23.3.5 ADC12IE, ADC12 Interrupt Enable Register
	23.3.6 ADC12IFG, ADC12 Interrupt Flag Register
	23.3.7 ADC12IV, ADC12 Interrupt Vector Register

	24 TLV Structure
	24.1 TLV Introduction
	24.2 Supported Tags
	24.2.1 DCO Calibration TLV Structure
	24.2.2 TAG_ADC12_1 Calibration TLV Structure
	24.2.2.1 Temperature Sensor Calibration Data
	24.2.2.2 Integrated Voltage Reference Calibration Data
	24.2.2.3 Example Using the Reference Calibration
	24.2.2.4 Offset and Gain Calibration Data
	24.2.2.5 Example Using Gain and Offset Calibration

	24.3 Checking Integrity of SegmentA
	24.4 Parsing TLV Structure of Segment A

	25 DAC12
	25.1 DAC12 Introduction
	25.2 DAC12 Operation
	25.2.1 DAC12 Core
	25.2.1.1 DAC12 Port Selection

	25.2.2 DAC12 Reference
	25.2.2.1 DAC12 Reference Input and Voltage Output Buffers

	25.2.3 Updating the DAC12 Voltage Output
	25.2.4 DAC12_xDAT Data Format
	25.2.5 DAC12 Output Amplifier Offset Calibration
	25.2.6 Grouping Multiple DAC12 Modules
	25.2.7 DAC12 Interrupts

	25.3 DAC12 Registers
	25.3.1 DAC12_xCTL, DAC12 Control Register
	25.3.2 DAC12_xDAT, DAC12 Data Register

	26 SD16_A
	26.1 SD16_A Introduction
	26.2 SD16_A Operation
	26.2.1 ADC Core
	26.2.2 Analog Input Range and PGA
	26.2.3 Voltage Reference Generator
	26.2.4 Auto Power-Down
	26.2.5 Analog Input Pair Selection
	26.2.5.1 Analog Input Setup

	26.2.6 Analog Input Characteristics
	26.2.7 Digital Filter
	26.2.7.1 Digital Filter Output

	26.2.8 Conversion Memory Register: SD16MEM0
	26.2.8.1 Output Data Format

	26.2.9 Conversion Modes
	26.2.9.1 Single Conversion
	26.2.9.2 Continuous Conversion

	26.2.10 Using the Integrated Temperature Sensor
	26.2.11 Interrupt Handling
	26.2.11.1 SD16IV, Interrupt Vector Generator
	26.2.11.2 Interrupt Delay Operation

	26.3 SD16_A Registers
	26.3.1 SD16CTL, SD16_A Control Register
	26.3.2 SD16CCTL0, SD16_A Control Register 0
	26.3.3 SD16INCTL0, SD16_A Input Control Register
	26.3.4 SD16MEM0, SD16_A Conversion Memory Register
	26.3.5 SD16AE, SD16_A Analog Input Enable Register
	26.3.6 SD16IV, SD16_A Interrupt Vector Register

	27 SD24_A
	27.1 SD24_A Introduction
	27.2 SD24_A Operation
	27.2.1 ADC Core
	27.2.2 Analog Input Range and PGA
	27.2.3 Voltage Reference Generator
	27.2.4 Auto Power-Down
	27.2.5 Analog Input Pair Selection
	27.2.5.1 Analog Input Setup

	27.2.6 Analog Input Characteristics
	27.2.7 Digital Filter
	27.2.7.1 Digital Filter Output

	27.2.8 Conversion Memory Register: SD24MEMx
	27.2.8.1 Output Data Format

	27.2.9 Conversion Modes
	27.2.9.1 Single Channel, Single Conversion
	27.2.9.2 Single Channel, Continuous Conversion
	27.2.9.3 Group of Channels, Single Conversion
	27.2.9.4 Group of Channels, Continuous Conversion

	27.2.10 Conversion Operation Using Preload
	27.2.11 Using the Integrated Temperature Sensor
	27.2.12 Interrupt Handling
	27.2.12.1 SD24IV, Interrupt Vector Generator
	27.2.12.2 Interrupt Delay Operation
	27.2.12.3 SD24_A Interrupt Handling Software Example

	27.3 SD24_A Registers
	27.3.1 SD24CTL, SD24_A Control Register
	27.3.2 SD24CCTLx, SD24_A Channel x Control Register
	27.3.3 SD24INCTLx, SD24_A Channel x Input Control Register
	27.3.4 SD24MEMx, SD24_A Channel x Conversion Memory Register
	27.3.5 SD24PREx, SD24_A Channel x Preload Register
	27.3.6 SD24AE, SD24_A Analog Input Enable Register
	27.3.7 SD24IV, SD24_A Interrupt Vector Register

	28 Embedded Emulation Module (EEM)
	28.1 EEM Introduction
	28.2 EEM Building Blocks
	28.2.1 Triggers
	28.2.2 Trigger Sequencer
	28.2.3 State Storage (Internal Trace Buffer)
	28.2.4 Clock Control

	28.3 EEM Configurations

	Revision History

