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Capacitive Touch Library

MSP430™ microcontrollers offer a number of peripherals that, when configured properly, can be used to
perform a capacitance measurement. The purpose of the capacitive touch library is to create a single
interface that can be integrated with the 2xx and 5xx MSP430 families and the peripheral sets within those
families. This document explains the capacitive touch library's configuration and use.

The software library described in this document can be downloaded from
http://focus.ti.com/docs/toolsw/folders/print/capsenselibrary.html.
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1 Introduction

The Capacitive Touch Software Library is a flexible software base that quickly enables one of several
different capacitive touch sensing algorithms on the MSP430 microcontroller platform. While each
algorithm has its unique features, there are often a number of application-specific factors that would
accommodate one implementation more easily than another. One of the main purposes of this library is to
provide an interface with several MSP430 series and the different peripheral sets within those series.

The library provides several layers or degrees of abstraction. The higher levels of abstraction provide
standard controls for faster and easier development while the lower levels allow for customization and
unique controls.

To use the library, it is important to have a basic understanding of the measurement methods, how to
configure the library for a particular method, how peripheral resources are used, and the API function
calls.

The associated code (1) is intended to be a springboard for developing capacitive touch and other
capacitive measurement solutions. The feature set accommodates a wide variety of applications, all of
which may not be required for a specific application. The source code is provided and customers are
encouraged after creating a working application to remove sections of code that are not used. Additionally,
low-power features are not typically used in the library because of the need to define the ISR, which may
conflict with an existing application definition. Again, as applications allow for shared ISR functionality,
customers are encouraged to update the source code provided to make the most of the low-power
capabilities of the MSP430.

2 Implementations

For the implementations described in this document, the fundamental principle is that two independent
timing domains are compared. One domain is fixed, and the other is variable as a function of the
capacitance.

2.1 Relaxation Oscillator (RO)

The relaxation oscillator method counts the number of relaxation oscillator cycles within a fixed period
(gate time), as shown in Figure 1.

Figure 1. Relaxation Oscillator Measurement

The relaxation oscillator can be realized with a comparator or the PinOsc feature found on several
MSP430 devices. The frequency of the oscillation is function of the resistance and capacitance of the
circuit. The capacitance is the intended variable and increases with a touch. In the time domain the rise
and fall time are increased, but in the frequency domain the frequency is reduced. With an increase in
capacitance the number of relaxation oscillator cycles decreases within the fixed gate time.

(1) The software library described in this document can be downloaded from
http://focus.ti.com/docs/toolsw/folders/print/capsenselibrary.html.
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The naming convention for the RO method in the library identifies the relaxation oscillator mechanism, the
timer used to measure or count oscillations, and the timer used to define the gate period (see Table 1).

Table 1. Relaxation Oscillator Naming Convention

Name RO Mechanism Counter Gate Period

RO_XXX_YYY_ZZZ XXX YYY ZZZ

RO_COMPAp_TA0_WDTp Comparator A+ Timer_A0 Watchdog timer (interval mode)

RO_COMPB_TA1_WDTA Comparator B Timer_A1 Watchdog timer (interval mode)

RO_Pinosc_TA0 (1) Pin Oscillator Timer_A0 'n' ACLK periods
(1) The RO_PINOSC_TA0 is a special case that takes advantage of the internal connection between ACLK and the Timer_A0

capture input. The user has the choice of simply dividing the ACLK in the application layer (by 2,4,8 and setting n to 1) or by
entering a number of ACLK cycles, or both.

2.2 Resistor-Capacitor Time Constant Measurement (RC)

The RC method is the reciprocal of the RO method. As shown in Figure 2, the gate time is now variable, a
function of the capacitance, and the oscillator being counted is fixed.

Figure 2. Resistor-Capacitor Time Constant Measurement (RC)

The RC method can be realized with any MSP430. The gate time is defined by how long it takes to charge
and discharge the capacitance to the port VIT+ and VIT- levels. During this variable gate time the number of
fixed oscillator cycles is counted. An increase in capacitance ( a touch) would result in an increase in the
gate time and consequently an increase in the number of cycles counted. The naming convention is
simple since only the timer that counts the fixed oscillation needs to be identified: RC_PAIR_TA0.
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2.3 Fast Scan Relaxation Oscillator (fRO)

The fRO method is similar to the RC method except that the variable gate period is created with a
relaxation oscillator instead of the charge and discharge time. And as shown in Figure 3, the oscillator
frequency being counted is still fixed.

Figure 3. Fast Scan RO Measurement

The naming convention for the fRO method in the library identifies the relaxation oscillator mechanism, the
timer used to count the fixed oscillation frequency, and the timer used to define the gate period (as a
function of the variable relaxation oscillator frequency).

Table 2. Relaxation Oscillator Naming Convention

Name RO Mechanism Counter Gate Period

fRO_XXX_YYY_ZZZ XXX YYY ZZZ

fRO_COMPB_TA1_SW Comparator B Timer_A1 Software loop

fRO_PINOSC_TA0_SW Pin Oscillator Timer_A0 Software loop

As the name implies, the purpose of the fRO method is provide fast scan rates; faster than the RO method
with similar sensitivity (how small a capacitive change can be resolved). With the RO method, sensitivity is
a function of the gate period—increasing the gate period increases sensitivity. The negative consequence
of increasing gate time is decreased scan rates: more time is spent during a single measurement. To
maintain the sensitivity of the fRO method, the fixed clock rate must provide enough resolution for the
given changes in gate time. This typically means a much faster clock source and higher power
consumption during the shorter gate time.
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3 Configuration

There are two files that serve as the primary means to configure the library: structure.c and structure.h.
structure.c includes all of the definitions of the elements and the sensors (groups of elements). structure.h
makes the definitions in structure.c visible to the other portions of the library and also uses precompiler
definitions to enable functions and limit code size.

3.1 Element Definitions

A capacitive measurement element is a singular structure, whose capacitance represents an event: a
touch, change in humidity, change in dielectric, etc. An element can be used individually, for example as a
button, or combined with other elements to create sensor; keypad, wheel, or slider, shown in Figure 4.

Figure 4. Elements

The element definitions belong to one of two categories; port definition or measurement parameter. The
ports definitions include digital IO peripheral registers, comparator peripheral registers, and bit definitions.
The measurement parameters include the threshold and maximum signal response (maxResponse) of an
element for a given measurement implementation. The port definition can be completed by simply reading
the schematic while the measurement implementation requires testing (see Section 6). Establishing the
correct measurement parameters for a given measurement implementation calibrates the elements.

3.1.1 Common Definitions

InputBits is one common definition that can represents the bit y in the GPIO definition Px.y or the
comparator input mux for either COMPA+ or COMPB solutions.

threshold defines the limit or threshold that the change in capacitance must exceed before an event
(typically a touch) is declared.

maxResponse is the maximum response expected from an element within a sensor and only used in
sensors with multiple elements: slider, wheel, and buttons (1). The purpose of the maxResponse parameter
is to normalize the capacitive measurement to a percentage, where the threshold represents 0% and the
maxResponse represents 100%. This percentage is used to identify the dominant element within the
sensor if multiple elements have threshold crossings.

(1) The buttons abstraction is a sensor made from two or more elements. The button abstraction is a sensor made from one element.
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Figure 5 shows the relative relationship between measurement parameters, threshold and maxResponse,
in a buttons application. The threshold and maxResponse variables are limited to unsigned 16 bit integers
(0 to 65535). These values are further limited by the following when a multi-element abstraction is used
(buttons, slider, or wheel): maxResponse – threshold < 655. Section 6 provides more detail on
establishing the measurement parameters.

Figure 5. Element Measurement Parameters: Buttons Example

3.1.1.1 Comp_A+ Implementations

Implementations using the COMPA+ peripheral to create a relaxation oscillator use the same element
structure format.

InputBits identifies the bits P2CA1, P2CA2, and P2CA3 within the CACTL2 register. These bits represent
the negative input of the comparator. This input is connected directly to the electrode. The input for the
reference is defined in the sensor section.

Const struct Element element_name = {
.inputBits = P2CA2, // CA2
.threshold = 100,
.maxResponse = 200

};
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3.1.1.2 Comp_B Implementations

InputBits identify the CBIMSEL bits in the CBCTL0 register.

15 14 13 12 11 10 9 8

CBIMEN Reserved CBIMSEL

rw-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

7 6 5 4 3 2 1 0

CBIPEN Reserved CBIPSEL

rw-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 rw-0

CBIMEN Bit 15 Channel input enable for the V– terminal of the comparator.

0 Selected analog input channel for V– terminal is disabled.

1 Selected analog input channel for V– terminal is enabled.

Reserved Bits 14-12 Reserved

CBIMSEL Bits 11-8 Channel input selected for the V– terminal of the comparator if CBIMEN is set to 1.

CBIPEN Bit 7 Channel input enable for the V+ terminal of the comparator.

0 Selected analog input channel for V+ terminal is disabled.

1 Selected analog input channel for V+ terminal is enabled.

Reserved Bits 6-4 Reserved

CBIPSEL Bits 3-0 Channel input selected for the V+ terminal of the comparator if CBIPEN is set to 1.

Figure 6. Comp_B Control Register 0 (CBCTL0)

const struct Element element_name = {
.inputBits = CBIMSEL_2, // CB2
.threshold = 100,
.maxResponse = 200

};

3.1.1.3 PinOsc Implementations

*inputPxselRregister and *inputPxsel2Register identify the appropriate registers that must be configured
for the pin oscillator method. These registers, in conjunction with inputBits, configure the structure.

Figure 7. PinOsc Port Parameters

const struct Element right = {

.inputPxselRegister = (uint8_t *)&P2SEL,

.inputPxsel2Register = (uint8_t *)&P2SEL2,

.inputBits = BIT3,

.maxResponse = 400,

.threshold = 50
};
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3.1.1.4 RC Implementations

The RC implementation is comprised of two GPIO. One is the input and the other is the reference. The
configuration requires the pertinent register addresses for a given port as well as the bit definition.

inputPxdirRegister, inputPxoutRegister, and inputPxinRegister identify the port direction, output address,
and input address. These registers, in conjunction with inputBits, configure the input portion of the
structure.

referencePxdirRegister and referencePxoutRegister identify the port direction and output address. These
registers, in conjunction with referenceBits, configure the reference portion of the structure.

One feature of this description is that the ports can share two different functions. That is, the functions can
'flip' so that the reference becomes the input and the input becomes the reference to measure the other
electrode connected to the reference input. This is shown in Figure 8 and the following code example.

Figure 8. RC I/O Parameters

//RC P2.0 input, P2.1 Reference
const struct Element element1 = {

.inputPxinRegister = (uint8_t *)&P2IN,

.inputPxoutRegister = (uint8_t *)&P2OUT,

.inputPxdirRegister = (uint8_t *)&P2DIR,

.inputBits = BIT0,

.referencePxoutRegister = (uint8_t *)&P2OUT,

.referencePxdirRegister = (uint8_t *)&P2DIR,

.referenceBits = BIT1,

.threshold = 100,

.maxResponse = 200
};
//RC P2.1 input, P2.0 Reference
const struct Element element2 = {

.inputPxinRegister = (uint8_t *)&P2IN,

.inputPxoutRegister = (uint8_t *)&P2OUT,

.inputPxdirRegister = (uint8_t *)&P2DIR,

.inputBits = BIT1,

.referencePxoutRegister = (uint8_t *)&P2OUT,

.referencePxdirRegister = (uint8_t *)&P2DIR,

.referenceBits = BIT0,

.threshold = 120,

.maxResponse = 250
};
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3.2 Sensor Definitions

The sensor can be a group of independent elements such as a keypad, or it can be a group of elements
functioning as one sensor such as a wheel or slider. The sensor definition includes all of the applicable
elements, the common mechanism that is used to measure the capacitance of all the elements, and the
peripheral addresses and bit settings for the given mechanism. In the case of wheels and sliders, the
sensor definition also defines the number of points or positions along with the slider (see Figure 9) and the
sensitivity of the sensor.

Figure 9. Sensor Example

3.2.1 Common Definitions

numElements identifies the number of elements that are within the sensor.

baseOffset is a cumulative count of the number of elements that are defined in the application. There is a
baseline value stored in RAM for each element.

//IN structure.h FILE
#define TOTAL_NUMBER_OF_ELEMENTS 8

//IN CTS_Layer.c FILE
uint16_t baseCnt[TOTAL_NUMBER_OF_ELEMENTS];

Table 3. baseOffset Description

Sensor baseOffset Element RAM Address

element0 baseCnt[0]

element1 baseCnt[1]
Slider0 0

element2 baseCnt[2]

element3 baseCnt[3]

element4 baseCnt[4]

element5 baseCnt[5]
Slider1 4

element6 baseCnt[6]

element7 baseCnt[7]

arrayPtr identifies all of the elements associated with a sensor. In the case of the wheel and slider, the
order of the array is important, because it is assumed that the order represents the physical order of the
elements.

measGateSource defines either the gate timer source or the measurement clock source depending upon
the implementation (halDefinition). In RC and fRO implementations, measGateSource defines the
measurement clock source. In the RO implementation, measGateSource identifies the gate timer source.

sourceScale is used to further divide down the source when the timer peripheral provides an input timer to
the input clock source. This applies to timer peripherals only and not to the watchdog timer peripherals.
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accumulationCycles defines the gate time for various implementations. Typically, the accumulationCycles
represents the number of times a measurement is repeated but, in the case of a watchdog timer being
used as the gate peripheral, the accumulationCycles represents the bit settings in the watchdog timer
control register.

halDefinition identifies which measurement implementation is being used for the sensor. Table 4 lists the
different implementations currently supported.

Table 4. halDefinition Description

halDefinition Description

Relaxation oscillator implemented with COMPA+ peripheral. The gate time is fixed and defined byRO_COMPAp_TA0_WDTp the WDT+ peripheral set to interval mode. The capacitance is represented by the number of RORO_COMPAp_TA1_WDTp cycles counted by Timer_A0/A1 during the fixed gate time (see Section 3.2.2.1).

Relaxation oscillator implemented with Digital IO peripheral (1), Timer_A0 is used to measureRO_PINOSC_TA0_WDTp frequency of oscillator, and the WDTp is used to set the gate time (see Section 3.2.2.2).

Relaxation oscillator implemented with Digital IO peripheral , Timer_A0 is used to measureRO_PINOSC_TA0 frequency of oscillator, and the ACLK source is used to set the gate time (see Section 3.2.2.4).

Relaxation oscillator implemented with COMPB peripheral, Timer_A0/A1 is used to measureRO_COMPB_TA0_WDTA frequency of oscillator, and the WDTA peripheral is used to set the gate time (seeRO_COMPB_TA1_WDTA Section 3.2.2.2).

Measure RC time constant with Timer_A0. The gate time is variable and changes with the
charge/discharge time. A software loop is used to establish the number of charge and discharge
cycles that define the gate time. The capacitance is represented by the number of timer counts inRC_PAIR_TA0 Timer_A0 for the gate time. Typically TA0 is sourced from a high frequency clock (SMCLK) for
improved sensitivity. The capacitive element is charged and discharge with the other IO defined in
the pair (see Section 3.2.3.1).

Fast Scan Relaxation oscillator implemented with COMPA+ peripheral. The gate time is variable
fRO_COMPAp_TA0_SW and changes with the period of the relaxation oscillator. The Timer_A0/A1 is used to establish the
fRO_COMPAp_TA1_SW number of oscillations that define the gate time. The capacitance is represented by the number of

software loops counted within the gate time.

Measure the time with Timer_A0, Relaxation oscillator implemented with Digital IO peripheral ,fRO_PINOSC_TA0_SW several oscillations are counted in software to establish the gate time (see Section 3.2.4.2).

Fast Scan Relaxation oscillator implemented with COMPB peripheral. The gate time is variable
fRO_COMPB_TA0_SW and changes with the period of the relaxation oscillator. The Timer_A0/A1 is used to establish the
fRO_COMPB_TA1_SW number of oscillations that define the gate time. The capacitance is represented by the number of

software loops counted within the gate time.

Fast Scan Relaxation oscillator implemented with COMPA+ peripheral. The gate time is variable
and changes with the period of the relaxation oscillator. A software loop is used to establish the

fRO_COMPAp_SW_TA0 number of oscillations that define the gate time. The capacitance is represented by the number of
timer counts in Timer_A0 for the gate time. Typically TA0 is sourced from a high frequency clock
(SMCLK) for improved sensitivity.

(1) The digital I/O functionality described is only found on devices with the pin oscillator feature.

10 Capacitive Touch Library SLAA490–April 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA490


COMPA+

DIGITAL IO

TIMERAx

-

+

RC Filter

Reference

CA1-CA7
element0->inputBits = P2CA3:P2CA1

CA0-CA2
sensor->refCactl2Bits = P2CA4,P2CA0

Px.y
sensor->refPxdirRegister = PxDIR
sensor->refPxoutRegister = PxOUT
sensor->refBits = y

CA1-CA7
element1->inputBits = P2CA3:P2CA1

Px.y/CAOUT
sensor->caoutDirRegister = PxDIR
sensor->caoutSelRegister = PxSEL
sensor->caoutBits = y

Px.y/TAxCLK
sensor->txclkDirRegister = PxDIR
sensor->txclkSelRegister = PxSEL
sensor->txclkBits = y

www.ti.com Configuration

3.2.2 Definitions for the Relaxation Oscillator (RO) Method

3.2.2.1 RO_COMPAp_TAx_WDTp

The relaxation oscillator comprises the Comp_A+ module, a reference, and RC filter. The reference is
connected to the noninverting input of Comp_A+ (via the input mux) while the RC filter is connected to the
inverting input (also via an input mux). The reference is a voltage divider made up of one connection to a
GPIO and the other connections to ground and the comparator output. The 'C' in the RC filter is the
capacitive element being measured.

One way to measure the capacitance is to route the oscillator (via CAOUT) to a timer input (TAxCLK).
Two different HAL definitions are provided depending upon which clock is available;
RO_COMPAp_TA0_WDTp and RO_COMPAp_TA1_WDTp.

Figure 10. RO_COMPAp_TAx Schematic Description

3.2.2.1.1 Port Parameters

In the element structure, the comparator input is defined for each element. At the sensor level (see
Figure 11), the comparator reference input is defined as well as the reference port, comparator output,
and timer input.

Figure 11. Port Parameters for RO_COMPAp_TAx Implementation
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caoutDirRegister and caoutSelRegister identify the port direction address and port selection address. The
variable caoutBits defines the bit(s) that are to be set/reset within the direction and sel register to select
the CAOUT output function of the port. Some devices also use the PxSEL2 register to define the CAOUT
use case. In these devices, the value caoutSel2Register must also be defined (either as P1SEL2 or
P2SEL2).

txclkDirRegister and txclkSelRegister identify the port direction address and port selection address. The
variable txclkBits defines the bit(s) that are to be set/reset within the direction and selection register to
select the TxCLK input function of the port. Some devices also use the PxSEL2 register to define the
TxCLK use case. In these devices, the value txclkSel2Register must also be defined (either as P1SEL2 or
P2SEL2).

The refPxDirRegister, refPxOutRegister, and refBit variables define the pullup portion of the external
reference circuit shown in Figure 11. These bits provide the mechanism to turn on and turn off the
reference for power savings. refPxDirRegister and refPxOutRegister identify the port direction address and
port output address. The variable refBits defines the bit(s) that are to be set/reset within the direction and
selection register to enable the reference circuit.

refCactl2Bits indicates which positive input of Comp_A+ is connected to the voltage reference. The
reference should be applied only to the positive input via CA0, CA1, or CA2. This is represented as
P2CA0, P2CA4, and P2CA0+P2CA4, respectively.

capdBits defines the I/Os that make up the sensor. This is applied to the Comp_A+ control register CAPD.
This value is the logical OR of all the bit definitions for each input and the reference input (that is, the y of
Px.y and NOT the y in CAy).

3.2.2.1.2 Timing Parameters

The two timing parameters define the WDTp interval which is the gate time for the
RO_COMPAp_TAx_WDTp implementation.

measureGateSource indicates the WDTp source: SMCLK or ACLK. This parameter is equivalent to the
'Watchdog timer+ clock source select' bits in the Watchdog Timer+ register.

Table 5. Watchdog Timer Source Select Definitions

Definition Value Source

GATE_WDT_ACLK 0x0004 ACLK

GATE_WDT_SMCLK 0x0000 SMCLK

accumulationCycles is used to define the WDTp interval in the RO_COMPAp_TAx_WDTp implementation.
This is equivalent to the interval select bits in the Watchdog Timer+ register.

Table 6. Watchdog Timer+ Interval Select Definitions

IntervalDefinition Value (s)

WDTp_GATE_32768 0x0000 32768/source

WDTp_GATE_8192 0x0001 8192/source

WDTp_GATE_512 0x0002 512/source

WDTp_GATE_64 0x0003 64/source
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Figure 12 shows how the common sensor parameters measGateSource and accumulationCycles are
used to select the gate time.

Figure 12. Timing Parameters: Example WDT+

The following example shows a sensor made of four elements. Each element is measured with the RO
method for a period of 512/SMCLK.

const struct Sensor slider =
{

.halDefinition = RO_COMPAp_TA0_WDTp,

.numElements = 4,

.baseOffset = 0,

.points = 80,

.sensorThreshold = 50,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
.arrayPtr[1] = &element1,
.arrayPtr[2] = &element2,
.arrayPtr[3] = &element3,

// Reference Information
// CAOUT is P1.7
// TACLK is P1.0
.caoutDirRegister = (uint8_t *)&P1DIR, // PxDIR
.caoutSelRegister = (uint8_t *)&P1SEL, // PxSEL
.txclkDirRegister = (uint8_t *)&P1DIR, // PxDIR
.txclkSelRegister = (uint8_t *)&P1SEL, // SxSEL
.caoutBits = BIT7, // BITy
.txclkBits = BIT0,
// Reference is on P1.6
.refPxoutRegister = (uint8_t *)&P1OUT,
.refPxdirRegister = (uint8_t *)&P1DIR,
.refBits = BIT6, // BIT6
.refCactl2Bits = P2CA4, // CACTL2-> P2CA4, CA1
.capdBits = (BIT1+BIT2+BIT3+BIT4+BIT5),

// Timer Information
.measGateSource= GATE_WDTp_SMCLK, // 0->SMCLK, 1-> ACLK
.accumulationCycles = WDTp_GATE_512 // 512

};
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3.2.2.2 RO_COMPB_TAx_WDTA

The RO_COMPB_TAx_WDTA definition is the same in function as the Comp_A+ solution. The Comp_B
peripheral solution is different in implementation, integrating the reference circuitry and connection to the
Timer_A peripheral, as shown in Figure 13.

Figure 13. RO_COMPB Schematic

3.2.2.2.1 Port Parameters

The different implementation of the Comp_B solution requires an alternative set of parameters for the
sensor definition, shown in Figure 14.

Figure 14. RO_COMPB Port Parameters

cboutTAxRegister and cboutTAxRegister identify the port direction address and port selection address.
The variable cboutTAxBits defines the bit(s) that are to be set/reset within the direction and selection
register to select the CBOUTx output and TxCLK input function of the port. Note that these ports share the
same I/O on 5xx family devices.

cbpdBits disables the Digital I/O function on the port pins that are also used as the comparator inputs.
This is applied to the Comp_B control register CBCTL3. The bit CBPDy in CBCTL3 disables the port of
the comparator channel y (that is, CBPDy disables CBy and not Px.y)
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3.2.2.2.2 Timing Parameters

The two timing parameters define the WDTA interval which is the gate time for the
RO_COMPB_TAx_WDTA implementation. The WDTA module provides four different source settings and
eight watchdog timer intervals.

measureGateSource indicates the WDTA source: SMCLK, ACLK, VLO, or XCLK. This parameter is
equivalent to the Watchdog timer clock source select bits in the Watchdog Timer Control Register
(WDTCTL).

Table 7. Watchdog Timer_A Source Select Definitions

Definition Value Source

GATE_WDTA_SMCLK 0x0000 SMCLK

GATE_WDTA_ACLK 0x0020 ACLK

GATE_WDTA_VLO 0x0040 VLO

GATE_WDTA_XCLK 0x0060 XCLK

accumulationCycles is used to define the WDTA interval in the RO_COMPB_TAx_WDTA implementation.
This is equivalent to the interval select bits in the Watchdog Timer Control Register (WDTCTL).

Table 8. Watchdog Timer_A Interval Select Definitions

IntervalDefinition Value (s)

WDTA_GATE_2G 0x0000 2G/source

WDTA_GATE_128M 0x0001 128M/source

WDTA_GATE_8192K 0x0002 8192k/source

WDTA_GATE_512K 0x0003 512k/source

WDTA_GATE_32768 0x0004 32768/source

WDTA_GATE_8192 0x0005 8192/source

WDTA_GATE_512 0x0006 512/source

WDTA_GATE_64 0x0007 64/source

The following example describes a sensor made up of four elements, and each element is measured with
the RO method for a period of 512000/SMCLK.

const struct Sensor sliderA =
{

.halDefinition = RO_COMPB_TA0_WDTA,

.numElements = 4,

.baseOffset = 0,

.cbpdBits = (BITC+BITD+BITE+BITF),
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
.arrayPtr[1] = &element4,
.arrayPtr[2] = &element8,
.arrayPtr[3] = &elementC,
.cboutTAxDirRegister = (uint8_t *)&P3DIR, // PxDIR
.cboutTAxSelRegister = (uint8_t *)&P3SEL, // PxSEL
.cboutTAxBits = BIT4, // P3.4
// Timer Information
.measGateSource= GATE_WDTA_SMCLK,
.accumulationCycles= WDTA_GATE_512K //

};

Different members within the 5xx family provide an internal connection between CBOUT and TA0 or
between CBOUT and TA1 and, in some cases, both. The description and parameters are the same for
both TA0 and TA1, with the exception of the HAL definition name.
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3.2.2.3 RO_PINOSC_TA0_WDTp

The pin oscillator (PinOsc) implementation of the relaxation oscillator replaces the comparator and
reference circuitry with the Schmitt trigger input found in the digital I/O and an internal inverter. The
PinOsc feedback path to the RC filter is accomplished with the integrated resistor. This integrated resistor
is the 'R' in the RC filter of Figure 15.

Figure 15. RO_PinOsc Schematic

3.2.2.3.1 Port Parameters

Because the relaxation oscillator is accomplished with internal circuitry the port parameters only include
the port selection register (PxSEL), the port selection 2 register (PxSEL2), and the input bit definition. All
of these parameters are defined at the element level and there are no pertinent port definitions at the
sensor level.

3.2.2.3.2 Timing Parameters

The common timing parameters, measGateSource and accumulationCycles, are the same as the
Comp_A+ implementation (see Section 3.2.2.1.2).

The following sensor definition describes a sensor made up of one element that is measured with the RO
method for a period of 8192/SMCLK.

const struct Sensor middle_button =
{

.halDefinition = RO_PINOSC_TA0_WDTp,

.numElements = 1,

.baseOffset = 4,
// Pointer to elements
.arrayPtr[0] = &middle_element, // point to first element
// Timer Information
.measGateSource= GATE_WDT_SMCLK, // 0->SMCLK, 1-> ACLK
//.accumulationCycles= WDTp_GATE_32768 //32768
.accumulationCycles= WDTp_GATE_8192 // 8192
//.accumulationCycles= WDTp_GATE_512 //512
//.accumulationCycles= WDTp_GATE_64 //64

};
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3.2.2.4 RO_PINOSC_TA0

An alternative implementation of the RO_PinOsc with select MSP430 devices (1) is to use the internal ACLK
connection to the timer capture input. The gate time is the number of capture events (equivalent to ACLK
cycles), while the frequency counter is still the peripheral Timer_A0 sourced from the relaxation oscillator.
Since the capture interrupt represents a single oscillation several interrupts are counted with a software
loop to create the equivalent gate time. Unlike the WDT method where the measurement is done in low
power mode, this software loop method will consume more power due to the CPU staying in Active Mode.

3.2.2.5 Port Parameters

Because the relaxation oscillator is accomplished with internal circuitry the port parameters only include
the port selection register (PxSEL), the port selection 2 register (PxSEL2), and the input bit definition. All
of these parameters are defined at the element level and there are no pertinent port definitions at the
sensor level.

3.2.2.6 Timing Parameters

As shown in Figure 16, the only timing parameter definition for the RO_PINOSC_TA0 implementation is
the number of ACLK cycles: sensor->accumulationCycles.

Figure 16. RO_PINOSC_TA0 Timing Parameter

The following sensor definition describes a sensor made up of one element that is measured with the RO
method for a period of 100/ACLK.

const struct Sensor volume =
{

.halDefinition = RO_PINOSC_TA0,

.numElements = 2,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &up, // point to first element
.arrayPtr[1] = &down, //
// Timer Information
.accumulationCycles= 100 // 100 ACLK cycles

};

(1) See the device-specific data sheet to determine if the Timer capture input supports this connection to ACLK.
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3.2.3 Definitions for the RC Method

3.2.3.1 RC_PAIR_TA0

The RC method measures the RC-time constant, where R represents the resistor and C the capacitance
of the electrode. This method uses a single timing resource (peripheral or software) to measure the time it
takes the capacitance to charge and discharge 'n' times. In order to measure both charge and discharge,
two IO are needed. This is reflected in the function name within the library: RC_PAIR.

Figure 17. RC Schematic

3.2.3.1.1 Port Parameters

The port parameters which define the input and the reference are described at the element level and not
the sensor level (see Section 3.1.1.4).

3.2.3.1.2 Timing Parameters

The RC method uses the timer peripheral to measure the charge and discharge time of the RC circuit.
This measurement can be increased (in time and in counts) by accumulating several charge/discharge
cycles as shown in Figure 18. The number of cycles is defined in the parameter: sensor->accumulation
cycles.

Figure 18. RC Timing Parameters
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The following sensor definition describes a sensor made up of two elements that are measured with the
RC method. The gate time for each element is four charge/discharge cycles.

const struct Sensor scroll =
{

.halDefinition = RC_PAIR_TA0,

.numElements = 2,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &left, // point to first element
.arrayPtr[1] = &right, //
// Timer Information
.accumulationCycles= 4 // 4 charge/discharge cycles

};

3.2.4 Definitions for the Fast Scan Relaxation Oscillator (fRO) Method

The fast relaxation oscillator (fRO) method is intended to bridge the gap between the RC and RO
methods. The fRO method provides the fast scan rates of the RC method and the improved sensitivity of
the RO method. In contrast to the RO method the gate time (gate time) is now variable, based upon the
relaxation oscillator, instead of fixed. The variation in the gate time is a function of the capacitive element
being measured. Additionally, with the RO method the frequency counter was variable, but is now fixed in
the fRO implementation. The frequency counter can either be a software loop based upon MCLK or a
timer based upon a system clock (typically SMCLK). Now as capacitance increases, the gate time
increases and consequently the frequency counter number within that gate time increases.

3.2.4.1 fRO_COMPAp_TAx_SW

The fRO_COMPAp_TAx_SW implementations have the same hardware description as the
RO_COMPAp_TAx_WDTp implementations (see Figure 10). As already mentioned, the key difference
between the RO and fRO methods is that the frequency counter and gate timer inputs are switched. The
gate timer now is a function of the capacitance being measured and the frequency counter is fed by a
fixed frequency (a system clock). In the case of the fRO_COMPAp_TAx_SW implementation, the variable
gate timer is created with the relaxation oscillator and the peripheral Timer_Ax. The gate time is a
software loop with a frequency of MCLK/10.

In comparison to the RO method, the fRO method provides similar sensitivity (change in counts) in a
shorter measurement or gate time. The theoretical exercise found in Table 9 shows that similar sensitivity
can be achieved with the fRO method in less time.

Table 9. Comparison of fRO and RO Measurement Times at 16 MHz

RO_COMPAp_TAx_WDTp fRO_COMPAp_TAx_SW

Gate Time:
(1-MHz Counter: Gate Time: Counter:Counts CountsSMCLK, WDT, (RO) (160 RO cycles) (MCLK/10)

512)

Touched 512 µs 600 kHz 307 150 / 600 kHz = 250 µs 16 MHz / 10 400

Untouched 512 µs 700 kHz 358 150 / 700 kHz = 214 µs 16 MHz / 10 342

51 58

The fast RO method would typically be used in devices which have multiple timers available, so that the
frequency counter function would be performed with another hardware timer instead of with a software
loop. This not only would decrease power consumption (running in LPM0 instead of in active mode) but
would remove the 10x factor associated with the software instructions.

3.2.4.1.1 Port Parameters

The port parameters for the fRO_COMPAp_TAx_SW and the RO_COMPAp_TAx_WDTp implementations
are the same (see Section 3.2.2.1 and Section A.1).
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3.2.4.1.2 Timing Parameters

There is only one timing parameter; accumulationCycles. Figure 19 shows how the parameter
accumulationCycles is used to accumulate multiple relaxation oscillator cycles in the
fRO_COMPAp_TA0_SW method.

Figure 19. fRO_COMPAp_TA0_SW Timing Parameter

3.2.4.2 fRO_PINOSC_TA0_SW

The fRO_PINOSC_TA0_SW implementation has the same hardware description as the
RO_PINOSC_TA0_WDTp implementations (see Section 3.2.2.3). As already mentioned the key difference
between the RO and fRO methods is that the frequency counter and gate timer inputs are switched. The
gate timer now is a function of the capacitance being measured and the frequency counter is fed by a
fixed frequency (a system clock). In the case of the fRO_PINOSC_TA0_SW implementation, the variable
gate timer is created with the relaxation oscillator and the peripheral Timer_Ax. The gate time is a
software loop with a frequency of MCLK/10.

In comparison to the RO method the fRO method provides similar sensitivity (change in counts) in a
shorter measurement or gate time. The theoretical exercise found in Table 7 shows that similar sensitivity
can be achieved with the fRO method in less time.

Table 10. Comparison of fRO and RO PinOsc Measurement Times at 16 MHz

RO_PINOSC_TA0_WDTp fRO_PINOSC_TAx_SW

Gate Time: Counter: Gate Time: Counter:(1-MHz SMCLK, Counts Counts(RO) (160 RO cycles) (MCLK/10)WDT, 512)

Touched 512 µs 1 MHz 512 320 / 1 MHz = 320 µs 16 MHz / 10 512

Untouched 512 µs 1.1 MHz 563 320 / 1.1 MHz = 290 µs 16 MHz / 10 465

51 47
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3.2.4.2.1 Port Parameters

Like the RO_PinOsc implementation there are no port parameters found in the sensor level description.
The PxSEL and PxSEL2 definitions are found in the element level description.

3.2.4.2.2 Timing Parameters

The timing sources are part of the hal definition therefore the only parameter to define is the number of
oscillations for the gate time. This number, shown as 'n' in Figure 20, is defined by the variable
accumulationCycles at the sensor level: sensor->accumulationCycles.

Figure 20. fRO_PINOSC_TA0 Timing Parameters

3.2.4.3 fRO_COMPB_TAx_SW

The fRO_COMPB_TAx_SW implementation has the same hardware description as the
RO_COMPB_TAx_WDTA implementation (see Section 3.2.2.2). As already mentioned the key difference
between the RO and fRO methods is that the frequency counter and gate timer inputs are switched. The
gate timer now is a function of the capacitance being measured and the frequency counter is fed by a
fixed frequency (a system clock). In the case of the fRO_COMPB_TAx_SW implementation, the variable
gate timer is created with the relaxation oscillator and the peripheral Timer_Ax. The gate time is a
software loop with a frequency of MCLK/10.

In comparison to the RO method the fRO method provides similar sensitivity (change in counts) in a
shorter measurement or gate time. The theoretical exercise found in Table 11 shows that similar
sensitivity can be achieved with the fRO method in less time.

Table 11. Comparison of fRO and RO Measurement Times at 25 MHz

RO_COMPB_TAx_WDTA fRO_COMPB_TAx_SW

Gate Time: Counter: Gate Time: Counter:(1-MHz SMCLK, Counts Counts(RO) (160 RO cycles) (MCLK/10)WDTA, 512)

Touched 512 µs 600 kHz 307 80 / 600 kHz = 133 µs 25 MHz / 10 333

Untouched 512 µs 700 kHz 358 80 / 700 kHz = 114 µs 25 MHz / 10 285

51 48
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The fast RO method would typically be used in devices which have multiple timers available, so that the
frequency counter function would be performed with another hardware timer instead of with a software
loop. This not only would decrease power consumption (running in LPM0 instead of in active mode) but
would remove the 10x factor associated with the software instructions.

3.2.4.3.1 Port Parameters

The port parameters for the fRO_COMPAp_TAx_SW and the RO_COMPAp_TAx_WDTp implementations
are the same (see Section 3.2.2.2).

3.2.4.3.2 Timing Parameters

There is only one timing parameter; accumulationCycles. Figure 21 shows how the parameter
accumulationCycles is used to accumulate multiple relaxation oscillator cycles in the
fRO_COMPB_TAx_SW method.

Figure 21. fR0_COMPB_TAx_SW Timing Parameter
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3.2.4.4 fRO_COMPAp_SW_TAx

As the name indicates the fRO_COMPAp_SW_TAx implementation uses a software timer to create the
gate time and the timer peripheral as the frequency counter, where the frequency source is a system
clock. Since this implementation does not use the timer to count the number relaxations oscillations the
physical connection is no longer needed as shown in Figure 22.

Figure 22. fRO_COMPAp_SW_TAx General Description

In comparison to the RO method the fRO method provides similar sensitivity (change in counts) in a
shorter measurement or gate time. The theoretical exercise found in Table 12 shows that similar
sensitivity can be achieved with the fRO method with a shorter gate time.

Table 12. Comparison of fRO and RO Measurement Times at 16 MHz

RO_COMPAp_TAx_WDTA fRO_COMPAp_SW_TAx

Gate Time: Gate Time:Counter: Counter:(1-MHz SMCLK, Counts (160 RO cycles, MCLK Counts(RO) (SMCLK)WDTp, 512) is 16 MHz) (1)

Touched 512 µs 600 kHz 307 80 / 600 kHz = 133 µs 16 MHz 333

Untouched 512 µs 700 kHz 358 80 / 700 kHz = 114 µs 16 MHz 285

51 48
(1) Having a slow MCLK results in errors in counting the number of relaxation oscillations. That is, if the software polling loop is too

slow it may miss oscillation cycles resulting in a longer gate time than expected. The software loop is 14 cycles and, therefore,
the MCLK frequency must be 14 times faster than the maximum relaxation oscillator frequency.

The fast RO method would typically be used in devices which have multiple timers available, so that the
frequency counter function and gate timer would be accomplished with hardware. This would decrease
power consumption (running in LPM0 instead of in active mode).

3.2.4.4.1 Port Parameters

The port parameters are similar to those described in Section 3.2.2.1, with the exception of
txclkDirRegister, txclkSelRegister, and txclkBits, which are not used.

3.2.4.4.2 Timing Parameters

There are three timing parameters; measureGateSource, sourceScale, and accumulationCycles. The gate
timer which defines the gate time is defined by accumulationCycles. The software loop counts the
relaxation oscillator cycles until accumulationCycles is reached and at this time reads the timer, TAx. The
measureGateSource and sourceScale configure the TAx peripheral. Specifically these parameters define
the source (typically SMCLK) and the timer divider (typically divide by 1).
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measureGateSource identifies the clock source for TAx. This parameter is the equivalent to the TASSELx
bits found in the Timer_A control register TACTL.

Table 13. measureGateSource Definitions for
fRO_xxxx_SW_Txx

Name Definition Clock Source

TIMER_TxCLK 0x0000 TxCLK

TIMER_ACLK 0x0100 ACLK

TIMER_SMCLK 0x0200 SMCLK

TIMER_INCLK 0x0300 INCLK

sourceScale is used to divide the timer source. This is equivalent to the input divider bits (IDx) found in the
Timer_A control register TACTL.

Table 14. sourceScale Definitions for
fRO_xxxx_SW_Txx

Name Definition Clock Source

TIMER_SOURCE_DIV_0 0x0000 TxCLK

TIMER_SOURCE_DIV_1 0x0040 ACLK

TIMER_SOURCE_DIV_2 0x0080 SMCLK

TIMER_SOURCE_DIV_3 0x00C0 INCLK

accumulationCycles defines the number of relaxation oscillator cycles per gate period. In the
fRO_COMPAp_SW_TAx method the counting of relaxation oscillator cycles is done with a software polling
loop that looks for a comparator interrupt flag to indicate that an oscillation has occurred.

3.2.5 Slider and Wheel Specific Definitions

The following definitions are required only with the API functions TI_CAPT_Wheel and TI_CAPT_Slider.

To include the wheel or slider API within the library the following definitions need to be made in
structure.h:

/ Are wheel or slider representations used?
//#define SLIDER
#define WHEEL

// Illegal slider position. This value is returned
// when no touch on the wheel or slider is detected.
#define ILLEGAL_SLIDER_WHEEL_POSITION 0xFFFF

In structure.c, the sensor definitions for points and sensorThreshold must be added.

The variable points defines the number of points along a slider or wheel.

sensorThreshold defines the cumulative response required by the sensor to declare a valid touch. The
intent of this variable is to distinguish a genuine interaction with the sensor from an unintentional
interaction that may activate only one element.

The wheel or slider sensorThreshold is compared with the response of the dominant element and its
neighbors (summation of x-1, x, and x+1). The endpoints of a slider are a special case that requires a
comparison of only the end element (the dominant element) and the one neighbor. If the response
exceeds sensorThreshold, then a valid use case of the sensor has been validated and the position is
calculated. If no valid use case is detected, then ILLEGAL_SLIDER_WHEEL_POSITION (defined in
structure.h) is returned.
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4 Resources

Depending upon the configuration, this library can consume several different resources making them
completely unavailable to the main application or only unavailable during actual measurement cycles.
Resources that are completely unavailable are typically the watchdog timer peripheral, the digital I/O, and
allocated memory resources.

The library does perform a simple context save of all the registers used to minimize the need for resetting
peripherals. It should be noted that the context save is not extensive and a good practice is to clear IFG
flags before enabling interrupts (1).

4.1 Time (Measurement Time)

The API calls found in the library are blocking calls and do not return the CPU to the application until after
the measurement is complete. The dominant factor on how long the CPU is unavailable is the capacitance
measurement time. This time can either be a number of cycles from a fixed (system clock) or variable
(relaxation oscillator) clock source.

Table 15 shows some example gate times for various capacitance measurement methods and settings. It
is important to note that sensitivity is directly related to the gate time. Shortening the gate time will result in
a decrease in sensitivity. In the fRO implementation the sensitivity can be increased (while keeping the
shorter gate time) by increasing the fixed frequency clock feeding the counter (see Section 3.2.4).

(1) An explicit example of this is with Timer_A3, where the library does not use all three capture and control registers; however, the CCIFG
may be set when the timer is used.

Table 15. Measurement Time Examples

Gate Time Source Interval Definition TimeMethod (.measGateSource) (.accumulationCycles) (ms)

ACLK = VLO ~ 12 kHz 64 (WDTp_GATE_64) 5.33

RO_XXX_YYY_WDTp/A SMCLK = 2 MHz 8192 (WDTp_GATE_8192) 4.1

SMCLK = 1 MHz 512 (WDTp_GATE_512) 0.512

RO_PINOSC_TA0 ACLK = VLO ~ 12 kHz 100 8.3

Rise + Fall (untouched) ~ 1.4 µs 20 0.028 + TBD (1)

RC_PAIR_XXX
Rise + Fall (touched) ~ 1.6 µs 20 0.032 + TBD

RO (untouched) ~ 700 kHz 4000 5.71
fRO_COMPx_YYY_SW

RO (touched) ~ 600 kHz 4000 6.67

RO (untouched) ~ 1.2 MHz 4000 3.33
fRO_PINOSC_YYY_SW

RO (touched) ~ 1 MHz 4000 4

RO (untouched) ~ 700 kHz 500 0.714
fRO_COMPx_SW_YYY

RO (touched) ~ 600 kHz 500 0.833
(1) This additional time is the overhead associated with using software to setup the charge and discharge over several cycles.
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4.2 Memory: Flash and RAM

The amount of code space consumed by the library is directly a function of the number of elements, the
number of sensors, the measurement method, and the level of abstraction. Table 16 shows an example of
how the code size increases with higher levels of abstraction.

Table 16. Example Flash Resource Allocation

Configuration Structure:LibraryAPI Calls Six Elements, Three Structures Comments(bytes) (RO_PINOSC_TA0_WDTp)

Optimization level 0TI_CAPT_Raw 396 (0x18C) 114 (0x72) (CCSv4, CGT v3.3.2)

TI_CAPT_Init_Baseline Optimization level 0TI_CAPT_Update_Baseline 1840 (0x730) 114 (0x72) (CCSv4, CGT v3.3.2)TI_CAPT_Custom

TI_CAPT_Init_Baseline
TI_CAPT_Update_Baseline Optimization level 0TI_CAPT_Custom 2828 (0xB0C) 120 (0x78) (CCSv4, CGT v3.3.2)TI_CAPT_Button
TI_CAPT_Wheel

RAM can be allocated statically to maintain the baseline tracking feature. The amount of RAM needed is a
function of the total number of elements: 2 bytes per element. The library uses the
TOTAL_NUMBER_OF_ELEMENTS definition to indicate that RAM needs to be allocated for the baseline
tracking and how much. When using only the TI_CAPT_RAW API, then
TOTAL_NUMBER_OF_ELEMENTS should not be defined and, therefore, no RAM resources are
consumed.

RAM can be allocated statically or dynamically to perform the measurements to determine a change in
capacitance (TI_CAPT_Custom and sensor abstractions). If the RAM is allocated statically, the definition
RAM_FOR_FLASH must be made in structure.h. The amount of RAM space allocated is dependent upon
the largest number of elements per sensor, 2 bytes per element.

At the cost of additional FLASH space, this RAM can be allocated dynamically from a HEAP. To allocate
the RAM dynamically, the RAM_FOR_FLASH definition must be omitted. The HEAP size needs to be set
(in the IDE) to 2 bytes plus 2 bytes per number of elements in the largest sensor.
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4.3 System Clocks

The library does not make any adjustments to the system clocks (MCLK, SMCLK, or ACLK) and uses
them as defined in the application layer for capacitance measurements. It is important to understand the
clock use of the library in the context of the application. For example, if the capacitance measurement time
is set with watchdog timer interval to 8192/SMCLK, then changing the frequency of SMCLK in the
application also changes the measurement time during the capacitance measurement. If the clock source
for the capacitance measurement is changed in an application then it is important to re-initialize the
baseline tracking accordingly.

4.4 Peripherals

Different combinations of peripherals can be used to measure changes in capacitance. While these
peripherals are not available to the application during a capacitance measurement, most of the peripherals
can be shared or multiplexed in time with other applications or functions.

4.4.1 Timers: A, B, D

The timer peripheral is reconfigured and initialized with every measurement and, therefore, can be used
for other functions when a capacitance measurement is not taking place.

4.4.2 Watchdog Timer

The watchdog timer ISR cannot be used if the peripheral is already selected for use in the library.

4.4.3 Comparators: A, B

The comparator peripheral is reconfigured and initialized with every measurement and, therefore, can be
used for other functions when a capacitance measurement is not taking place. It is not recommended to
connect other inputs to the capacitive sensor element, because this might interfere with the capacitance
measurement.

4.4.4 Digital I/O

It is not recommended to share or multiplex functions on I/O pins that are used for capacitance
measurements.

5 API Calls

The library provides three different layers of abstraction. The lowest level of abstraction is the
TI_CAPT_Raw API function call. This function call measures the appropriate sensor and provides the ‘raw'
capacitance measurement to the application layer. The TI_CAPT_RAW function is the most powerful in
that it allows the most flexibility in interpretation and application of the capacitance measurement.

The next level of abstraction is the TI_CAPT_Custom API function call. This API calls the TI_CAPT_Raw
function and also includes a baseline tracking algorithm. The TI_CAPT_Custom API provides, to the
application layer, the magnitude of change of the measured capacitance from the baseline capacitance.
Changes are only provided to the application layer if the change is in the direction of interest. If the
changes are against the direction of interest this information is used by the baseline tracking but not
provided to the application layer. Several API function calls are provided to adjust the baseline tracking
during run time. The TI_CAPT_Custom API is intended for use with ‘custom' element and sensor design.
The baseline tracking can still be used but the interpretation and application of the change in capacitance
must be handled in the application layer.

The level of abstraction above the TI_CAPT_Custom API, includes the sensor representation of a button,
group of buttons, a wheel, and a slider. The associated APIs include the interpretation and application of
the TI_CAPT_Custom function.
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Table 17. API Functions

Category API Function

Capacitance Measurement uint8_t TI_CAPT_Button(const struct Sensor *);

Capacitance Measurement const struct Element * TI_CAPT_Buttons(const struct Sensor *);

Capacitance Measurement uint16_t TI_CAPT_Slider(const struct Sensor*);

Capacitance Measurement uint16_t TI_CAPT_Wheel(const struct Sensor*);

Capacitance Measurement void TI_CAPT_Custom(const struct Sensor *, uint16_t*);

Capacitance Measurement void TI_CAPT_Raw(const struct Sensor*, uint16_t*);

Baseline Tracking void TI_CAPT_Init_Baseline(const struct Sensor*)

Baseline Tracking void TI_CAPT_Update_Baseline(const struct Sensor*,uint8_t)

Baseline Tracking void TI_CAPT_Reset_Baseline_Tracking(void);

Baseline Tracking void TI_CAPT_Update_Tracking_DOI(uint8);

Baseline Tracking void TI_CAPT_Update_Tracking_Rate(uint8_t, uint8_t);

5.1 uint8_t TI_CAPT_Button(Sensor *);

Inputs: Pointer to Sensor, which defines the element that represents a button

Outputs: 0/1,

Function: Measure the button. A 0 means that the change in capacitance is less than or equal to the
threshold set in the element and 1 means that the change in capacitance has exceeded the threshold.

5.2 element * TI_CAPT_ Buttons(Sensor *);

Inputs: Pointer to Sensor, which defines the group of elements in which each element represents a button

Outputs: pointer to an element or 0

Function: Measure the sensor (buttons) and determine which button, if any, is being touched. This function
return is the structure pointer to the element that exceeds its threshold by the largest margin (% of the
threshold value). If no button exceeds its threshold (set in the element structure), then this function returns
a 0 or 'Null Pointer'.
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5.3 uint16_t TI_CAPT_Slider(Sensor *);

Inputs: Pointer to Sensor, which defines the group of elements that form the slider

Outputs: location on the slider; ILLEGAL_SLIDER_WHEEL_POSITION-> No touch; 0-max -> touch at
location where max is defined by Sensor structure.

Function: This function returns the position of the slider if touched and an illegal value if no touch was
detected.

The order of the elements within the Sensor structure should represent the order of the elements along
the slider. The first element identified within the sensor position represents the lowest value: the outer
edge of the first element in the Sensor array is position 0. The last element represents the largest value:
the outer edge of the last element in the array represents the resolution number found in the Sensor
(points).

const struct Sensor group =
{

.numElements = 5,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
.arrayPtr[1] = &element1,
.arrayPtr[2] = &element2,
.arrayPtr[1] = &element3,
.arrayPtr[2] = &element4,
.points = 100,
.sensorThreshold = 50
};

Figure 23. Slider Implementation

If no element exceeds its threshold (set in the element structure), then this function returns the value
ILLEGAL_SLIDER_WHEEL_POSITION, which is defined in structure.h.

5.4 uint16_t TI_CAPT_Wheel(Sensor *);

uint16_t TI_CAPT_Wheel(Sensor *);

Inputs: Pointer to Sensor, which defines the group of elements that form the wheel

Outputs: Location on the slider:
ILLEGAL_SLIDER_WHEEL_POSITION-> No touch
0-max -> touch at location where max is defined by Sensor structure definition 'points'

Function: Measure the elements within the sensor. This function returns either an invalid number to
indicate that no touch was measured or a valid number representing the position along the wheel.

The order of the elements within the Sensor structure should represent the order of the elements around
the wheel. The first element identified within the sensor position represents the lowest value: the outer
edge of the first element in the Sensor array is position 0. The last element represents the largest value:
the outer edge of the last element in the array represents the point where value wraps around.
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Figure 24. Wheel Example

If no element exceeds its threshold (set in the element structure), then this function returns the value
ILLEGAL_SLIDER_WHEEL_POSITION, which is defined in structure.h.

5.5 void TI_CAPT_Custom(Sensor *, uint16_t *);

Inputs: Pointer to Sensor, which defines the group of elements that form a custom interface, and the
pointer to the array that is updated with the results of the measurement.

Outputs: None

Function: Measure the change in capacitance relative to the baseline (capacitance history) for each
element within the sensor.

The order of the elements within the Sensor structure can be arbitrary but must be understood between
the application and configuration. The first element in the array corresponds to the first element within the
Sensor structure.

Figure 25. Custom Slider Example

This function requires that the application allocate an array that this function can fill when called. This type
of API is useful when the function of the sensor needs to be controlled within the application layer but the
lower level functions or measurement and baseline tracking can still be managed by the library.
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5.6 void TI_CAPT_Raw(Sensor*, uint16_t*);

Inputs: Pointer to Sensor, which defines the group of elements that form a custom interface, and the
pointer to the array that is updated with the results of the measurement.

Outputs: None.

Function: Measure the capacitance of each element within the Sensor. This function updates the input
array with the timer representation of capacitance.

The order of the elements within the Sensor structure is arbitrary and must be managed by the application
and configuration. The first element in the array being passed corresponds to the first element within the
Sensor structure.

This function requires that the application allocate an array that this function can fill when called. This type
of API is useful when the function of the sensor and baseline tracking needs to be controlled within the
application layer but the measurement can still be managed by the library.

5.7 void TI_CAPT_Init_Baseline(Sensor *);

Inputs: pointer to Sensor

Outputs: None.

Function: Measure the sensor and directly place measured values into the associated baseline variables.
At the beginning of operation the values for the baseline, stored in RAM, may be in an unknown state.
Using this function loads the measurements into the RAM space for each element within the sensor.
Various functions automatically average the current measurement with the existing baseline function and
may cause erroneous performance until the tracking algorithm reaches a steady-state value representative
of the environment.

5.8 void TI_CAPT_Update_Baseline(Sensor *, uint8_t);

Inputs: pointer to Sensor and the number of measurements to average with baseline.

Outputs: None.

Function: Average baseline with number of measurements defined in input. The purpose of this function is
to take measurements solely for updating baseline value for each element within the sensor.

5.9 void TI_CAPT_Reset_Tracking (void);

Inputs: None.

Outputs: None.

Function: Reset the baseline tracking so that the direction of interest is an increase in capacitance. Also
reset the tracking rates so that the baseline tracks changes in the direction of interest at the slow setting
(01) and changes in capacitance against the direction of interest at the fast setting (00); that is, track
decreases in capacitance at the fast setting and increases in capacitance at the slow setting.

5.10 void TI_CAPT_Update_Tracking_DOI (uint8_t);

Inputs: The direction of interest.

Outputs: None.

Function: If the input is true (non-zero), then the direction of interest is an increase in capacitance. If the
input is 0x00, then the direction of interest is a decrease in capacitance. In most applications the direction
of interest is an increase in capacitance, because the introduction of an object within a field causes an
increase in capacitance. In some situations it is beneficial to identify when an object is present and then
change the direction of interest to detect when the object is removed. This is typically useful in
applications where the object is stationary for long periods of time.
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5.11 void TI_CAPT_Update_Tracking_Rate (uint8_t);

Inputs: The rate of how quickly the baseline adjusts to changes in capacitance that are in the direction of
interest and against the direction of interest.

Table 18. Update Tracking Rate Format

Tracking Rate in Tracking Rate AgainstInput Value Direction of Interest Direction of Interest

0000 0000b Very Slow Fast

0001 0000b Slow (Default) Fast (Default)

0010 0000b Medium Fast

0011 0000b Fast Fast

0000 0000b Very Slow Fast

0100 0000b Very Slow Medium

1000 0000b Very Slow Slow

1100 0000b Very Slow Very Slow

Outputs: None.

Function: Update the tracking rates per Table 18.
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6 Establishing Measurement Parameters

The measurement parameters, maxResponse, threshold, and sensorThreshold are impacted by timing
parameters selected within the sensor definition. Calibration is an iterative process where the sensor
parameters are changed to provide the appropriate response before the measurement parameters are
selected.

6.1 Measurement Functions

The TI_CAPT_Raw function does not use any of the measurement parameters and can be used to
establish a threshold for the TI_CAPT_Custom function. The TI_CAPT_Custom requires a threshold
parameter to disable the baseline tracking when one or more elements within a sensor exceed the
threshold. It is important to note that with the raw function, an increase in capacitance is represented by
an increase in counts with the RC and fRO methods and is represented by a decrease in counts with the
RO method.

#include "CTS_Layer.h"

// Need to Allocate at least 10 bytes to HEAP in IDE
// threshold set to '0' in structure.c

unsigned int delta_data[4];

void main(void)
{

TI_CAPT_Init_Baseline(&group);
TI_CAPT_Update_Baseline(&group,30);

while(1)
{
TI_CAPT_Custom(&group,delta_data);
__no_operation(); // set breakpoint here

}
}

Table 19. Example of Raw Results With RO Method

Active Element raw_data[0] raw_data[1] raw_data[2] raw_data[3]

None 394 435 426 367

0 (light) 257 424 427 369

0 (normal) 137 410 428 371

0 (heavy) 110 304 420 371

None 390 435 426 367

1 (light) (1) 367 223 408 367

1 (normal) 361 165 401 366

1 (heavy) 226 117 332 365

None 389 435 425 368

2 (normal) 382 349 146 341

None 390 435 426 267

3 (normal) 388 421 255 111
(1) The difference between a light, normal, and heavy press is the surface area. In applications with a

finger, as more pressure is applied the end of the finger flattens creating a larger surface area.
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From Table 19, the threshold for elements 0 and 1 can be established from the difference between the
interaction and no interaction. A good rule of thumb is half the difference. For example, in this
configuration to ensure detection of a light touch on sensors 0 and 1, the thresholds would be 137/2 and
212/2, respectively.

6.2 Button and Buttons

Defining the threshold value for the TI_CAPT_Button and TI_CAPT_Buttons abstractions is done with the
TI_CAPT_Custom function. The TI_CAPT_Custom function measures the magnitude of change from the
baseline that is being tracked by the library. The magnitude of change is only returned for the direction of
interest. Changes in the opposite direction are represented by a 0. In the following code example the
direction of interest is an increasing capacitance. See the TI_CAPT_Update_Tracking_DOI API for a
description on changing the direction of interest.

#include "CTS_Layer.h"

// threshold set to '0' in structure.c

unsigned int delta_data[4];

void main(void)
{

TI_CAPT_Init_Baseline(&group);
TI_CAPT_Update_Baseline(&group,30);

while(1)
{
TI_CAPT_Custom(&group,delta_data);
__no_operation(); // set breakpoint here

}
}

Table 20. Example of Change in Capacitance Results With RO Method

Active Element delta_data[0] delta_data[1] delta_data[2] delta_data[3]

None 0 0 0 0

0 (light) 130 11 0 0

0 (normal) 188 16 0 0

0 (heavy) 287 71 0 0

None 0 0 0 0

1 (light) 14 205 13 1

1 (normal) 30 288 35 2

1 (heavy) 222 328 91 2

None 0 0 0 0

2 (normal) 3 49 292 24

None 0 0 0 0

3 (normal) 0 5 52 243

The threshold calculation is similar to that shown with Table 19.

APIs that use an array of elements, like the TI_CAPT_Buttons API, require the definition of the
maxResponse parameter in addition to the threshold. With multiple elements within a sensor the
maxResponse is used to normalize the response of each element and identify which element has the
dominant response. The purpose of the normalization is to account for possible differences in element
performance. Using Table 20 as an example, the maxResponse would simply be the result from the heavy
interaction. Keep in mind the relationship between threshold and maxResponse as described in
Section 3.1.1.

34 Capacitive Touch Library SLAA490–April 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA490


e0 e1 e2 e3

TI_CAPTI_Custom(&slider, dCnt)

e0 dCnt[0] a

e1 dCnt[1] -

e2 dCnt[2] -

e3 dCnt[3] -

Element Address Value

slider

e0 e1 e2 e3

e0 dCnt[0] b

e1 dCnt[1] c

e2 dCnt[2] -

e3 dCnt[3] -

e0 e1 e2 e3

e0 dCnt[0] d

e1 dCnt[1] e

e2 dCnt[2] d

e3 dCnt[3] -

e0 e1 e2 e3

e0 dCnt[0] -

e1 dCnt[1] f

e2 dCnt[2] g

e3 dCnt[3] f

e0 e1 e2 e3

e0 dCnt[0] -

e1 dCnt[1] -

e2 dCnt[2] h

e3 dCnt[3] j

e0 e1 e2 e3

e0 dCnt[0] -

e1 dCnt[1] -

e2 dCnt[2] -

e3 dCnt[3] k

Position

0

points/8

3*points/

8

5*points/

8

7*points/

8

points

www.ti.com Establishing Measurement Parameters

6.3 Sensor Arrays: Wheels and Sliders

With the wheel and slider APIs the threshold and maxResponse measurement parameters take on slightly
different meanings. The threshold represents the minimum response expected as the interaction first
'slides' into the elements area. The maxResponse represents the maximum return as the interaction slides
across the element. This is typically found to be the center of the element that has the largest area overlap
between the element and interaction. Figure 26 shows how to use the custom function to measure the
performance of a slider and determine the values for the threshold and maxResponse variables.

Figure 26. Measurement Example of a Four-Element Sensor

Ideally, the geometry of the electrodes would result in equivalent, non-zero, responses for a, c, d, f, h, and
k. More importantly, the response should be greater than 10% of the corresponding maximum return, b, e,
g, or j.

Table 21. Measurement Example of a Four-Element Sensor

Element Threshold maxResponse (1)

e0 (a + d) / 2 b or (threshold + 655), whichever is smaller

e1 (c + f) / 2 e or (threshold + 655), whichever is smaller

e2 (d + h) / 2 g or (threshold + 655), whichever is smaller

e3 (f + k) / 2 j or (threshold + 655), whichever is smaller
(1) In some geometries the value within maxResponse is not truly the largest return from the electrode but

the return recorded at the center of the electrode. The important criteria are that the neighbors (for a
slider or wheel) have equal returns.
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If the design prohibits meeting these criteria, then one should consider using the TI_CAPT_Custom
function and performing the position calculations within the application layer. If the TI_CAPT_Custom
function is used, then only the threshold value is required as mentioned earlier.

Wheels and sliders also require a third measurement parameter that is part of the sensor structure,
sensorThreshold. As described in Figure 27, the sensorThreshold defines the valid area of the slider. A
good starting value is 75. Decreasing this value increases the slider area at the expense of position
accuracy. Conversely, increasing this value increases position accuracy, but the interaction must follow
the center line of the wheel or slider much more closely.

Figure 27. Valid Slider Locations as a Function of the Sensor Threshold
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Appendix A Element and Sensor Definitions

A.1 RO_PINOSC_TA0_xx

Figure 28. RO_PINOSC_TA0 Element and Sensor Definitions

A.1.1 RO_PINOSC_TA0_WDTp

const struct Element element0 = {
.inputPxselRegister = (uint8_t *)&P2SEL,
.inputPxsel2Register = (uint8_t *)&P2SEL2,
.inputBits = BIT3,
.maxResponse = 400,
.threshold = 50

};

const struct Sensor group =
{

.halDefinition = RO_PINOSC_TA0_WDTp,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
// Timer Information
.measGateSource= GATE_WDTp_SMCLK, // 0->SMCLK, 1-> ACLK
.accumulationCycles= WDTp_GATE_8192 // 8192 SMCLK cycles in gate time

};

A.1.2 RO_PINOSC_TA0

const struct Element element0 = {
.inputPxselRegister = (uint8_t *)&P2SEL,
.inputPxsel2Register = (uint8_t *)&P2SEL2,
.inputBits = BIT3,
.maxResponse = 200,
.threshold = 80

};

const struct Sensor group =
{

.halDefinition = RO_PINOSC_TA0,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
// Timer Information
.accumulationCycles = 20 // Number of ACLK cycles in gate time

};
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A.1.3 fRO_PINOSC_TA0_xx

const struct Element element0 = {
.inputPxselRegister = (uint8_t *)&P2SEL,
.inputPxsel2Register = (uint8_t *)&P2SEL2,
.inputBits = BIT3,
.maxResponse = 200,
.threshold = 80

};

const struct Sensor group =
{

.halDefinition = fRO_PINOSC_TA0_SW,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
// Timer Information
.accumulationCycles = 1000 // Number of RO cycles in gate time

};

A.2 xx_COMPAp_TAx_xx

Figure 29. RO_COMPAp_TAx Element and Sensor Definitions
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A.2.1 RO_COMPAp_TAx_xx

const struct Element element0 = {
.inputBits = P2CA2, // CA2
.maxResponse = 250,
.threshold = 100

};

const struct Sensor group =
{

.halDefinition = RO_COMPAp_TA0_WDTp,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0,
// Reference Information
// CAOUT is P1.7
// TACLK is P1.0
.caoutDirRegister = (uint8_t *)&P1DIR, // PxDIR
.caoutSelRegister = (uint8_t *)&P1SEL, // PxSEL
.txclkDirRegister = (uint8_t *)&P1DIR, // PxDIR
.txclkSelRegister = (uint8_t *)&P1SEL, // SxSEL
.caoutBits = BIT7, // BITy
.txclkBits = BIT0,
.refPxoutRegister = (uint8_t *)&P1OUT,
.refPxdirRegister = (uint8_t *)&P1DIR,
.refBits = BIT6, // BIT6
.capdBits = BIT1+BIT2, // BIT1,2
.refCactl2Bits = P2CA4, // CACTL2-> P2CA4 , CA1
// Timer Information
.measGateSource= GATE_WDTp_SMCLK, // 0->SMCLK, 1-> ACLK
.accumulationCycles= WDTp_GATE_512 // gate time is 512 SMCLK cycles

};

A.2.2 fRO_COMPAp_TAx_xx

const struct Element element0 = {
.inputBits = P2CA2, // CA2
.maxResponse = 230,
.threshold = 80

};

const struct Sensor group =
{

.halDefinition = fRO_COMPAp_TA0_SW,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0,
// Reference Information
// CAOUT is P1.7
// TACLK is P1.0
.caoutDirRegister = (uint8_t *)&P1DIR, // PxDIR
.caoutSelRegister = (uint8_t *)&P1SEL, // PxSEL
.txclkDirRegister = (uint8_t *)&P1DIR, // PxDIR
.txclkSelRegister = (uint8_t *)&P1SEL, // SxSEL
.caoutBits = BIT7, // BITy
.txclkBits = BIT0,
.refPxoutRegister = (uint8_t *)&P1OUT,
.refPxdirRegister = (uint8_t *)&P1DIR,
.refBits = BIT6, // BIT6
.capdBits = BIT1+BIT2, // BIT1,2
.refCactl2Bits = P2CA4, // CACTL2-> P2CA4 , CA1
// Timer Information
.accumulationCycles = 1000

};
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A.3 fRO_COMPAp_SW_xx

Figure 30. fRO_COMPAp_TAx Element and Sensor Definitions

const struct Element element0 = {
.inputBits = P2CA2, // CA2
.maxResponse = 180,
.threshold = 60

};

const struct Sensor group =
{

.halDefinition = fRO_COMPAp_SW_TA0,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0,
// Reference Information
// CAOUT is P1.7
.caoutDirRegister = (uint8_t *)&P1DIR, // PxDIR
.caoutSelRegister = (uint8_t *)&P1SEL, // PxSEL
.caoutBits = BIT7, // BITy
.refPxoutRegister = (uint8_t *)&P1OUT,
.refPxdirRegister = (uint8_t *)&P1DIR,
.refBits = BIT6, // BIT6
.capdBits = BIT1+BIT2, // BIT1,2
.refCactl2Bits = P2CA4, // CACTL2-> P2CA4 , CA1
// Timer Information
.accumulationCycles = 1000 // number of RO cycles in gate time

};
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CB0-CB15
element0->inputBits = CBIMSEL

Px.y/CBOUT/TAxCLK
sensor->cboutTAxDirRegister = PxDIR
sensor->cboutTAxSelRegister = PxSEL
sensor->cboutTAxBits = y

CB0-CB15
element1->inputBits = CBIMSEL

www.ti.com xx_COMPB_TAx_xx

A.4 xx_COMPB_TAx_xx

Figure 31. RO_COMPB_TAx Element and Sensor Definitions

A.4.1 RO_COMPB_TAx_xx

const struct Element element0 = {
.inputBits = CBIMSEL_2, // CB2
.maxResponse = 310,
.threshold = 240

};

const struct Sensor group =
{

.halDefinition = RO_COMPB_TA0_WDTA,

.numElements = 1,

.baseOffset = 0,

.cbpdBits = (BIT2),
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
.cboutTAxDirRegister = (uint8_t *)&P3DIR, // PxDIR
.cboutTAxSelRegister = (uint8_t *)&P3SEL, // PxSEL
.cboutTAxBits = BIT4, // P3.4
// Timer Information
.measGateSource= GATE_WDTA_SMCLK, // 0->SMCLK, 1-> ACLK
.accumulationCycles= WDTA_GATE_512K //

};

A.4.2 fRO_COMPB_TAx_xx

const struct Element element0 = {
.inputBits = CBIMSEL_2, // CB2
.maxResponse = 250,
.threshold = 160

};

const struct Sensor group =
{

.halDefinition = fRO_COMPB_TA0_SW,

.numElements = 1,

.baseOffset = 0,

.cbpdBits = (BIT2),
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
.cboutTAxDirRegister = (uint8_t *)&P3DIR, // PxDIR
.cboutTAxSelRegister = (uint8_t *)&P3SEL, // PxSEL
.cboutTAxBits = BIT4, // P3.4
// Timer Information
.accumulationCycles= 1000 /

};
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Reference

Input Px.y

element->inputPxDirRegister = PxDIR

element->inputPxinRegister = PxIN

element->inputPxoutRegister = PxOUT

element->inputBits = y

Px.y

element->referencePxDirRegister = PxDIR

element->referencePxoutRegister = PxOUT

element->referenceBits = y

RC_PAIR_TAx www.ti.com

A.5 RC_PAIR_TAx

Figure 32. RC_PAIR_TAx Element and Sensor Definitions

const struct Element element0 = {
.inputPxinRegister = (uint8_t *)&P2IN,
.inputPxoutRegister = (uint8_t *)&P2OUT,
.inputPxdirRegister = (uint8_t *)&P2DIR,
.inputBits = BIT0,
.referencePxoutRegister = (uint8_t *)&P2OUT,
.referencePxdirRegister = (uint8_t *)&P2DIR,
.referenceBits = BIT1,
.threshold = 100,
.maxResponse = 200

};

const struct Sensor group =
{

.halDefinition = RC_PAIR_TA0,

.numElements = 1,

.baseOffset = 0,
// Pointer to elements
.arrayPtr[0] = &element0, // point to first element
// Timer Information
.accumulationCycles= 4 // 4 charge/discharge cycles

};
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Appendix B Capacitive Touch Sensor Layer Detailed Description

B.1 Capacitive Touch Sensor Layer

The capacitive touch sensor layer performs several functions and it can be divided up into several layers.
At the top (closest to the actual application) is the presentation layer. Depending upon the API that is
called, the element information is translated or 'presented' to the application layer in the expected format.
Closely related to the presentation layer is the dominant key detection. This function is not associated with
an API call, but it is used by the presentation layer to determine the dominant element. The final two
layers are the custom or delta layer and the raw capacitance layer. The API can call directly into the
custom layer or the raw layer and the refinement and interpretation is left up to the application layer. In the
case of the custom API call the function manages the base capacitance tracking as well as provides the
change in capacitance or delta between the current measurement and the tracked base capacitance. The
RAW API call simply supplies the raw instantaneous capacitance measurement without any adjustments
or consideration of the base capacitance.

B.1.1 Status/Baseline Control Register

uint16 ctsStatusReg = 0;

15 14 13 12 11 10 9 8

Unused

7 6 5 4 3 2 1 0

TRADOI TRIDOI Unused PAST_EVNT DOI EVNT

Unused Bits 15-8 Unused

TRADOI Bits 7-6 Tracking rate against direction of interest

00 Very slow

01 Slow

10 Medium

11 Fast

TRIDOI Bits 5-4 Tracking rate in direction of interest

00 Very slow

01 Slow

10 Medium

11 Fast

Unused Bit 3 Unused

PAST_EVNT Bit 2 Past event. An even occurred on the previous scan

0 No event occurred on the previous scan

1 An event occurred on the previous scan

DOI Bit 1 Direction of interest

0 Increasing capacitance

1 Decreasing capacitance

EVNT Bit 0 Event. One of the elements in the group has detected a threshold crossing

0 No event occurred

1 An event occurred

Figure 33. Description of Status/Baseline Control Register (RAM)
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B.1.2 Baseline Tracking

The delta calculation is the difference between the current measurement and the previous capacitance
measurements or base line capacitance (baseCnt in the context of the code). The base line capacitance is
followed or tracked to account for any environmental changes that would impact the mechanism used to
make the capacitance measurement. This includes but is not limited to Vcc, temperature, and humidity.

B.1.2.1 Direction of Interest

As previously mentioned the representation of an increase in capacitance is an increase in counts for the
RC and FastRO methods while a decrease in counts in the RO method. The purpose of identifying a
direction of interest is to establish if the application is looking for an increase or decrease in capacitance.
In most human interface applications the direction of interest is an increase in capacitance. The presence
of a finger or touch increases the capacitance of an element. Increases in capacitance can also be caused
by environmental factors but the assumption is that these changes are relatively slow in comparison to the
interaction with a person. Changes in capacitance that are in the direction of interest but are not large
enough in magnitude to exceed the threshold may be changes due to the environment. This would require
an update in the base capacitance. To insure that these changes are not due to a slow moving object, it is
recommended to make adjustments in the direction of interest very slowly. The tradeoff in choosing the
adjustment rate is accounting for slow moving objects and rapid environmental changes.

Capacitance changes that are against the direction of interest typically represent only a change in the
environment. Because the change can be attributed to the environment without any ambiguity the baseline
can be adjusted more dramatically to account for the shift. The delta capacitance function sets the result
to 0 to indicate a change in capacitance that is against the direction of interest.

B.1.2.2 Examples of Direction of Interest

An application needs to detect when a block of wood is in place and then removed. The block is typically
left in place for several days. The direction of interest is an increase in capacitance to identify when the
block is in place and then the direction of interest is changed to a decrease in capacitance to identify when
the block has been removed. Once the block is in place any additional increase in capacitance is treated
as a change against the direction of interest and the baseline is updated accordingly. In the same way,
after the block is removed, if there is a decrease in capacitance this is treated as a change against the
direction of interest.

B.1.2.3 Updating the Baseline Capacitance

The delta calculation results in a zero value (representing a change against or opposite the direction of
interest), a non-zero value less than the threshold, or a value greater than the threshold. As shown in
Figure 34, a zero value results in a baseline update per the TRADIO setting.

A delta value that exceeds the threshold indicates an event. When an event occurs it is possible that the
other elements within the sensor are excited even if only by a very small amount. Therefore when an
event occurs within a sensor it is important to suspend baseline updates in the direction of interest.

Baseline updates in the direction of interest only occur if the delta calculation result is non-zero and less
than the threshold. The past event flag, PAST_EVNT, indicates that one of the elements within a sensor
has experienced a threshold crossing. If the PAST_EVNT flag is true, then the baseline should not be
updated, because the increase may be the result of a touch on a neighboring device.
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Delta == 0

Start

Delta < threshold
&& !PAST_EVNT

Base capacitance =
X (Measured Capacitance / Z) + Y (Base Capacitance / Z)

End

Capacitance Change opposite of
direction of interest:

Update Baseline per TRADOI setting

Y

Y

Capacitance change is in direction of
interest but does not exceed threshold:

Update baseline per TRIDIO setting

Set event flag
and past event

flag in
Status register

Delta > threshold

Y
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Figure 34. Base Capacitance Update

Table 22. Tracking Settings Against Direction of Interest

Setting Description RO (meas < base) RC, Fast RO (meas > base)

3 Fast base = meas / 2 + base / 2 base = meas / 2 +base / 2

2 Medium base = meas / 4 + 3 × base / 4 base = meas / 4 + 3 × base / 4

1 Slow base = meas / 64 + 63 × base / 64 base = meas / 64 + 63 × base / 64

0 Very Slow (Default) base = meas / 128 + 127 × (base / 128) base = meas / 128 + 127 × (base / 128)

Table 23. Tracking Settings in Direction of Interest

Setting Description RO (meas < base) RC, Fast RO (meas > base)

3 Fast base = 3 × meas / 4 + base / 4 base = 3 × meas / 4 + base / 4

2 Medium base = meas / 2 + base / 2 base = meas / 2 + base / 2

1 Slow (Default) Decrement base Increment base

Decrement base only if difference between Increment base only if difference between0 Very Slow meas and base is greater than 15 meas and base is greater than 15

B.1.3 Measurement Functions

B.1.3.1 Delta Measurement + Base Capacitance Tracking: Custom API Call

The 'custom' API measures the change in capacitance for the elements of a given structure. The inputs for
the custom API function are the pointer to the sensor and a pointer to the first element of the array in
which the capacitance change is recorded. The custom API call measures the capacitance of each
element with the 'raw' function.
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hal_def > 63 &&
doi == decreasing

Start

delta = base - meas

End

Y

hal_def < 64 &&
doi == increasing

hal_def > 63 &&
doi == increasing

hal_def < 64 &&
doi == decreasing

meas < base

Y

meas > base delta = 0
Y Y

delta = meas - base

Y

Y
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B.1.3.2 Delta Calculation

The HAL definition (hal_definition) and the direction of interest determine the delta calculation. The
hal_definitions are arranged so that all values less than 64 are methods whose count values directly relate
to the change in capacitance (that is, an increase in counts means an increase in capacitance) when the
hal_definition greater than 64 relate inversely (that is, an increase in capacitance results in a decrease in
counts). With the RC and Fast Scan RO methods, an increase in capacitance is indicated by an increase
in counts. Conversely, with the RO method, an increase in capacitance is indicated by a decrease in
counts.

The delta calculation performed within the custom API results in either a 0 or non-zero value. The
non-zero value is simply the difference between the measured capacitance and the base line capacitance
of a given element. A deltaCnt of 0 indicates that the change in capacitance is opposite (against) the
direction of interest.

Figure 35. Delta Measurement

B.1.3.3 Raw Capacitance Measurement: Raw API Call

The single purpose of the RAW measurement function is to call the appropriate HAL function based upon
the user configuration. This function updates the RAM variables provided within the function call, which
are used by the higher level calling function.

The 'Raw' feature calls the appropriate HAL function. The HAL definition for a group of elements is found
in the sensor structure.

sensor0.halDefinition
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Start

Update delta array: custom function

Event Flag

End:

Return 1

End:
Return 0

Y

www.ti.com Capacitive Touch Sensor Layer

The hal_definition represents a combination of MSP430 peripherals to accomplish the cap touch function.

Table 24. HAL Definitions

MeasureName Type Number Measure Time Gate TimeHardware

RC_PAIR_TA0 RC 1 Digital I/O Timer_A0 NA

RC_SINGLE_TA0 RC 2 Digital I/O Timer_A0 NA

RC_PAIR_TA1 RC 3 Digital I/O Timer_A1 NA

RC_PAIR_TD0 RC 4 Digital I/O Timer_D0 NA

fRO_PINOSC_TA0_SW fRO 25 Digital I/O Timer_A0 Software

fRO_COMPB_TA0_TA1 fRO 26 Comp_B Timer_A1 Timer_A0

fRO_COMPB_TA0_TD0 fRO 27 Comp_B Timer_D0 Timer_A0

RO_COMPAp_TA0_WDTp RO 64 Comp_A+ Timer_A0 WDT+

RO_PINOSC_TA0_WDTp RO 65 Digital I/O Timer_A0 WDT+

RO_PINOSC_TA0 RO 66 Digital I/O Timer_A0 ACLK

RO_COMPAp_TA1_WDTp RO 67 Comp_A+ Timer_A1 WDT+

RO_COMPB_TA0_WDTA RO 68 Comp_B Timer_A0 WDTA

RO_COMPAp_TA0_SW RO 69 Comp_A+ Timer_A0 Software

RO_PINOSC_TA0_SW RO 70 Digital I/O Timer_A0 Software

B.1.4 Sensor Abstractions

B.1.4.1 Button(s)

uint8_t TI_CAPT_Button(Sensor *);

Inputs: Pointer to Sensor, which defines button

Outputs: 0/1,

Function: Measure the button. A 0 means that the change in capacitance is less than or equal to the
threshold set in the Sensor and 1 means that the change in capacitance has exceeded the threshold.

Figure 36. Single Button Algorithm
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Start

Update delta array: custom function

Event Flag

End:

Return Sensor.arrayPtr[index]

End:
Return 0

Y

index =

Dominant_Element();

Capacitive Touch Sensor Layer www.ti.com

Element * TI_CAPT_ Buttons(Sensor *);

Inputs: Pointer to Sensor, which defines group of elements where each element represents a button

Outputs: pointer to an element structure

Function: This function return is the structure pointer to the element that exceeds its threshold by the
largest margin: normalized to (maxResponse - threshold value) for each element. If no button exceeds its
threshold (set in the element structure), then this function returns a 0 or 'Null Pointer'.

Figure 37. Array of Buttons Algorithm

B.1.4.2 Slider/Wheel

A wheel or slider is a sensor type consisting of an array of elements. The sensor is divided into a number
of points defined by the user. The orientation of the array (first to last) is left to the interpretation of the
application. From the perspective of the library the first element within the array definition corresponds to
the '0' value on the slider and the last element corresponds to the number of points defined by the user.

The algorithm for the slider and wheel functions is shown in Figure 38. The TI_CAPT_Custom function is
used to measure the change in capacitance for each element defined in the sensor. This function also
updates the baseline tracking and the event flag status (see Section B.1.3.1).

An additional detection mechanism is provided at the sensor level for wheels and sliders. The event flag is
the means to determine a threshold crossing at the element level while the sensorThreshold variable
provides a threshold at the sensor level. The intent of this mechanism is to distinguish a genuine
interaction with the sensor from an unintentional interaction that may activate only one element.

Finally the slider and wheel functions calculate the position where the interaction (touch) takes place. The
slider and wheel require four types of configuration parameters to present a location. These four
parameters are the number of resolvable points, the sensor level threshold, the element level threshold for
each element, and the maximum response for each element.
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Start

Update delta array: custom function

Event Flag

End:

Return position

Y

index =
dominant_element_find();

index == 0

index ==

num_elements -1

Special Case

End

Special Case

Beginning

Y

Y

Sum Response of dominant Element

and neighbors

Sum_Response>

sensorThreshold

End: Return

ILLEGAL_SLIDER_WHEEL_POSITION

position = index*(points/numElements) + points/numElements/2

position += deltaCnt [index+1]*(points/numElements)/100

position -= deltaCnt [index-1]*(points/numElements)/100

www.ti.com Capacitive Touch Sensor Layer

Figure 38. Slider/Wheel Algorithm

B.1.4.2.1 Slider Detection

The slider sensorThreshold is a compared with the response of the dominant element and its neighbors.
As shown in Figure 39, The endpoints are a special case that requires a comparison of only the end
element (the dominant element) and the one neighbor.
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End

index == 0

index ==
numElements-1

Sum =

deltaCnts[numElements-2] +
deltaCnts[numElements-1]

Sum =deltaCnts[0] +

deltaCnts[1]

Sum = deltaCnts[index] +

deltaCnts[index-1] +
deltaCnts[index+1]

Y

Y

Start

(index-1) (index)

points

(b)  [example: deltaCnt[3] = 40],
40 + 40 × 16/100 = 46

(index+1)

0

(a) [example: points = 64, numElements = 4, index = 2]
(64/4) × 2 + 8 = 40

(c)  [example: deltaCnt1] = 0],
46 – 0 = 46
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Figure 39. Slider Threshold Detection

As the interaction moves (slides) beyond the center of the last element the contribution from the neighbor
goes to 0 and the threshold of the sensor is only a function of the last element. Therefore the
sensorThreshold defines how far the finger can deviate from the center position of the ends and still be a
part of the slider. As long as the sensor response exceeds the sensorThreshold, the position is calculated.

B.1.4.2.2 Slider Position

Calculation of the slider position is predicated upon passing the sensor threshold criteria. If the criterion is
not met, then the function simply returns a predefined value to indicate no interaction was detected. When
there is a valid interaction, the function determines the position from the response of the dominant element
and its nearest neighbor(s). The dominant element function determines the middle element for
establishing a 'base' position while one or two neighboring elements are used to pull or weight the final
position. In the example in Figure 40, the slider has 64 positions and there are four elements in the slider
array.

Figure 40. Slider/Wheel Process Middle Algorithm

In the special case where the dominant element is either the beginning or end element of the slider, then
only the nearest neighbor is used to weight or influence the position.
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deltaCnt[1]

position +=deltaCnt[1]*points/numElements/100

End

Y

position =deltaCnt[0]*points/numElements/2/100

Start

deltaCnt[numElements-2]

position-=deltaCnt[numElements-2]*points/numElements/100

End

Y

position = points-deltaCnt[numElements-1]*points/numElements/2/100

Start
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Figure 41. Slider Algorithm: Beginning of Slider

Figure 42. Slider Algorithm: End Of Slider
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End

index == 0

index ==

numElements-1

Sum =

deltaCnts[numElements-2] +

deltaCnts[numElements-1] +

deltaCnts[0]

Sum = deltaCnts[0] +
deltaCnts[1] +

deltaCnts[numElements-1]

Sum = deltaCnts[index] +
deltaCnts[index-1] +

deltaCnts[index+1]

Y

Y
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B.1.4.2.3 Wheel Detection

The wheel sensorThreshold is a compared with the response of the dominant element and its neighbors
(summation of x-1, x, and x+1). The endpoints are a special case that requires the 'wrap around' to be
accounted for, see Figure 43. Once the normalized responses of these three elements are added then the
value is compared with the sensorThreshold. If the threshold is exceeded, then the function continues on
to calculate the position.

Figure 43. Wheel Threshold Detection
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position+= deltaCnt[1]*(points/numElements)/100

position -= deltaCnt[numElements-1]*(points/numElements)/100

position < 0

End

position += points

Y

Start

position+= deltaCnt [0]*(points/numElements)/100

position -= deltaCnt [numElements-2]*(points/numElements)/100

position > points-1

End

position -= points

Y

Start

www.ti.com Capacitive Touch Sensor Layer

B.1.4.2.4 Wheel Position

As previously mentioned the wheel is simply a special case of the slider. Additional handling needs to be
put in place to account for the 'wrap around' from the end of the array back to the beginning. Figure 44
and Figure 45 show the algorithm for calculating the position when the dominant element is the beginning
and end elements of the array,

Figure 44. Wheel Algorithm: Beginning

Figure 45. Wheel Algorithm: Ending
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Start

percentDelta= 0

deltaCnt[i] >

threshold

i = 0
i < num_sensors

i++

deltaCnt[i] = (100*(delta[i] – threshold))/

(maxResponse– threshold)

End:

Return dominantElement

deltaCnt[i] >

maxResponse
deltaCnt[i] = maxResponse

deltaCnt[i] >

percentDelta

percentDelta =deltaCnt[i];

dominantElement= I;

Y

Y
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B.1.5 Dominant Element Identification

The identification of a threshold crossing actually takes place in the base capacitance update function (see
Section B.1.3.1). When a threshold crossing event has occurred then the following is used to determine
the dominant element within the sensor structure and scale the response to a range from 0 to 100. A zero
would indicate that the response is equal or less than the threshold and a value of 100 would indicate a
response equal to the maxResponse.

Figure 46. Dominant Element Identification
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Appendix C Beta Testing

The number of combinations and permutations of settings and applications make a completely
comprehensive test plan unrealistic. At this time, the functionality of all possible use cases cannot be
ensured. Table 25 is intended as a proxy to help customers identify if their application has not been tested
for compatibility with the library. For example, the RO_PINOSC_TA0_WDTp measurement method was
tested with the custom and wheel APIs. This method was also tested with the button API, while another
measurement method was used to support the wheel API. The button example is intended to show
interoperability with different measurement methods and API calls.

Table 25. Beta Testing

Additional AdditionalHAL Functional Sensor HAL (1) Sensor (2)

1 TI_CTS_RO_COMPAp_TA0_WDTp_HAL TI_CAPT_Custom TI_CAPT_Slider

2 TI_CTS_fRO_COMPAp_TA0_SW_HAL TI_CAPT_Custom TI_CAPT_Slider

3 TI_CTS_fRO_COMPAp_SW_TA0_HAL TI_CAPT_Custom TI_CAPT_Slider

4 TI_CTS_RO_COMPAp_TA1_WDTp_HAL TI_CAPT_Custom

5 TI_CTS_fRO_COMPAp_TA1_SW_HAL TI_CAPT_Custom

6 TI_CTS_RC_PAIR_TA0_HAL TI_CAPT_Custom

7 TI_CTS_RO_PINOSC_TA0_WDTp_HAL TI_CAPT_Custom TI_CAPT_Wheel 6 Button

8 TI_CTS_RO_PINOSC_TA0_HAL TI_CAPT_Custom TI_CAPT_Wheel 7 Button

9 TI_CTS_fRO_PINOSC_TA0_SW_HAL TI_CAPT_Custom TI_CAPT_Wheel 8 Button

10 TI_CTS_RO_COMPB_TA0_WDTA_HAL TI_CAPT_Custom TI_CAPT_Slider 10 Second slider

11 TI_CTS_fRO_COMPB_TA0_SW_HAL

12 TI_CTS_RO_COMPB_TA1_WDTA_HAL TI_CAPT_Custom TI_CAPT_Button

13 TI_CTS_fRO_COMPB_TA1_SW_HAL TI_CAPT_Custom TI_CAPT_Button
(1) The Additional HAL shows that the HAL functions are independent and do not impact the baseline tracking or other shared

function calls.
(2) The Additional Sensor shows that the sensor functions are independent and do not corrupt other sensors that also use the

baseline tracking and other functions.
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