
���������� 	
��
�

 2006 Mixed Signal Products

User’s Guide

SLAU144B

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

 Related Documentation From Texas Instruments

iii

Preface

��������	�
��	�

About This Manual

This manual discusses modules and peripherals of the MSP430x2xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational paramenters differ
from device-to-device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

iv

Glossary

ACLK Auxiliary Clock See Basic Clock Module

ADC Analog-to-Digital Converter

BOR Brown-Out Reset See System Resets, Interrupts, and Operating Modes

BSL Bootstrap Loader See www.ti.com/msp430 for application reports

CPU Central Processing Unit See RISC 16-Bit CPU

DAC Digital-to-Analog Converter

DCO Digitally Controlled Oscillator See Basic Clock Module

dst Destination See RISC 16-Bit CPU

FLL Frequency Locked Loop See FLL+ in MSP430x4xx Family User’s Guide

GIE General Interrupt Enable See System Resets Interrupts and Operating Modes

INT(N/2) Integer portion of N/2

I/O Input/Output See Digital I/O

ISR Interrupt Service Routine

LSB Least-Significant Bit

LSD Least-Significant Digit

LPM Low-Power Mode See System Resets Interrupts and Operating Modes

MAB Memory Address Bus

MCLK Master Clock See Basic Clock Module

MDB Memory Data Bus

MSB Most-Significant Bit

MSD Most-Significant Digit

NMI (Non)-Maskable Interrupt See System Resets Interrupts and Operating Modes

PC Program Counter See RISC 16-Bit CPU

POR Power-On Reset See System Resets Interrupts and Operating Modes

PUC Power-Up Clear See System Resets Interrupts and Operating Modes

RAM Random Access Memory

SCG System Clock Generator See System Resets Interrupts and Operating Modes

SFR Special Function Register

SMCLK Sub-System Master Clock See Basic Clock Module

SP Stack Pointer See RISC 16-Bit CPU

SR Status Register See RISC 16-Bit CPU

src Source See RISC 16-Bit CPU

TOS Top-of-Stack See RISC 16-Bit CPU

WDT Watchdog Timer See Watchdog Timer

 Register Bit Conventions

v

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

−0,−1 Condition after PUC

−(0),−(1) Condition after POR

 Contents

vii

��������

1 Introduction 1-1.
1.1 Architecture 1-2.
1.2 Flexible Clock System 1-2.
1.3 Embedded Emulation 1-3.
1.4 Address Space 1-4.

1.4.1 Flash/ROM 1-4.
1.4.2 RAM 1-4.
1.4.3 Peripheral Modules 1-5.
1.4.4 Special Function Registers (SFRs) 1-5.
1.4.5 Memory Organization 1-5.

1.5 MSP430x2xx Family Enhancements 1-6.

2 System Resets, Interrupts, and Operating Modes 2-1.
2.1 System Reset and Initialization 2-2.

2.1.1 Brownout Reset (BOR) 2-3.
2.1.2 Device Initial Conditions After System Reset 2-4.

2.2 Interrupts 2-5.
2.2.1 (Non)-Maskable Interrupts (NMI) 2-6.
2.2.2 Maskable Interrupts 2-9.
2.2.3 Interrupt Processing 2-10.
2.2.4 Interrupt Vectors 2-12.

2.3 Operating Modes 2-14.
2.3.1 Entering and Exiting Low-Power Modes 2-16.

2.4 Principles for Low-Power Applications 2-17.
2.5 Connection of Unused Pins 2-17.

Contents

viii

3 RISC 16-Bit CPU 3-1.
3.1 CPU Introduction 3-2.
3.2 CPU Registers 3-4.

3.2.1 Program Counter (PC) 3-4.
3.2.2 Stack Pointer (SP) 3-5.
3.2.3 Status Register (SR) 3-6.
3.2.4 Constant Generator Registers CG1 and CG2 3-7.
3.2.5 General−Purpose Registers R4 - R15 3-8.

3.3 Addressing Modes 3-9.
3.3.1 Register Mode 3-10.
3.3.2 Indexed Mode 3-11.
3.3.3 Symbolic Mode 3-12.
3.3.4 Absolute Mode 3-13.
3.3.5 Indirect Register Mode 3-14.
3.3.6 Indirect Autoincrement Mode 3-15.
3.3.7 Immediate Mode 3-16.

3.4 Instruction Set 3-17.
3.4.1 Double-Operand (Format I) Instructions 3-18.
3.4.2 Single-Operand (Format II) Instructions 3-19.
3.4.3 Jumps 3-20.
3.4.4 Instruction Cycles and Lengths 3-72.
3.4.5 Instruction Set Description 3-74.

4 Basic Clock Module+ 4-1.
4.1 Basic Clock Module+ Introduction 4-2.
4.2 Basic Clock Module+ Operation 4-4.

4.2.1 Basic Clock Module+ Features for Low-Power Applications 4-4.
4.2.2 Internal Very Low Power, Low Frequency Oscillator 4-4.
4.2.3 LFXT1 Oscillator 4-5.
4.2.4 XT2 Oscillator 4-6.
4.2.5 Digitally-Controlled Oscillator (DCO) 4-6.
4.2.6 DCO Modulator 4-9.
4.2.7 Basic Clock Module+ Fail-Safe Operation 4-10.
4.2.8 Synchronization of Clock Signals 4-12.

4.3 Basic Clock Module+ Registers 4-13.

5 Flash Memory Controller 5-1.
5.1 Flash Memory Introduction 5-2.
5.2 Flash Memory Segmentation 5-3.

5.2.1 SegmentA 5-4.
5.3 Flash Memory Operation 5-5.

5.3.1 Flash Memory Timing Generator 5-5.
5.3.2 Erasing Flash Memory 5-7.
5.3.3 Writing Flash Memory 5-10.
5.3.4 Flash Memory Access During Write or Erase 5-16.
5.3.5 Stopping a Write or Erase Cycle 5-17.
5.3.6 Configuring and Accessing the Flash Memory Controller 5-17.
5.3.7 Flash Memory Controller Interrupts 5-17.
5.3.8 Programming Flash Memory Devices 5-17.

5.4 Flash Memory Registers 5-19.

 Contents

ix

6 Digital I/O 6-1.
6.1 Digital I/O Introduction 6-2.
6.2 Digital I/O Operation 6-3.

6.2.1 Input Register PxIN 6-3.
6.2.2 Output Registers PxOUT 6-3.
6.2.3 Direction Registers PxDIR 6-3.
6.2.4 Pull−Up/Down Resistor Enable Registers PxREN 6-3.
6.2.5 Function Select Registers PxSEL 6-4.
6.2.6 P1 and P2 Interrupts 6-5.
6.2.7 Configuring Unused Port Pins 6-6.

6.3 Digital I/O Registers 6-7.

7 Watchdog Timer+ 7-1.
7.1 Watchdog Timer+ Introduction 7-2.
7.2 Watchdog Timer+ Operation 7-4.

7.2.1 Watchdog timer+ Counter 7-4.
7.2.2 Watchdog Mode 7-4.
7.2.3 Interval Timer Mode 7-4.
7.2.4 Watchdog timer+ Interrupts 7-5.
7.2.5 Watchdog timer+ Clock Fail−safe Operation 7-5.
7.2.6 Operation in Low-Power Modes 7-6.
7.2.7 Software Examples 7-6.

7.3 Watchdog Timer+ Registers 7-7.

8 Timer_A 8-1.
8.1 Timer_A Introduction 8-2.
8.2 Timer_A Operation 8-4.

8.2.1 16-Bit Timer Counter 8-4.
8.2.2 Starting the Timer 8-5.
8.2.3 Timer Mode Control 8-5.
8.2.4 Capture/Compare Blocks 8-11.
8.2.5 Output Unit 8-13.
8.2.6 Timer_A Interrupts 8-17.

8.3 Timer_A Registers 8-19.

9 Timer_B 9-1.
9.1 Timer_B Introduction 9-2.

9.1.1 Similarities and Differences From Timer_A 9-2.
9.2 Timer_B Operation 9-4.

9.2.1 16-Bit Timer Counter 9-4.
9.2.2 Starting the Timer 9-5.
9.2.3 Timer Mode Control 9-5.
9.2.4 Capture/Compare Blocks 9-11.
9.2.5 Output Unit 9-14.
9.2.6 Timer_B Interrupts 9-18.

9.3 Timer_B Registers 9-20.

Contents

x

10 Universal Serial Interface 10-1.
10.1 USI Introduction 10-2.
10.2 USI Operation 10-5.

10.2.1 USI Initialization 10-5.
10.2.2 USI Clock Generation 10-6.
10.2.3 SPI Mode 10-6.

SPI Master Mode 10-7.
SPI Slave Mode 10-7.
USISR Operation 10-8.
SPI Interrupts 10-8.

10.2.4 I2C Mode 10-9.
I2C Master Mode 10-9.
I2C Slave Mode 10-9.
I2C Transmitter 10-9.
I2C Receiver 10-10.
START Condition 10-10.
STOP Condition 10-11.
Releasing SCL 10-11.
Arbitration 10-12.
I2C Interrupts 10-12.

10.3 USI Registers 10-13.

11 Universal Serial Communication Interface, UART Mode 11-1.
11.1 USCI Overview 11-2.
11.2 USCI Introduction: UART Mode 11-3.
11.3 USCI Operation: UART Mode 11-5.

11.3.1 USCI Initialization and Reset 11-5.
11.3.2 Character Format 11-5.
11.3.3 Asynchronous Communication Formats 11-6.
11.3.4 Automatic Baud Rate Detection 11-10.
11.3.5 IrDA Encoding and Decoding 11-12.
11.3.6 Automatic Error Detection 11-13.
11.3.7 USCI Receive Enable 11-14.
11.3.8 USCI Transmit Enable 11-15.
11.3.9 UART Baud Rate Generation 11-15.
11.3.10 Setting a Baud Rate 11-18.
11.3.11 Transmit Bit Timing 11-19.
11.3.12 Receive Bit Timing 11-20.
11.3.13 Typical Baud Rates and Errors 11-21.
11.3.14 Using the USCI Module in UART Mode with Low Power Modes 11-25.
11.3.15 USCI Interrupts 11-26.

11.4 USCI Registers: UART Mode 11-28.

 Contents

xi

12 Universal Serial Communication Interface, SPI Mode 12-1.
12.1 USCI Overview 12-2.
12.2 USCI Introduction: SPI Mode 12-3.
12.3 USCI Operation: SPI Mode 12-5.

12.3.1 USCI Initialization and Reset 12-6.
12.3.2 Character Format 12-6.
12.3.3 Master Mode 12-7.
12.3.4 Slave Mode 12-9.
12.3.5 SPI Enable 12-10.
12.3.6 Serial Clock Control 12-11.
12.3.7 Using the SPI Mode with Low Power Modes 12-12.
12.3.8 SPI Interrupts 12-13.

12.4 USCI Registers: SPI Mode 12-15.

13 Universal Serial Communication Interface, I2C Mode 13-1.
13.1 USCI Overview 13-2.
13.2 USCI Introduction: I2C Mode 13-3.
13.3 USCI Operation: I2C Mode 13-5.

13.3.1 USCI Initialization and Reset 13-6.
13.3.2 I2C Serial Data 13-7.
13.3.3 I2C Addressing Modes 13-8.
13.3.4 I2C Module Operating Modes 13-9.

I2C Slave Transmitter Mode 13-10.
I2C Slave Receiver Mode 13-12.
I2C Slave 10-bit Addressing Mode 13-14.
I2C Master Transmitter Mode 13-15.
I2C Master Receiver Mode 13-17.
I2C Master 10-bit Addressing Mode 13-19.
Arbitration 13-20.

13.3.5 I2C Clock Generation and Synchronization 13-21.
13.3.6 Using the USCI Module in I2C Mode with Low Power Modes 13-22.
13.3.7 USCI Interrupts in I2C Mode 13-23.

13.4 USCI Registers: I2C Mode 13-25.

14 OA 14-1.
14.1 OA Introduction 14-2.
14.2 OA Operation 14-4.

14.2.1 OA Amplifier 14-4.
14.2.2 OA Input 14-4.
14.2.3 OA Output and Feedback Routing 14-5.
14.2.4 OA Configurations 14-6.

14.3 OA Registers 14-12.

Contents

xii

15 Comparator_A+ 15-1.
15.1 Comparator_A+ Introduction 15-2.
15.2 Comparator_A+ Operation 15-4.

15.2.1 Comparator 15-4.
15.2.2 Input Analog Switches 15-4.
15.2.3 Input Short Switch 15-5.
15.2.4 Output Filter 15-6.
15.2.5 Voltage Reference Generator 15-6.
15.2.6 Comparator_A+, Port Disable Register CAPD 15-7.
15.2.7 Comparator_A+ Interrupts 15-7.
15.2.8 Comparator_A+ Used to Measure Resistive Elements 15-8.

15.3 Comparator_A+ Registers 15-10.

16 ADC10 16-1.
16.1 ADC10 Introduction 16-2.
16.2 ADC10 Operation 16-4.

16.2.1 10-Bit ADC Core 16-4.
16.2.2 ADC10 Inputs and Multiplexer 16-5.
16.2.3 Voltage Reference Generator 16-6.
16.2.4 Auto Power-Down 16-6.
16.2.5 Sample and Conversion Timing 16-7.
16.2.6 Conversion Modes 16-9.
16.2.7 ADC10 Data Transfer Controller 16-15.
16.2.8 Using the Integrated Temperature Sensor 16-21.
16.2.9 ADC10 Grounding and Noise Considerations 16-22.
16.2.10 ADC10 Interrupts 16-23.

16.3 ADC10 Registers 16-24.

17 SD16_A 17-1.
17.1 SD16_A Introduction 17-2.
17.2 SD16_A Operation 17-4.

17.2.1 ADC Core 17-4.
17.2.2 Analog Input Range and PGA 17-4.
17.2.3 Voltage Reference Generator 17-4.
17.2.4 Auto Power-Down 17-4.
17.2.5 Channel Selection 17-5.
17.2.6 Analog Input Characteristics 17-5.
17.2.7 Digital Filter 17-6.
17.2.8 Conversion Memory Register: SD16MEM0 17-10.
17.2.9 Conversion Modes 17-11.
17.2.10 Using the Integrated Temperature Sensor 17-12.
17.2.11 Interrupt Handling 17-13.

17.3 SD16_A Registers 17-15.

1-1Introduction

���������	��

This chapter describes the architecture of the MSP430.

Topic Page

1.1 Architecture 1-2.

1.2 Flexible Clock System 1-2.

1.3 Embedded Emulation 1-3.

1.4 Address Space 1-4.

1.5 MSP430x2xx Family Enhancements 1-6.

Chapter 1

Architecture

1-2 Introduction

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

� Ultralow-power architecture extends battery life

� 0.1-µA RAM retention

� 0.8-µA real-time clock mode

� 250-µA / MIPS active

� High-performance analog ideal for precision measurement

� Comparator-gated timers for measuring resistive elements

� 16-bit RISC CPU enables new applications at a fraction of the code size.

� Large register file eliminates working file bottleneck

� Compact core design reduces power consumption and cost

� Optimized for modern high-level programming

� Only 27 core instructions and seven addressing modes

� Extensive vectored-interrupt capability

� In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 2 µs @ 1 Mhz.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

� Low-frequency auxiliary clock = Ultralow-power stand-by mode

� High-speed master clock = High performance signal processing

Embedded Emulation

1-3Introduction

Figure 1−1. MSP430 Architecture

ACLK

Bus
Conv.

Peripheral

MAB 16-Bit

MDB 16-Bit

MCLK

SMCLK

Clock
System

Peripheral PeripheralPeripheral

Peripheral Peripheral Peripheral

Watchdog

RAMFlash/

RISC CPU
16-Bit

JT
A

G
/D

eb
ug

ACLK
SMCLK

ROM

MDB 8-Bit

JTAG

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

� Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

� Development is in-system subject to the same characteristics as the final
application.

� Mixed-signal integrity is preserved and not subject to cabling interference.

Address Space

1-4 Introduction

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1−2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is 64 KB with future expansion planned.

Figure 1−2. Memory Map

0FFE0h
Interrupt Vector Table

Flash/ROM

RAM

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

0FFFFh

0FFDFh

0200h

01FFh

0100h

0FFh

010h

0Fh

0h

Access

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

1.4.1 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is 0FFFFh.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (0FFFEh).

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

Address Space

1-5Introduction

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to 0FFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1−3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Figure 1−3. Bits, Bytes, and Words in a Byte-Organized Memory

15

7

14

6

. . Bits . .

. . Bits . .

9

1

8

0

Byte

Byte

Word (High Byte)

Word (Low Byte)

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Address Space

1-6 Introduction

1.5 MSP430x2xx Family Enhancements

Table 1−1 highlights enhancements made to the MSP430x2xx family. The
enhancements are discussed fully in the following chapters, or in the case of
improved device parameters, shown in the device-specific datasheet.

Table 1−1.MSP430x2xx Family Enhancements

Subject Enhancement

Reset − Brownout reset is included on all MSP430x2xx devices.
− PORIFG and RSTIFG flags have been added to IFG1 to indicate

the cause of a reset.
− An instruction fetch from the address range 0x0000 − 0x01FF

will reset the device.

Watchdog
Timer

− All MSP430x2xx devices integrate the Watchdog Timer+
module (WDT+). The WDT+ ensures the clock source for the
timer is never disabled.

Basic Clock
System

− The LFXT1 oscillator has selectable load capacitors in LF mode.
− The LFXT1 supports up to 16-MHz crystals in HF mode.
− The LFXT1 includes oscillator fault detection in LF mode.
− The XIN and XOUT pins are shared function pins on 20- and

28-pin devices.
− The external ROSC feature of the DCO not supported on some

devices. Software should not set the LSB of the BCSCTL2
register in this case. See the device-specific datasheet for
details.

− The DCO operating frequency has been significantly increased.
− The DCO temperature stability has been significantly improved.

Flash Memory − The information memory has 4 segments of 64-Bytes each.
− SegmentA is individually locked with the LOCKA bit.
− All information if protected from mass erase with the LOCKA bit.
− Segment erases can be interrupted by an interrupt.
− Flash updates can be aborted by an interrupt.
− Flash programming voltage has been lowered to 2.2 V
− Program/erase time has been reduced.
− Clock failure aborts a flash update.

Digital I/O − Ports 1 and 2 have integrated pull-up/down resistors.
− P2.6 and P2.7 functions have been added to 20- and 28- pin

devices. These are shared functions with XIN and XOUT.
Software must not clear the P2SELx bits for these pins if crystal
operation is required.

Comparator_A − Comparator_A has expanded input capability with a new input
multiplexer.

Low Power − Typical LPM3 current consumption has been reduced almost
50% @3V.

− DCO startup time has been significantly reduced.

Operating
frequency

− The target maximum operating frequency is 16Mhz @ 3.3V.

BSL − An incorrect password causes a mass erase.
− BSL entry sequence is more robust to prevent accidental entry

and erasure.

2-1System Resets, Interrupts, and Operating Modes

�������������	�
�����
���	

�������������������

This chapter describes the MSP430x2xx system resets, interrupts, and
operating modes.

Topic Page

2.1 System Reset and Initialization 2-2.

2.2 Interrupts 2-5.

2.3 Operating Modes 2-14.

2.4 Principles for Low-Power Applications 2-17.

2.5 Connection of Unused Pins 2-17.

Chapter 2

System Reset and Initialization

2-2 System Resets, Interrupts, and Operating Modes

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2−1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2−1. Power-On Reset and Power-Up Clear Schematic

POR
LatchS

R

PUC
Latch

S

R

Resetwd1

Resetwd2

S
S

Delay

RST/NMI

WDTNMI†

WDTSSEL†

WDTQn†

WDTIFG†

EQU†

MCLK

POR

PUCS

(from flash module)
KEYV

SVS_POR§

0 V

VCC

0 V

Brownout
Reset

† From watchdog timer peripheral module
§ Devices with SVS only

 ~ 50us

S

Invalid instruction fetch

A POR is a device reset. A POR is only generated by the following three
events:

� Powering up the device

� A low signal on the RST/NMI pin when configured in the reset mode

� An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

� A POR signal

� Watchdog timer expiration when in watchdog mode only

� Watchdog timer security key violation

� A Flash memory security key violation

� A CPU instruction fetch from the peripheral address range 0h − 01FFh

System Reset and Initialization

2-3System Resets, Interrupts, and Operating Modes

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply
voltage is applied to or removed from the VCC terminal. The brownout reset
circuit resets the device by triggering a POR signal when power is applied or
removed. The operating levels are shown in Figure 2−2.

The POR signal becomes active when VCC crosses the VCC(start) level. It
remains active until VCC crosses the V(B_IT+) threshold and the delay t(BOR)
elapses. The delay t(BOR) is adaptive being longer for a slow ramping VCC. The
hysteresis Vhys(B_ IT−) ensures that the supply voltage must drop below
V(B_IT−) to generate another POR signal from the brownout reset circuitry.

Figure 2−2. Brownout Timing

t(BOR)

VCC(start)

VCC

V(B_IT−)

Set Signal for
POR circuitry

V(B_IT+)

Vhys(B_IT−)

As the V(B_IT−) level is significantly above the Vmin level of the POR circuit, the
BOR provides a reset for power failures where VCC does not fall below Vmin.
See device-specific datasheet for parameters.

System Reset and Initialization

2-4 System Resets, Interrupts, and Operating Modes

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

� The RST/NMI pin is configured in the reset mode.

� I/O pins are switched to input mode as described in the Digital I/O chapter.

� Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

� Status register (SR) is reset.

� The watchdog timer powers up active in watchdog mode.

� Program counter (PC) is loaded with address contained at reset vector
location (0FFFEh). If the reset vectors content is 0FFFFh the device will
be disabled for minimum power consumption.

Software Initialization

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

� Initialize the SP, typically to the top of RAM.

� Initialize the watchdog to the requirements of the application.

� Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Reset and Initialization

2-5System Resets, Interrupts, and Operating Modes

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2−3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

� System reset
� (Non)-maskable NMI
� Maskable

Figure 2−3. Interrupt Priority

Bus
Grant

Module
1

Module
2

WDT
Timer

Module
m

Module
n

1 2 1 2 1 2 1 2 1
NMIRS

GIE

CPU

OSCfault

Reset/NMI

PUC

Circuit

PUC

WDT Security Key

Priority High Low

MAB − 5LSBs

GMIRS

Flash Security Key

Flash ACCV

System Reset and Initialization

2-6 System Resets, Interrupts, and Operating Modes

2.2.1 (Non)-Maskable Interrupts (NMI)

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, 0FFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2−4.

A (non)-maskable NMI interrupt can be generated by three sources:

� An edge on the RST/NMI pin when configured in NMI mode

� An oscillator fault occurs

� An access violation to the flash memory

Reset/NMI Pin

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, 0FFFEh, and the RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

System Reset and Initialization

2-7System Resets, Interrupts, and Operating Modes

Figure 2−4. Block Diagram of (Non)-Maskable Interrupt Sources

Flash Module

KEYV

System Reset
Generator

VCC

POR PUC

WDTQn EQU

PUC

POR

PUC POR

NMIRS

Clear

S
WDTIFG

IRQ

WDTIE

Clear
IE1.0

PUC

POR

IRQA

WDTTMSEL

Counter

IFG1.0

WDTNMI
WDTTMSEL

WDTNMIES

Watchdog Timer Module

Clear

S

IFG1.4

PUC

Clear
IE1.4

PUC

NMIIFG

NMIIE

S

IFG1.1

Clear
IE1.1

PUC

OFIFG

OFIE

OSCFault

NMI_IRQA

IRQA: Interrupt Request Accepted

RST/NMI

S

FCTL1.1

Clear
IE1.5

ACCVIFG

ACCVIE

PUC

ACCV

WDT

S

IFG1.2

POR

PORIFG

Clear

S

IFG1.3
RSTIFG

POR

System Reset and Initialization

2-8 System Resets, Interrupts, and Operating Modes

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

System Reset and Initialization

2-9System Resets, Interrupts, and Operating Modes

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2−5.

Figure 2−5. NMI Interrupt Handler

yes

no
OFIFG=1

yes

no
ACCVIFG=1

yes

Reset ACCVIFG

no
NMIIFG=1

Reset NMIIFGReset OFIFG

Start of NMI Interrupt Handler
Reset by HW:

OFIE, NMIIE, ACCVIE

User’s Software,
Oscillator Fault

Handler

User’s Software,
Flash Access

Violation Handler

User’s Software,
External NMI

Handler

Optional

RETI
End of NMI Interrupt

Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Reset and Initialization

2-10 System Resets, Interrupts, and Operating Modes

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2−6. The interrupt logic executes
the following:

1) Any currently executing instruction is completed.

2) The PC, which points to the next instruction, is pushed onto the stack.

3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SR is cleared. This terminates any low-power mode. Because the GIE
bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2−6. Interrupt Processing

Item1

Item2SP TOS

Item1

Item2

SP TOS

PC

SR

Before
Interrupt

After
Interrupt

System Reset and Initialization

2-11System Resets, Interrupts, and Operating Modes

Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2−7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2−7. Return From Interrupt

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Reset and Initialization

2-12 System Resets, Interrupts, and Operating Modes

2.2.4 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range 0FFFFh − 0FFC0h as described in Table 2−1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt
vector that is assigned to a module. A dummy interrupt service routine can
consist of just the RETI instruction and several interrupt vectors can point to
it.

Unassigned interrupt vectors can be used for regular program code if
necessary.

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific datasheet for the SFR configuration.

System Reset and Initialization

2-13System Resets, Interrupts, and Operating Modes

Table 2−1. Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE
INTERRUPT

FLAG
SYSTEM

INTERRUPT
WORD

ADDRESS PRIORITY

Power-up, external
reset, watchdog,
flash password,
illegal instruction
fetch

PORIFG
RSTIFG
WDTIFG
KEYV

Reset 0FFFEh 31, highest

NMI, oscillator fault,
flash memory access
violation

NMIIFG
OFIFG
ACCVIFG

(non)-maskable
(non)-maskable
(non)-maskable

0FFFCh 30

device-specific 0FFFAh 29

device-specific 0FFF8h 28

device-specific 0FFF6h 27

Watchdog timer WDTIFG maskable 0FFF4h 26

device-specific 0FFF2h 25

device-specific 0FFF0h 24

device-specific 0FFEEh 23

device-specific 0FFECh 22

device-specific 0FFEAh 21

device-specific 0FFE8h 20

device-specific 0FFE6h 19

device-specific 0FFE4h 18

device-specific 0FFE2h 17

device-specific 0FFE0h 16

device-specific 0FFDEh 15

device-specific 0FFDCh 14

device-specific 0FFDAh 13

device-specific 0FFD8h 12

device-specific 0FFD6h 11

device-specific 0FFD4h 10

device-specific 0FFD2h 9

device-specific 0FFD0h 8

device-specific 0FFCEh 7

device-specific 0FFCCh 6

device-specific 0FFCAh 5

device-specific 0FFC8h 4

device-specific 0FFC6h 3

device-specific 0FFC4h 2

device-specific 0FFC2h 1

device-specific 0FFC0h 0, lowest

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−9.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−8.

Figure 2−8. Typical Current Consumption of 21x1 Devices vs Operating Modes

315

AM

300

270

225

180

135

90

45

0
LPM0 LPM2 LPM3 LPM4

200

55 32
17 11 0.9 0.7 0.1 0.1

VCC = 3 V

VCC = 2.2 V

Operating Modes

A
 @

 1
 M

H
z

µ
IC

C
/

The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

50210751
矩形

Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2−9. MSP430x2xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,

SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK

Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

VCC On

WDTIFG = 0

LPM1
CPU Off, MCLK Off,

SMCLK On, ACLK On

DC Generator Off if DCO
not used in active mode

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled
DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-16 System Resets, Interrupts, and Operating Modes

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

� Enter interrupt service routine:

� The PC and SR are stored on the stack

� The CPUOFF, SCG1, and OSCOFF bits are automatically reset

� Options for returning from the interrupt service routine:

� The original SR is popped from the stack, restoring the previous
operating mode.

� The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

50210751
高亮

Principles for Low-Power Applications

2-17System Resets, Interrupts, and Operating Modes

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 µA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-µs wake-up.

� Use interrupts to wake the processor and control program flow.

� Peripherals should be switched on only when needed.

� Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

� Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

� Avoid frequent subroutine and function calls due to overhead.

� For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2−2.

Table 2−2.Connection of Unused Pins

Pin Potential Comment

AVCC DVCC

AVSS DVSS

VREF+ Open

VeREF+ DVSS

VREF−/VeREF− DVSS

XIN DVCC

XOUT Open

XT2IN DVSS

XT2OUT Open

Px.0 to Px.7 Open Switched to port function, output direction
or input with pull−up/down enabled

RST/NMI DVCC or VCC 47 kΩ pullup with 10nF pull down

Test Open 21x1, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open

3-1RISC 16-Bit CPU

���� ����	
 ���

This chapter describes the MSP430 CPU, addressing modes, and instruction
set.

Topic Page

3.1 CPU Introduction 3-2.

3.2 CPU Registers 3-4.

3.3 Addressing Modes 3-9.

3.4 Instruction Set 3-17.

Chapter 3

CPU Introduction

3-2 RISC 16-Bit CPU

3.1 CPU Introduction

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

� RISC architecture with 27 instructions and 7 addressing modes

� Orthogonal architecture with every instruction usable with every
addressing mode

� Full register access including program counter, status registers, and stack
pointer

� Single-cycle register operations

� Large 16-bit register file reduces fetches to memory

� 16-bit address bus allows direct access and branching throughout entire
memory range

� 16-bit data bus allows direct manipulation of word-wide arguments

� Constant generator provides six most used immediate values and
reduces code size

� Direct memory-to-memory transfers without intermediate register holding

� Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3−1.

CPU Introduction

3-3RISC 16-Bit CPU

Figure 3−1. CPU Block Diagram

015

MDB − Memory Data Bus Memory Address Bus − MAB

16
Zero, Z
Carry, C
Overflow, V
Negative, N

16−bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

MCLK

CPU Registers

3-4 RISC 16-Bit CPU

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. R0, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3−2 shows the program counter.

Figure 3−2. Program Counter

0

15 0

Program Counter Bits 15 to 1

1

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL,PC ; Branch to address LABEL

MOV LABEL,PC ; Branch to address contained in LABEL

MOV @R14,PC ; Branch indirect to address in R14

CPU Registers

3-5RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3−3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3−4 shows stack usage.

Figure 3−3. Stack Pointer

0

15 0

Stack Pointer Bits 15 to 1

1

MOV 2(SP),R6 ; Item I2 −> R6

MOV R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h onto TOS

POP R8 ; R8 = 0123h

Figure 3−4. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3−5.

Figure 3−5. PUSH SP - POP SP Sequence

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

CPU Registers

3-6 RISC 16-Bit CPU

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3−6 shows the SR bits.

Figure 3−6. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU
OFF

OSC
OFFSCG1V

8 79

Table 3−1 describes the status register bits.

Table 3−1.Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(.B),ADDC(.B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

SUB(.B),SUBC(.B),CMP(.B) Set when:
Positive − Negative = Negative
Negative − Positive = Positive,
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.
Word operation: N is set to the value of bit 15 of the

result

Byte operation: N is set to the value of bit 7 of the
result

Z Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

CPU Registers

3-7RISC 16-Bit CPU

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3−2.

Table 3−2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 − − − − − Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh −1, word processing

The constant generator advantages are:

� No special instructions required

� No additional code word for the six constants

� No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator − Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3),dst

CPU Registers

3-8 RISC 16-Bit CPU

3.2.5 General−Purpose Registers R4 - R15

The twelve registers, R4−R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3−7.

Figure 3−7. Register-Byte/Byte-Register Operations

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh 05Fh

+ 012h + 002h

 0A1h 00061h

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

 + (Addressed byte) + (Low byte of register)

−>(Addressed byte) −>(Low byte of register, zero to High byte)

Addressing Modes

3-9RISC 16-Bit CPU

3.3 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3−3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3−3.Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/− Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/− Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/− Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

Addressing Modes

3-10 RISC 16-Bit CPU

3.3.1 Register Mode

The register mode is described in Table 3−4.

Table 3−4.Register Mode Description

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

0A023hR10

R11

Before: After:

PC

0FA15h

PCold

0A023hR10

R11

PC PCold + 2

0A023h

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

Addressing Modes

3-11RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3−5.

Table 3−5. Indexed Mode Description

Assembler Code Content of ROM

MOV 2(R5),6(R6) MOV X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV 2(R5),6(R6);

00006h

Address
Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch
+0006h
01092h

01080h
+0002h
01082h

Register
Before:

00006h

Address
Space

00002h

04596h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh

Addressing Modes

3-12 RISC 16-Bit CPU

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3−6.

Table 3−6.Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV X(PC),Y(PC)

X = EDE − PC

Y = TONI − PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC + Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Comment: Valid for source and destination

Example: MOV EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI=01114h

011FEh

Address
Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

05555h

01116h

01114h

01112h 0xxxxh

0FF14h
+0F102h

0F016h

0FF16h
+011FEh

01114h

Register
Before:

011FEh

Address
Space

0F102h

04090h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

Addressing Modes

3-13RISC 16-Bit CPU

3.3.4 Absolute Mode

The absolute mode is described in Table 3−7.

Table 3−7.Absolute Mode Description

Assembler Code Content of ROM

MOV &EDE,&TONI MOV X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV &EDE,&TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h

01114h

Address
Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address
Space

0F016h

04292h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

Addressing Modes

3-14 RISC 16-Bit CPU

3.3.5 Indirect Register Mode

The indirect register mode is described in Table 3−8.

Table 3−8. Indirect Mode Description

Assembler Code Content of ROM

MOV @R10,0(R11) MOV @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd).

Example: MOV.B @R10,0(R11)

0000h

Address
Space

04AEBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address
Space

04AEBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h

Addressing Modes

3-15RISC 16-Bit CPU

3.3.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 3−9.

Table 3−9. Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

00000h

Address
Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address
Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h
00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3−8.

Figure 3−8. Operand Fetch Operation

Instruction Address Operand

+1/ +2

Addressing Modes

3-16 RISC 16-Bit CPU

3.3.7 Immediate Mode

The immediate mode is described in Table 3−10.

Table 3−10.Immediate Mode Description

Assembler Code Content of ROM

MOV #45h,TONI MOV @PC+,X(PC)

45

X = TONI − PC

Length: Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Comment: Valid only for a source operand.

Example: MOV #45h,TONI

01192h

Address
Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h
+01192h
010A8h

Register
Before:

01192h

Address
Space

00045h

040B0h

PC

0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h

Instruction Set

3-17RISC 16-Bit CPU

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:

� Dual-operand

� Single-operand

� Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

Instruction Set

3-18 RISC 16-Bit CPU

3.4.1 Double-Operand (Format I) Instructions

Figure 3−9 illustrates the double-operand instruction format.

Figure 3−9. Double Operand Instruction Format

B/W D-Reg

15 0

Op-code AdS-Reg

8 714 13 12 11 10 9 6 5 4 3 2 1

As

Table 3−11 lists and describes the double operand instructions.

Table 3−11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bitsg,
D-Reg V N Z C

MOV(.B) src,dst src → dst − − − −

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst − src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * *

BIC(.B) src,dst .not.src .and. dst → dst − − − −

BIS(.B) src,dst src .or. dst → dst − − − −

XOR(.B) src,dst src .xor. dst → dst * * * *

AND(.B) src,dst src .and. dst → dst 0 * * *

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

Instruction Set

3-19RISC 16-Bit CPU

3.4.2 Single-Operand (Format II) Instructions

Figure 3−10 illustrates the single-operand instruction format.

Figure 3−10. Single Operand Instruction Format

B/W D/S-Reg

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Ad

Table 3−12 lists and describes the single operand instructions.

Table 3−12.Single Operand Instructions

Mnemonic S-Reg,
D Reg

Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP − 2 → SP, src → @SP − − − −

SWPB dst Swap bytes − − − −

CALL dst SP − 2 → SP, PC+2 → @SP − − − −

dst → PC

RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Bit 7 → Bit 8........Bit 15 0 * * *

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.

Instruction Set

3-20 RISC 16-Bit CPU

3.4.3 Jumps

Figure 3−11 shows the conditional-jump instruction format.

Figure 3−11. Jump Instruction Format

C 10-Bit PC Offset

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Table 3−13 lists and describes the jump instructions.

Table 3−13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from −511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCold + 2 + PCoffset × 2

 Instruction Set

3-21 RISC 16−Bit CPU

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C −> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

Instruction Set

3-22 RISC 16−Bit CPU

ADD[.W] Add source to destination
ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst −> dst

Description The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

 Instruction Set

3-23 RISC 16−Bit CPU

ADDC[.W] Add source and carry to destination
ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C −> dst

Description The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Instruction Set

3-24 RISC 16−Bit CPU

AND[.W] Source AND destination
AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst −> dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero

 Instruction Set

3-25 RISC 16−Bit CPU

BIC[.W] Clear bits in destination
BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst −> dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.

BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

Instruction Set

3-26 RISC 16−Bit CPU

BIS[.W] Set bits in destination
BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst −> dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.

BIS #003Fh,TOM; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

 Instruction Set

3-27 RISC 16−Bit CPU

BIT[.W] Test bits in destination
BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry −> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry −> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; | LSB
; MSB

Instruction Set

3-28 RISC 16−Bit CPU

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst −> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

 Instruction Set

3-29 RISC 16−Bit CPU

CALL Subroutine

Syntax CALL dst

Operation dst −> tmp dst is evaluated and stored
SP − 2 −> SP
PC −> @SP PC updated to TOS
tmp −> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP−2 → SP, PC+2 → @SP, @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP−2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP−2 → SP, PC+2 → @SP, X(0) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP−2 → SP, PC+2 → @SP, R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP−2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP−2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP−2 → SP, PC+2 → @SP, X(R5) → PC
; Indirect, indirect R5 + X

Instruction Set

3-30 RISC 16−Bit CPU

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 −> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 −> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 −> TONI

 Instruction Set

3-31 RISC 16−Bit CPU

* CLRC Clear carry bit

Syntax CLRC

Operation 0 −> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

Instruction Set

3-32 RISC 16−Bit CPU

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

 Instruction Set

3-33 RISC 16−Bit CPU

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Instruction Set

3-34 RISC 16−Bit CPU

CMP[.W] Compare source and destination
CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst − src)

Description The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

 Instruction Set

3-35 RISC 16−Bit CPU

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C −> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

Instruction Set

3-36 RISC 16−Bit CPU

DADD[.W] Source and carry added decimally to destination
DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C −> dst (decimally)

Description The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B CNT

 Instruction Set

3-37 RISC 16−Bit CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst − 1 −> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI−EDE−1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3−12.

Figure 3−12. Decrement Overlap

EDE

EDE+254

TONI

TONI+254

Instruction Set

3-38 RISC 16−Bit CPU

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst − 2 −> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI−EDE−2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

 Instruction Set

3-39 RISC 16−Bit CPU

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst −> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

Instruction Set

3-40 RISC 16−Bit CPU

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR −> SR / .src .OR. dst −> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

 Instruction Set

3-41 RISC 16−Bit CPU

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 −> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

Instruction Set

3-42 RISC 16−Bit CPU

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 −> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

 Instruction Set

3-43 RISC 16−Bit CPU

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst −> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

Instruction Set

3-44 RISC 16−Bit CPU

JC Jump if carry set
JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 × offset −> PC
If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal −> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15

 Instruction Set

3-45 RISC 16−Bit CPU

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label, JZ label

Operation If Z = 1: PC + 2 × offset −> PC
If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......

Instruction Set

3-46 RISC 16−Bit CPU

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 × offset −> PC
If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......

 Instruction Set

3-47 RISC 16−Bit CPU

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 × offset −> PC
If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

Instruction Set

3-48 RISC 16−Bit CPU

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset −> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
−511 to +512 words relative to the current program counter.

 Instruction Set

3-49 RISC 16−Bit CPU

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 × offset −> PC
if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT − R5 −> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......

Instruction Set

3-50 RISC 16−Bit CPU

JNC Jump if carry not set
JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 × offset −> PC
if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 −> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here

 Instruction Set

3-51 RISC 16−Bit CPU

JNE Jump if not equal
JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 × offset −> PC
If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

Instruction Set

3-52 RISC 16−Bit CPU

MOV[.W] Move source to destination
MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src −> dst

Description The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM−EDE−2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM−EDE−1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......

 Instruction Set

3-53 RISC 16−Bit CPU

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

� To fill one, two, or three memory words
� To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

Instruction Set

3-54 RISC 16−Bit CPU

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP −> temp
SP + 2 −> SP
temp −> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

 Instruction Set

3-55 RISC 16−Bit CPU

PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP − 2 → SP
src → @SP

Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

Instruction Set

3-56 RISC 16−Bit CPU

* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

 Instruction Set

3-57 RISC 16−Bit CPU

RETI Return from interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3−13 illustrates the main program interrupt.

Figure 3−13. Main Program Interrupt

PC −6

PC −4

PC −2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n−4

PCi +n−2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored
Onto Stack

RETI

Instruction Set

3-58 RISC 16−Bit CPU

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3−14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3−14. Destination Operand—Arithmetic Shift Left

15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2)
RLA.B R7 ; Shift left low byte of R7 (× 4)

Note: RLA Substitution

The assembler does not recognize the instruction:

 RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

 ADD @R5+,−2(R5) ADD.B @R5+,−1(R5) or ADD(.B) @R5

 Instruction Set

3-59 RISC 16−Bit CPU

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3−15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3−15. Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C −> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information −> Carry
RLC R5 ; Carry=P0in.1 −> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C −> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5

It must be substituted by:

ADDC @R5+,−2(R5) ADDC.B @R5+,−1(R5) or ADDC(.B) @R5

Instruction Set

3-60 RISC 16−Bit CPU

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB −> MSB, MSB −> MSB−1, ... LSB+1 −> LSB, LSB −> C

Description The destination operand is shifted right one position as shown in Figure 3−16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB−1, and the
LSB+1 is shifted into the LSB.

Figure 3−16. Destination Operand—Arithmetic Right Shift

15 0

15 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 −> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 × 0.5 −> R5
ADD @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5 −> R5
RRA R5 ; (1.5 × R5) × 0.5 = 0.75 × R5 −> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 −> R5: operation is on low byte only
; High byte of R5 is reset

PUSH.B R5 ; R5 × 0.5 −> TOS
RRA.B @SP ; TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5 −> TOS
ADD.B @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5 −> R5
......

 Instruction Set

3-61 RISC 16−Bit CPU

RRC[.W] Rotate right through carry
RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C −> MSB −> MSB−1 LSB+1 −> LSB −> C

Description The destination operand is shifted right one position as shown in Figure 3−17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3−17. Destination Operand—Carry Right Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h −> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h −> R5; low byte of R5 is used

Instruction Set

3-62 RISC 16−Bit CPU

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C −> dst
dst + 0FFh + C −> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

 Instruction Set

3-63 RISC 16−Bit CPU

* SETC Set carry bit

Syntax SETC

Operation 1 −> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0−9 to 6−0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0−9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h − R5 − 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

Instruction Set

3-64 RISC 16−Bit CPU

* SETN Set negative bit

Syntax SETN

Operation 1 −> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

 Instruction Set

3-65 RISC 16−Bit CPU

* SETZ Set zero bit

Syntax SETZ

Operation 1 −> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Instruction Set

3-66 RISC 16−Bit CPU

SUB[.W] Subtract source from destination
SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 −> dst
or
[(dst − src −> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

 Instruction Set

3-67 RISC 16−Bit CPU

SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination
SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C −> dst
or
(dst − src − 1 + C −> dst)

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

Instruction Set

3-68 RISC 16−Bit CPU

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <−> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3−18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3−18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 −> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result

 Instruction Set

3-69 RISC 16−Bit CPU

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 −> Bit 8 Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure 3−19.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3−19. Destination Operand Sign Extension

15 8 7 0

Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000

Instruction Set

3-70 RISC 16−Bit CPU

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

 Instruction Set

3-71 RISC 16−Bit CPU

XOR[.W] Exclusive OR of source with destination
XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst −> dst

Description The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

Instruction Set

3-72 RISC 16−Bit CPU

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3−14 lists the CPU cycles for interrupt overhead and reset.

Table 3−14.Interrupt and Reset Cycles

No. of Length of
Action

No. of
Cycles

Length of
Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 −

WDT reset 4 −

Reset (RST/NMI) 4 −

Format-II (Single Operand) Instruction Cycles and Lengths

Table 3−15 lists the length and CPU cycles for all addressing modes of
format-II instructions.

Table 3−15.Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 5 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #0F000h

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

 Instruction Set

3-73 RISC 16−Bit CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Table 3−16 lists the length and CPU cycles for all addressing modes of format-I
instructions.

Table 3−16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of

Src Dst Cycles
g

Instruction Example
Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,4(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5@

PC 2 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6@

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7()

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 4(R4),6(R9)

&TONI 6 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BRA &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI

Instruction Set

3-74 RISC 16−Bit CPU

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3−20 and the complete instruction set
is summarized in Table 3−17.

Figure 3−20. Core Instruction Map

0xxx
4xxx
8xxx
Cxxx
1xxx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

 Instruction Set

3-75 RISC 16−Bit CPU

Table 3−17.MSP430 Instruction Set
Mnemonic Description V N Z C

ADC(.B)† dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst − − − −

BIS(.B) src,dst Set bits in destination src .or. dst → dst − − − −

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR† dst Branch to destination dst → PC − − − −

CALL dst Call destination PC+2 → stack, dst → PC − − − −

CLR(.B)† dst Clear destination 0 → dst − − − −

CLRC† Clear C 0 → C − − − 0

CLRN† Clear N 0 → N − 0 − −

CLRZ† Clear Z 0 → Z − − 0 −

CMP(.B) src,dst Compare source and destination dst − src * * * *

DADC(.B)† dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B)† dst Decrement destination dst − 1 → dst * * * *

DECD(.B)† dst Double-decrement destination dst − 2 → dst * * * *

DINT† Disable interrupts 0 → GIE − − − −

EINT† Enable interrupts 1 → GIE − − − −

INC(.B)† dst Increment destination dst +1 → dst * * * *

INCD(.B)† dst Double-increment destination dst+2 → dst * * * *

INV(.B)† dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same − − − −

JEQ/JZ label Jump if equal/Jump if Z set − − − −

JGE label Jump if greater or equal − − − −

JL label Jump if less − − − −

JMP label Jump PC + 2 x offset → PC − − − −

JN label Jump if N set − − − −

JNC/JLO label Jump if C not set/Jump if lower − − − −

JNE/JNZ label Jump if not equal/Jump if Z not set − − − −

MOV(.B) src,dst Move source to destination src → dst − − − −

NOP† No operation − − − −

POP(.B)† dst Pop item from stack to destination @SP → dst, SP+2 → SP − − − −

PUSH(.B) src Push source onto stack SP − 2 → SP, src → @SP − − − −

RET† Return from subroutine @SP → PC, SP + 2 → SP − − − −

RETI Return from interrupt * * * *

RLA(.B)† dst Rotate left arithmetically * * * *

RLC(.B)† dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B)† dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC† Set C 1 → C − − − 1

SETN† Set N 1 → N − 1 − −

SETZ† Set Z 1 → C − − 1 −

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes − − − −

SXT dst Extend sign 0 * * *

TST(.B)† dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

† Emulated Instruction

4-1Basic Clock Module+

����� ����	
����
�

The basic clock module+ provides the clocks for MSP430x2xx devices. This
chapter describes the operation of the basic clock module+. The basic clock
module+ is implemented in all MSP430x2xx devices.

Topic Page

4.1 Basic Clock Module Introduction 4−2.

4.2 Basic Clock Module Operation 4−4.

4.3 Basic Clock Module Registers 4−13.

Chapter 4

Basic Clock Module+ Introduction

4-2 Basic Clock Module+

4.1 Basic Clock Module+ Introduction

The basic clock module+ supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock
module+ can be configured to operate without any external components, with
one external resistor, with one or two external crystals, or with resonators,
under full software control.

The basic clock module+ includes three or four clock sources:

� LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
with low-frequency watch crystals or external clock sources of 32,768-Hz.
or with standard crystals, resonators, or external clock sources in the
400-kHz to 16-MHz range.

� XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 400-kHz to
16-MHz range.

� DCOCLK: Internal digitally controlled oscillator (DCO).

� VLOCLK: Internal very low power, low frequency oscillator with 12kHz
typical frequency.

Three clock signals are available from the basic clock module+:

� ACLK: Auxiliary clock. ACLK is software selectable as LFXT1CLK or
VLOCLK. ACLK is divided by 1, 2, 4, or 8. ACLK is software selectable for
individual peripheral modules.

� MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. MCLK is divided by
1, 2, 4, or 8. MCLK is used by the CPU and system.

� SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. SMCLK is divided
by 1, 2, 4, or 8. SMCLK is software selectable for individual peripheral
modules.

The block diagram of the basic clock module+ is shown in Figure 4−1.

Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, ROSC
is not supported.
MSP430x21xx: Internal LP/LF oscillator is not present, XT2 is not present,
ROSC is not supported.
MSP430x22xx: XT2 is not present.

Basic Clock Module+ Introduction

4-3Basic Clock Module+

Figure 4−1. Basic Clock Module+ Block Diagram

Divider
/1/2/4/8

DIVAx

MCLK

CPUOFF

LFXT1CLK

DCOCLK

XIN

XOUT

Divider
/1/2/4/8

DIVMx

SMCLK

SCG1
DIVSx

ACLK

Main System Clock

Auxillary Clock

Sub System Clock

DCO

DCOx

DC
Generator

SCG0 RSELx

off

SELS

1

0

SELMx

00

01

10

11
1

0

1

0
Divider
/1/2/4/8

 Modulator

1

0n

n+1

XTS

XCAPx

LFXT1 Oscillator

LF

0 V

LFOff

0 V

Min. Puls
Filter

LFXT1Sx

MODx

else

10
Min. Pulse

Filter

Internal
LP/LF

VLOCLK

XT2IN

XT2OUT

XT2OFF

XT

Min. Pulse
Filter

Connected only when
XT2 not present on−chip

XT2S

VCC

1

0

DCOR

Oscillator†

XT1Off

XT2 Oscillator†

Rosc†

OSCOFF

XT†

†Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, ROSC
is not supported.
MSP430x21xx: Internal LP/LF oscillator is not present, XT2 is not present,
ROSC is not supported.
MSP430x22xx: XT2 is not present.

Basic Clock Module+ Operation

4-4 Basic Clock Module+

4.2 Basic Clock Module+ Operation

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~1.1 MHz (see
device-specific datasheet for parameters) and ACLK is sourced from
LFXT1CLK in LF mode with an internal load capacitance of 6pF.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable portions of the basic clock
module+. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, BCSCTL2, and BCSCTL3 registers configure the basic
clock module+.

The basic clock module+ can be configured or reconfigured by software at any
time during program execution, for example:

BIS.B #RSEL2+RSEL1+RSEL0,&BCSCTL1 ; Select range 7

BIS.B #DCO2+DCO1+DCO0,&DCOCTL ; Select max DCO tap

4.2.1 Basic Clock Module+ Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:

� Low clock frequency for energy conservation and time keeping

� High clock frequency for fast reaction to events and fast burst processing
capability

� Clock stability over operating temperature and supply voltage

The basic clock module+ addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, ACLK can be sourced from
a low-power 32,768-Hz watch crystal, providing a stable time base for the
system and low power stand-by operation, or from the internal low-frequency
oscillator when crystal-accurate time keeping is not required.. The MCLK can
be configured to operate from the on-chip DCO that can be activated when
requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the
individual clock requirements.

4.2.2 Internal Very Low Power, Low Frequency Oscillator

The internal very-low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific datasheet for parameters) without
requiring a crystal. VLOCLK source is selected by setting LFXT1Sx = 10 when
XTS = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

Basic Clock Module+ Operation

4-5Basic Clock Module+

4.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN
and XOUT without any other external components. The software-selectable
XCAPx bits configure the internally provided load capacitance for the LFXT1
crystal in LF mode. This capacitance can be selected as 1pF, 6pF, 10pF or
12.5pF typical. Additional external capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1). The high-speed crystal or resonator connects to XIN and
XOUT and requires external capacitors on both terminals. These capacitors
should be sized according to the crystal or resonator specifications. When
LFXT1 is in HF mode, the LFXT1Sx bits select the range of operation.

LFXT1 may be used with an external clock signal on the XIN pin in either LF
or HF mode when LFXT1Sx = 11 and OSCOFF = 0. When used with an
external signal, the external frequency must meet the datasheet parameters
for the chosen mode. When the input frequency is below the specified lower
limit, the LFXT1OF bit may be set preventing the CPU from being clocked with
LFXT1CLK.

Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not
source SMCLK or MCLK, as shown in Figure 4−2.

Figure 4−2. Off Signals for the LFXT1 Oscillator

XT2 is an Internal Signal
XT2 = 0: Devices without XT2 oscillator
XT2 = 1: Devices with XT2 oscillator

ACLK_request

MCLK_request

OSCOFF

CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2

XTS

LFOff

XT1Off

LFXT1Off

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

mario
Highlight
外部晶体或晶振需外接电容

Basic Clock Module+ Operation

4-6 Basic Clock Module+

4.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2Sx bits
select the range of operation of XT2. The XT2OFF bit disables the XT2
oscillator if XT2CLK is not used for MCLK or SMCLK as shown in Figure 4−3.

XT2 may be used with external clock signals on the XT2IN pin when XT2Sx
= 11 and XT2OFF = 0. When used with an external signal, the external
frequency must meet the datasheet parameters for XT2. When the input
frequency is below the specified lower limit, the XT2OF bit may be set
preventing the CPU from being clocked with XT2CLK.

Figure 4−3. Off Signals for Oscillator XT2

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2OFF

XT2off (Internal Signal)

4.2.5 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency
can be adjusted by software using the DCOx, MODx, and RSELx bits.

Disabling the DCO

Software can disable DCOCLK by setting SCG0 when it is not used to source
SMCLK or MCLK in active mode, as shown in Figure 4−4.

Figure 4−4. On/Off Control of DCO

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

XSELM1

SYNCDCOCLK
XT2CLK

QD

SCG0

DCOCLK_on

1: on
0: off

1: on
0: off

DCO_Gen_on

DCOCLK

Basic Clock Module+ Operation

4-7Basic Clock Module+

Adjusting the DCO frequency

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a
mid-range frequency. MCLK and SMCLK are sourced from DCOCLK.
Because the CPU executes code from MCLK, which is sourced from the
fast-starting DCO, code execution typically begins from PUC in less than 2 µs.
The typical DCOx and RSELx ranges and steps are shown in Figure 4−5.

The frequency of DCOCLK is set by the following functions:

� The four RSELx bits select one of sixteen nominal frequency ranges for
the DCO. These ranges are defined for an individual device in the
device-specific data sheet.

� The three DCOx bits divide the DCO range selected by the RSELx bits into
8 frequency steps, separated by approximately 10%.

� The five MODx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCOx+1. When DCOx = 07h,
the MODx bits have no effect because the DCO is already at the highest
setting for the selected RSELx range.

Figure 4−5. Typical DCOx Range and RSELx Steps

RSEL=0

RSEL = 15

DCO=0 DCO=7DCO=4DCO=1 DCO=2 DCO=3 DCO=5 DCO=6

fDCO

20000 kHz

100 kHz

1000 kHz

RSEL = 7

50210751
线条

50210751
线条

Basic Clock Module+ Operation

4-8 Basic Clock Module+

Each MSP430F2xx device has calibrated DCOCTL and BCSCTL1 register
settings for specific frequencies stored in information memory segment A. To
use the calibrated settings, the information is copied into the DCOCTL and
BCSCTL1 registers. The calibrated settings affect the DCOx, MODx, and
RSELx bits, and clear all other bits, except XT2OFF which remains set. The
remaining bits of BCSCTL1 can be set or cleared as needed with BIS.B or
BIC.B instructions.

; Set DCO to 1 MHz:

MOV.B &CALBC1_1MHZ,&BCSCTL1 ; Set range

MOV.B &CALDCO_1MHZ,&DCOCTL ; Set DCO step + modulation

Using an External Resistor (ROSC) for the DCO

Some MSP430F2xx devices provide the option to source the DCO current
through an external resistor, ROSC, tied to DVCC, when DCOR = 1. In this case,
the DCO has the same characteristics as MSP430x1xx devices, and the
RSELx setting is limited to 0 to 7 with the RSEL3 ignored. This option provides
an additional method to tune the DCO frequency by varying the resistor value.
See the device-specific datasheet for parameters.

50210751
矩形

Basic Clock Module+ Operation

4-9Basic Clock Module+

4.2.6 DCO Modulator

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an
intermediate effective frequency between fDCO and fDCO+1 and spread the
clock energy, reducing electromagnetic interference (EMI). The modulator
mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

t =(32− MODx) × tDCO + MODx × tDCO+1

Because fDCO is lower than the effective frequency and fDCO+1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.
It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 4−6 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLK can be compared to a stable frequency of known value and adjusted
with the DCOx, RSELx, and MODx bits. See http://www.msp430.com for
application notes and example code on configuring the DCO.

Figure 4−6. Modulator Patterns

MODx

Lower DCO Tap Frequency fDCO

31

24

16

15

5

4

3

2

1

0

Upper DCO Tap Frequency fDCO+1

Basic Clock Module+ Operation

4-10 Basic Clock Module+

4.2.7 Basic Clock Module+ Fail-Safe Operation

The basic clock module+ incorporates an oscillator-fault fail-safe feature. This
feature detects an oscillator fault for LFXT1 and XT2 as shown in Figure 4−7
The available fault conditions are:

� Low-frequency oscillator fault (LFXT1OF) for LFXT1 in LF mode

� High-frequency oscillator fault (LFXT1OF) for LFXT1 in HF mode

� High-frequency oscillator fault (XT2OF) for XT2

The crystal oscillator fault bits LFXT1OF, and XT2OF are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally.

The OFIFG oscillator-fault flag is set and latched at POR or when an oscillator
fault (LFXT1OF, or XT2OF) is detected. When OFIFG is set, MCLK is sourced
from the DCO, and if OFIE is set, the OFIFG requests and NMI interrupt. When
the interrupt is granted, the OFIE is reset automatically. The OFIFG flag must
be cleared by software. The source of the fault can be identified by checking
the individual fault bits.

If a fault is detected for the crystal oscillator sourcing the MCLK, the MCLK is
automatically switched to the DCO for its clock source. This does not change
the SELMx bit settings. This condition must be handled by user software.

Figure 4−7. Oscillator-Fault Logic

LF_OscFault

XT1_OscFault

XT2_OscFault

XTS

XT2OF

LFXT1OF

Set OFIFG Flag

Basic Clock Module+ Operation

4-11Basic Clock Module+

Sourcing MCLK from a Crystal

After a PUC, the basic clock module+ uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator and select appropriate mode

2) Clear the OFIFG flag

3) Wait at least 50 µs

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select LFXT1 (HF mode) for MCLK

BIC.W #OSCOFF,SR ; Turn on osc.

BIS.B #XTS,&BCSCTL1 ; HF mode

MOV.B #LFXT1S0,&BCSCTL3 ; 1−3MHz Crystal

L1 BIC.B #OFIFG,&IFG1 ; Clear OFIFG

MOV.W #0FFh,R15 ; Delay

L2 DEC.W R15 ;

JNZ L2 ;

BIT.B #OFIFG,&IFG1 ; Re−test OFIFG

JNZ L1 ; Repeat test if needed

BIS.B #SELM1+SELM0,&BCSCTL2 ; Select LFXT1CLK

Basic Clock Module+ Operation

4-12 Basic Clock Module+

4.2.8 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the
switch is synchronized to avoid critical race conditions as shown in Figure 4−8:

1) The current clock cycle continues until the next rising edge.

2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 4−8. Switch MCLK from DCOCLK to LFXT1CLK

DCOCLK

LFXT1CLK

MCLK

LFXT1CLKDCOCLK

Select
LFXT1CLK

Wait for
LFXT1CLK

Basic Clock Module+ Registers

4-13Basic Clock Module+

4.3 Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 4−1:

Table 4−1.Basic Clock module+ Registers

Register Short Form Register Type Address Initial State

DCO control register DCOCTL Read/write 056h 060h with PUC

Basic clock system control 1 BCSCTL1 Read/write 057h 087h with POR

Basic clock system control 2 BCSCTL2 Read/write 058h Reset with PUC

Basic clock system control 3 BCSCTL3 Read/write 053h 005h with PUC

SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC

Basic Clock Module+ Registers

4-14 Basic Clock Module+

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0

DCOx MODx

rw−0 rw−1 rw−1 rw−0 rw−0 rw−0 rw−0 rw−0

DCOx Bits
7-5

DCO frequency select. These bits select which of the eight discrete DCO
frequencies within the range defined by the RSELx setting is selected.

MODx Bits
4-0

Modulator selection. These bits define how often the fDCO+1 frequency is
used within a period of 32 DCOCLK cycles. During the remaining clock
cycles (32−MOD) the fDCO frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0

XT2OFF XTS DIVAx RSELx

rw−(1) rw−(0) rw−(0) rw−(0) rw−0 rw−1 rw−1 rw−1

XT2OFF Bit 7 XT2 off. This bit turns off the XT2 oscillator
0 XT2 is on
1 XT2 is off if it is not used for MCLK or SMCLK.

XTS Bit 6 LFXT1 mode select.
0 Low frequency mode
1 High frequency mode

DIVAx Bits
5-4

Divider for ACLK
00 /1
01 /2
10 /4
11 /8

RSELx Bits
3-0

Range Select. Sixteen different frequency ranges are available. The lowest
frequency range is selected by setting RSELx=0. RSEL3 is ignored when
DCOR = 1.

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
矩形

50210751
高亮

50210751
矩形
计算标称频率

Basic Clock Module+ Registers

4-15Basic Clock Module+

BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0

SELMx DIVMx SELS DIVSx DCOR†

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

† Does not apply to MSP430x20xx or MSP430x21xx.

SELMx Bits
7-6

Select MCLK. These bits select the MCLK source.
00 DCOCLK
01 DCOCLK
10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK

when XT2 oscillator not present on-chip.
11 LFXT1CLK or VLOCLK

DIVMx BitS
5-4

Divider for MCLK
00 /1
01 /2
10 /4
11 /8

SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1 XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when

XT2 oscillator not present

DIVSx BitS
2-1

Divider for SMCLK
00 /1
01 /2
10 /4
11 /8

DCOR Bit 0 DCO resistor select
0 Internal resistor
1 External resistor

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

Basic Clock Module+ Registers

4-16 Basic Clock Module+

BCSCTL3, Basic Clock System Control Register 3

7 6 5 4 3 2 1 0

XT2Sx LFXT1Sx XCAPx XT2OF† LFXT1OF

rw−0 rw−0 rw−0 rw−0 rw−0 rw−1 r0 r−(1)

† Does not apply to MSP430x2xx, MSP430x21xx, or MSP430x22xx devices

XT2Sx Bits
7-6

XT2 range select. These bits select the frequency range for XT2.
00 0.4 − 1MHz crystal or resonator
01 1 − 3MHz crystal or resonator
10 3 − 16MHz crystal or resonator
11 Digital external 0.4 − 16MHz clock source

LFXT1Sx Bits
5-4

Low-frequency clock select and LFXT1 range select. These bits select
between LFXT1 and VLO when XTS = 0, and select the frequency range
for LFXT1 when XTS = 1.
When XTS = 0:
00 32768 Hz Crystal on LFXT1
01 Reserved
10 VLOCLK (Reserved in MSP430x21x1 devices)
11 Digital external clock source
When XTS = 1 (Not applicable for MSP430x20xx devices)
00 0.4 − 1MHz crystal or resonator
01 1 − 3MHz crystal or resonator
10 3 − 16MHz crystal or resonator
11 Digital external 0.4 − 16MHz clock source

XCAPx Bits
3-2

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXT1 crystal when XTS = 0.
00 ~1pF
01 ~6pF
10 ~10pF
11 ~12.5pF

XT2OF Bit 1 XT2 oscillator fault.
0 No fault condition present
1 Fault condition present

LFXT1OF Bit 0 LFXT1 oscillator fault
0 No fault condition present
1 Fault condition present

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

Basic Clock Module+ Registers

4-17Basic Clock Module+

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

OFIE

rw−0

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits 0 This bit may be used by other modules. See device-specific datasheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

OFIFG

rw−1

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits 0 This bit may be used by other modules. See device-specific datasheet.

5-1 Flash Memory Controller

 ����� ���	
� �	
�
	���

This chapter describes the operation of the MSP430x2xx flash memory
controller.

Topic Page

5.1 Flash Memory Introduction 5-2.

5.2 Flash Memory Segmentation 5-3.

5.3 Flash Memory Operation 5-5.

5.4 Flash Memory Registers 5-19.

Chapter 5

Flash Memory Introduction

5-2 Flash Memory Controller

5.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three
registers, a timing generator, and a voltage generator to supply program and
erase voltages.

MSP430 flash memory features include:

� Internal programming voltage generation

� Bit, byte or word programmable

� Ultralow-power operation

� Segment erase and mass erase

The block diagram of the flash memory and controller is shown in Figure 5−1.

Note: Minimum VCC During Flash Write or Erase

The minimum VCC voltage during a flash write or erase operation is 2.2 V.
If VCC falls below 2.2 V during a write or erase, the result of the write or erase
will be unpredictable.

Figure 5−1. Flash Memory Module Block Diagram

Enable

Data Latch

Enable

Address

Latch

Address Latch Data Latch

MAB
MDB

FCTL1

FCTL2

FCTL3

Timing
Generator

Programming
Voltage

Generator

Flash
Memory

Array

Flash Memory Segmentation

5-3 Flash Memory Controller

5.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments. The main memory has
two or more 512-byte segments. See the device-specific datasheet for the
complete memory map of a device.

The segments are further divided into blocks. A block is 64 bytes, starting at
0xx00h, 0xx40h, 0xx80h, or 0xxC0h, and ending at 0xx3Fh, 0xx7Fh, 0xxBFh,
or 0xxFFh.

Figure 5−2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and four information segments.

Figure 5−2. Flash Memory Segments, 4-KB Example

FFFFh

F000h

10FFh

Segment0

Segment1

Segment2

Segment3

Segment4

Segment5

Segment6

Segment7

SegmentA

SegmentB

FFFFh

F000h

10FFh

1000h

FE00h

FDFFh

FC00h

256-byte
Flash

Information Memory

4-kbyte
Flash

Main Memory

4 KB + 256 byte

xx3Fh

xx00h

Block

Block

Block

Block

xxFFh

xxBFh

xx7Fh

xxC0h

xx80h

xx40h

1000h

SegmentC

SegmentD

Flash Memory Segmentation

5-4 Flash Memory Controller

5.2.1 SegmentA

SegmentA of the information memory is locked separately from all other
segments with the LOCKA bit. When LOCKA = 1, SegmentA cannot be written
or erased and all information memory is protected from erasure during a mass
erase. When LOCKA = 0, SegmentA can be erased and written as any other
flash memory segment, and all information memory is erased during a mass
erase. Segments B, C, and D can always be erased with a segment erase,
regardless of the state of the LOCKA bit.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no affect. This allows existing flash programming routines to be
used unchanged.

; Unlock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA

JZ SEGA_UNLOCKED ; Already unlocked?

MOV #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA

SEGA_UNLOCKED ; Yes, continue

; SegmentA is unlocked

; Lock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA

JNZ SEGALOCKED ; Already locked?

MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA

SEGA_LOCKED ; Yes, continue

; SegmentA is locked

Flash Memory Operation

5-5 Flash Memory Controller

5.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

� Byte/word write

� Block write

� Segment Erase

� Mass Erase (all main memory segments)

� All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

5.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 5−3. The flash timing generator operating frequency, fFTG, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific datasheet).

Figure 5−3. Flash Memory Timing Generator Block Diagram

FN5 FN0 PUC........... EMEX

Flash Timing Generator
Divider, 1−64

BUSY WAIT

Reset
fFTG

FSSELx

SMCLK

SMCLK

ACLK

MCLK

00

01

10

11

Flash Memory Operation

5-6 Flash Memory Controller

Flash Timing Generator Clock Selection

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for fFTG. If the fFTG frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

If a clock failure is detected during a write or erase operation, the operation is
aborted, the FAIL flag is set, and the result of the operation is unpredictable.

While a write or erase operation is active the selected clock source can not be
disabled by putting the MSP430 into a low-power mode. The selected clock
source will remain active until the operation is completed before being
disabled.

Flash Memory Operation

5-7 Flash Memory Controller

5.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 5−1.

Table 5−1.Erase Modes

MERAS ERASE Erase Mode

0 1 Segment erase

1 0 Mass erase (all main memory segments)

1 1 Erase all flash memory (main and information segments)

if LOCKA = 0. Main segments only if LOCKA = 1.

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 5−4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430F2xx devices.

Figure 5−4. Erase Cycle Timing

BUSY

Erase Operation Active

tmass erase = 10593/fFTG, tsegment erase = 4819/fFTG

Erase Time, VCC Current Consumption is Increased

Generate
Programming Voltage

Remove
Programming Voltage

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Flash Memory Operation

5-8 Flash Memory Controller

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution
with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution
will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 5−5.

Figure 5−5. Erase Cycle from Within Flash Memory

Setup flash controller and erase
mode

Disable watchdog

Set LOCK=1, re-enable watchdog

Dummy write

; Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write, erase S1
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

Flash Memory Operation

5-9 Flash Memory Controller

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY=1, it is an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from RAM is shown in Figure 5−6.

Figure 5−6. Erase Cycle from Within RAM

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, re-enable
watchdog

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK

... ; Re-enable WDT?

Flash Memory Operation

5-10 Flash Memory Controller

5.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 5−1.

Table 5−2.Write Modes

BLKWRT WRT Write Mode

0 1 Byte/word write

1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block-write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 5−7.

Figure 5−7. Byte/Word Write Timing

ÎÎ
ÎÎ

ÎÎ
ÎÎ

BUSY

Programming Operation Active

Programming Time, VCC Current Consumption is Increased

tWord Write = 30/fFTG

Generate
Programming Voltage

Remove
Programming Voltage

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

Flash Memory Operation

5-11 Flash Memory Controller

In byte/word mode, the internally-generated programming voltage is applied
to the complete 64-byte block, each time a byte or word is written, for 27 of the
30 fFTG cycles. With each byte or word write, the amount of time the block is
subjected to the programming voltage accumulates. The cumulative
programming time, tCPT, must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific
datasheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 5−8.

Figure 5−8. Initiating a Byte/Word Write from Flash

Setup flash controller
and set WRT=1

Disable watchdog

 Set WRT=0, LOCK=1,
re-enable watchdog

Write byte or word

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes 0FF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h −> 0FF1Eh

MOV #FWKEY,&FCTL1 ; Done. Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?

Flash Memory Operation

5-12 Flash Memory Controller

Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 5−9.

Figure 5−9. Initiating a Byte/Word Write from RAM

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller
and set WRT=1

Write byte or word

Set WRT=0, LOCK = 1
re-enable watchdog

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz

; Assumes 0FF1Eh is already erased

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h −> 0FF1Eh

L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY,&FCTL1 ; Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?

Flash Memory Operation

5-13 Flash Memory Controller

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tCPT must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tend. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 5−10 shows the block write timing.

Figure 5−10. Block-Write Cycle Timing

BUSY

WAIT

Generate Programming Operation Active

tBlock, 0 = 25/fFTG tBlock, 1-63 = 18/fFTG

Write to Flash e.g., MOV #123h, &Flash

BLKWRT bit

tBlock, 1-63 = 18/fFTG tend = 6/fFTG

Cumulative Programming Time tCPT ∼=< 4ms, VCC Current Consumption is Increased

Programming Voltage
Remove

Programming Voltage

Flash Memory Operation

5-14 Flash Memory Controller

Block Write Flow and Example

A block write flow is shown in Figure 5−8 and the following example.

Figure 5−11. Block Write Flow

yes
BUSY = 1

Disable watchdog

Setup flash controller

Set BLKWRT=WRT=1

Write byte or word

no
Block Border?

yes
WAIT=0?

yes
BUSY = 1

Set BLKWRT=0

yes Another
Block?

Set WRT=0, LOCK=1
re-enable WDT

Flash Memory Operation

5-15 Flash Memory Controller

; Write one block starting at 0F000h.

; Must be executed from RAM, Assumes Flash is already erased.

; 514 kHz < SMCLK < 952 kHz

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value,0(R6) ; Write location

L3 BIT #WAIT,&FCTL3 ; Test WAIT

JZ L3 ; Loop while WAIT=0

INCD R6 ; Point to next word

DEC R5 ; Decrement write counter

JNZ L2 ; End of block?

MOV #FWKEY,&FCTL1 ; Clear WRT,BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L4 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT if needed

Flash Memory Operation

5-16 Flash Memory Controller

5.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 5−3.

Table 5−3.Flash Access While BUSY = 1

Flash
Operation

Flash
 Access

WAIT Result

Read 0 ACCVIFG = 0. 03FFFh is the value read

Any erase, or
B / d i

Write 0 ACCVIFG = 1. Write is ignoredy
Byte/word write

Instruction
fetch

0 ACCVIFG = 0. CPU fetches 03FFFh. This
is the JMP PC instruction.

Any 0 ACCVIFG = 1, LOCK = 1

Read 1 ACCVIFG = 0, 03FFFh is the value read

Block write Write 1 ACCVIFG = 0, Flash is written

Instruction
fetch

1 ACCVIFG = 1, LOCK = 1

Interrupts are automatically disabled during any flash operation when EEI =
0 and EEIEX = 0 and on MSP430x20xx devices where EEI and EEIEX are not
present. After the flash operation has completed, interrupts are automatically
re-enabled. Any interrupt that occurred during the operation will have its
associated flag set, and will generate an interrupt request when re-enabled.

When EEIEX = 1 and GIE = 1, an interrupt will immediately abort any flash
operation and the FAIL flag will be set. When EEI = 1, GIE = 1, and EEIEX =
0, a segment erase will be interrupted by a pending interrupt every 32 fFTG
cycles. After servicing the interrupt, the segment erase is continued for at least
32 fFTG cycles or until it is complete. During the servicing of the interrupt, the
BUSY bit remains set but the flash memory can be accessed by the CPU
without causing an access violation occurs. Nested interrupts are not
supported.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset will abort the erase and the result will be unpredictable.
After the erase cycle has completed, the watchdog may be re-enabled.

Flash Memory Operation

5-17 Flash Memory Controller

5.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

5.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode when WAIT=0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY=1 is an access violation.

Any FCTLx register may be read when BUSY=1. A read will not cause an
access violation.

5.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

5.3.8 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

� Program via JTAG

� Program via the Bootstrap Loader

� Program via a custom solution

Flash Memory Operation

5-18 Flash Memory Controller

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.msp430.com.

Programming Flash Memory via the Bootstrap loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the Application report
Features of the MSP430 Bootstrap Loader at www.ti.com/msp430.

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 5−12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 5−12. User-Developed Programming Solution

Host

Flash Memory

UART,
Px.x,
SPI,
etc.

CPU executes
user software

Commands, data, etc.

Read/write flash memory

MSP430

Flash Memory Registers

5-19 Flash Memory Controller

5.4 Flash Memory Registers

The flash memory registers are listed in Table 5−4.

Table 5−4.Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0128h 09600h with PUC

Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC

Flash memory control register 3 FCTL3 Read/write 012Ch 09658h with PUC

Interrupt Enable 1 IE1 Read/write 000h Reset with PUC

Flash Memory Registers

5-20 Flash Memory Controller

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved EEIEX† EEI† MERAS ERASE Reserved

rw−0 rw−0 r0 rw−0 rw−0 rw−0 rw−0 r0

† Not present on MSP430x20xx Devices

FRKEY/
FWKEY

Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bit 5 Reserved. Always read as 0.

EEIEX Bit 4 Enable Emergency Interrupt Exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.
0 Exit interrupt disabled.
1 Exit on interrupt enabled.

EEI Bits 3 Enable Erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced the erase
cycle is resumed. EEI is automatically reset when EMEX is set.
0 Interrupts during segment erase disabled.
1 Interrupts during segment erase enabled.

MERAS
ERASE

Bit 2
Bit 1

Mass erase and erase. These bits are used together to select the erase mode.
MERAS and ERASE are automatically reset when EMEX is set.

MERAS ERASE Erase Cycle

0 0 No erase

0 1 Erase individual segment only

1 0 Erase all main memory segments

1 1 Erase all main and information memory segments if LOCKA
= 0. Main segments only if LOCKA = 1.

Flash Memory Registers

5-21 Flash Memory Controller

Reserved Bit 0 Reserved. Always read as 0.

Flash Memory Registers

5-22 Flash Memory Controller

FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FSSELx FNx

rw−0 rw−1 rw-0 rw-0 rw-0 rw−0 rw-1 rw−0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

FSSELx Bits
7−6

Flash controller clock source select
00 ACLK
01 MCLK
10 SMCLK
11 SMCLK

FNx Bits
5-0

Flash controller clock divider. These six bits select the divider for the flash
controller clock. The divisor value is FNx + 1. For example, when FNx=00h,
the divisor is 1. When FNx=03Fh the divisor is 64.

Flash Memory Registers

5-23 Flash Memory Controller

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY

r(w)−0 r(w)−1 rw-0 rw-1 r-1 rw−0 rw-(0) r(w)−0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

FAIL Bit 7 Operation failure. This bit is set if the fFTG clock source fails, or a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.
0 No failure
1 Failure

LOCKA Bit 6 SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has
no effect.
0 Segment A unlocked and all information memory is erased during a

mass erase.
1 Segment A locked and all information memory is protected from erasure

during a mass erase.

EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block write mode if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.
0 Unlocked
1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write

ACCVIFG Bit 2 Access violation interrupt flag. ACCVIFG must be reset with software.
0 No interrupt pending
1 Interrupt pending

Flash Memory Registers

5-24 Flash Memory Controller

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not Busy
1 Busy

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

ACCVIE

rw−0

Bits
7-6,
4-0

These bits may be used by other modules. See device-specific datasheet.

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the
ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV.B or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

6-1

���������	

This chapter describes the operation of the digital I/O ports.

Topic Page

6.1 Digital I/O Introduction 6-2.

6.2 Digital I/O Operation 6-3.

6.3 Digital I/O Registers 6-7.

Chapter 6

6-2

6.1 Digital I/O Introduction

MSP430 devices have up to 6 digital I/O ports implemented, P1 - P6. Each port
has eight I/O pins. Every I/O pin is individually configurable for input or output
direction, and each I/O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

� Independently programmable individual I/Os

� Any combination of input or output

� Individually configurable P1 and P2 interrupts

� Independent input and output data registers

� Individually configurable pull-up or pull-down resistors

6-3

6.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the
digital I/O is discussed in the following sections.

6.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

6.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/O pin when the pin is configured as I/O function, output direction, and the
pull-up/down resistor is disabled.

Bit = 0: The output is low

Bit = 1: The output is high

If the pin’s pull−up/down resistor is enabled, the corresponding bit in the
PxOUT register selects pull-up or pull-down.

Bit = 0: The pin is pulled down

Bit = 1: The pin is pulled up

6.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other functions must be set as required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

6.2.4 Pull−Up/Down Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pull-up/down resistor
of the corresponding I/O pin. The corresponding bit in the PxOUT register
selects if the pin is pulled up or pulled down.

Bit = 0: Pull-up/down resistor disabled

Bit = 1: Pull-up/down resistor enabled

6-4

6.2.5 Function Select Registers PxSEL

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PxSEL bit is used
to select the pin function − I/O port or peripheral module function.

Bit = 0: I/O Function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

Setting PxSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific datasheet.

;Output ACLK on P2.0 on MSP430F21x1

BIS.B #01h,&P2SEL ; Select ACLK function for pin

BIS.B #01h,&P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx=1, the internal input signal follows the signal at the pin. However, if
the PxSELx=0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELx bit was reset.

6-5

6.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine, or is set after the RETI instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

6-6

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES, or P2IES can result in setting the corresponding interrupt
flags.

PxIESx PxINx PxIFGx
 0 → 1 0 May be set
 0 → 1 1 Unchanged
 1 → 0 0 Unchanged
 1 → 0 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled

Bit = 1: The interrupt is enabled

6.2.7 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left
unconnected on the PC board, to prevent a floating input and reduce power
consumption. The value of the PxOUT bit is don’t care, since the pin is
unconnected. Alternatively, the integrated pull-up/down resistor can be
enabled by setting the PxREN bit of the unused pin to prevent the floating
input. See chapter System Resets, Interrupts, and Operating Modes for
termination unused pins.

6-7

6.3 Digital I/O Registers

The digital I/O registers are listed in Table 6−1.

Table 6−1.Digital I/O Registers

Port Register Short Form Address Register Type Initial State

P1 Input P1IN 020h Read only −

Output P1OUT 021h Read/write Unchanged

Direction P1DIR 022h Read/write Reset with PUC

Interrupt Flag P1IFG 023h Read/write Reset with PUC

Interrupt Edge Select P1IES 024h Read/write Unchanged

Interrupt Enable P1IE 025h Read/write Reset with PUC

Port Select P1SEL 026h Read/write Reset with PUC

Resistor Enable P1REN 027h Read/write Reset with PUC

P2 Input P2IN 028h Read only −

Output P2OUT 029h Read/write Unchanged

Direction P2DIR 02Ah Read/write Reset with PUC

Interrupt Flag P2IFG 02Bh Read/write Reset with PUC

Interrupt Edge Select P2IES 02Ch Read/write Unchanged

Interrupt Enable P2IE 02Dh Read/write Reset with PUC

Port Select P2SEL 02Eh Read/write 0C0h with PUC

Resistor Enable P2REN 02Fh Read/write Reset with PUC

P3 Input P3IN 018h Read only −

Output P3OUT 019h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset with PUC

Port Select P3SEL 01Bh Read/write Reset with PUC

Resistor Enable P3REN 010h Read/write Reset with PUC

P4 Input P4IN 01Ch Read only −

Output P4OUT 01Dh Read/write Unchanged

Direction P4DIR 01Eh Read/write Reset with PUC

Port Select P4SEL 01Fh Read/write Reset with PUC

Resistor Enable P4REN 011h Read/write Reset with PUC

P5 Input P5IN 030h Read only −

Output P5OUT 031h Read/write Unchanged

Direction P5DIR 032h Read/write Reset with PUC

Port Select P5SEL 033h Read/write Reset with PUC

Resistor Enable P5REN 012h Read/write Reset with PUC

P6 Input P6IN 034h Read only −

Output P6OUT 035h Read/write Unchanged

Direction P6DIR 036h Read/write Reset with PUC

Port Select P6SEL 037h Read/write Reset with PUC

Resistor Enable P6REN 013h Read/write Reset with PUC

7-1Watchdog Timer+

�������� 	
��
�

The watchdog timer+ (WDT+) is a 16-bit timer that can be used as a watchdog
or as an interval timer. This chapter describes the WDT+ The WDT+ is
implemented in all MSP430x2xx devices.

Topic Page

7.1 Watchdog Timer+ Introduction 7-2.

7.2 Watchdog Timer+ Operation 7-4.

7.2 Watchdog Timer+ Registers 7-7.

Chapter 7

Watchdog Timer+ Introduction

7-2 Watchdog Timer+

7.1 Watchdog Timer+ Introduction

The primary function of the watchdog timer+ (WDT+) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer+ module include:

� Four software-selectable time intervals

� Watchdog mode

� Interval mode

� Access to WDT+ control register is password protected

� Control of RST/NMI pin function

� Selectable clock source

� Can be stopped to conserve power

� Clock fail-safe feature

The WDT+ block diagram is shown in Figure 7−1.

Note: Watchdog timer+ Powers Up Active

After a PUC, the WDT+ module is automatically configured in the watchdog
mode with an initial ~32-ms reset interval using the DCOCLK. The user must
setup or halt the WDT+ prior to the expiration of the initial reset interval.

Watchdog Timer+ Introduction

7-3Watchdog Timer+

Figure 7−1. Watchdog Timer+ Block Diagram

WDTQn
Y

1

2

3

4
Q6

Q9

Q13

Q15

16−bit
Counter

CLK

A
B

1

1

A EN

PUC

SMCLK

ACLK

Clear

Password
Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTNMI

WDTNMIES

WDTIS1

WDTSSEL

WDTIS0

WDTHOLD

EQU

EQU
Write Enable

 Low Byte
R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.
Flag

Pulse
Generator

SMCLK Active

MCLK Active

ACLK Active

16−bit

Fail-Safe
Logic

Clock
Request

Logic

MCLK

Watchdog Timer+ Operation

7-4 Watchdog Timer+

7.2 Watchdog Timer+ Operation

The WDT+ module can be configured as either a watchdog or interval timer
with the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte.

7.2.1 Watchdog timer+ Counter

The watchdog timer+ counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer+ control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

7.2.2 Watchdog Mode

After a PUC condition, the WDT+ module is configured in the watchdog mode
with an initial ~32-ms reset interval using the DCOCLK. The user must setup,
halt, or clear the WDT+ prior to the expiration of the initial reset interval or
another PUC will be generated. When the WDT+ is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT+
to its default condition and configures the RST/NMI pin to reset mode.

7.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog timer+

The WDT+ interval should be changed together with WDTCNTCL = 1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT+ should be halted before changing the clock source to avoid a
possible incorrect interval.

Watchdog Timer+ Operation

7-5Watchdog Timer+

7.2.4 Watchdog timer+ Interrupts

The WDT+ uses two bits in the SFRs for interrupt control.

� The WDT+ interrupt flag, WDTIFG, located in IFG1.0

� The WDT+ interrupt enable, WDTIE, located in IE1.0

When using the WDT+ in the watchdog mode, the WDTIFG flag sources a
reset vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer+ initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT+ in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT+ interval timer interrupt if the
WDTIE and the GIE bits are set. The interval timer interrupt vector is different
from the reset vector used in watchdog mode. In interval timer mode, the
WDTIFG flag is reset automatically when the interrupt is serviced, or can be
reset with software.

7.2.5 Watchdog timer+ Clock Fail−safe Operation

The WDT+ module provides a fail-safe clocking feature assuring the clock to
the WDT+ cannot be disabled while in watchdog mode. This means the
low-power modes may be affected by the choice for the WDT+ clock. For
example, if ACLK is the WDT+ clock source, LPM4 will not be available,
because the WDT+ will prevent ACLK from being disabled. Also, if ACLK or
SMCLK fail while sourcing the WDT+, the WDT+ clock source is automatically
switched to MCLK. In this case, if MCLK is sourced from a crystal, and the
crystal has failed, the fail-safe feature will activate the DCO and use it as the
source for MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe
feature for the clock source.

Watchdog Timer+ Operation

7-6 Watchdog Timer+

7.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT+ should be
configured. For example, the WDT+ should not be configured in watchdog
mode with SMCLK as its clock source if the user wants to use low-power mode
3 because the WDT+ will keep SMCLK enabled for its clock source, increasing
the current consumption of LPM3. When the watchdog timer+ is not required,
the WDTHOLD bit can be used to hold the WDTCNT, reducing power
consumption.

7.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog

MOV #WDTPW+WDTCNTCL,&WDTCTL

;

; Change watchdog timer+ interval

MOV #WDTPW+WDTCNTL+SSEL,&WDTCTL

;

; Stop the watchdog

MOV #WDTPW+WDTHOLD,&WDTCTL

;

; Change WDT+ to interval timer mode, clock/8192 interval

MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS0,&WDTCTL

Watchdog Timer+ Registers

7-7Watchdog Timer+

7.3 Watchdog Timer+ Registers

The WDT+ registers are listed in Table 7−1.

Table 7−1.Watchdog timer+ Registers

Register Short Form Register Type Address Initial State

Watchdog timer+ control register WDTCTL Read/write 0120h 06900h with PUC

SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUC†

† WDTIFG is reset with POR

Watchdog Timer+ Registers

7-8 Watchdog Timer+

WDTCTL, Watchdog timer+ Register

15 14 13 12 11 10 9 8

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx

rw−0 rw−0 rw−0 rw−0 r0(w) rw−0 rw−0 rw−0

WDTPW Bits
15-8

Watchdog timer+ password. Always read as 069h. Must be written as 05Ah,
or a PUC will be generated.

WDTHOLD Bit 7 Watchdog timer+ hold. This bit stops the watchdog timer+. Setting
WDTHOLD = 1 when the WDT+ is not in use conserves power.
0 Watchdog timer+ is not stopped
1 Watchdog timer+ is stopped

WDTNMIES Bit 6 Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the
NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge

WDTNMI Bit 5 Watchdog timer+ NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

WDTTMSEL Bit 4 Watchdog timer+ mode select
0 Watchdog mode
1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count
value to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h

WDTSSEL Bit 2 Watchdog timer+ clock source select
0 SMCLK
1 ACLK

WDTISx Bits
1-0

Watchdog timer+ interval select. These bits select the watchdog timer+
interval to set the WDTIFG flag and/or generate a PUC.
00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512
11 Watchdog clock source /64

Watchdog Timer+ Registers

7-9Watchdog Timer+

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

NMIIE WDTIE

rw−0

Bits
7-5

These bits may be used by other modules. See device-specific datasheet.

NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits
3-1

These bits may be used by other modules. See device-specific datasheet.

WDTIE Bit 0 Watchdog timer+ interrupt enable. This bit enables the WDTIFG interrupt for
interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Watchdog Timer+ Registers

7-10 Watchdog Timer+

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

NMIIFG WDTIFG

rw−(0)

Bits
7-5

These bits may be used by other modules. See device-specific datasheet.

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits
3-1

These bits may be used by other modules. See device-specific datasheet.

WDTIFG Bit 0 Watchdog timer+ interrupt flag. In watchdog mode, WDTIFG remains set until
reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or can be reset by software. Because other bits in IFG1
may be used for other modules, it is recommended to clear WDTIFG by using
BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

8-1Timer_A

�������

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_A. Timer_A3 (three capture/compare registers) is
implemented in all MSP430x2xx devices, except for MSP430x20xx devices.
Those devices implement Timer_A2 (two capture/compare registers).

Topic Page

8.1 Timer_A Introduction 8-2.

8.2 Timer_A Operation 8-4.

8.3 Timer_A Registers 8-19.

Chapter 8

Timer_A Introduction

8-2 Timer_A

8.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

� Asynchronous 16-bit timer/counter with four operating modes

� Selectable and configurable clock source

� Two or Three configurable capture/compare registers

� Configurable outputs with PWM capability

� Asynchronous input and output latching

� Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 8−1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.

Timer_A Introduction

8-3Timer_A

Figure 8−1. Timer_A Block Diagram

Comparator 2CCI

15 0

CCISx

OUTMODx

Capture
Mode

CMx

Sync

SCS

COVlogic

Output
Unit2 D Set Q

EQU0

OUT

OUT2 Signal

Reset

GND

VCC

CCI2A

CCI2B

EQU2

Divider
1/2/4/8

Count
Mode

16−bit Timer
TAR

RCACLK

SMCLK

TACLK

INCLK Set TAIFG

15 0

TASSELx MCxIDx

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

SCCI Y A
EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

CAP

1

0

1

0

CCR2

Set TACCR2
CCIFG

TACCR2

Timer_A Operation

8-4 Timer_A

8.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

8.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK
or INCLK. The clock source is selected with the TASSELx bits. The selected
clock source may be passed directly to the timer or divided by 2, 4, or 8, using
the IDx bits. The timer clock divider is reset when TACLR is set.

Timer_A Operation

8-5Timer_A

8.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:

� The timer counts when MCx > 0 and the clock source is active.

� When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCR0. The timer may then be restarted by writing a
nonzero value to TACCR0. In this scenario, the timer starts incrementing
in the up direction from zero.

8.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 8−1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 8−1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
TACCR0

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCR0 and back down to zero.

Timer_A Operation

8-6 Timer_A

Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts.
The timer repeatedly counts up to the value of compare register TACCR0,
which defines the period, as shown in Figure 8−2. The number of timer counts
in the period is TACCR0+1. When the timer value equals TACCR0 the timer
restarts counting from zero. If up mode is selected when the timer value is
greater than TACCR0, the timer immediately restarts counting from zero.

Figure 8−2. Up Mode

0h

0FFFFh

TACCR0

The TACCR0 CCIFG interrupt flag is set when the timer counts to the TACCR0
value. The TAIFG interrupt flag is set when the timer counts from TACCR0 to
zero. Figure 8−3 shows the flag set cycle.

Figure 8−3. Up Mode Flag Setting

CCR0−1 CCR0 0h

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

1h CCR0−1 CCR0 0h

Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, if the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

Timer_A Operation

8-7Timer_A

Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts
from zero as shown in Figure 8−4. The capture/compare register TACCR0
works the same way as the other capture/compare registers.

Figure 8−4. Continuous Mode

0h

0FFFFh

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero.
Figure 8−5 shows the flag set cycle.

Figure 8−5. Continuous Mode Flag Setting

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAIFG

1h FFFEh FFFFh 0h

Timer_A Operation

8-8 Timer_A

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRx register in the
interrupt service routine. Figure 8−6 shows two separate time intervals t0 and
t1 being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 8−6. Continuous Mode Time Intervals

0FFFFh

TACCR0a

TACCR0b TACCR0c TACCR0d

t1

t0 t0

TACCR1a

TACCR1b TACCR1c

TACCR1d

t1 t1

t0

Time intervals can be produced with other modes as well, where TACCR0 is
used as the period register. Their handling is more complex since the sum of
the old TACCRx data and the new period can be higher than the TACCR0
value. When the previous TACCRx value plus tx is greater than the TACCR0
data, the TACCR0 value must be subtracted to obtain the correct time interval.

Timer_A Operation

8-9Timer_A

Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCR0 and back down to zero,
as shown in Figure 8−7. The period is twice the value in TACCR0.

Figure 8−7. Up/Down Mode

0h

TACCR0

0FFFFh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the timer clock divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCR0 CCIFG interrupt flag is set when the timer counts from TACCR0−1
to TACCR0, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 8−8 shows the flag set cycle.

Figure 8−8. Up/Down Mode Flag Setting

CCR0−1 CCR0 CCR0−1

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

CCR0−2 1h 0h

Up/Down

Timer_A Operation

8-10 Timer_A

Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The new period
takes affect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 8−9 the tdead is:

tdead = ttimer × (TACCR1 − TACCR2)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TACCRx Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 8−9. Output Unit in Up/Down Mode

0h

0FFFFh

TAIFG

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TACCR0

TACCR1

EQU1
TAIFG Interrupt EventsEQU1

EQU0
EQU1 EQU1

EQU0

TACCR2

EQU2 EQU2EQU2 EQU2

Dead Time

Timer_A Operation

8-11Timer_A

8.2.4 Capture/Compare Blocks

Two or Three identical capture/compare blocks, TACCRx, are present in
Timer_A. Any of the blocks may be used to capture the timer data, or to
generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

� The timer value is copied into the TACCRx register

� The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 8−10.

Figure 8−10. Capture Signal (SCS=1)

n−2 n−1

Timer Clock

Timer

Set TACCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 8−11. COV must be
reset with software.

Timer_A Operation

8-12 Timer_A

Figure 8−11. Capture Cycle

Second
Capture
Taken

COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV

in Register TACCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the
capture signal between VCC and GND, initiating a capture each time CCIS0
changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx

XOR #CCIS0,&TACCTLx ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRx:

� Interrupt flag CCIFG is set

� Internal signal EQUx = 1

� EQUx affects the output according to the output mode

� The input signal CCI is latched into SCCI

Timer_A Operation

8-13Timer_A

8.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQU0 and EQUx signals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 8−2. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQU0.

Table 8−2.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TACCRx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

010 Toggle/Reset The output is toggled when the timer
counts to the TACCRx value. It is reset
when the timer counts to the TACCR0
value.

011 Set/Reset The output is set when the timer counts
to the TACCRx value. It is reset when the
timer counts to the TACCR0 value.

100 Toggle The output is toggled when the timer
counts to the TACCRx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TACCRx value. It remains reset
until another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TACCRx value. It is set
when the timer counts to the TACCR0
value.

111 Reset/Set The output is reset when the timer counts
to the TACCRx value. It is set when the
timer counts to the TACCR0 value.

Timer_A Operation

8-14 Timer_A

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value,
and rolls from TACCR0 to zero, depending on the output mode. An example
is shown in Figure 8−12 using TACCR0 and TACCR1.

Figure 8−12. Output Example—Timer in Up Mode

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG

Interrupt Events

Timer_A Operation

8-15Timer_A

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCR0 values, depending on the output mode. An example is shown in
Figure 8−13 using TACCR0 and TACCR1.

Figure 8−13. Output Example—Timer in Continuous Mode

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_A Operation

8-16 Timer_A

Output Example—Timer in Up/Down Mode

The OUTx signal changes when the timer equals TACCRx in either count
direction and when the timer equals TACCR0, depending on the output mode.
An example is shown in Figure 8−14 using TACCR0 and TACCR2.

Figure 8−14. Output Example—Timer in Up/Down Mode

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR2

EQU2
TAIFG

Interrupt Events
EQU2

EQU0
EQU2 EQU2

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7

BIC #OUTMODx,&TACCTLx ; Clear unwanted bits

Timer_A Operation

8-17Timer_A

8.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

� TACCR0 interrupt vector for TACCR0 CCIFG

� TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRx register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TACCR0 Interrupt

The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 8−15. The TACCR0 CCIFG
flag is automatically reset when the TACCR0 interrupt request is serviced.

Figure 8−15. Capture/Compare TACCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.

Timer_A Operation

8-18 Timer_A

TAIV Software Example

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

� Capture/compare block TACCR0 11 cycles
� Capture/compare blocks TACCR1, TACCR2 16 cycles
� Timer overflow TAIFG 14 cycles

; Interrupt handler for TACCR0 CCIFG. Cycles

CCIFG_0_HND

; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG.

TA_HND ... ; Interrupt latency 6

ADD &TAIV,PC ; Add offset to Jump table �3

RETI ; Vector 0: No interrupt 5

JMP CCIFG_1_HND ; Vector 2: TACCR1 2

JMP CCIFG_2_HND ; Vector 4: TACCR2 2

RETI ; Vector 6: Reserved 5

RETI ; Vector 8: Reserved 5

TAIFG_HND ; Vector 10: TAIFG Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: TACCR2

... ; Task starts here

RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TACCR1

... ; Task starts here

RETI ; Back to main program 5

Timer_A Registers

8-19Timer_A

8.3 Timer_A Registers

The Timer_A registers are listed in Table 8−3:
† Not present on MSP430x20xx Devices

Table 8−3.Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR

Timer_A counter TAR Read/write 0170h Reset with POR

Timer_A capture/compare control 0 TACCTL0 Read/write 0162h Reset with POR

Timer_A capture/compare 0 TACCR0 Read/write 0172h Reset with POR

Timer_A capture/compare control 1 TACCTL1 Read/write 0164h Reset with POR

Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR

Timer_A capture/compare control 2 TACCTL2† Read/write 0166h Reset with POR

Timer_A capture/compare 2 TACCR2† Read/write 0176h Reset with POR

Timer_A interrupt vector TAIV Read only 012Eh Reset with POR

† Not present on MSP430x20xx Devices

Timer_A Registers

8-20 Timer_A

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8

Unused TASSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) w−(0) rw−(0) rw−(0)

Unused Bits
15-10

Unused

TASSELx Bits
9-8

Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 INCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_A is not in use conserves
power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCR0
10 Continuous mode: the timer counts up to 0FFFFh
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_A Registers

8-21Timer_A

TAR, Timer_A Register

15 14 13 12 11 10 9 8

TARx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

TARx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

TARx Bits
15-0

Timer_A register. The TAR register is the count of Timer_A.

Timer_A Registers

8-22 Timer_A

TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r r0 rw−(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw−(0) rw−(0) rw−(0) rw−(0) r rw−(0) rw−(0) rw−(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TACCRx input signal.
See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0 because EQUx
= EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

Timer_A Registers

8-23Timer_A

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIVx 0

r0 r0 r0 r0 r−(0) r−(0) r−(0) r0

TAIVx Bits
15-0

Timer_A Interrupt Vector value

TAIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending −

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2† TACCR2 CCIFG

06h Reserved −

08h Reserved −

0Ah Timer overflow TAIFG

0Ch Reserved −

0Eh Reserved − Lowest
† Not Implemented in MSP430x20xx, devices

9-1Timer_B

�������

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_B. Timer_B3 (three capture/compare registers) is
implemented in MSP430x22x4 devices.

Topic Page

9.1 Timer_B Introduction 9-2.

9.2 Timer_B Operation 9-4.

9.3 Timer_B Registers 9-20.

Chapter 9

Timer_B Introduction

9-2 Timer_B

9.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

� Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

� Selectable and configurable clock source

� Three or seven configurable capture/compare registers

� Configurable outputs with PWM capability

� Double-buffered compare latches with synchronized loading

� Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 9−1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

9.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

� The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

� Timer_B TBCCRx registers are double-buffered and can be grouped.

� All Timer_B outputs can be put into a high-impedance state.

� The SCCI bit function is not implemented in Timer_B.

Timer_B Introduction

9-3Timer_B

Figure 9−1. Timer_B Block Diagram

CCR6

Comparator 6

CCI

15 0

OUTMODx

Capture
Mode

CMx

Sync

COVlogic

Output
Unit6 D Set Q

EQU0

OUT

OUT6 Signal

Reset

POR

EQU6

Divider
1/2/4/8

Count
Mode

16−bit Timer
TBR

Set TBIFG

15 0
MCxIDx

Clear

TBCLR

Timer Clock

CCR0

EQU0

Timer Clock

Timer Clock

VCC

TBR=0

UP/DOWN
EQU0

CLLDx

CNTLx

Load

CCR1

CCR2

CCR3

CCR4

CCR5

Timer Block

TBCCR6

RC
10 12 168

TBCLGRPx

CCR5

CCR4

CCR1

Group
Load Logic

Group
Load Logic

TBSSELx

00

01

10

11

GND

VCC

CCI6A

CCI6B

00

01

10

11

CCISx

00

01

10

11

00

01

10

11
CAP

1

0

SCS

1

0

Set TBCCR6
CCIFG

Compare Latch TBCL6

ACLK

SMCLK

TBCLK

Timer_B Operation

9-4 Timer_B

9.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

9.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBR(max), for the selectable lengths
is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK
or INCLK. The clock source is selected with the TBSSELx bits. The selected
clock source may be passed directly to the timer or divided by 2,4, or 8, using
the IDx bits. The clock divider is reset when TBCLR is set.

Timer_B Operation

9-5Timer_B

9.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

� The timer counts when MCx > 0 and the clock source is active.

� When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCL0. The timer may then be restarted by loading a
nonzero value to TBCL0. In this scenario, the timer starts incrementing in
the up direction from zero.

9.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 9−1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 9−1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
compare register TBCL0.

10 Continuous The timer repeatedly counts from zero to the value
selected by the TBCNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCL0 and then back down to zero.

Timer_B Operation

9-6 Timer_B

Up Mode

The up mode is used if the timer period must be different from TBR(max) counts.
The timer repeatedly counts up to the value of compare latch TBCL0, which
defines the period, as shown in Figure 9−2. The number of timer counts in the
period is TBCL0+1. When the timer value equals TBCL0 the timer restarts
counting from zero. If up mode is selected when the timer value is greater than
TBCL0, the timer immediately restarts counting from zero.

Figure 9−2. Up Mode

0h

TBR(max)

TBCL0

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0
value. The TBIFG interrupt flag is set when the timer counts from TBCL0 to
zero. Figure 8−3 shows the flag set cycle.

Figure 9−3. Up Mode Flag Setting

TBCL0−1 TBCL0 0h

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

1h TBCL0−1 TBCL0 0h

Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load
mode is immediate, if the new period is greater than or equal to the old period,
or greater than the current count value, the timer counts up to the new period.
If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

Timer_B Operation

9-7Timer_B

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
from zero as shown in Figure 9−4. The compare latch TBCL0 works the same
way as the other capture/compare registers.

Figure 9−4. Continuous Mode

0h

TBR(max)

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero.
Figure 9−5 shows the flag set cycle.

Figure 9−5. Continuous Mode Flag Setting

TBR (max)−1 TBR (max) 0h

Timer Clock

Timer

Set TBIFG

1h TBR (max) 0hTBR (max)−1

Timer_B Operation

9-8 Timer_B

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 9−6 shows two separate time intervals t0 and t1 being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 9−6. Continuous Mode Time Intervals

0h

EQU0 Interrupt

TBCL0a

TBCL0b TBCL0c TBCL0d

t1

t0 t0

TBCL1a

TBCL1b TBCL1c

TBCL1d

t1 t1

t0

EQU1 Interrupt

TBR(max)

Time intervals can be produced with other modes as well, where TBCL0 is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCL0 value.
When the sum of the previous TBCLx value plus tx is greater than the TBCL0
data, the old TBCL0 value must be subtracted to obtain the correct time
interval.

Timer_B Operation

9-9Timer_B

Up/Down Mode

The up/down mode is used if the timer period must be different from TBR(max)
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCL0, and back down to zero, as
shown in Figure 9−7. The period is twice the value in TBCL0.

Note: TBCL0 > TBR(max)

If TBCL0 > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR(max) to zero.

Figure 9−7. Up/Down Mode

0h

TBCL0

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the clock divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCR0 CCIFG interrupt flag is set when the timer counts from TBCL0−1 to
TBCL0, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 9−8 shows the flag set cycle.

Figure 9−8. Up/Down Mode Flag Setting

TBCL0−1 TBCL0 TBCL0−1

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

TBCL0−2 1h 0h 1h

Up/Down

Timer_B Operation

9-10 Timer_B

Changing the Value of Period Register TBCL0

When changing TBCL0 while the timer is running, and counting in the down
direction, and when the TBCL0 load mode is immediate, the timer continues
its descent until it reaches zero. The new period takes effect after the counter
counts down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCL0, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCL0 is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 9−9 the tdead is:

tdead = ttimer × (TBCL1 − TBCL3)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 9−9. Output Unit in Up/Down Mode

TBIFG

0h

TBR(max)

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TBCL0

TBCL1

EQU1
TBIFG Interrupt EventsEQU1

EQU0
EQU1 EQU1

EQU0

TBCL3

EQU3 EQU3EQU3 EQU3

Dead Time

Timer_B Operation

9-11Timer_B

9.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRx, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

� The timer value is copied into the TBCCRx register

� The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 9−10.

Figure 9−10. Capture Signal (SCS=1)

n−2 n−1

Timer Clock

Timer

Set TBCCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 9−11. COV must be
reset with software.

Timer_B Operation

9-12 Timer_B

Figure 9−11. Capture Cycle

Second
Capture
Taken

COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV

in Register TBCCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCIS0 to switch
the capture signal between VCC and GND, initiating a capture each time
CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx

XOR #CCIS0,&TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

� Interrupt flag CCIFG is set

� Internal signal EQUx = 1

� EQUx affects the output according to the output mode

Timer_B Operation

9-13Timer_B

Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 9−2.

Table 9−2.TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRx is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCL0 value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 9−3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediately when their corresponding TBCCRx is written - no
compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRx registers of the group must be updated, even when new
TBCCRx data = old TBCCRx data. Second, the load event must occur.

Table 9−3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2
TBCL3+TBCL4
TBCL5+TBCL6

TBCCR1
TBCCR3
TBCCR5

10 TBCL1+TBCL2+TBCL3
TBCL4+TBCL5+TBCL6

TBCCR1
TBCCR4

11 TBCL0+TBCL1+TBCL2+
TBCL3+TBCL4+TBCL5+TBCL6

TBCCR1

Timer_B Operation

9-14 Timer_B

9.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQU0 and EQUx signals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 9−4. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQU0.

Table 9−4.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCL0
value.

011 Set/Reset The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCL0 value.

100 Toggle The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCL0 value.

111 Reset/Set The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCL0 value.

Timer_B Operation

9-15Timer_B

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCL0 to zero, depending on the output mode. An example is shown
in Figure 9−12 using TBCL0 and TBCL1.

Figure 9−12. Output Example—Timer in Up Mode

0h

TBR(max)

EQU0
TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 EQU0
TBIFG

EQU1 EQU0
TBIFG

Interrupt Events

Timer_B Operation

9-16 Timer_B

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0
values, depending on the output mode, An example is shown in Figure 9−13
using TBCL0 and TBCL1.

Figure 9−13. Output Example—Timer in Continuous Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_B Operation

9-17Timer_B

Output Example − Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCL0, depending on the output mode.
An example is shown in Figure 9−14 using TBCL0 and TBCL3.

Figure 9−14. Output Example—Timer in Up/Down Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL3

EQU3
TBIFG

Interrupt Events
EQU3

EQU0
EQU3 EQU3

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7

BIC #OUTMODx,&TBCCTLx ; Clear unwanted bits

Timer_B Operation

9-18 Timer_B

9.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

� TBCCR0 interrupt vector for TBCCR0 CCIFG

� TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRx register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCR0 Interrupt Vector

The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 9−15. The TBCCR0 CCIFG
flag is automatically reset when the TBCCR0 interrupt request is serviced.

Figure 9−15. Capture/Compare TBCCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.

Timer_B Operation

9-19Timer_B

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

� Capture/compare block CCR0 11 cycles
� Capture/compare blocks CCR1 to CCR6 16 cycles
� Timer overflow TBIFG 14 cycles

The following software example shows the recommended use of TBIV for
Timer_B3.

; Interrupt handler for TBCCR0 CCIFG. Cycles

CCIFG_0_HND

... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.

TB_HND ... ; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table �3

RETI ; Vector 0: No interrupt 5

JMP CCIFG_1_HND ; Vector 2: Module 1 2

JMP CCIFG_2_HND ; Vector 4: Module 2 2

RETI ; Vector 6

RETI ; Vector 8

RETI ; Vector 10

RETI ; Vector 12

TBIFG_HND ; Vector 14: TIMOV Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: Module 2

... ; Task starts here

RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other

; interrupt is pending: 5 cycles have to be spent, but

; 9 cycles may be saved if another interrupt is pending

CCIFG_1_HND ; Vector 6: Module 3

... ; Task starts here

JMP TB_HND ; Look for pending ints 2

Timer_B Registers

9-20 Timer_B

9.3 Timer_B Registers

The Timer_B registers are listed in Table 9−5:

Table 9−5.Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR

Timer_B counter TBR Read/write 0190h Reset with POR

Timer_B capture/compare control 0 TBCCTL0 Read/write 0182h Reset with POR

Timer_B capture/compare 0 TBCCR0 Read/write 0192h Reset with POR

Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR

Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR

Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR

Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR

Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR

Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR

Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR

Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR

Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR

Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR

Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR

Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR

Timer_B Interrupt Vector TBIV Read only 011Eh Reset with POR

Timer_B Registers

9-21Timer_B

Timer_B Control Register TBCTL

15 14 13 12 11 10 9 8

Unused TBCLGRPx CNTLx Unused TBSSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TBCLR TBIE TBIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) w−(0) rw−(0) rw−(0)

Unused Bit 15 Unused

TBCLGRP Bit
14-13

TBCLx group
00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)

TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)
TBCL0 independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)

CNTLx Bits
12-11

Counter Length
00 16-bit, TBR(max) = 0FFFFh
01 12-bit, TBR(max) = 0FFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = 0FFh

Unused Bit 10 Unused

TBSSELx Bits
9-8

Timer_B clock source select.
00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_B is not in use conserves
power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TBCL0
10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCL0 and down to 0000h

Timer_B Registers

9-22 Timer_B

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the clock divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 11 10 9 8

TBRx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

TBRx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

TBRx Bits
15-0

Timer_B register. The TBR register is the count of Timer_B.

Timer_B Registers

9-23Timer_B

TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS CLLDx CAP

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0) rw−(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw−(0) rw−(0) rw−(0) rw−(0) r rw−(0) rw−(0) rw−(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TBCCRx input signal.
See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

CLLDx Bit
10-9

Compare latch load. These bits select the compare latch load event.
00 TBCLx loads on write to TBCCRx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)

TBCLx loads when TBR counts to TBCL0 or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TBCL0 because EQUx
= EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

Timer_B Registers

9-24 Timer_B

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_B Registers

9-25Timer_B

TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0

r0 r0 r0 r0 r−(0) r−(0) r−(0) r0

TBIVx Bits
15-0

Timer_B interrupt vector value

TBIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending −

02h Capture/compare 1 TBCCR1 CCIFG Highest

04h Capture/compare 2 TBCCR2 CCIFG

06h Capture/compare 3† TBCCR3 CCIFG

08h Capture/compare 4† TBCCR4 CCIFG

0Ah Capture/compare 5† TBCCR5 CCIFG

0Ch Capture/compare 6† TBCCR6 CCIFG

0Eh Timer overflow TBIFG Lowest
† Not available on all devices

10-1

��������	
����	 �����
���

The Universal Serial Interface (USI) module provides SPI and I2C serial
communication with one hardware module. This chapter discusses both
modes. The USI module is implemented in the MSP430x20xx devices.

Topic Page

10.1 USI Introduction 10-2.

10.2 USI Operation 10-5.

10.3 USI Registers 10-13.

Chapter 10

10-2

10.1 USI Introduction

The USI module provides the basic functionality to support synchronous serial
communication. In its simplest form, it is an 8- or 16-bit shift register that can
be used to output data streams, or when combined with minimal software, can
implement serial communication. In addition, the USI includes built-in
hardware functionality to ease the implementation of SPI and I2C
communication. The USI module also includes interrupts to further reduce the
necessary software overhead for serial communication and to maintain the
ultralow-power capabilities of the MSP430.

The USI module features include:

� Three-wire SPI mode support

� I2C mode support

� Variable data length

� Slave operation in LPM4 − no internal clock required

� Selectable MSB or LSB data order

� START and STOP detection for I2C mode with automatic SCL control

� Arbitration lost detection in master mode

� Programmable clock generation

� Selectable clock polarity and phase control

Figure 10−1 shows the USI module in SPI mode. Figure 10−2 shows the USI
module in I2C mode.

10-3

Figure 10−1. USI Block Diagram: SPI Mode

8/16 Bit Shift Register

USIGE USIOE

SDI

SCLK

Set USIIFG

0

1

USICKPL

USICNTx

Shift Clock

USICKPH

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

USISWCLK

TA0

100

101

110

111

Clock Divider
/1/2/4/8... /128

USIDIVx

0

1 USICLK

HOLD

USIIFG

USIMST

SDO

USI16B

D

G

Q

EN

ENUSISWRST

USILSB

USIPE6

USIPE7

USIPE5

USISR

Bit Counter

USIIFGCC

USII2C = 0

10-4

Figure 10−2. USI Block Diagram: I2C Mode

8−Bit Shift Register

USISRL

MSB LSB

USIGE

D

G

Q

SDA

D Q
Set USIAL,
Clear USIOE

SCL

USIIFG

USIMST

START
Detect

Set USISTTIFG

Shift Clock

0

1

Set USIIFG

USICNTx

USICKPL
USICKPH

USIOE

STOP
Detect

Set USISTP

USISTTIFG

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

SWCLK

TA0

100

101

110

111

Clock Divider
/1/2/4/8... /128

USIDIVx

0

1

USICLK

HOLD

SCL Hold

EN

ENUSISWRST

USISCLREL

USIPE7

USIPE6

Bit Counter

USIIFGCC

USII2C = 1
USICKPL = 1
USICKPH = 0
USILSB = 0
USI16B = 0

10-5

10.2 USI Operation

The USI module is a shift register and bit counter that includes logic to support
SPI and I2C communication. The USI shift register, USISR, is directly
accessible by software and contains the data to be transmitted or the data that
has been received.

The bit counter counts the number of sampled bits and sets the USI interrupt
flag USIIFG when the USICNTx value becomes zero - either by decrementing
or by directly writing zero to the USICNTx bits. Writing USICNTx with a value
> 0 automatically clears USIIFG when USIIFGCC = 0, otherwise USIIFG is not
affected. The USICNTx bits stop decrementing when they become 0. They will
not underflow to 0FFh.

Both the counter and the shift register are driven by the same shift clock. On
a rising shift clock edge, USICNTx decrements and USISR samples the next
bit input. The latch connected to the shift register’s output delays the change
of the output to the falling edge of shift clock. It can be made transparent by
setting the USIGE bit. This setting will immediately output the MSB or LSB of
USISR to the SDO pin, depending on the USILSB bit.

10.2.1 USI Initialization

While the USI software reset bit, USISWRST, is set, the flags USIIFG,
USISTTIFG, USISTP, and USIAL will be held in their reset state. USISR and
USICNTx are not clocked and their contents are not affected. In I2C mode, the
SCL line is also released to the idle state by the USI hardware.

To activate USI port functionality the corresponding USIPEx bits in the USI
control register must be set. This will select the USI function for the pin and
maintains the PxIN and PxIFG functions for the pin as well. With this feature,
the port input levels can be read via the PxIN register by software and the
incoming data stream can generate port interrupts on data transitions. This is
useful, for example, to generate a port interrupt on a START edge.

10-6

10.2.2 USI Clock Generation

The USI clock generator contains a clock selection multiplexer, a divider, and
the ability to select the clock polarity as shown in the block diagrams
Figure 11−1 and Figure 10−2.

The clock source can be selected from the internal clocks ACLK or SMCLK,
from an external clock SCLK, as well as from the capture/compare outputs of
Timer_A. In addition, it is possible to clock the module by software using the
USISWCLK bit when USISSELx = 100.

The USIDIVx bits can be used to divide the selected clock by a power of 2 up
to 128. The generated clock, USICLK, is stopped when USIIFG = 1 or when
the module operates in slave mode.

The USICKPL bit is used to select the polarity of USICLK. When USICKPL =
0, the inactive level of USICLK is low. When USICKPL = 1 the inactive level
of USICLK is high.

10.2.3 SPI Mode

The USI module is configured in SPI mode when USII2C = 0. Control bit
USICKPL selects the inactive level of the SPI clock while USICKPH selects the
clock edge on which SDO is updated and SDI is sampled. Figure 10−3 shows
the clock/data relationship for an 8-bit, MSB-first transfer. USIPE5, USIPE6,
and USIPE7 must be set to enable the SCLK, SDO, and SDI port functions.

Figure 10−3. SPI Timing

USI
CKPH

USI
CKPL

USICNTx

SCLK

SCLK

SCLK

SCLK

SDO/SDI

SDO/SDI

USIIFG

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

8 7 6 5 4 3 2 1

LSB

LSB

00

Load USICNTx

10-7

SPI Master Mode

The USI module is configured as SPI master by setting the master bit USIMST
and clearing the I2C bit USII2C. Since the master provides the clock to the
slave(s) an appropriate clock source needs to be selected and SCLK
configured as output. When USIPE5 = 1, SCLK is automatically configured as
an output.

When USIIFG = 0 and USICNTx > 0, clock generation is enabled and the
master will begin clocking in/out data using USISR.

Received data must be read from the shift register before new data is written
into it for transmission. In a typical application, the USI software will read
received data from USISR, write new data to be transmitted to USISR, and
enable the module for the next transfer by writing the number of bits to be
transferred to USICNTx.

SPI Slave Mode

The USI module is configured as SPI slave by clearing the USIMST and the
USII2C bits. In this mode, when USIPE5 = 1 SCLK is automatically configured
as an input and the USI receives the clock externally from the master.

If the USI is to transmit data, the shift register must be loaded with the data
before the master provides the first clock edge. The output must be enabled
by setting USIOE. When USICKPH = 1, the MSB will be visible on SDO
immediately after loading the shift register.

The SDO pin can be disabled by clearing the USIOE bit. This is useful if the
slave is not addressed in an environment with multiple slaves on the bus.

Once all bits are received, the data must be read from USISR and new data
loaded into USISR before the next clock edge from the master. In a typical
application, after receiving data, the USI software will read the USISR register,
write new data to USISR to be transmitted, and enable the USI module for the
next transfer by writing the number of bits to be transferred to USICNTx.

10-8

USISR Operation

The 16-bit USISR is made up of two 8-bit registers, USISRL and USISRH.
Control bit USI16B selects the number of bits of USISR that are used for data
transmit and receive. When USI16B = 0, only the lower 8 bits, USISRL, are
used.

To transfer < 8 bits, the data must be loaded into USISRL such that unused bits
are not shifted out. The data must be MSB- or LSB-aligned depending on
USILSB. Figure 10−4 shows an example of 7-bit data handling.

Figure 10−4. Data adjustments for 7-bit SPI Data

Transmit data in memory

USISRL

Received data in memory

Transmit data in memory

USISRL

Received data in memory

7-bit SPI Mode, MSB first 7-bit SPI Mode, LSB first

USISRL USISRL

TX TX

RXRX

Shift with software Move

Move Shift with software

7-bit Data 7-bit Data

7-bit Data7-bit Data

When USI16B = 1, all 16 bits are used for data handling. When using USISR
to access both USISRL and USISRH, the data needs to be properly adjusted
when < 16 bits are used in the same manner as shown in Figure 10−4.

SPI Interrupts

There is one interrupt vector associated with the USI module, and one interrupt
flag, USIIFG, relevant for SPI operation. When USIIE and the GIE bit are set,
the interrupt flag will generate an interrupt request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTx bits. USIIFG is cleared by writing a value > 0 to the
USICNTx bits when USIIFGCC = 0, or directly by software.

10-9

10.2.4 I2C Mode

The USI module is configured in I2C mode when USII2C =1, USICKPL = 1, and
USICKPH = 0. For I2C data compatibility, USILSB and USI16B must be
cleared. USIPE6 and USIPE7 must be set to enable the SCL and SDA port
functions.

I2C Master Mode

To configure the USI module as an I2C master the USIMST bit must be set. In
master mode, clocks are generated by the USI module and output to the SCL
line while USIIFG = 0. When USIIFG = 1, the SCL will stop at the idle, or high,
level. Multi-master operation is supported as described in the Arbitration
section.

The master supports slaves that are holding the SCL line low only when
USIDIVx > 0. When USIDIVx is set to /1 clock division (USIDIVx = 0),
connected slaves must not hold the SCL line low during data transmission.
Otherwise the communication may fail.

I2C Slave Mode

To configure the USI module as an I2C slave the USIMST bit must be cleared.
In slave mode, SCL is held low if USIIFG = 1, USISTTIFG = 1 or if
USICNTx = 0. USISTTIFG must be cleared by software after the slave is setup
and ready to receive the slave address from a master.

I2C Transmitter

In transmitter mode, data is first loaded into USISRL. The output is enabled
by setting USIOE and the transmission is started by writing 8 into USICNTx.
This clears USIIFG and SCL is generated in master mode or released from
being held low in slave mode. After the transmission of all 8 bits, USIIFG is set,
and the clock signal on SCL is stopped in master mode or held low at the next
low phase in slave mode.

To receive the I2C acknowledgement bit, the USIOE bit is cleared with software
and USICNTx is loaded with 1. This clears USIIFG and one bit is received into
USISRL. When USIIFG becomes set again, the LSB of USISRL is the received
acknowledge bit and can be tested in software.

; Receive ACK/NACK

BIC.B #USIOE,&USICTL0 ; SDA input

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

BIT.B #01h,&USISRL ; Test received ACK bit

JNZ HANDLE_NACK ; Handle if NACK

...Else, handle ACK

10-10

I2C Receiver

In I2C receiver mode the output must be disabled by clearing USIOE and the
USI module is prepared for reception by writing 8 into USICNTx. This clears
USIIFG and SCL is generated in master mode or released from being held low
in slave mode. The USIIFG bit will be set after 8 clocks. This stops the clock
signal on SCL in master mode or holds SCL low at the next low phase in slave
mode.

To transmit an acknowledge or no-acknowledge bit, the MSB of the shift
register is loaded with 0 or 1, the USIOE bit is set with software to enable the
output, and 1 is written to the USICNTx bits. As soon as the MSB bit is shifted
out, USIIFG will be become set and the module can be prepared for the
reception of the next I2C data byte.

; Generate ACK

BIS.B #USIOE,&USICTL0 ; SDA output

MOV.B #00h,&USISRL ; MSB = 0

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

...continue...

; Generate NACK

BIS.B #USIOE,&USICTL0 ; SDA output

MOV.B #0FFh,&USISRL ; MSB = 1

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

...continue...

START Condition

A START condition is a high-to-low transition on SDA while SCL is high. The
START condition can be generated by setting the MSB of the shift register to
0. Setting the USIGE and USIOE bits makes the output latch transparent and
the MSB of the shift register is immediately presented to SDA and pulls the line
low. Clearing USIGE resumes the clocked-latch function and holds the 0 on
SDA until data is shifted out with SCL.

; Generate START

MOV.B #000h,&USISRL ; MSB = 0

BIS.B #USIGE+USIOE,&USICTL0 ; Latch/SDA output enabled

BIC.B #USIGE,&USICTL0 ; Latch disabled

...continue...

10-11

STOP Condition

A STOP condition is a low-to-high transition on SDA while SCL is high. To finish
the acknowledgment bit and pull SDA low to prepare the STOP condition
generation requires clearing the MSB in the shift register and loading 1 into
USICNTx. This will generate a low pulse on SCL and during the low phase
SDA is pulled low. SCL stops in the idle, or high, state since the module is in
master mode. To generate the low-to-high transition, the MSB is set in the shift
register and USICNTx is loaded with 1. Setting the USIGE and USIOE bits
makes the output latch transparent and the MSB of USISRL releases SDA to
the idle state. Clearing USIGE stores the MSB in the output latch and the
output is disabled by clearing USIOE. SDA remains high until a START
condition is generated because of the external pull-up..

; Generate STOP

BIS.B #USIOE,&USICTL0 ; SDA=output

MOV.B #000H,&USISRL ; MSB = 0

MOV.B #001H,&USICNT ; USICNT = 1 for one clock

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG ;

MOV.B #0FFH,&USISRL ; USISRL = 1 to drive SDA high

BIS.B #USIGE,&USICTL0 ; Transparent latch enabled

BIC.B #USIGE+USIOE,&USICTL; Latch/SDA output disabled

...continue...

Releasing SCL

Setting the USISCLREL bit will release SCL if it is being held low by the USI
module without requiring USIIFG to be cleared. The USISCLREL bit will be
cleared automatically if a START condition is received and the SCL line will be
held low on the next clock.

In slave operation this bit should be used to prevent SCL from being held low
when the slave has detected that it was not addressed by the master. On the
next START condition USISCLREL will be cleared and the USISTTIFG will be
set.

10-12

Arbitration

The USI module can detect a lost arbitration condition in multi-master I2C
systems. The I2C arbitration procedure uses the data presented on SDA by
the competing transmitters. The first master transmitter that generates a logic
high loses arbitration to the opposing master generating a logic low. The loss
of arbitration is detected in the USI module by comparing the value presented
to the bus and the value read from the bus. If the values are not equal
arbitration is lost and the arbitration lost flag, USIAL, is set. This also clears the
output enable bit USIOE and the USI module no longer drives the bus. In this
case, user software must check the USIAL flag together with USIIFG and
configure the USI to slave receiver when arbitration is lost. The USIAL flag
must be cleared by software.

To prevent other faster masters from generating clocks during the arbitration
procedure SCL is held low if another master on the bus drives SCL low and
USIIFG or USISTTIFG is set, or if USICNTx = 0.

I2C Interrupts

There is one interrupt vector associated with the USI module with two interrupt
flags relevant for I2C operation, USIIFG and USISTTIFG. Each interrupt flag
has its own interrupt enable bit, USIIE and USISTTIE. When an interrupt is
enabled, and the GIE bit is set, a set interrupt flag will generate an interrupt
request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTx bits. USIIFG is cleared by writing a value > 0 to the
USICNTx bits when USIIFGCC = 0, or directly by software.

USISTTIFG is set when a START condition is detected. The USISTTIFG flag
must be cleared by software.

The reception of a STOP condition is indicated with the USISTP flag but there
is no interrupt function associated with the USISTP flag. USISTP is cleared by
writing a value > 0 to the USICNTx bits when USIIFGCC = 0 or directly by
software.

10-13

10.3 USI Registers

The USI registers are listed in Table 10−1:

Table 10−1.USI Registers

Register Short Form Register Type Address Initial State

USI control register 0 USICTL0 Read/write 078h 01h with PUC

USI control register 1 USICTL1 Read/write 079h 01h with PUC

USI clock control USICKCTL Read/write 07Ah Reset with PUC

USI bit counter USICNT Read/write 07Bh Reset with PUC

USI low byte shift register USISRL Read/write 07Ch Unchanged

USI high byte shift register USISRH Read/write 07Dh Unchanged

The USI registers can be accessed with word instructions as shown in
Table 10−2:

Table 10−2.Word Access to USI Registers

Register Short Form
High−Byte
Register

Low−Byte
Register Address

USI control register USICTL USICTL1 USICTL0 078h

USI clock and counter control register USICCTL USICNT USICKCTL 07Ah

USI shift register USISR USISRH USISRL 07Ch

10-14

USICTL0, USI Control Register 0

7 6 5 4 3 2 1 0

USIPE7 USIPE6 USIPE5 USILSB USIMST USIGE USIOE USISWRST

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

USIPE7 Bit 7 USI SDI/SDA port enable
Input in SPI mode, input or open drain output in I2C mode.
0 USI function disabled
1 USI function enabled

USIPE6 Bit 6 USI SDO/SCL port enable
Output in SPI mode, input or open drain output in I2C mode.
0 USI function disabled
1 USI function enabled

USIPE5 Bit 5 USI SCLK port enable
Input in SPI slave mode, or I2C mode, output in SPI master mode.
0 USI function disabled
1 USI function enabled

USILSB Bit 4 LSB first select. This bit controls the direction of the receive and transmit
shift register.
0 MSB first
1 LSB first

USIMST Bit 3 Master select
0 Slave mode
1 Master mode

USIGE Bit 2 Output latch control
0 Output latch enable depends on shift clock
1 Output latch always enabled and transparent

USIOE Bit 1 Data output enable
0 Output disabled
1 Output enabled

USISWRST Bit 0 USI software reset
0 USI released for operation.
1 USI logic held in reset state.

10-15

USICTL1, USI Control Register 1

7 6 5 4 3 2 1 0

USICKPH USII2C USISTTIE USIIE USIAL USISTP USISTTIFG USIIFG

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

USICKPH Bit 7 Clock phase select
0 Data is changed on the first SCLK edge and captured on the

following edge.
1 Data is captured on the first SCLK edge and changed on the

following edge.

USII2C Bit 6 I2C mode enable
0 I2C mode disabled
1 I2C mode enabled

USISTTIE Bit 5 START condition interrupt-enable
0 Interrupt on START condition disabled
1 Interrupt on START condition enabled

USIIE Bit 4 USI counter interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USIAL Bit 3 Arbitration lost
0 No arbitration lost condition
1 Arbitration lost

USISTP Bit 2 STOP condition received. USISTP is automatically cleared if USICNTx is
loaded with a value > 0 when USIIFGCC = 0.
0 No STOP condition received
1 STOP condition received

USISTTIFG Bit 1 START condition interrupt flag
0 No START condition received. No interrupt pending.
1 START condition received. Interrupt pending.

USIIFG Bit 1 USI counter interrupt flag. Set when the USICNTx = 0. Automatically
cleared if USICNTx is loaded with a value > 0 when USIIFGCC = 0.
0 No interrupt pending
1 Interrupt pending

10-16

USICKCTL, USI Clock Control Register

7 6 5 4 3 2 1 0

USIDIVx USISSELx USICKPL USISWCLK

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

USIDIVx Bits
7−5

Clock divider select
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Divide by 8
100 Divide by 16
101 Divide by 32
110 Divide by 64
111 Divide by 128

USISSELx Bits
4−2

Clock source select. Not used in slave mode.
000 SCLK (Not used in SPI mode)
001 ACLK
010 SMCLK
011 SMCLK
100 USISWCLK bit
101 TACCR0
110 TACCR1
111 TACCR2 (Reserved on MSP430F20xx devices)

USICKPL Bit 1 Clock polarity select
0 Inactive state is low
1 Inactive state is high

USISWCLK Bit 0 Software clock
0 Input clock is low
1 Input clock is high

10-17

USICNT, USI Bit Counter Register

7 6 5 4 3 2 1 0

USISCLREL USI16B USIIFGCC USICNTx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

USISCLREL Bit 7 SCL release. The SCL line is released from low to idle. USISCLREL is
cleared if a START condition is detected.
0 SCL line is held low if USIIFG is set
1 SCL line is released

USI16B Bit 6 16-bit shift register enable
0 8-bit shift register mode. Low byte register USISRL is used.
1 16-bit shift register mode. Both high and low byte registers USISRL

and USISRH are used. USISR addresses all 16 bits simultaneously.

USIIFGCC Bit 5 USI interrupt flag clear control. When USIIFGCC = 1 the USIIFG will not be
cleared automatically when USICNTx is written with a value > 0.
0 USIIFG automatically cleared on USICNTx update
1 USIIFG is not cleared automatically

USICNTx Bits
4−0

USI bit count
The USICNTx bits set the number of bits to be received or transmitted.

10-18

USISRL, USI Low Byte Shift Register

7 6 5 4 3 2 1 0

USISRLx

rw rw rw rw rw rw rw rw

USISRLx Bits
7−0

Contents of the USI low byte shift register

USISRH, USI High Byte Shift Register

7 6 5 4 3 2 1 0

USISRHx

rw rw rw rw rw rw rw rw

USISRHx Bits
7−0

Contents of the USI high byte shift register. Ignored when USI16B = 0.

11-1Universal Serial Communication Interface, UART Mode

��������	
�����	
�
���������
�
����������
����
�
��

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the asynchronous UART mode.

Topic Page

11.1 USCI Overview 11-2.

11.2 USCI Introduction: UART Mode 11-3.

11.3 USCI Operation: UART Mode 11-5.

11.4 USCI Registers: UART Mode 11-28.

Chapter 11

USCI Overview

11-2 Universal Serial Communication Interface, UART Mode

11.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_A0 and USCI_A1. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

� UART mode
� Pulse shaping for IrDA communications
� Automatic baud rate detection for LIN communications
� SPI mode

The USCI_Bx modules support:

� I2C mode
� SPI mode

USCI Introduction: UART Mode

11-3Universal Serial Communication Interface, UART Mode

11.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an
external system via two external pins, UCAxRXD and UCAxTXD. UART mode
is selected when the UCSYNC bit is cleared.

UART mode features include:

� 7- or 8-bit data with odd, even, or non-parity

� Independent transmit and receive shift registers

� Separate transmit and receive buffer registers

� LSB-first or MSB-first data transmit and receive

� Built-in idle-line and address-bit communication protocols for
multiprocessor systems

� Receiver start-edge detection for auto-wake up from LPMx modes

� Programmable baud rate with modulation for fractional baud rate support

� Status flags for error detection and suppression

� Status flags for address detection

� Independent interrupt capability for receive and transmit

Figure 11–1 shows the USCI_Ax when configured for UART mode.

USCI Introduction: UART Mode

11-4 Universal Serial Communication Interface, UART Mode

Figure 11–1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

Modulator

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC0CLK

Prescaler/Divider

Receive Baudrate Generator

UC0BRx

16

UCBRFx

4

UCBRSx

3

UCOS16

UCRXERRError Flags

Set Flags

UCPE
UCFE
UCOE

UCABEN

Receive Shift Register

Receive Buffer UC0RXBUF

Receive State Machine

1

0

UCIREN

UCPEN UCPAR UCMSB UC7BIT

UCDORMUCMODEx

2

UCSPB

Set UCBRK

Set UCADDR/UCIDLE

0

1

UCLISTEN

UC0RX

1

0

UCIRRXPL

IrDA Decoder

UCIRRXFE
UCIRRXFLx

6

Transmit Buffer UC0TXBUF

Transmit State Machine

UCTXADDR

UCTXBRK

Transmit Shift Register

UCPEN UCPAR UCMSB UC7BIT UCIREN

UCIRTXPLx

6

0

1
IrDA Encoder

UC0TX

Transmit Clock

Receive Clock
BRCLK

UCMODEx

2

UCSPB

UCRXEIE

UCRXBRKIE

Set UC0RXIFG

Set UC0TXIFG

Set RXIFG

USCI Operation: UART Mode

11-5Universal Serial Communication Interface, UART Mode

11.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USCI. The transmit and receive functions use the
same baud rate frequency.

11.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCAxRXIE, UCAxTXIE, UCAxRXIFG,
UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and
sets the UCAxTXIFG bit. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1)

2) Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1)

5) Enable interrupts (optional) via UCAxRXIE and/or UCAxTXIE

11.3.2 Character Format

The UART character format, shown in Figure 11–2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 11–2. Character Format

[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEx = 10]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, UCSPB = 1]

[8th Data Bit, UC7BIT = 0]

ST

USCI Operation: UART Mode

11-6 Universal Serial Communication Interface, UART Mode

11.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is
required for the protocol. When three or more devices communicate, the USCI
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks
of data are separated by an idle time on the transmit or receive lines as shown
in Figure 11–3. An idle receive line is detected when 10 or more continuous
ones (marks) are received after the one or two stop bits of a character. The
baud rate generator is switched off after reception of an idle line until the next
start edge is detected. When an idle line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The
UCIDLE bit is used as an address tag for each block of characters. In idle-line
multiprocessor format, this bit is set when a received character is an address

Figure 11–3. Idle-Line Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of 10 Bits or More

UCAxTXD/RXD Expanded

UCAxTXD/RXD

First Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More

Character Within Block

Idle Period Less Than 10 Bits

Character Within Block

UCAxTXD/RXD

USCI Operation: UART Mode

11-7Universal Serial Communication Interface, UART Mode

The UCDORM bit is used to control data reception in the idle-line
multiprocessor format. When UCDORM = 1, all non-address characters are
assembled but not transferred into the UCAxRXBUF, and interrupts are not
generated. When an address character is received, the character is
transferred into UCAxRXBUF, UCAxRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character
is recieved but has a framing error or parity error, the character is not
transferred into UCAxRXBUF and UCAxRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters will be received. When UCDORM is cleared during the
reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware
automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USCI to generate address character identifiers
on UCAxTXD. The double-buffered UCTXADDR flag indicates if the next
character loaded into UCAxTXBUF is preceded by an idle line of 11 bits.
UCTXADDR is automatically cleared when the start bit is generated.

Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address
character followed by associated data:

1) Set UCTXADDR, then write the address character to UCAxTXBUF.
UCAxTXBUF must be ready for new data (UCAxTXIFG = 1).

This generates an idle period of exactly 11 bits followed by the address
character. UCTXADDR is reset automatically when the address character
is transferred from UCAxTXBUF into the shift register.

2) Write desired data characters to UCAxTXBUF. UCAxTXBUF must be
ready for new data (UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

The idle-line time must not be exceeded between address and data
transmission or between data transmissions. Otherwise, the transmitted
data will be misinterpreted as an address.

USCI Operation: UART Mode

11-8 Universal Serial Communication Interface, UART Mode

Address-Bit Multiprocessor Format

When UCMODEx = 10, the address-bit multiprocessor format is selected.
Each processed character contains an extra bit used as an address indicator
shown in Figure 11–4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USCI
UCADDR bit is set when a received character has its address bit set and is
transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit
multiprocessor format. When UCDORM is set, data characters with address
bit = 0 are assembled by the receiver but are not transferred to UCAxRXBUF
and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCAxRXIFG is
set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and a character containing a set address bit is received, but has a framing
error or parity error, the character is not transferred into UCAxRXBUF and
UCAxRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters with address bit = 1 will be received. The UCDORM bit is
not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAxRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is completed.

For address transmission in address-bit multiprocessor mode, the address bit
of a character is controlled by the UCTXADDR bit. The value of the
UCTXADDR bit is loaded into the address bit of the character transferred from
UCAxTXBUF to the transmit shift register. UCTXADDR is automatically
cleared when the start bit is generated.

USCI Operation: UART Mode

11-9Universal Serial Communication Interface, UART Mode

Figure 11–4. Address-Bit Multiprocessor Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of No Significance

UCAxTXD/UCAxRXD
Expanded

UCAxTXD/UCAxRXD

First Character Within Block
Is an Address. AD Bit Is 1

AD Bit Is 0 for
Data Within Block. Idle Time Is of No Significance

UCAxTXD/UCAxRXD 1 0 0

Break Reception and Generation

When UCMODEx = 00, 01, or 10 the receiver detects a break when all data,
parity, and stop bits are low, regardless of the parity, address mode, or other
character settings. When a break is detected, the UCBRK bit is set. If the break
interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCAxRXIFG
will also be set. In this case, the value in UCAxRXBUF is 0h since all data bits
were zero.

To transmit a break set the UCTXBRK bit, then write 0h to UCAxTXBUF.
UCAxTXBUF must be ready for new data (UCAxTXIFG = 1). This generates
a break with all bits low. UCTXBRK is automatically cleared when the start bit
is generated.

USCI Operation: UART Mode

11-10 Universal Serial Communication Interface, UART Mode

11.3.4 Automatic Baud Rate Detection

When UCMODEx = 11 UART mode with automatic baud rate detection is
selected. For automatic baud rate detection, a data frame is preceded by a
synchronization sequence that consists of a break and a synch field. A break
is detected when 11 or more continuous zeros (spaces) are received. If the
length of the break exceeds 22 bit times the break timeout error flag UCBTOE
is set. The synch field follows the break as shown in Figure 11–5.

Figure 11–5. Auto Baud Rate Detection – Break/Synch Sequence

Break Delimiter Synch

For LIN conformance the character format should be set to 8 data bits, LSB
first, no parity and one stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in
Figure 11–6. The synchronization is based on the time measurement between
the first falling edge and the last falling edge of the pattern. The transmit baud
rate generator is used for the measurement if automatic baud rate detection
is enabled by setting UCABDEN. Otherwise, the pattern is received but not
measured. The result of the measurement is transferred into the baud rate
control registers UCAxBR0, UCAxBR1, and UCAxMCTL. If the length of the
synch field exceeds the measurable time the synch timeout error flag
UCSTOE is set.

Figure 11–6. Auto Baud Rate Detection – Synch Field

Synch

Start
Bit

Stop
Bit

0 1 2 3 4 5 6 7

8 Bit Times

The UCDORM bit is used to control data reception in this mode. When
UCDORM is set, all characters are received but not transferred into the
UCAxRXBUF, and interrupts are not generated. When a break/synch field is
detected the UCBRK flag is set. The character following the break/synch field
is transferred into UCAxRXBUF and the UCAxRXIFG interrupt flag is set. Any
applicable error flag is also set. If the UCBRKIE bit is set, reception of the
break/synch sets the UCAxRXIFG. The UCBRK bit is reset by user software
or by reading the receive buffer UCAxRXBUF.

USCI Operation: UART Mode

11-11Universal Serial Communication Interface, UART Mode

When a break/synch field is received, user software must reset UCDORM to
continue receiving data. If UCDORM remains set, only the character after the
next reception of a break/synch field will be received. The UCDORM bit is not
modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAxRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is complete.

Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:

1) Set UCTXBRK with UMODEx = 11.

2) Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCAxTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the
synch character. The length of the break delimiter is controlled with the
UCDELIMx bits. UCTXBRK is reset automatically when the synch
character is transferred from UCAxTXBUF into the shift register.

3) Write desired data characters to UCAxTXBUF. UCAxTXBUF must be
ready for new data (UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

USCI Operation: UART Mode

11-12 Universal Serial Communication Interface, UART Mode

11.3.5 IrDA Encoding and Decoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide
hardware bit shaping for IrDA communication.

IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming
from the UART as shown in Figure 11–7. The pulse duration is defined by
UCIRTXPLx bits specifying the number of half clock periods of the clock
selected by UCIRTXCLK.

Figure 11–7. UART vs. IrDA Data Format

UART

Start
Bit Data Bits

Stop
Bit

IrDA

To set the pulse time of 3/16 bit period required by the IrDA standard the
BITCLK16 clock is selected with UCIRTXCLK = 1 and the pulse length is set
to 6 half clock cycles with UCIRTXPLx = 6 – 1 = 5.

When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is
calculated as follows:

UCIRTXPLx � tPULSE � 2 � fBRCLK � 1

When UCIRTXCLK = 0 the prescaler UCBRx must to be set to a value greater
or equal to 5.

IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects
low pulses. In addition to the analog deglitch filter an additional programmable
digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is
set, only pulses longer than the programmed filter length are passed. Shorter
pulses are discarded. The equation to program the filter length UCIRRXFLx
is:

UCIRRXFLx � (tPULSE � tWAKE) � 2 � fBRCLK � 4

where:

tPULSE: Minimum receive pulse width

tWAKE: Wake time from any low power mode. Zero when
MSP430 is in active mode.

USCI Operation: UART Mode

11-13Universal Serial Communication Interface, UART Mode

11.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any
pulse on UCAxRXD shorter than the deglitch time tτ (approximately 150 ns)
will be ignored. See the device-specific datasheet for parameters.

When a low period on UCAxRXD exceeds tτ a majority vote is taken for the
start bit. If the majority vote fails to detect a valid start bit the USCI halts
character reception and waits for the next low period on UCAxRXD. The
majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun
errors, and break conditions when receiving characters. The bits UCFE,
UCPE, UCOE, and UCBRK are set when their respective condition is
detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is
also set. The error conditions are described in Table 11–1.

Table 11–1. Receive Error Conditions

Error Condition Error
Flag

Description

Framing error UCFE

A framing error occurs when a low stop bit is
detected. When two stop bits are used, both
stop bits are checked for framing error. When a
framing error is detected, the UCFE bit is set.

Parity error UCPE

A parity error is a mismatch between the
number of 1s in a character and the value of
the parity bit. When an address bit is included
in the character, it is included in the parity
calculation. When a parity error is detected, the
UCPE bit is set.

Receive overrun UCOE

An overrun error occurs when a character is
loaded into UCAxRXBUF before the prior
character has been read. When an overrun
occurs, the UCOE bit is set.

Break condition UCBRK

When not using automatic baud rate detection,
a break is detected when all data, parity, and
stop bits are low. When a break condition is
detected, the UCBRK bit is set. A break
condition can also set the interrupt flag
UCAxRXIFG if the break interrupt enable
UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error, or parity error is detected, no
character is received into UCAxRXBUF. When UCRXEIE = 1, characters are
received into UCAxRXBUF and any applicable error bit is set.

When UCFE, UCPE, UCOE, UCBRK, or UCRXERR is set, the bit remains set
until user software resets it or UCAxRXBUF is read. UCOE must be reset by
reading UCAxRXBUF. Otherwise it will not function properly.

USCI Operation: UART Mode

11-14 Universal Serial Communication Interface, UART Mode

11.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver
is ready and in an idle state. The receive baud rate generator is in a ready state
but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART
state machine checks for a valid start bit. If no valid start bit is detected the
UART state machine returns to its idle state and the baud rate generator is
turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the
UART state machine checks for an idle line after receiving a character. If a start
bit is detected another character is received. Otherwise the UCIDLE flag is set
after 10 ones are received and the UART state machine returns to its idle state
and the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any
glitch on UCAxRXD shorter than the deglitch time tτ (approximately 150 ns)
will be ignored by the USCI and further action will be initiated as shown in
Figure 11–8. See the device-specific datasheet for parameters.

Figure 11–8. Glitch Suppression, USCI Receive Not Started

URXDx

URXS

tτ

When a glitch is longer than tτ, or a valid start bit occurs on UCAxRXD, the
USCI receive operation is started and a majority vote is taken as shown in
Figure 11–9. If the majority vote fails to detect a start bit the USCI halts
character reception.

Figure 11–9. Glitch Suppression, USCI Activated

URXDx

URXS

tτ

Majority Vote Taken

USCI Operation: UART Mode

11-15Universal Serial Communication Interface, UART Mode

11.3.8 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter
is ready and in an idle state. The transmit baud rate generator is ready but is
not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs,
the baud rate generator is enabled and the data in UCAxTXBUF is moved to
the transmit shift register on the next BITCLK after the transmit shift register
is empty. UCAxTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continues as long as new data is available in UCAxTXBUF at the
end of the previous byte transmission. If new data is not in UCAxTXBUF when
the previous byte has transmitted, the transmitter returns to its idle state and
the baud rate generator is turned off.

11.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. It provides two modes of operation
selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation
The low-frequency mode is selected when UCOS16 = 0. This mode allows
generation of baud rates from low frequency clock sources (e.g. 9600 baud
from a 32768Hz crystal). By using a lower input frequency the power
consumption of the module is reduced. Using this mode with higher
frequencies and higher prescaler settings will cause the majority votes to be
taken in an increasingly smaller window and thus decrease the benefit of the
majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one
modulator to generate bit clock timing. This combination supports fractional
divisors for baud rate generation. In this mode, the maximum USCI baud rate
is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 11–10. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2 – 1/2,
N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

USCI Operation: UART Mode

11-16 Universal Serial Communication Interface, UART Mode

Figure 11–10.BITCLK Baud Rate Timing with UCOS16 = 0

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2–1 N/2–2
1 N/2 N/2–1 1 N/2 N/2–1N/2–2

0 N/2 N/2–11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD : INT(N/2) + R(= 1)

m: corresponding modulation bit
R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

Modulation is based on the UCBRSx setting as shown in Table 11–2. A 1 in the
table indicates that m = 1 and the corresponding BITCLK period is one BRCLK
period longer than a BITCLK period with m = 0. The modulation wraps around
after 8 bits but restarts with each new start bit.

Table 11–2. BITCLK Modulation Pattern

UCBRSx Bit 0
(Start Bit)

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 0

4 0 1 0 1 0 1 0 1

5 0 1 1 1 0 1 0 1

6 0 1 1 1 0 1 1 1

7 0 1 1 1 1 1 1 1

USCI Operation: UART Mode

11-17Universal Serial Communication Interface, UART Mode

Oversampling Baud Rate Generation
The oversampling mode is selected when UCOS16 = 1. This mode supports
sampling a UART bit stream with higher input clock frequencies. This results
in majority votes that are always 1/16 of a bit clock period apart. This mode also
easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and
decoder are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16
clock that is 16 times faster than the BITCLK. An additional divider and
modulator stage generates BITCLK from BITCLK16. This combination
supports fractional divisions of both BITCLK16 and BITCLK for baud rate
generation. In this mode, the maximum USCI baud rate is 1/16 the UART
source clock frequency BRCLK. When UCBRx is set to 0 or 1 the first prescaler
and modulator stage is bypassed and BRCLK is equal to BITCLK16.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in
Table 11–3. A 1 in the table indicates that the corresponding BITCLK16 period
is one BRCLK period longer than the periods m=0. The modulation restarts
with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in
Table 11–2 as previously described.

Table 11–3. BITCLK16 Modulation Pattern

UCBRFx
No. of BITCLK16 Clocks after last falling BITCLK edge

UCBRFx
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

USCI Operation: UART Mode

11-18 Universal Serial Communication Interface, UART Mode

11.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required
division factor N:

N �

fBRCLK

Baudrate

The division factor N is often a non-integer value thus at least one divider and
one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode
can be chosen by setting UCOS16.

Low–Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the
prescaler:

UCBRx = INT(N)

and the fractional portion is realized by the modulator with the following
nominal formula:

UCBRSx = round((N – INT(N)) * 8)

Incrementing or decrementing the UCBRSx setting by one count may give a
lower maximum bit error for any given bit. To determine if this is the case, a
detailed error calculation must be performed for each bit for each UCBRSx
setting.

Oversampling Baud Rate Mode Setting

In the oversampling mode the prescaler is set to:

UCBRx = INT(N/16).

and the first stage modulator is set to:

UCBRFx = round(((N/16) – INT(N/16)) * 16)

When greater accuracy is required, the UCBRSx modulator can also be
implemented with values from 0 – 7. To find the setting that gives the lowest
maximum bit error rate for any given bit, a detailed error calculation must be
performed for all settings of UCBRSx from 0 – 7 with the initial UCBRFx setting
and with the UCBRFx setting incremented and decremented by one.

USCI Operation: UART Mode

11-19Universal Serial Communication Interface, UART Mode

11.3.11Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the
modulation features of the baud rate generator reduces the cumulative bit
error. The individual bit error can be calculated using the following steps.

Low–Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the
UCBRx and UCBRSx settings:

Tbit,TX[i] � 1
fBRCLK

�UCBRx � mUCBRSx[i]�

where:

mUCBRSx[i]: Modulation of bit i from Table 11–2

Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i Tbit,TX[i] based on
the baud rate generator UCBRx, UCBRFx and UCBRSx settings:

Tbit,TX[i] � 1
fBRCLK

��16 � mUCBRSx[i]� � UCBRx ��

15

j�0

mUCBRFx[j]�

where:

�

15

j�0

mUCBRFx[j]: Sum of ones from the corresponding row in Table 11–3

mUCBRSx[i]: Modulation of bit i from Table 11–2

This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and
the current bit times:

tbit,TX[i] ��

i

j�0

Tbit,TX[j]

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:

tbit,ideal,TX[i] � 1
Baudrate

�i � 1�

This results in an error normalized to one ideal bit time (1/baudrate):

ErrorTX[i] � �tbit,TX[i] � tbit,ideal,TX[i]� � Baudrate � 100%

USCI Operation: UART Mode

11-20 Universal Serial Communication Interface, UART Mode

11.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit
timing error similar to the transmit bit timing error. The second is the error
between a start edge occurring and the start edge being accepted by the USCI
module. Figure 11–11 shows the asynchronous timing errors between data on
the UCAxRXD pin and the internal baud-rate clock. This results in an additional
synchronization error. The synchronization error tSYNC is between
–0.5 BRCLKs and +0.5 BRCLKs independent of the selected baud rate
generation mode.

Figure 11–11.Receive Error

1 2 3 4 5 6

0i

t0tideal

7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

t0 t1 t2

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Majority Vote Taken Majority Vote Taken Majority Vote Taken

BRCLK

UCAxRXD

RXD synch.

tactual

Sample
RXD synch.

The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period:

tbit,ideal,RX[i] � 1
Baudrate

�i � 0.5�

The real sampling time tbit,RX[i] is equal to the sum of all previous bits according
to the formulas shown in the transmit timing section, plus one half BITCLK for
the current bit i, plus the synchronization error tSYNC.

This results in the following tbit,RX[i] for the low-frequency baud rate mode

tbit,RX[i] � tSYNC ��

i�1

j�0

Tbit,RX[j] � 1
fBRCLK

�INT(1
2

UCBRx) � mUCBRSx[i]�

where:

Tbit,RX[i] � 1
fBRCLK

�UCBRx � mUCBRSx[i]�

mUCBRSx[i]: Modulation of bit i from Table 11–2

USCI Operation: UART Mode

11-21Universal Serial Communication Interface, UART Mode

For the oversampling baud rate mode the sampling time tbit,RX[i] of bit i is
calculated by:

tbit,RX[i] � tSYNC ��

i�1

j�0

Tbit,RX[j]

�

1
fBRCLK
��8 � mUCBRSx�i�� � UCBRx � �

7�mUCBRSx[i]

j�0

mUCBRFx[j]�

where:

Tbit,RX[i] � 1
fBRCLK

��16 � mUCBRSx[i]� � UCBRx ��

15

j�0

mUCBRFx[j]�

�

7�mUCBRSx[i]

j�0

mUCBRFx[j]: Sum of ones from columns 0 – 7 � mUCBRSx[i]

 from the corresponding row in Table 11–3

mUCBRSx[i]: Modulation of bit i from Table 11–2

This results in an error normalized to one ideal bit time (1/baudrate) according
to the following formula:

ErrorRX[i] � �tbit,RX[i] � tbit,ideal,RX[i]� � Baudrate � 100%

11.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx and UCBRFx are listed in
Table 11–4 and Table 11–5 for a 32,768 Hz crystal sourcing ACLK and typical
SMCLK frequencies.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The worst case error is given for the reception of an 8-bit
character with parity and one stop bit including synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the
bit period. The worst case error is given for the transmission of an 8-bit
character with parity and stop bit.

USCI Operation: UART Mode

11-22 Universal Serial Communication Interface, UART Mode

Table 11–4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK
frequency

[Hz]

Baud
Rate

[Baud]
UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]

32,768 1200 27 2 0 –2.8 1.4 –5.9 2.0

32,768 2400 13 6 0 –4.8 6.0 –9.7 8.3

32,768 4800 6 7 0 –12.1 5.7 –13.4 19.0

32,768 9600 3 3 0 –21.1 15.2 –44.3 21.3

1,048,576 9600 109 2 0 –0.2 0.7 –1.0 0.8

1,048,576 19200 54 5 0 –1.1 1.0 –1.5 2.5

1,048,576 38400 27 2 0 –2.8 1.4 –5.9 2.0

1,048,576 56000 18 6 0 –3.9 1.1 –4.6 5.7

1,048,576 115200 9 1 0 –1.1 10.7 –11.5 11.3

1,048,576 128000 8 1 0 –8.9 7.5 –13.8 14.8

1,048,576 256000 4 1 0 –2.3 25.4 –13.4 38.8

1,000,000 9600 104 1 0 –0.5 0.6 –0.9 1.2

1,000,000 19200 52 0 0 –1.8 0 –2.6 0.9

1,000,000 38400 26 0 0 –1.8 0 –3.6 1.8

1,000,000 56000 17 7 0 –4.8 0.8 –8.0 3.2

1,000,000 115200 8 6 0 –7.8 6.4 –9.7 16.1

1,000,000 128000 7 7 0 –10.4 6.4 –18.0 11.6

1,000,000 256000 3 7 0 –29.6 0 –43.6 5.2

4,000,000 9600 416 6 0 –0.2 0.2 –0.2 0.4

4,000,000 19200 208 3 0 –0.2 0.5 –0.3 0.8

4,000,000 38400 104 1 0 –0.5 0.6 –0.9 1.2

4,000,000 56000 71 4 0 –0.6 1.0 –1.7 1.3

4,000,000 115200 34 6 0 –2.1 0.6 –2.5 3.1

4,000,000 128000 31 2 0 –0.8 1.6 –3.6 2.0

4,000,000 256000 15 5 0 –4.0 3.2 –8.4 5.2

8,000,000 9600 833 2 0 –0.1 0 –0.2 0.1

8,000,000 19200 416 6 0 –0.2 0.2 –0.2 0.4

8,000,000 38400 208 3 0 –0.2 0.5 –0.3 0.8

8,000,000 56000 142 7 0 –0.6 0.1 –0.7 0.8

8,000,000 115200 69 4 0 –0.6 0.8 –1.8 1.1

8,000,000 128000 62 4 0 –0.8 0 –1.2 1.2

8,000,000 256000 31 2 0 –0.8 1.6 –3.6 2.0

50210751
高亮

USCI Operation: UART Mode

11-23Universal Serial Communication Interface, UART Mode

Table 11–4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (Continued)

12,000,000 9600 1250 0 0 0 0 –0.05 0.05

12,000,000 19200 625 0 0 0 0 –0.2 0

12,000,000 38400 312 4 0 –0.2 0 –0.2 0.2

12,000,000 56000 214 2 0 –0.3 0.2 –0.4 0.5

12,000,000 115200 104 1 0 –0.5 0.6 –0.9 1.2

12,000,000 128000 93 6 0 –0.8 0 –1.5 0.4

12,000,000 256000 46 7 0 –1.9 0 –2.0 2.0

16,000,000 9600 1666 6 0 –0.05 0.05 –0.05 0.1

16,000,000 19200 833 2 0 –0.1 0.05 –0.2 0.1

16,000,000 38400 416 6 0 –0.2 0.2 –0.2 0.4

16,000,000 56000 285 6 0 –0.3 0.1 –0.5 0.2

16,000,000 115200 138 7 0 –0.7 0 –0.8 0.6

16,000,000 128000 125 0 0 0 0 –0.8 0

16,000,000 256000 62 4 0 –0.8 0 –1.2 1.2

50210751
高亮

USCI Operation: UART Mode

11-24 Universal Serial Communication Interface, UART Mode

Table 11–5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK
frequency

[Hz]

Baud
Rate

[Baud]
UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]

32,768 1200 1 2 11 –2.8 1.4 –2.2 5.6

1,048,576 9600 6 0 13 –2.3 0 –2.2 0.8

1,048,576 19200 3 1 6 –4.6 3.2 –5.0 4.7

1,048,576 38400 1 2 11 –2.8 1.4 –2.2 5.6

1,048,576 56000 1 6 2 –3.9 1.1 –4.6 5.7

1,000,000 9600 6 0 8 –1.8 0 –2.2 0.4

1,000,000 19200 3 0 4 –1.8 0 –2.6 0.9

1,000,000 38400 1 0 10 –1.8 0 –3.6 1.8

1,000,000 56000 1 7 1 –4.8 0.8 –2.4 8.8

4,000,000 9600 26 0 1 0 0.9 0 1.1

4,000,000 19200 13 0 0 –1.8 0 –1.9 0.2

4,000,000 38400 6 0 8 –1.8 0 –2.2 0.4

4,000,000 56000 4 5 5 –3.4 3.2 –1.7 6.3

4,000,000 115200 2 3 2 –2.1 4.8 –2.5 7.3

4,000,000 128000 1 2 15 –0.8 1.6 –3.6 5.2

8,000,000 9600 52 0 1 –0.4 0 –0.4 0.1

8,000,000 19200 26 0 1 0 0.9 0 1.1

8,000,000 38400 13 0 0 –1.8 0 –1.9 0.2

8,000,000 56000 8 0 15 0 1.1 –0.7 1.1

8,000,000 115200 4 5 3 –3.5 3.2 –1.8 6.4

8,000,000 128000 3 4 13 –2.4 0 –1.2 2.8

8,000,000 256000 1 2 15 –0.8 1.6 –3.6 5.2

12,000,000 9600 78 0 2 0 0 –0.05 0.05

12,000,000 19200 39 0 1 0 0 0 0.2

12,000,000 38400 19 0 8 –1.8 0 –1.8 0.1

12,000,000 56000 13 0 6 –1.5 0 –1.6 0.2

12,000,000 115200 6 0 8 –1.8 0 –2.2 0.4

12,000,000 128000 5 0 14 0 2.9 –0.4 3.3

12,000,000 256000 2 4 14 –1.9 2.7 –2.0 4.7

16,000,000 9600 104 0 3 0 0.2 0 0.3

16,000,000 19200 52 0 1 –0.4 0 –0.4 0.1

16,000,000 38400 26 0 1 0 0.9 0 1.1

16,000,000 56000 17 0 14 0 1.1 –0.1 1.2

16,000,000 115200 8 0 11 0 0.9 0 1.6

16,000,000 128000 7 0 13 0 0 0 0.8

16,000,000 256000 3 4 13 –2.4 0 –1.2 2.8

USCI Operation: UART Mode

11-25Universal Serial Communication Interface, UART Mode

11.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

USCI Operation: UART Mode

11-26 Universal Serial Communication Interface, UART Mode

11.3.15 USCI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

USCI Transmit Interrupt Operation

The UCAxTXIFG interrupt flag is set by the transmitter to indicate that
UCAxTXBUF is ready to accept another character. An interrupt request is
generated if UCAxTXIE and GIE are also set. UCAxTXIFG is automatically
reset if a character is written to UCAxTXBUF.

UCAxTXIFG is set after a PUC or when UCSWRST = 1. UCAxTXIE is reset
after a PUC or when UCSWRST = 1.

USCI Receive Interrupt Operation

The UCAxRXIFG interrupt flag is set each time a character is received and
loaded into UCAxRXBUF. An interrupt request is generated if UCAxRXIE and
GIE are also set. UCAxRXIFG and UCAxRXIE are reset by a system reset
PUC signal or when UCSWRST = 1. UCAxRXIFG is automatically reset when
UCAxRXBUF is read.

Additional interrupt control features include:

� When UCAxRXEIE = 0 erroneous characters will not set UCAxRXIFG.

� When UCDORM = 1, non-address characters will not set UCAxRXIFG in
multiprocessor modes.

� When UCBRKIE = 1 a break condition will set the UCBRK bit and the
UCAxRXIFG flag.

USCI Operation: UART Mode

11-27Universal Serial Communication Interface, UART Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAxRXIFG and UCBxRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_RX_USCIB0_RX_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?

; Read UCB0RXBUF (clears UCB0RXIFG)

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF (clears UCA0RXIFG)

...

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_TX_USCIB0_TX_ISR

BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

USCI Registers: UART Mode

11-28 Universal Serial Communication Interface, UART Mode

11.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode are listed in Table 11–6 and
Table 11–7.

Table 11–6. USCI_A0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 Baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 Baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 Receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 Transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_A0 Auto Baud control register UCA0ABCTL Read/write 05Dh Reset with PUC

USCI_A0 IrDA Transmit control register UCA0IRTCTL Read/write 05Eh Reset with PUC

USCI_A0 IrDA Receive control register UCA0IRRCTL Read/write 05Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.

Table 11–7. USCI_A1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 Baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 Baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA10MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 Receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 Transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_A1 Auto Baud control register UCA1ABCTL Read/write 0CDh Reset with PUC

USCI_A1 IrDA Transmit control register UCA1IRTCTL Read/write 0CEh Reset with PUC

USCI_A1 IrDA Receive control register UCA1IRRCTL Read/write 0CFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: UART Mode

11-29Universal Serial Communication Interface, UART Mode

UCAxCTL0, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0

UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC=0

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

UCPEN Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UCAxTXD) and expected

(UCAxRXD). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.

UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.
0 Odd parity
1 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits

UCMODEx Bits
2–1

USCI mode. The UCMODEx bits select the asynchronous mode when
UCSYNC = 0.
00 UART Mode.
01 Idle-Line Multiprocessor Mode.
10 Address-Bit Multiprocessor Mode.
11 UART Mode with automatic baud rate detection.

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

USCI Registers: UART Mode

11-30 Universal Serial Communication Interface, UART Mode

UCAxCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0

UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–1

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock.
00 UCLK
01 ACLK
10 SMCLK
11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCAxRXIFG is not set
1 Erroneous characters received will set UCAxRXIFG

UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCAxRXIFG.
1 Received break characters set UCAxRXIFG.

UCDORM Bit 3 Dormant. Puts USCI into sleep mode.
0 Not dormant. All received characters will set UCAxRXIFG.
1 Dormant. Only characters that are preceded by an idle-line or with

address bit set will set UCAxRXIFG. In UART mode with automatic baud
rate detection only the combination of a break and synch field will set
UCAxRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address
depending on the selected multiprocessor mode.
0 Next frame transmitted is data
1 Next frame transmitted is an address

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer.
In UART mode with automatic baud rate detection 055h must be written
into UCAxTXBUF to generate the required break/synch fields. Otherwise
0h must be written into the transmit buffer.
0 Next frame transmitted is not a break
1 Next frame transmitted is a break or a break/synch

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

USCI Registers: UART Mode

11-31Universal Serial Communication Interface, UART Mode

UCAxBR0, USCI_Ax Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBRx Clock prescaler setting of the Baud rate generator.

UCAxMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0

UCBRFx UCBRSx UCOS16

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

UCBRFx Bits
7–4

First modulation stage select. These bits determine the modulation pattern
for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 11–3
shows the modulation pattern.

UCBRSx Bits
3–1

Second modulation stage select. These bits determine the modulation
pattern for BITCLK. Table 11–2 shows the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled
0 Disabled
1 Enabled

USCI Registers: UART Mode

11-32 Universal Serial Communication Interface, UART Mode

UCAxSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR
UCIDLE UCBUSY

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 r–0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag
0 No error
1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCAxRXBUF before the previous character was read. UCOE is cleared
automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error

UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s).
When UCRXERR = 1, on or more error flags (UCFE, UCPE, UCOE) is also
set. UCRXERR is cleared when UCAxRXBUF is read.
0 No receive errors detected
1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in
progress.
0 USCI inactive
1 USCI transmitting or receiving

USCI Registers: UART Mode

11-33Universal Serial Communication Interface, UART Mode

UCAxRXBUF, USCI_Ax Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7–0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCAxRXBUF resets the
receive-error bits, the UCADDR or UCIDLE bit, and UCAxRXIFG. In 7-bit
data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

UCAxTXBUF, USCI_Ax Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7–0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted on UCAxTXD.
Writing to the transmit data buffer clears UCAxTXIFG. The MSB of
UCAxTXBUF is not used for 7-bit data and is reset.

USCI Registers: UART Mode

11-34 Universal Serial Communication Interface, UART Mode

UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register

7 6 5 4 3 2 1 0

UCIRTXPLx UCIR
TXCLK UCIREN

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

UCIRTXPLx Bits
7–2

Transmit pulse length
Pulse Length tPULSE = (UCIRTXPLx + 1) / (2 * fIRTXCLK)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select
0 BRCLK
1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK

UCIREN Bit 0 IrDA encoder/decoder enable.
0 IrDA encoder/decoder disabled
1 IrDA encoder/decoder enabled

UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

7 6 5 4 3 2 1 0

UCIRRXFLx UCIRRXPL UCIRRXFE

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

UCIRRXFLx Bits
7–2

Receive filter length. The minimum pulse length for receive is given by:
tMIN = (UCIRRXFLx + 4) / (2 * fIRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAxRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen
1 IrDA transceiver delivers a low pulse when a light pulse is seen

UCIRRXFE Bit 0 IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled

USCI Registers: UART Mode

11-35Universal Serial Communication Interface, UART Mode

UCAxABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0

Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN

r–0 r–0 rw–0 rw–0 rw–0 rw–0 r–0 rw–0

Reserved Bits
7-6

Reserved

UCDELIMx Bits
5–4

Break/synch delimiter length
00 1 bit time
01 2 bit times
10 3 bit times
11 4 bit times

UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud rate detect enable
0 Baud rate detection disabled. Length of break and synch field is not

measured.
1 Baud rate detection enabled. Length of break and synch field is

measured and baud rate settings are changed accordingly.

USCI Registers: UART Mode

11-36 Universal Serial Communication Interface, UART Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCA0TXIE UCA0RXIE

rw–0 rw–0

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCA0
TXIFG

UCA0
RXIFG

rw–1 rw–0

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

UCA0
TXIFG

Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCA0
RXIFG

Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

USCI Registers: UART Mode

11-37Universal Serial Communication Interface, UART Mode

UC1IE, USCI_A1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCA1TXIE UCA1RXIE

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

Unused Bits
7-4

Unused

Bits
3-2

These bits may be used by other USCI modules. See device-specific
datasheet.

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UC1IFG, USCI_A1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCA1
TXIFG

UCA1
RXIFG

rw–0 rw–0 rw–0 rw–0 rw–1 rw–0

Unused Bits
7-4

Unused

Bits
3-2

These bits may be used by other USCI modules. See device-specific
datasheet.

UCA1
TXIFG

Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCA1
RXIFG

Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

50210751
高亮

50210751
高亮

12-1Universal Serial Communication Interface, SPI Mode

��������	
�����	
�
���������
�
����������
���
�
��

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the synchronous peripheral interface or SPI mode.

Topic Page

12.1 USCI Overview 12-2.

12.2 USCI Introduction: SPI Mode 12-3.

12.3 USCI Operation: SPI Mode 12-5.

12.4 USCI Registers: SPI Mode 12-15.

Chapter 12

USCI Overview

12-2 Universal Serial Communication Interface, SPI Mode

12.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_A0 and USCI_A1. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

� UART mode
� Pulse shaping for IrDA communications
� Automatic baud rate detection for LIN communications
� SPI mode

The USCI_Bx modules support:

� I2C mode
� SPI mode

USCI Introduction: SPI Mode

12-3Universal Serial Communication Interface, SPI Mode

12.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system
via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI
mode is selected when the UCSYNC bit is set and SPI mode (3-pin or 4-pin)
is selected with the UCMODEx bits.

SPI mode features include:

� 7- or 8-bit data length

� LSB-first or MSB-first data transmit and receive

� 3-pin and 4-pin SPI operation

� Master or slave modes

� Independent transmit and receive shift registers

� Separate transmit and receive buffer registers

� Continuous transmit and receive operation

� Selectable clock polarity and phase control

� Programmable clock frequency in master mode

� Independent interrupt capability for receive and transmit

� Slave operation in LPM4

Figure 12–1 shows the USCI when configured for SPI mode.

USCI Introduction: SPI Mode

12-4 Universal Serial Communication Interface, SPI Mode

Figure 12–1. USCI Block Diagram: SPI Mode

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

N/A

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

Receive Shift Register

Receive Buffer UCxRXBUF

Receive State Machine

UCMSB UC7BIT

1

0

UCMST

UCxSOMI

Transmit Buffer UCxTXBUF

Transmit State Machine

Transmit Shift Register

UCMSB UC7BIT

BRCLK

Set UCxRXIFG

Set UCxTXIFG

0

1

UCLISTEN

Clock Direction,
Phase and Polarity

UCCKPH UCCKPL

UCxSIMO

UCxCLK

Set UCOE

Transmit Enable
Control

2

UCMODEx

UCxSTE

Set UCFE

USCI Operation: SPI Mode

12-5Universal Serial Communication Interface, SPI Mode

12.3 USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, UCxSTE, is provided
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

� UCxSIMO Slave in, master out
Master mode: UCxSIMO is the data output line.
Slave mode: UCxSIMO is the data input line.

� UCxSOMI Slave out, master in
Master mode: UCxSOMI is the data input line.
Slave mode: UCxSOMI is the data output line.

� UCxCLK USCI SPI clock
Master mode: UCxCLK is an output.
Slave mode: UCxCLK is an input.

� UCxSTE Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode. Table 12–1
describes the UCxSTE operation.

Table 12–1.UCxSTE Operation

UCMODEx UCxSTE Active State UCxSTE Slave Master

01 high
0 inactive active

01 high
1 active inactive

10 low
0 active inactive

10 low
1 inactive active

USCI Operation: SPI Mode

12-6 Universal Serial Communication Interface, SPI Mode

12.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCxRXIE, UCxTXIE, UCxRXIFG,
UCOE, and UCFE bits and sets the UCxTXIFG flag. Clearing UCSWRST
releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)

5) Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

12.3.2 Character Format

The USCI module in SPI mode supports 7- and 8-bit character lengths
selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified
and the MSB is always reset. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first.

Note: Default Character Format

The default SPI character transmission is LSB first. For communication with
other SPI interfaces it MSB-first mode may be required.

Note: Character Format for Figures

Figures throughout this chapter use MSB first format.

USCI Operation: SPI Mode

12-7Universal Serial Communication Interface, SPI Mode

12.3.3 Master Mode

Figure 12–2. USCI Master and External Slave

Receive Buffer
UCxRXBUF

Receive Shift Register

Transmit Buffer
UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register (DSR)

UCx
SOMI SOMI

UCxSIMO SIMOMASTER SLAVE

Px.x STE

UCxSTE SS
Port.x

UCxCLK SCLK
MSP430 USCI COMMON SPI

Figure 12–2 shows the USCI as a master in both 3-pin and 4-pin
configurations. The USCI initiates data transfer when data is moved to the
transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on
UCxSIMO starting with either the most-significant or least-significant bit
depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive
shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer
UCxRXBUF and the receive interrupt flag, UCxRXIFG, is set, indicating the
RX/TX operation is complete.

A set transmit interrupt flag, UCxTXIFG, indicates that data has moved from
UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It
does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to
UCxTXBUF because receive and transmit operations operate concurrently.

USCI Operation: SPI Mode

12-8 Universal Serial Communication Interface, SPI Mode

Four-Pin SPI Master Mode

In 4-pin master mode, UCxSTE is used to prevent conflicts with another
master and controls the master as described in Table 12–1. When UCxSTE
is in the master-inactive state:

� UCxSIMO and UCxCLK are set to inputs and no longer drive the bus

� The error bit UCFE is set indicating a communication integrity violation to
be handled by the user.

� The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE,
it will be transmit as soon as UCxSTE transitions to the master-active state.
If an active transfer is aborted by UCxSTE transitioning to the master-inactive
state, the data must be re-written into UCxTXBUF to be transferred when
UCxSTE transitions back to the master-active state. The UCxSTE input signal
is not used in 3-pin master mode.

USCI Operation: SPI Mode

12-9Universal Serial Communication Interface, SPI Mode

12.3.4 Slave Mode

Figure 12–3. USCI Slave and External Master

Receive Buffer
UCxRXBUF

Receive Shift Register

Transmit Buffer
UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register DSR

UCx
SOMISOMI

UCxSIMOSIMOMASTER SLAVE

Px.x UCxSTE

STE SS
Port.x

UCxCLKSCLK
MSP430 USCICOMMON SPI

Figure 12–3 shows the USCI as a slave in both 3-pin and 4-pin configurations.
UCxCLK is used as the input for the SPI clock and must be supplied by the
external master. The data-transfer rate is determined by this clock and not by
the internal bit clock generator. Data written to UCxTXBUF and moved to the
TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data
on UCxSIMO is shifted into the receive shift register on the opposite edge of
UCxCLK and moved to UCxRXBUF when the set number of bits are received.
When data is moved from the RX shift register to UCxRXBUF, the UCxRXIFG
interrupt flag is set, indicating that data has been received. The overrun error
bit, UCOE, is set when the previously received data is not read from
UCxRXBUF before new data is moved to UCxRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master. When UCxSTE is in the
slave-active state, the slave operates normally. When UCxSTE is in the slave-
inactive state:

� Any receive operation in progress on UCxSIMO is halted

� UCxSOMI is set to the input direction

� The shift operation is halted until the UCxSTE line transitions into the slave
transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

USCI Operation: SPI Mode

12-10 Universal Serial Communication Interface, SPI Mode

12.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit it is ready
to receive and transmit. In master mode the bit clock generator is ready, but
is not clocked nor producing any clocks. In slave mode the bit clock generator
is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active
transfer is terminated.

Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator and
the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in
4-pin mode, when the UCxSTE is in the slave-active state.

Receive Enable

The SPI receives data when a transmission is active. Receive and transmit
operations operate concurrently.

USCI Operation: SPI Mode

12-11Universal Serial Communication Interface, SPI Mode

12.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit
clock is provided by the USCI bit clock generator on the UCxCLK pin. The clock
used to generate the bit clock is selected with the UCSSELx bits. When
UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the
bit clock generator is not used, and the UCSSELx bits are don’t care. The SPI
receiver and transmitter operate in parallel and use the same clock source for
data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBR1 and
UCxxBR0 is the division factor of the USCI clock source, BRCLK. The
maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAxMCTL should be cleared when
using SPI mode for USCI_A. The UCAxCLK/UCBxCLK frequency is given by:

fBitClock �

fBRCLK
UCBRx

Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured via the
UCCKPL and UCCKPH control bits of the USCI. Timing for each case is shown
in Figure 12–4.

Figure 12–4. USCI SPI Timing with UCMSB = 1

CKPH CKPL Cycle#

UCxCLK

UCxCLK

UCxCLK

UCxCLK

UCxSIMO/
UCxSOMI

UCxSIMO
UCxSOMI

Move to UCxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

UCxSTE

UC UC

USCI Operation: SPI Mode

12-12 Universal Serial Communication Interface, SPI Mode

12.3.7 Using the SPI Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In SPI slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in SPI slave
mode while the device is in LPM4 and all clock sources are disabled. The
receive or transmit interrupt can wake up the CPU from any low power mode.

USCI Operation: SPI Mode

12-13Universal Serial Communication Interface, SPI Mode

12.3.8 SPI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UCxTXIFG interrupt flag is set by the transmitter to indicate that
UCxTXBUF is ready to accept another character. An interrupt request is
generated if UCxTXIE and GIE are also set. UCxTXIFG is automatically reset
if a character is written to UCxTXBUF. UCxTXIFG is set after a PUC or when
UCSWRST = 1. UCxTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCxTXBUF in SPI Mode

Data written to UCxTXBUF when UCxTXIFG = 0 may result in erroneous
data transmission.

SPI Receive Interrupt Operation

The UCxRXIFG interrupt flag is set each time a character is received and
loaded into UCxRXBUF. An interrupt request is generated if UCxRXIE and GIE
are also set. UCxRXIFG and UCxRXIE are reset by a system reset PUC signal
or when UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF
is read.

USCI Operation: SPI Mode

12-14 Universal Serial Communication Interface, SPI Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAxRXIFG and UCBxRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_RX_USCIB0_RX_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?

; Read UCB0RXBUF (clears UCB0RXIFG)

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF (clears UCA0RXIFG)

...

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_TX_USCIB0_TX_ISR

BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

USCI Registers: SPI Mode

12-15Universal Serial Communication Interface, SPI Mode

12.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode for USCI_A0 and USCI_B0 are
listed in Table 12–2. Registers applicable in SPI mode for USCI_A1 and
USCI_B1 are listed in Table 12–3.

Table 12–2.USCI_A0 and USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 Baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 Baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 Receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 Transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 Bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 Bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 Receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 Transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.

USCI Registers: SPI Mode

12-16 Universal Serial Communication Interface, SPI Mode

Table 12–3.USCI_A1 and USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 Baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 Baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA10MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 Receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 Transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h 001h with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 Bit rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 Bit rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 Receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 Transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: SPI Mode

12-17Universal Serial Communication Interface, SPI Mode

UCAxCTL0, USCI_Ax Control Register 0
UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC=1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the

following edge.
1 Data is captured on the first UCLK edge and changed on the

following edge.

UCCKPL Bit 6 Clock polarity select.
0 The inactive state is low.
1 The inactive state is high.

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode

UCMODEx Bits
2-1

USCI Mode. The UCMODEx bits select the synchronous mode when
UCSYNC = 1.
00 3-Pin SPI
01 4-Pin SPI with UCxSTE active high: slave enabled when UCxSTE = 1
10 4-Pin SPI with UCxSTE active low: slave enabled when UCxSTE = 0
11 I2C Mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

USCI Registers: SPI Mode

12-18 Universal Serial Communication Interface, SPI Mode

UCAxCTL1, USCI_Ax Control Register 1
UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCSWRST

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock in
master mode. UCxCLK is always used in slave mode.
00 NA
01 ACLK
10 SMCLK
11 SMCLK

Unused Bits
5-1

Unused

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

USCI Registers: SPI Mode

12-19Universal Serial Communication Interface, SPI Mode

UCAxBR0, USCI_Ax Bit Rate Control Register 0
UCBxBR1, USCI_Bx Bit Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Bit Rate Control Register 1
UCBxBR1, USCI_Bx Bit Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler. The 16-bit value of {UCxxBR0+UCxxBR1} form the
prescaler value.

USCI Registers: SPI Mode

12-20 Universal Serial Communication Interface, SPI Mode

UCAxSTAT, USCI_Ax Status Register
UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE Unused Unused Unused Unused UCBUSY

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. The transmitter output is internally fed back to the receiver.

UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode.
UCFE is not used in 3-wire master or any slave mode.
0 No error
1 Bus conflict occurred

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCxRXBUF before the previous character was read. UCOE is cleared
automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

Unused Bits
4–1

Unused

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in
progress.
0 USCI inactive
1 USCI transmitting or receiving

USCI Registers: SPI Mode

12-21Universal Serial Communication Interface, SPI Mode

UCAxRXBUF, USCI_Ax Receive Buffer Register
UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7-0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCxRXBUF resets the
receive-error bits, and UCxRXIFG. In 7-bit data mode, UCxRXBUF is LSB
justified and the MSB is always reset.

UCAxTXBUF, USCI_Ax Transmit Buffer Register
UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7-0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted. Writing to the
transmit data buffer clears UCxTXIFG. The MSB of UCxTXBUF is not
used for 7-bit data and is reset.

USCI Registers: SPI Mode

12-22 Universal Serial Communication Interface, SPI Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE

rw-0 rw-0 rw-0 rw-0

Bits
7-4

These bits may be used by other modules. See device-specific datasheet.

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: SPI Mode

12-23Universal Serial Communication Interface, SPI Mode

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0
TXIFG

UCB0
RXIFG

UCA0
TXIFG

UCA0
RXIFG

rw-1 rw-0 rw-1 rw-0

Bits
7-4

These bits may be used by other modules. See device-specific datasheet.

UCB0
TXIFG

Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB0
RXIFG

Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

UCA0
TXIFG

Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF
empty.
0 No interrupt pending
1 Interrupt pending

UCA0
RXIFG

Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

USCI Registers: SPI Mode

12-24 Universal Serial Communication Interface, SPI Mode

UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1TXIE UCB1RXIE UCA1TXIE UCA1RXIE

rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0 rw–0

Unused Bits
7-4

Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: SPI Mode

12-25Universal Serial Communication Interface, SPI Mode

UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1
TXIFG

UCB1
RXIFG

UCA1
TXIFG

UCA1
RXIFG

rw–0 rw–0 rw–0 rw–0 rw–1 rw–0 rw–1 rw–0

Unused Bits
7-4

Unused

UCB1
TXIFG

Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB1
RXIFG

Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

UCA1
TXIFG

Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF
empty.
0 No interrupt pending
1 Interrupt pending

UCA1
RXIFG

Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

13-1Universal Serial Communication Interface,

��������	
����	 ��

��������� ����������

��� ����

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the I2C mode.

Topic Page

13.1 USCI Overview 13-2.

13.2 USCI Introduction: I2C Mode 13-3.

13.3 USCI Operation: I2C Mode 13-5.

13.4 USCI Registers: I2C Mode 13-25.

Chapter 13

USCI Overview

13-2 Universal Serial Communication Interface,

13.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_A0 and USCI_A1. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

� UART mode
� Pulse shaping for IrDA communications
� Automatic baud rate detection for LIN communications
� SPI mode

The USCI_Bx modules support:

� I2C mode
� SPI mode

USCI Introduction: I2C Mod

13-3Universal Serial Communication Interface,

13.2 USCI Introduction: I2C Mode

In I2C mode, the USCI module provides an interface between the MSP430 and
I2C-compatible devices connected by way of the two-wire I2C serial bus.
External components attached to the I2C bus serially transmit and/or receive
serial data to/from the USCI module through the 2-wire I2C interface.

The I2C mode features include:

� Compliance to the Philips Semiconductor I2C specification v2.1
� 7-bit and 10-bit device addressing modes
� General call
� START/RESTART/STOP
� Multi-master transmitter/receiver mode
� Slave receiver/transmitter mode
� Standard mode up to100 kbps and fast mode up to 400 kbps support

� Programmable UCxCLK frequency in master mode

� Designed for low power

� Slave receiver START detection for auto-wake up from LPMx modes

� Slave operation in LPM4

Figure 13−1 shows the USCI when configured in I2C mode.

USCI Introduction: I2C Mod

13-4 Universal Serial Communication Interface,

Figure 13−1. USCI Block Diagram: I2C Mode

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC1CLK

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

BRCLK

Slave Address UC1SA

Transmit Shift Register

UCMST

Transmit Buffer UC1TXBUF

I2C State Machine

Own Address UC1OA

Receive Shift Register

UCA10

Receive Buffer UC1RXBUF

UCGCEN

UCxSDA

UCxSCL

UCSLA10

USCI Operation: I2C Mode

13-5Universal Serial Communication Interface,

13.3 USCI Operation: I2C Mode

The I2C mode supports any slave or master I2C-compatible device.
Figure 13−2 shows an example of an I2C bus. Each I2C device is recognized
by a unique address and can operate as either a transmitter or a receiver. A
device connected to the I2C bus can be considered as the master or the slave
when performing data transfers. A master initiates a data transfer and
generates the clock signal SCL. Any device addressed by a master is
considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock
pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a
positive supply voltage using a pull-up resistor.

Figure 13−2. I2C Bus Connection Diagram

MSP430

VCC

Serial Data (SDA)
Serial Clock (SCL)

Device A

Device B Device C

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430
VCC level.

USCI Operation: I2C Mode

13-6 Universal Serial Communication Interface,

13.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition. To
select I2C operation the UCMODEx bits must be set to 11. After module
initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and re-configuring the USCI module should be done when
UCSWRST is set to avoid unpredictable behavior. Setting UCSWRST in I2C
mode has the following effects:

� I2C communication stops
� SDA and SCL are high impedance
� UCBxI2CSTAT, bits 6-0 are cleared
� UCBxTXIE and UCBxRXIE are cleared
� UCBxTXIFG and UCBxRXIFG are cleared
� All other bits and registers remain unchanged.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)

5) Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

USCI Operation: I2C Mode

13-7Universal Serial Communication Interface,

13.3.2 I2C Serial Data

One clock pulse is generated by the master device for each data bit
transferred. The I2C mode operates with byte data. Data is transferred most
significant bit first as shown in Figure 13−3.

The first byte after a START condition consists of a 7-bit slave address and the
R/W bit. When R/W = 0, the master transmits data to a slave. When R/W = 1,
the master receives data from a slave. The ACK bit is sent from the receiver
after each byte on the 9th SCL clock.

Figure 13−3. I2C Module Data Transfer

SDA

SCL

MSB Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

1 2 7 8 9 1 2 8 9
ACK ACK

START
Condition (S)

STOP
Condition (P)R/W

START and STOP conditions are generated by the master and are shown in
Figure 13−3. A START condition is a high-to-low transition on the SDA line
while SCL is high. A STOP condition is a low-to-high transition on the SDA line
while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in
Figure 13−4. The high and low state of SDA can only change when SCL is low,
otherwise START or STOP conditions will be generated.

Figure 13−4. Bit Transfer on the I2C Bus

Data Line
Stable Data

Change of Data Allowed

SDA

SCL

USCI Operation: I2C Mode

13-8 Universal Serial Communication Interface,

13.3.3 I2C Addressing Modes

The I2C mode supports 7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 13−5, the first byte is the 7-bit
slave address and the R/W bit. The ACK bit is sent from the receiver after each
byte.

Figure 13−5. I2C Module 7-Bit Addressing Format

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 13−6, the first byte is made
up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte. The next byte is the
remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the
8-bit data.

Figure 13−6. I2C Module 10-Bit Addressing Format

S

1

Slave Address 1st byte

7

Slave Address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first
stopping a transfer, by issuing a repeated START condition. This is called a
RESTART. After a RESTART is issued, the slave address is again sent out with
the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 13−7.

Figure 13−7. I2C Module Addressing Format with Repeated START Condition

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address R/W ACK Data ACK P

1 Any
Number

1 Any Number

USCI Operation: I2C Mode

13-9Universal Serial Communication Interface,

13.3.4 I2C Module Operating Modes

In I2C mode the USCI module can operate in master transmitter, master
receiver, slave transmitter, or slave receiver mode. The modes are discussed
in the following sections. Time lines are used to illustrate the modes.

Figure 13−8 shows how to interpret the time line figures. Data transmitted by
the master is represented by grey rectangles, data transmitted by the slave by
white rectangles. Data transmitted by the USCI module, either as master or
slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow
indicating where in the the data stream the action occurs. Actions that must
be handled with software are indicated with white rectangles with an arrow
pointing to where in the data stream the action must take place.

Figure 13−8. I2C Time line Legend

...

USCI Master

USCI Slave

Other Master

Other Slave

... Bits set or reset by software

Bits set or reset by hardware

USCI Operation: I2C Mode

13-10 Universal Serial Communication Interface,

Slave Mode

The USCI module is configured as an I2C slave by selecting the I2C mode with
UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing
the UCTR bit to receive the I2C address. Afterwards, transmit and receive
operations are controlled automatically depending on the R/W bit received
together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When
UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing
is selected. The UCGCEN bit selects if the slave responds to a general call.

When a START condition is detected on the bus, the USCI module will receive
the transmitted address and compare it against its own address stored in
UCBxI2COA. The UCSTTIFG flag is set when address received matches the
USCI slave address.

I2C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the
master is identical to its own address with a set R/W bit. The slave transmitter
shifts the serial data out on SDA with the clock pulses that are generated by
the master device. The slave device does not generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been
transmitted.

If the master requests data from the slave the USCI module is automatically
configured as a transmitter and UCTR and UCBxTXIFG become set. The SCL
line is held low until the first data to be sent is written into the transmit buffer
UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is
cleared, and the data is transmitted. As soon as the data is transferred into the
shift register the UCBxTXIFG is set again. After the data is acknowledged by
the master the next data byte written into UCBxTXBUF is transmitted or if the
buffer is empty the bus is stalled during the acknowledge cycle by holding SCL
low until new data is written into UCBxTXBUF. If the master sends a NACK
succeeded by a STOP condition the UCSTPIFG flag is set. If the NACK is
succeeded by a repeated START condition the USCI I2C state machine
returns to its address-reception state.

Figure 13−9 illustrates the slave transmitter operation.

USCI Operation: I2C Mode

13-11Universal Serial Communication Interface,

Figure 13−9. I2C Slave Transmitter Mode

S SLA/R A DATA A P

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=?0
UCBxTXBUF discarded

Reception of own
address and
transmission of data
bytes

Bus stalled (SCL held low)
until data available

DATADATA A

UCSTPIFG=1
UCSTTIFG=0

A

A

DATA A S SLA/R

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCBxTXBUF discarded

DATA A S SLA/W

UCTR=0 (Receiver)
UCSTTIFG=1

Arbitration lost as
master and
addressed as slave

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCBxTXIFG=0

Repeated start −
continue as
slave transmitter

Repeated start −
continue as
slave receiver

Write data to UCBxTXBUF

UCBxTXIFG=1

UCBxTXIFG=0

UCBxTXIFG=0

Write data to UCBxTXBUF

USCI Operation: I2C Mode

13-12 Universal Serial Communication Interface,

I2C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the
master is identical to its own address and a cleared R/W bit is received. In slave
receiver mode, serial data bits received on SDA are shifted in with the clock
pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required
after a byte has been received.

If the slave should receive data from the master the USCI module is
automatically configured as a receiver and UCTR is cleared. After the first data
byte is received the receive interrupt flag UCBxRXIFG is set. The USCI
module automatically acknowledges the received data and can receive the
next data byte.

If the previous data wasn not read from the receive buffer UCBxRXBUF at the
end of a reception, the bus is stalled by holding SCL low. As soon as
UCBxRXBUF is read the new data is transferred into UCBxRXBUF, an
acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master
during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF
is not ready to receive the latest data. If the UCTXNACK bit is set while SCL
is held low the bus will be released, a NACK is transmitted immediately, and
UCBxRXBUF is loaded with the last received data. Since the previous data
was not read that data will be lost. To avoid loss of data the UCBxRXBUF
needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I2C state
machine returns to its address reception state.

Figure 13−10 illustrates the the I2C slave receiver operation.

USCI Operation: I2C Mode

13-13Universal Serial Communication Interface,

Figure 13−10. I2C Slave Receiver Mode

S SLA/W A DATA A P or SReception of own
address and data
bytes. All are
acknowledged.

UCBxRXIFG=1

DATADATA A A

UCTXNACK=1

Refer to:
”Slave Transmitter”
Timing Diagram

Bus not stalled even if
UCBxRXBUF not read

P or SDATA A

A
Arbitration lost as
master and
addressed as slave

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

Last byte is not
acknowledged.

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

UCTXNACK=0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Read data from UCBxRXBUF

USCI Operation: I2C Mode

13-14 Universal Serial Communication Interface,

I2C Slave 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in
Figure 13−11. In 10-bit addressing mode, the slave is in receive mode after the
full address is received. The USCI module indicates this by setting the
UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode the master sends a repeated START condition together with
the first byte of the address but with the R/W bit set. This will set the UCSTTIFG
flag if it was previously cleared by software and the USCI modules switches
to transmitter mode with UCTR = 1.

Figure 13−11.I2C Slave 10-bit Addressing Mode

S

S 11110 xx/W A SLA (2.) A P or SReception of own
address and data
bytes. All are
acknowledged.

UCBxRXIFG=1

DATA DATAA A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

P or S

UCBxRXIFG=1

DATA DATAA A

S 11110 xx/W A SLA (2.) A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

11110 xx/R A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCSTTIFG=0

DATA A P or SReception of own
address and
transmission of data
bytes

Slave Transmitter

Slave Receiver

USCI Operation: I2C Mode

13-15Universal Serial Communication Interface,

Master Mode

The USCI module is configured as an I2C master by selecting the I2C mode
with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the
master is part of a multi-master system, UCMM must be set and its own
address must be programmed into the UCBxI2COA register. When UCA10 =
0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is
selected. The UCGCEN bit selects if the USCI module responds to a general
call.

I2C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. The UCBxTXIFG bit is set when
the START condition is generated and the first data to be transmitted can be
written into UCBxTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during
transmission of the slave address. UCBxTXIFG is set again as soon as the
data is transferred from the buffer into the shift register. If there is no data
loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during
the acknowledge cycle with SCL low until data is written into UCBxTXBUF.
Data is transmitted or the bus is held as long as the UCTXSTP bit or UCTXSTT
bit is not set.

Setting UCTXSTP will generate a STOP condition after the next acknowledge
from the slave. If UCTXSTP is set during the transmission of the slave’s
address or while the USCI module waits for data to be written into
UCBxTXBUF, a STOP condition is generated even if no data was transmitted
to the slave. When transmitting a single byte of data, the UCTXSTP bit must
be set while the byte is being transmitted, or anytime after transmission
begins, without writing new data into UCBxTXBUF. Otherwise, only the
address will be transmitted. When the data is transferred from the buffer to the
shift register, UCBxTXIFG will become set indicating data transmission has
begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTR may be set or cleared to configure transmitter or receiver, and a different
slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge
interrupt flag UCNACKIFG is set. The master must react with either a STOP
condition or a repeated START condition. If data was already written into
UCBxTXBUF it will be discarded. If this data should be transmitted after a
repeated START it must be written into UCBxTXBUF again.

USCI Operation: I2C Mode

13-16 Universal Serial Communication Interface,

Figure 13−12 illustrates the I2C master transmitter operation.

Figure 13−12. I2C Master Transmitter Mode

Other master continues

S SLA/W A DATA A P
Successful
transmission to a
slave receiver

UCBxTXIFG=1

DATADATA A A

UCTXSTP=1
UCBxTXIFG=0

Next transfer started
with a repeated start
condition

DATA A S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA A S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1
3) UCBxTXIFG=0

Not acknowledge
received after slave
address

P

S SLA/W

S SLA/R

UCTXSTP=1

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

A

Other master continues

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

USCI continues as Slave Receiver

Not acknowledge
received after a data
byte

UCTXSTT=0 UCTXSTP=0

UCTXSTP=0

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Bus stalled (SCL held low)
until data available

Write data to UCBxTXBUF

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCBxTXIFG=1
UCBxTXBUF discarded

UCTXSTT=0
UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCBxTXIFG=1
UCBxTXBUF discarded

UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

USCI Operation: I2C Mode

13-17Universal Serial Communication Interface,

I2C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. As soon as the slave
acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from
the slave is received and acknowledged and the UCBxRXIFG flag is set. Data
is received from the slave ss long as UCTXSTP or UCTXSTT is not set. If
UCBxRXBUF is not read the master holds the bus during reception of the last
data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the
not-acknowledge interrupt flag UCNACKIFG is set. The master must react
with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting
UCTXSTP, a NACK followed by a STOP condition is generated after reception
of the data from the slave, or immediately if the USCI module is currently
waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set
while the byte is being received. For this case, the UCTXSTT may be polled
to determine when it is cleared:

BIS.B #UCTXSTT,&UCBOCTL1 ;Transmit START cond.

POLL_STT BIT.B #UCTXSTT,&UCBOCTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,

BIS.B #UCTXSTP,&UCB0CTL1 ;transmit STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTR may be set or cleared to configure transmitter or receiver, and a different
slave address may be written into UCBxI2CSA if desired.

Figure 13−13 illustrates the I2C master receiver operation.

fang
Setting the UCTXSTP bit will generate a STOP condition. After setting
UCTXSTP, a NACK followed by a STOP condition is generated after reception
of the data from the slave, or immediately if the USCI module is currently

fang
waiting for UCBxRXBUF to be read.

USCI Operation: I2C Mode

13-18 Universal Serial Communication Interface,

Figure 13−13. I2C Master Receiver Mode

Other master continues

S SLA/R A DATA A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

UCBxRXIFG=1

DATADATA A

UCTXSTP=1

Next transfer started
with a repeated start
condition

DATA S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Not acknowledge
received after slave
address

UCTXSTT=0
UCNACKIFG=1

P

S SLA/W

S SLA/R

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

Other master continues

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

USCI continues as Slave Transmitter

A

A

A

UCTXSTT=0 UCTXSTP=0

UCBxTXIFG=1

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

UCTXSTP=1

UCTXSTP=0

USCI Operation: I2C Mode

13-19Universal Serial Communication Interface,

I2C Master 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in
Figure 13−14.

Figure 13−14. I2C Master 10-bit Addressing Mode

Master Transmitter

S A A P

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

Successful
transmission to a
slave receiver

UCBxTXIFG=1
UCBxTXIFG=1

DATADATA A A

UCTXSTP=1

UCTXSTT=0 UCTXSTP=0

11110 xx/W SLA (2.)

S A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

DATADATA A

UCTXSTP=1

A

UCTXSTT=0 UCTXSTP=0

A A11110 xx/W SLA (2.) 11110 xx/R

Master Receiver

S

UCBxRXIFG=1

USCI Operation: I2C Mode

13-20 Universal Serial Communication Interface,

Arbitration

If two or more master transmitters simultaneously start a transmission on the
bus, an arbitration procedure is invoked. Figure 13−15 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on SDA by the competing transmitters. The first master
transmitter that generates a logic high is overruled by the opposing master
generating a logic low. The arbitration procedure gives priority to the device
that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets
the arbitration lost flag UCALIFG. If two or more devices send identical first
bytes, arbitration continues on the subsequent bytes.

Figure 13−15. Arbitration Procedure Between Two Master Transmitters

1

0 0 0

1

0 0 0

1 1

111

n
Device #1 Lost Arbitration
and Switches Off

Bus Line
SCL

Data From
Device #1

Data From
Device #2

Bus Line
SDA

If the arbitration procedure is in progress when a repeated START condition
or STOP condition is transmitted on SDA, the master transmitters involved in
arbitration must send the repeated START condition or STOP condition at the
same position in the format frame. Arbitration is not allowed between:

� A repeated START condition and a data bit
� A STOP condition and a data bit
� A repeated START condition and a STOP condition

USCI Operation: I2C Mode

13-21Universal Serial Communication Interface,

13.3.5 I2C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the I2C bus. When the USCI
is in master mode, BITCLK is provided by the USCI bit clock generator and the
clock source is selected with the UCSSELx bits. In slave mode the bit clock
generator is not used and the UCSSELx bits are don’t care.

The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division
factor of the USCI clock source, BRCLK. The maximum bit clock that can be
used in single master mode is fBRCLK/4. In multi-master mode the maximum
bit clock is fBRCLK/8. The BITCLK frequency is given by:

fBitClock �
fBRCLK
UCBRx

The minimum high and low periods of the generated SCL are

tLOW,MIN � tHIGH,MIN �
UCBRx�2
fBRCLK

 when UCBRx is even and

tLOW,MIN � tHIGH,MIN �
UCBRx�2
fBRCLK

 when UCBRx is odd.

The USCI clock source frequency and the prescaler setting UCBRx must to
be chosen such that the minimum low and high period times of the I2C specifi-
cation are met.

During the arbitration procedure the clocks from the different masters must be
synchronized. A device that first generates a low period on SCL overrules the
other devices forcing them to start their own low periods. SCL is then held low
by the device with the longest low period. The other devices must wait for SCL
to be released before starting their high periods. Figure 13−16 illustrates the
clock synchronization. This allows a slow slave to slow down a fast master.

Figure 13−16. Synchronization of Two I2C Clock Generators During Arbitration

Wait
State Start HIGH

Period

SCL From
Device #1

SCL From
Device #2

Bus Line
SCL

USCI Operation: I2C Mode

13-22 Universal Serial Communication Interface,

13.3.6 Using the USCI Module in I2C Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In I2C slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in I2C slave
mode while the device is in LPM4 and all internal clock sources are disabled.
The receive or transmit interrupts can wake up the CPU from any low power
mode.

USCI Operation: I2C Mode

13-23Universal Serial Communication Interface,

13.3.7 USCI Interrupts in I2C Mode

Their are two interrupt vectors for the USCI module in I2C mode. One interrupt
vector is associated with the transmit and receive interrupt flags. The other
interrupt vector is associated with the four state change interrupt flags. Each
interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and
the GIE bit is set, the interrupt flag will generate an interrupt request. DMA
transfers are controlled by the UCBxTXIFG and UCBxRXIFG flags on devices
with a DMA controller.

I2C Transmit Interrupt Operation

The UCBxTXIFG interrupt flag is set by the transmitter to indicate that
UCBxTXBUF is ready to accept another character. An interrupt request is
generated if UCBxTXIE and GIE are also set. UCBxTXIFG is automatically
reset if a character is written to UCBxTXBUF or if a NACK is received.
UCBxTXIFG is set when UCSWRST = 1 and the I2C mode is selected.
UCBxTXIE is reset after a PUC or when UCSWRST = 1.

I2C Receive Interrupt Operation

The UCBxRXIFG interrupt flag is set when a character is received and loaded
into UCBxRXBUF. An interrupt request is generated if UCBxRXIE and GIE are
also set. UCBxRXIFG and UCBxRXIE are reset after a PUC signal or when
UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF is read.

I2C State Change Interrupt Operation.

Table 13−1 Describes the I2C state change interrupt flags.

Table 13−1.I2C State Change Interrupt Flags

Interrupt Flag Interrupt Condition

UCALIFG Arbitration-lost. Arbitration can be lost when two or more
transmitters start a transmission simultaneously, or when the
USCI operates as master but is addressed as a slave by another
master in the system. The UCALIFG flag is set when arbitration is
lost. When UCALIFG is set the UCMST bit is cleared and the I2C
controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge
is expected but is not received. UCNACKIFG is automatically
cleared when a START condition is received.

UCSTTIFG Start condition detected interrupt. This flag is set when the I2C
module detects a START condition together with its own address
while in slave mode. UCSTTIFG is used in slave mode only and
is automatically cleared when a STOP condition is received.

UCSTPIFG Stop condition detected interrupt. This flag is set when the I2C
module detects a STOP condition while in slave mode.
UCSTPIFG is used in slave mode only and is automatically
cleared when a START condition is received.

USCI Operation: I2C Mode

13-24 Universal Serial Communication Interface,

Interrupt Vector Assignment

USCI_Ax and USCI_Bx share the same interrupt vectors. In I2C mode the
state change interrupt flags UCSTTIFG, UCSTPIFG, UCIFG, UCALIFG from
USCI_Bx and UCAxRXIFG from USCI_Ax are routed to one interrupt vector.
The I2C transmit and receive interrupt flags UCBxTXIFG and UCBxRXIFG
from USCI_Bx and UCAxTXIFG from USCI_Ax share another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of the interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and state change interrupts from USCI_B0 in I2C mode.

USCIA0_RX_USCIB0_I2C_STATE_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_I2C_STATE_ISR

; Decode I2C state changes ...

; Decode I2C state changes ...

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF ... − clears UCA0RXIFG

...

RETI

The following software example shows an extract of the interrupt service
routine that handles data transmit interrupts from USCI_A0 in either UART or
SPI mode and the data transfer interrupts from USCI_B0 in I2C mode.

USCIA0_TX_USCIB0_I2C_DATA_ISR

BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?

JNZ USCIA0_TX_ISR

USCIB0_I2C_DATA_ISR

BIT.B #UCB0RXIFG, &IFG2

JNZ USCIB0_I2C_RX

USCIB0_I2C_TX

; Write UCB0TXBUF... − clears UCB0TXIFG

...

RETI

USCIB0_I2C_RX
; Read UCB0RXBUF... − clears UCB0RXIFG

...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF ... − clears UCA0TXIFG

...
RETI

USCI Registers: I2C Mode

13-25Universal Serial Communication Interface,

13.4 USCI Registers: I2C Mode

The USCI registers applicable in I2C mode for USCI_B0 are listed in
Table 13−2 and for USCI_B1 in Table 13−3.

Table 13−2.USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 Bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 Bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 I2C Interrupt enable register UCB0I2CIE Read/write 06Ch Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 Receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 Transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

USCI_B0 I2C Own Address register UCB0I2COA Read/write 0118h Reset with PUC

USCI_B0 I2C Slave Address register UCB0I2CSA Read/write 011Ah Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.

Table 13−3.USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h Reset with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 Baud rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 Baud rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 I2C Interrupt enable register UCB1I2CIE Read/write 0DCh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 Receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 Transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_B1 I2C Own Address register UCB1I2COA Read/write 017Ch Reset with PUC

USCI_B1 I2C Slave Address register UCB1I2CSA Read/write 017Eh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: I2C Mode

13-26 Universal Serial Communication Interface,

UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCA10 UCSLA10 UCMM Unused UCMST UCMODEx=11 UCSYNC=1

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 r−1

UCA10 Bit 7 Own addressing mode select
0 Own address is a 7-bit address
1 Own address is a 10-bit address

UCSLA10 Bit 6 Slave addressing mode select
0 Address slave with 7-bit address
1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select
0 Single master environment. There is no other master in the system.

The address compare unit is disabled.
1 Multi master environment

Unused Bit 4 Unused

UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master
environment (UCMM = 1) the UCMST bit is automatically cleared and the
module acts as slave.
0 Slave mode
1 Master mode

UCMODEx Bits
2−1

USCI Mode. The UCMODEx bits select the synchronous mode when
UCSYNC = 1.
00 3−Pin SPI
01 4−Pin SPI (master/slave enabled if STE = 1)
10 4−Pin SPI (master/slave enabled if STE = 0)
11 I2C Mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

USCI Registers: I2C Mode

13-27Universal Serial Communication Interface,

UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock.
00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK

Unused Bit 5 Unused

UCTR Bit 4 Transmitter/Receiver
0 Receiver
1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is
transmitted.
0 Acknowledge normally
1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In
master receiver mode the STOP condition is preceded by a NACK.
UCTXSTP is automatically cleared after STOP is generated.
0 No STOP generated
1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In
master receiver mode a repeated START condition is preceded by a
NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted.
Ignored in slave mode.
0 Do not generate START condition
1 Generate START condition

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

USCI Registers: I2C Mode

13-28 Universal Serial Communication Interface,

UCBxBR0, USCI_Bx Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBxBR1, USCI_Bx Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler. The 16-bit value of {UCxxBR0+UCxxBR1} form the
prescaler value.

USCI Registers: I2C Mode

13-29Universal Serial Communication Interface,

UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

Unused UC
SCLLOW UCGC UCBBUSY UCNACK

IFG UCSTPIFG UCSTTIFG UCALIFG

rw−0 r−0 rw−0 r−0 rw−0 rw−0 rw−0 rw−0

Unused Bit 7 Unused.

UC
SCLLOW

Bit 6 SCL low
0 SCL is not held low
1 SCL is held low

UCGC Bit 5 General call address received. UCGC is automatically cleared when a
START condition is received.
0 No general call address received
1 General call address received

UCBBUSY Bit 4 Bus busy
0 Bus inactive
1 Bus busy

UCNACK
IFG

Bit 3 Not-acknowledge received interrupt flag. UCNACKIFG is automatically
cleared when a START condition is received.
0 No interrupt pending
1 Interrupt pending

UCSTPIFG Bit 2 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a
START condition is received.
0 No interrupt pending
1 Interrupt pending

UCSTTIFG Bit 1 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP
condition is received.
0 No interrupt pending
1 Interrupt pending

UCALIFG Bit 0 Arbitration lost interrupt flag
0 No interrupt pending
1 Interrupt pending

USCI Registers: I2C Mode

13-30 Universal Serial Communication Interface,

UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7−0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCBxRXBUF resets
UCBxRXIFG.

UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7−0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted. Writing to the
transmit data buffer clears UCBxTXIFG.

USCI Registers: I2C Mode

13-31Universal Serial Communication Interface,

UCBxI2COA, USCIBx I2C Own Address Register

15 14 13 12 11 10 9 8

UCGCEN 0 0 0 0 0 I2COAx

rw−0 r0 r0 r0 r0 r0 rw−0 rw−0

7 6 5 4 3 2 1 0

I2COAx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

UCGCEN Bit 15 General call response enable
0 Do not respond to a general call
1 Respond to a general call

I2COAx Bits
9-0

I2C own address. The I2COAx bits contain the local address of the USCI_Bx
I2C controller. The address is right-justified. In 7-bit addressing mode Bit 6 is
the MSB, Bits 9-7 are ignored. In 10-bit addressing mode Bit 9 is the MSB.

UCBxI2CSA, USCI_Bx I2C Slave Address Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx

r0 r0 r0 r0 r0 r0 rw−0 rw−0

7 6 5 4 3 2 1 0

I2CSAx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

I2CSAx Bits
9-0

I2C slave address. The I2CSAx bits contain the slave address of the external
device to be addressed by the USCI_Bx module. It is only used in master
mode. The address is right-justified. In 7-bit slave addressing mode Bit 6 is
the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the
MSB.

USCI Registers: I2C Mode

13-32 Universal Serial Communication Interface,

UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register

7 6 5 4 3 2 1 0

Reserved UCNACKIE UCSTPIE UCSTTIE UCALIE

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Reserved Bits
7−4

Reserved

UCNACKIE Bit 3 Not-acknowledge interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTPIE Bit 2 Stop condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTTIE Bit 1 Start condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCALIE Bit 0 Arbitration lost interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: I2C Mode

13-33Universal Serial Communication Interface,

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE

rw−0 rw−0

Bits
7-4

These bits may be used by other modules. See device-specific datasheet.

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

Bits
1-0

These bits may be used by other modules. See device-specific datasheet.

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0
TXIFG

UCB0
RXIFG

rw−1 rw−0

Bits
7-4

These bits may be used by other modules. See device-specific datasheet.

UCB0
TXIFG

Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB0
RXIFG

Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
1-0

These bits may be used by other modules. See device-specific datasheet.

USCI Registers: I2C Mode

13-34 Universal Serial Communication Interface,

UC1IE, USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1TXIE UCB1RXIE

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Unused Bits
7-4

Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

Bits
1-0

These bits may be used by other USCI modules. See device-specific
datasheet.

UC1IFG, USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1
TXIFG

UCB1
RXIFG

rw−0 rw−0 rw−0 rw−0 rw−1 rw−0

Unused Bits
7-4

Unused.

UCB1
TXIFG

Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB1
RXIFG

Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
1-0

These bits may be used by other modules. See device-specific datasheet.

14-1OA

��

The OA is a general purpose operational amplifier. This chapter describes the
OA. Two OA modules are implemented in the MSP430x22x4 devices.

Topic Page

14.1 OA Introduction 14-2.

14.2 OA Operation 14-4.

14.3 OA Registers 14-12.

Chapter 14

OA Introduction

14-2 OA

14.1 OA Introduction

The OA op amps support front-end analog signal conditioning prior to
analog-to-digital conversion.

Features of the OA include:

� Single supply, low-current operation

� Rail-to-rail output

� Programmable settling time vs. power consumption

� Software selectable configurations

� Software selectable feedback resistor ladder for PGA implementations

Note: Multiple OA Modules

Some devices may integrate more than one OA module. In the case where
more than one OA is present on a device, the multiple OA modules operate
identically.

Throughout this chapter, nomenclature appears such as OAxCTL0 to
describe register names. When this occurs, the x is used to indicate which
OA module is being discussed. In cases where operation is identical, the
register is simply referred to as OAxCTL0.

The block diagram of the OA module is shown in Figure 14−1.

OA Introduction

14-3OA

Figure 14−1. OA Block Diagram

000

001

100

011

010

111

110

101

3

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx

OAxTAP

OAFCx

OAxRBOTTOM

OA1RBOTTOM(OA0)
OA2RBOTTOM (OA1)
OA0RBOTTOM (OA2)

000

001

100

011

010

111

110

101

OAPMx

OAxOUT

OAx

+

−

A1 (OA0)
A3 (OA1)
A5 (OA2)

A12 (OA0)
A13 (OA1)
A14 (OA2)

001

else

OAFCx = 6

0

1

OANx = 3

OAPx = 3

OA1TAP (OA0)
OA2TAP (OA1)
OA0TAP (OA2)

OAxRTOP

000

1

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB

OA2OUT (OA0)
OA0OUT (OA1)
OA1OUT (OA2)

0

1

OAFCx = 5 OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

OAxIB

OANEXT
OAFCx = 6

OAxRBOTTOM

A12/OA0O
A13/OA1O
A14/OA2O

A1/OA0O
A3/OA1O
A5/OA2O

OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

AVCC

1
0

OARRIP

0
1

OAFBRx > 0

1

OAFCx = 0

OAADCx

OAxFB
OA2OUT (OA0)
OA0OUT (OA1)
OA1OUT (OA2)

2
F

ee
ba

ck
 S

w
itc

h
M

at
rix

OA

14-4 OA

14.2 OA Operation

The OA module is configured with user software. The setup and operation of
the OA is discussed in the following sections.

14.2.1 OA Amplifier

The OA is a configurable, low-current, rail-to-rail output operational amplifier.
It can be configured as an inverting amplifier, or a non-inverting amplifier, or
can be combined with other OA modules to form differential amplifiers. The
output slew rate of the OA can be configured for optimized settling time vs.
power consumption with the OAPMx bits. When OAPMx = 00 the OA is off and
the output is high-impedance. When OAPMx > 0, the OA is on. See the
device-specific datasheet for parameters.

14.2.2 OA Input

The OA has configurable input selection. The signals for the + and − inputs are
individually selected with the OANx and OAPx bits and can be selected as
external signals or internal signals. OAxI0 and OAxI1 are external signals
provided for each OA module. OA0I1 provides a non-inverting input that is tied
together internally for all OA modules. OAxIA and OAxIB provide
device-dependent inputs. Refer to the device datasheet for signal
connections.

When the external inverting input is not needed for a mode, setting the
OANEXT bit makes the internal inverting input externally available.

OA

14-5OA

14.2.3 OA Output and Feedback Routing

The OA has configurable output selection controlled by the OAADCx bits and
the OAFCx bits. The OA output signals can be routed to ADC12 inputs A12
(OA0), A13 (OA1), or A14 (OA2) internally, or can be routed to these ADC
inputs and their external pins. The OA output signals can also be routed to
ADC inputs A1 (OA0), A3 (OA1), or A5 (OA2) and the corresponding external
pin. The OA output is also connected to an internal R-ladder with the OAFCx
bits. The R-ladder tap is selected with the OAFBRx bits to provide
programmable gain amplifier functionality.

Table 14−1 shows the OA output and feedback routing configurations. When
OAFCx = 0 the OA is in general-purpose mode and feedback is achieved
externally to the device. When OAFCx > 0 and when OAADCx = 00 or 11, the
output of the OA is kept internal to the device. When OAFCx > 0 and OAADCx
= 01 or 10, the OA output is routed both internally and externally.

Table 14−1.OA Output Configurations

OAFCx OAADCx OA Output and Feedback Routing

= 0 x0 OAxOUT connected to external pins and ADC input A1, A3,
or A5.

= 0 x1 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

> 0 00 OAxOUT used for internal routing only.

> 0 01 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

> 0 10 OAxOUT connected to external pins and ADC input A1, A3,
or A5.

> 0 11 OAxOUT connected internally to ADC input A12, A13 , or
A14. External A12, A13, or A14 pin connections are
disconnected from the ADC.

OA

14-6 OA

14.2.4 OA Configurations

The OA can be configured for different amplifier functions with the OAFCx bits
as listed in Table 14−2.

Table 14−2.OA Mode Select

OAFCx OA Mode

000 General-purpose opamp

001 Unity gain buffer for three-opamp differential amplifier

010 Unity gain buffer

011 Comparator

100 Non-inverting PGA amplifier

101 Cascaded non-inverting PGA amplifier

110 Inverting PGA amplifier

111 Differential amplifier

General Purpose Opamp Mode

In this mode the feedback resistor ladder is isolated from the OAx and the
OAxCTL0 bits define the signal routing. The OAx inputs are selected with the
OAPx and OANx bits. The OAx output is connected to the ADC12 input
channel as selected by the OAxCTL0 bits.

Unity Gain Mode for Differential Amplifier

In this mode the output of the OAx is connected to the inverting input of the OAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The output of the OAx is also routed through the resistor
ladder as part of the three-opamp differential amplifier. This mode is only for
construction of the three-opamp differential amplifier.

Unity Gain Mode

In this mode the output of the OAx is connected to the inverting input of the OAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The OAx output is connected to the ADC12 input channel
as selected by the OAxCTL0 bits.

OA

14-7OA

Comparator Mode

In this mode the output of the OAx is isolated from the resistor ladder. RTOP
is connected to AVSS and RBOTTOM is connected to AVCC when OARRIP = 0.
When OARRIP = 1, the connection of the resistor ladder is reversed. RTOP is
connected to AVCC and RBOTTOM is connected to AVSS. The OAxTAP signal
is connected to the inverting input of the OAx providing a comparator with a
programmable threshold voltage selected by the OAFBRx bits. The
non-inverting input is selected by the OAPx bits. Hysteresis can be added by
an external positive feedback resistor. The external connection for the
inverting input is disabled and the OANx bits are don’t care. The OAx output
is connected to the ADC12 input channel as selected by the OAxCTL0 bits.

Non-Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is
connected to AVSS. The OAxTAP signal is connected to the inverting input of
the OAx providing a non-inverting amplifier configuration with a programmable
gain of [1+OAxTAP ratio]. The OAxTAP ratio is selected by the OAFBRx bits.
If the OAFBRx bits = 0, the gain is unity. The non-inverting input is selected
by the OAPx bits. The external connection for the inverting input is disabled
and the OANx bits are don’t care. The OAx output is connected to the ADC12
input channel as selected by the OAxCTL0 bits.

Cascaded Non-Inverting PGA Mode

This mode allows internal routing of the OA signals to cascade two or three OA
in non-inverting mode. In this mode the non-inverting input of the OAx is
connected to OA2OUT (OA0), OA0OUT (OA1), or OA1OUT (OA2) when
OAPx = 11. The OAx outputs are connected to the ADC12 input channel as
selected by the OAxCTL0 bits.

Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is
connected to an analog multiplexer that multiplexes the OAxI0, OAxI1, OAxIA,
or the output of one of the remaining OAs, selected with the OANx bits. The
OAxTAP signal is connected to the inverting input of the OAx providing an
inverting amplifier with a gain of −OAxTAP ratio. The OAxTAP ratio is selected
by the OAFBRx bits. The non-inverting input is selected by the OAPx bits. The
OAx output is connected to the ADC12 input channel as selected by the
OAxCTL0 bits.

Note: Using OAx Negative Input Simultaneously as ADC Input

When the pin connected to the negative input multiplexer is also used as an
input to the ADC, conversion errors up to 5mV may be observed due to
internal wiring voltage drops.

OA

14-8 OA

Differential Amplifier Mode

This mode allows internal routing of the OA signals for a two-opamp or
three-opamp instrumentation amplifier. Figure 14−2 shows a two-opamp
configuration with OA0 and OA1. In this mode the output of the OAx is
connected to RTOP by routing through another OAx in the Inverting PGA mode.
RBOTTOM is unconnected providing a unity gain buffer. This buffer is combined
with one or two remaining OAx to form the differential amplifier. The OAx
output is connected to the ADC12 input channel as selected by the OAxCTL0
bits.

Figure 14−2 shows an example of a two-opamp differential amplifier using
OA0 and OA1. The control register settings and are shown in Table 14−3. The
gain for the amplifier is selected by the OAFBRx bits for OA1 and is shown in
Table 14−4. The OAx interconnections are shown in Figure 14−3.

Table 14−3.Two-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 000 111 0 x

OA1CTL0 11 xx xx x x

OA1CTL1 xxx 110 0 x

Table 14−4.Two-Opamp Differential Amplifier Gain Settings

OA1 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 14−2. Two Opamp Differential Amplifier

OA0

+

−

OA1

+

−

1

2)12(

R

xRVV
Vdiff

−
=

R2R1

V2

V1

OA

14-9OA

Figure 14−3. Two Opamp Differential Amplifier OAx Interconnections

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

+

−

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB
0

1
OA0

000

001

100

011

010

111

110

101

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx
000

001

100

011

010

111

110

101

OAPMx

OA1

+

−

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB
0

1

00

01

10

11

OAxFB

OAADCx

2

OA

14-10 OA

Figure 14−4 shows an example of a three-opamp differential amplifier using
OA0, OA1 and OA2 (Three opamps are not available on all devices. See
device-specific datasheet for implementation.). The control register settings
are shown in Table 14−5. The gain for the amplifier is selected by the OAFBRx
bits of OA0 and OA2. The OAFBRx settings for both OA0 and OA2 must be
equal. The gain settings are shown in Table 14−6. The OAx interconnections
are shown in Figure 14−5.

Table 14−5.Three-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 xxx 001 0 x

OA1CTL0 xx xx xx 0 0

OA1CTL1 000 111 0 x

OA2CTL0 11 11 xx x x

OA2CTL1 xxx 110 0 x

Table 14−6.Three-Opamp Differential Amplifier Gain Settings

OA0/OA2 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 14−4. Three Opamp Differential Amplifier

OA1

+

−

OA2

+

−

1

2)12(

R

xRVV
Vdiff

−
=

R2R1

V2

V1

OA0

+

−

R2R1

OA

14-11OA

Figure 14−5. Three Opamp Differential Amplifier OAx Interconnections

000

001

100

011

010

111

110

101

OAPMx

OA0

+

−

001

else

0

1

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

OA1

+

−001

else

0

1
OAxRTOP

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx000

001

100

011

010

111

110

101

001

else

0

1
OA0TAP (OA2)

OAxRTOP

000

00

01

10

11

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

4R

4R

2R

2R

R

R

R

R

OAPMx

OA2

+

−

OAxFB

OAADCx

2

3

OAFBRx

OA Registers

14-12 OA

14.3 OA Registers

The OA registers are listed in Table 14−7.

Table 14−7.

Register Short Form Register Type Address Initial State

OA0 Control Register 0 OA0CTL0 Read/write 0C0h Reset with POR

OA0 Control Register 1 OA0CTL1 Read/write 0C1h Reset with POR

OA1 Control Register 0 OA1CTL0 Read/write 0C2h Reset with POR

OA1 Control Register 1 OA1CTL1 Read/write 0C3h Reset with POR

OA2 Control Register 0 OA2CTL0 Read/write 0C4h Reset with POR

OA2 Control Register 1 OA2CTL1 Read/write 0C5h Reset with POR

OA Registers

14-13OA

OAxCTL0, Opamp Control Register 0

7 6 5 4 3 2 1 0

OANx OAPx OAPMx OAADCx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

OANx Bits
7-6

Inverting input select. These bits select the input signal for the OA inverting
input.
00 OAxI0
01 OAxI1
10 OAxIA − refer to device datasheet for connected signal
11 OAxIB − refer to device datasheet for connected signal

OAPx Bits
5-4

Non-inverting input select. These bits select the input signal for the OA
non-inverting input.
00 OAxI0
01 OA0I1
10 OAxIA − refer to device datasheet for connected signal
11 OAxIB − refer to device datasheet for connected signal

OAPMx Bits
3-2

Slew rate select. These bits select the slew rate vs. current consumption
for the OA.
00 Off, output high Z
01 Slow
10 Medium
11 Fast

OAADCx Bits
1−0

OA output select. These bits, together with the OAFCx bits, control the
routing of the OAx output when OAPMx > 0.
When OAFCx = 0:
00 OAxOUT connected to external pins and ADC input A1, A3, or A5
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected to external pins and ADC input A12, A13, or A14
When OAFCx > 0:
00 OAxOUT used for internal routing only
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected internally to ADC input A12, A13 , or A14.

External A12, A13, or A14 pin connections are disconnected from the
ADC.

OA Registers

14-14 OA

OAxCTL1, Opamp Control Register 1

7 6 5 4 3 2 1 0

OAFBRx OAFCx OANEXT OARRIP†

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

OAFBRx Bits
7-5

OAx feedback resistor select
000 Tap 0 − 0R/16R
001 Tap 1 − 4R/12R
010 Tap 2 − 8R/8R
011 Tap 3 − 10R/6R
100 Tap 4 − 12R/4R
101 Tap 5 − 13R/3R
110 Tap 6 − 14R/2R
111 Tap 7 − 15R/1R

OAFCx Bits
4-2

OAx function control. This bit selects the function of OAx
000 General purpose opamp
001 Unity gain buffer for three-opamp differential amplifier
010 Unity gain buffer
011 Comparator
100 Non-inverting PGA amplifier
101 Cascaded non-inverting PGA amplifier
110 Inverting PGA amplifier
111 Differential amplifier

OANEXT Bit 1 OAx Inverting input externally available. This bit, when set, connects the
inverting OAx input to the external pin when the integrated resistor network
is used.
0 OAx inverting input not externally available
1 OAx inverting input externally available

OARRIP Bit 0 OAx reverse resistor connection in comparator mode
0 RTOP is connected to AVSS and RBOTTOM is connected to AVCC when

OAFCx = 3
1 RTOP is connected to AVCC and RBOTTOM is connected to AVSS when

OAFCx = 3.

15-1Comparator_A+

�����������	

Comparator_A+ is an analog voltage comparator. This chapter describes
Comparator_A+. The Comparator_A+ is implemented in all MSP430x2xx
devices except MSP430x20x0 and MSP430x22x4 devices.

Topic Page

15.1 Comparator_A+ Introduction 15-2.

15.2 Comparator_A+ Operation 15-4.

15.3 Comparator_A+ Registers 15-10.

Chapter 15

Comparator_A+ Introduction

15-2 Comparator_A+

15.1 Comparator_A+ Introduction

The Comparator_A+ module supports precision slope analog-to-digital
conversions, supply voltage supervision, and monitoring of external analog
signals.

Features of Comparator_A+ include:

� Inverting and non-inverting terminal input multiplexer

� Software selectable RC-filter for the comparator output

� Output provided to Timer_A capture input

� Software control of the port input buffer

� Interrupt capability

� Selectable reference voltage generator

� Comparator and reference generator can be powered down

� Input Multiplexer

The Comparator_A+ block diagram is shown in Figure 15−1.

Comparator_A+ Introduction

15-3Comparator_A+

Figure 15−1. Comparator_A+ Block Diagram

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CAOUT

+

−

CAEX

0.5xVCC

0.25xVCC

Set_CAIFG

CCI1B
+

−

0V

G
D
S

P2CA0

CAF

CARSEL

CAON

CAREFx

1 0

00

01

10

11

00

01

10

11

1

0

1

0

1

0

1

0

1

0

0V

1 0

Tau ~ 2.0ns

VCAREF

VCC

P2CA4

P2CA1

000

001

010

011

100

101

110

111

CASHORT

P2CA2
P2CA3

CA0

CA1

CA2

00

01

10

11

Comparator_A+ Operation

15-4 Comparator_A+

15.2 Comparator_A+ Operation

The Comparator_A+ module is configured with user software. The setup and
operation of Comparator_A+ is discussed in the following sections.

15.2.1 Comparator

The comparator compares the analog voltages at the + and – input terminals.
If the + terminal is more positive than the – terminal, the comparator output
CAOUT is high. The comparator can be switched on or off using control bit
CAON. The comparator should be switched off when not in use to reduce
current consumption. When the comparator is switched off, the CAOUT is
always low.

15.2.2 Input Analog Switches

The analog input switches connect or disconnect the two comparator input
terminals to associated port pins using the P2CAx bits. Both comparator
terminal inputs can be controlled individually. The P2CAx bits allow:

� Application of an external signal to the + and – terminals of the comparator

� Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path.

Note: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a
signal, power, or ground. Otherwise, floating levels may cause unexpected
interrupts and increased current consumption.

The CAEX bit controls the input multiplexer, exchanging which input signals
are connected to the comparator’s + and – terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.

Comparator_A+ Operation

15-5Comparator_A+

15.2.3 Input Short Switch

The CASHORT bit shorts the comparator_A+ inputs. This can be used to build
a simple sample-and-hold for the comparator as shown in Figure 15−2.

Figure 15−2. Comparator_A+ Sample−And−Hold

Sampling Capacitor, C s

CASHORT

Analog Inputs

The required sampling time is proportional to the size of the sampling capacitor
(CS), the resistance of the input switches in series with the short switch (Ri),
and the resistance of the external source (RS). The total internal resistance
(RI) is typically in the range of 2 − 10 kΩ. The sampling capacitor CS should
be greater than 100pF. The time constant, Tau, to charge the sampling
capacitor CS can be calculated with the following equation:

Tau = (RI + RS) x CS

Depending on the required accuracy 3 to 10 Tau should be used as a sampling
time. With 3 Tau the sampling capacitor is charged to approximately 95% of
the input signals voltage level, with 5 Tau it is charge to more than 99% and
with 10 Tau the sampled voltage is sufficient for 12−bit accuracy.

Comparator_A+ Operation

15-6 Comparator_A+

15.2.4 Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power supply lines, and other parts of the system
are responsible for this behavior as shown in Figure 15−3. The comparator
output oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 15−3. RC-Filter Response at the Output of the Comparator

+ Terminal

− Terminal Comparator Inputs

Comparator Output
Unfiltered at CAOUT

Comparator Output
Filtered at CAOUT

15.2.5 Voltage Reference Generator

The voltage reference generator is used to generate VCAREF, which can be
applied to either comparator input terminal. The CAREFx bits control the
output of the voltage generator. The CARSEL bit selects the comparator
terminal to which VCAREF is applied. If external signals are applied to both
comparator input terminals, the internal reference generator should be turned
off to reduce current consumption. The voltage reference generator can
generate a fraction of the device’s VCC or a fixed transistor threshold voltage
of ~ 0.55 V.

Comparator_A+ Operation

15-7Comparator_A+

15.2.6 Comparator_A+, Port Disable Register CAPD

The comparator input and output functions are multiplexed with the associated
I/O port pins, which are digital CMOS gates. When analog signals are applied
to digital CMOS gates, parasitic current can flow from VCC to GND. This
parasitic current occurs if the input voltage is near the transition level of the
gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption.

The CAPDx bits, when set, disable the corresponding P1 input and output
buffers as shown in Figure 15−4. When current consumption is critical, any
port pin connected to analog signals should be disabled with its CAPDx bit.

Selecting an input pin to the comparator multiplexer with the P2CAx bits
automatically disables the input and output buffers for that pin, regardless of
the state of the associated CAPDx bit.

Figure 15−4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

VCC

VSS

ICCVOVI

0 VCC

VIVCC

ICC

CAPD.x = 1

15.2.7 Comparator_A+ Interrupts

One interrupt flag and one interrupt vector are associated with the
Comparator_A+ as shown in Figure 15−5. The interrupt flag CAIFG is set on
either the rising or falling edge of the comparator output, selected by the
CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag
generates an interrupt request. The CAIFG flag is automatically reset when
the interrupt request is serviced or may be reset with software.

Figure 15−5. Comparator_A+ Interrupt System

D Q IRQ, Interrupt Service Requested

Reset

VCC

POR

SET_CAIFG

IRACC, Interrupt Request Accepted

CAIE

CAIES

0

1

Comparator_A+ Operation

15-8 Comparator_A+

15.2.8 Comparator_A+ Used to Measure Resistive Elements

The Comparator_A+ can be optimized to precisely measure resistive
elements using single slope analog-to-digital conversion. For example,
temperature can be converted into digital data using a thermistor, by
comparing the thermistor’s capacitor discharge time to that of a reference
resistor as shown in Figure 15−6. A reference resister Rref is compared to
Rmeas.

Figure 15−6. Temperature Measurement System

+

−

CA0 CCI1B
Capture
Input
Of Timer_A

+

−

Rmeas

Rref
Px.x

Px.y

0.25xVCC

The MSP430 resources used to calculate the temperature sensed by Rmeas
are:

� Two digital I/O pins to charge and discharge the capacitor.

� I/O set to output high (VCC) to charge capacitor, reset to discharge.

� I/O switched to high-impedance input with CAPDx set when not in use.

� One output charges and discharges the capacitor via Rref.

� One output discharges capacitor via Rmeas.

� The + terminal is connected to the positive terminal of the capacitor.

� The – terminal is connected to a reference level, for example 0.25 x VCC.

� The output filter should be used to minimize switching noise.

� CAOUT used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are
connected to CA0 with available I/O pins and switched to high impedance
when not being measured.

Comparator_A+ Operation

15-9Comparator_A+

The thermistor measurement is based on a ratiometric conversion principle.
The ratio of two capacitor discharge times is calculated as shown in
Figure 15−7.

Figure 15−7. Timing for Temperature Measurement Systems

VC
VCC

0.25 × VCC

Phase I:
Charge

Phase II:
Discharge

Phase III:
Charge

tref

Phase IV:
Discharge

tmeas

t

Rmeas
Rref

The VCC voltage and the capacitor value should remain constant during the
conversion, but are not critical since they cancel in the ratio:

Nmeas
Nref

�

–Rmeas � C � ln
Vref
VCC

–Rref � C � ln
Vref
VCC

Nmeas
Nref

�
Rmeas

Rref

Rmeas � Rref �
Nmeas

Nref

Comparator_A+ Registers

15-10 Comparator_A+

15.3 Comparator_A+ Registers

The Comparator_A+ registers are listed in Table 15−1:

Table 15−1.Comparator_A+ Registers

Register Short Form Register Type Address Initial State

Comparator_A+ control register 1 CACTL1 Read/write 059h Reset with POR

Comparator_A+ control register 2 CACTL2 Read/write 05Ah Reset with POR

Comparator_A+ port disable CAPD Read/write 05Bh Reset with POR

Comparator_A+ Registers

15-11Comparator_A+

CACTL1, Comparator_A+ Control Register 1

7 6 5 4 3 2 1 0

CAEX CARSEL CAREFx CAON CAIES CAIE CAIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

CAEX Bit 7 Comparator_A+ exchange. This bit exchanges the comparator inputs and
inverts the comparator output.

CARSEL Bit 6 Comparator_A+ reference select. This bit selects which terminal the
VCAREF is applied to.
When CAEX = 0:
0 VCAREF is applied to the + terminal
1 VCAREF is applied to the – terminal
When CAEX = 1:
0 VCAREF is applied to the – terminal
1 VCAREF is applied to the + terminal

CAREF Bits
5-4

Comparator_A+ reference. These bits select the reference voltage VCAREF.
00 Internal reference off. An external reference can be applied.
01 0.25*VCC
10 0.50*VCC
11 Diode reference is selected

CAON Bit 3 Comparator_A+ on. This bit turns on the comparator. When the
comparator is off it consumes no current. The reference circuitry is enabled
or disabled independently.
0 Off
1 On

CAIES Bit 2 Comparator_A+ interrupt edge select
0 Rising edge
1 Falling edge

CAIE Bit 1 Comparator_A+ interrupt enable
0 Disabled
1 Enabled

CAIFG Bit 0 The Comparator_A+ interrupt flag
0 No interrupt pending
1 Interrupt pending

Comparator_A+ Registers

15-12 Comparator_A+

CACTL2, Comparator_A+, Control Register

7 6 5 4 3 2 1 0

CASHORT P2CA4 P2CA3 P2CA2 P2CA1 P2CA0 CAF CAOUT

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0)

CASHORT Bit 7 Input short. This bit shorts the + and − input terminals.
0 Inputs not shorted.
1 Inputs shorted.

P2CA4 Bit 6 Input select. This bit together with P2CA0 selects the + terminal input when
CAEX = 0 and the − terminal input when CAEX = 1.

P2CA3
P2CA2
P2CA1

Bits
5-3

Input select. These bits select the − terminal input when CAEX = 0 and the
+ terminal input when CAEX = 1.
000 No connection
001 CA1
010 CA2
011 CA3
100 CA4
101 CA5
110 CA6
111 CA7

P2CA0 Bit 2 Input select. This bit, together with P2CA4, selects the + terminal input
when CAEX = 0 and the − terminal input when CAEX = 1.
00 No connection
01 CA0
10 CA1
11 CA2

CAF Bit 1 Comparator_A+ output filter
0 Comparator_A+ output is not filtered
1 Comparator_A+ output is filtered

CAOUT Bit 0 Comparator_A+ output. This bit reflects the value of the comparator output.
Writing this bit has no effect.

Comparator_A+ Registers

15-13Comparator_A+

CAPD, Comparator_A+, Port Disable Register

7 6 5 4 3 2 1 0

CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPD0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

CAPDx Bits
7-0

Comparator_A+ port disable. These bits individually disable the input
buffer for the pins of the port associated with Comparator_A+. For
example, if CA0 is on pin P2.3, the CAPDx bits can be used to individually
enable or disable each P2.x pin buffer. CAPD0 disables P2.0, CAPD1
disables P2.1, etc.
0 The input buffer is enabled.
1 The input buffer is disabled.

16-1ADC10

�����

The ADC10 module is a high-performance 10-bit analog-to-digital converter.
This chapter describes the ADC10. The ADC10 is implemented in the
MSP430x20x2 and MSP430x22x4 devices.

Topic Page

16.1 ADC10 Introduction 16-2.

16.2 ADC10 Operation 16-4.

16.3 ADC10 Registers 16-24.

Chapter 16

ADC10 Introduction

16-2 ADC10

16.1 ADC10 Introduction

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The
module implements a 10-bit SAR core, sample select control, reference
generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in
memory without CPU intervention. The module can be configured with user
software to support a variety of applications.

ADC10 features include:

� Greater than 200 ksps maximum conversion rate

� Monotonic10-bit converter with no missing codes

� Sample-and-hold with programmable sample periods

� Conversion initiation by software or Timer_A

� Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

� Software selectable internal or external reference

� Eight external input channels (twelve on MSP430x22x4 devices)

� Conversion channels for internal temperature sensor, VCC, and external
references

� Selectable conversion clock source

� Single-channel, repeated single-channel, sequence, and repeated
sequence conversion modes

� ADC core and reference voltage can be powered down separately

� Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 16−1.

ADC10 Introduction

16-3ADC10

Figure 16−1. ADC10 Block Diagram

Sample
and
Hold 10−bit SAR

 Divider
/1 .. /8

AVCC

ACLK

MCLK

SMCLK

ADC10SC

TA1

TA0

Data Transfer
Controller RAM, Flash, Peripherials

VR− VR+

VeREF+

VREF+

ADC10ON

INCHx

REFBURST

ADC10SSELx

ADC10DIVx

SHSx

ADC10SHTx MSC

ENC
BUSY

ADC10DF

ADC10CLK

SREF2

ADC10TB ADC10B1ADC10CT

ISSH

ADC10SR

ADC10OSC

Ref_x

S/H Convert

SAMPCON

1

0

Sync

Sample Timer
/4/8/16/64

SHI

ADC10SA

n

4

A0
A1
A2
A3
A4
A5
A6
A7

REFON
INCHx=0Ah

2_5V

1.5V or 2.5V
Reference

on

Ref_x

SREF1

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

000111

01

SREF0
10

CONSEQx

AVSS

1

0

INCHx=0Bh

Auto

ADC10MEM

R

R

0

1

REFOUT
SREF1

1001
1000

0010
0001

0011
0100
0101
0110
0111

0000

1011
1010

0001

1111
1110
1101
1100A12†

A13†

A14†

A15†

†MSP430x22x4 devices only. Channels A12-A15 tied to channel A11 in other devices
‡TA1 on MSP43020x2 devices

VREF−/VeREF−
AVCC

AVSS

AVCC

TA2‡

ADC10 Operation

16-4 ADC10

16.2 ADC10 Operation

The ADC10 module is configured with user software. The setup and operation
of the ADC10 is discussed in the following sections.

16.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and
stores the result in the ADC10MEM register. The core uses two
programmable/selectable voltage levels (VR+ and VR−) to define the upper and
lower limits of the conversion. The digital output (NADC) is full scale (03FFh)
when the input signal is equal to or higher than VR+, and zero when the input
signal is equal to or lower than VR−. The input channel and the reference
voltage levels (VR+ and VR−) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format.
The conversion formula for the ADC result when using straight binary format
is:

NADC � 1023 �
Vin – VR–
VR�– VR–

The ADC10 core is configured by two control registers, ADC10CTL0 and
ADC10CTL1. The core is enabled with the ADC10ON bit. With few exceptions
the ADC10 control bits can only be modified when ENC = 0. ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection

The ADC10CLK is used both as the conversion clock and to generate the
sampling period. The ADC10 source clock is selected using the ADC10SSELx
bits and can be divided from 1-8 using the ADC10DIVx bits. Possible
ADC10CLK sources are SMCLK, MCLK, ACLK and an internal oscillator
ADC10OSC .

The ADC10OSC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
datasheet for the ADC10OSC specification.

The user must ensure that the clock chosen for ADC10CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete, and any result will be invalid.

50210751
矩形

ADC10 Operation

16-5ADC10

16.2.2 ADC10 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 16−2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (VSS) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 16−2. Analog Multiplexer

R ~ 100Ohm

ESD Protection

INCHx

Input
Ax

Analog Port Selection

The ADC10 external inputs Ax, VeREF+, and VREF− share terminals with
general purpose I/O ports, which are digital CMOS gates (see device-specific
datasheet). When analog signals are applied to digital CMOS gates, parasitic
current can flow from VCC to GND. This parasitic current occurs if the input
voltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The ADC10AEx bits provide the ability to disable the port pin
input and output buffers.

; P2.3 on MSP430x22x4 device configured for analog input

BIS.B #08h,&ADC10AE0 ; P2.3 ADC10 function and enable

ADC10 Operation

16-6 ADC10

16.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable
voltage levels. Setting REFON = 1 enables the internal reference. When
REF2_5V = 1, the internal reference is 2.5 V. When REF2_5V = 0, the
reference is 1.5 V. The internal reference voltage may be used internally and,
when REFOUT = 0, externally on pin VREF+.

External references may be supplied for VR+ and VR− through pins A4 and A3
respectively. When external references are used, or when VCC is used as the
reference, the internal reference may be turned off to save power.

An external positive reference VeREF+ can be buffered by setting SREF0 = 1
and SREF1 = 1. This allows using an external reference with a large internal
resistance at the cost of the buffer current. When REFBURST = 1 the
increased current consumption is limited to the sample and conversion period.

External storage capacitance is not required for the ADC10 reference source
as on the ADC12.

Internal Reference Low-Power Features

The ADC10 internal reference generator is designed for low power
applications. The reference generator includes a band-gap voltage source
and a separate buffer. The current consumption of each is specified separately
in the device-specific datasheet. When REFON = 1, both are enabled and
when REFON = 0 both are disabled. The total settling time when REFON
becomes set is � 30 µs.

When REFON = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is
disabled, it consumes no current. In this case, the band-gap voltage source
remains enabled.

When REFOUT = 1, the REFBURST bit controls the operation of the internal
reference buffer. When REFBURST = 0, the buffer will be on continuously,
allowing the reference voltage to be present outside the device continuously.
When REFBURST = 1, the buffer is automatically disabled when the ADC10
is not actively converting, and automatically re-enabled when needed.

The internal reference buffer also has selectable speed vs. power settings.
When the maximum conversion rate is below 50 ksps, setting ADC10SR = 1
reduces the current consumption of the buffer approximately 50%.

16.2.4 Auto Power-Down

The ADC10 is designed for low power applications. When the ADC10 is not
actively converting, the core is automatically disabled and automatically
re-enabled when needed The ADC10OSC is also automatically enabled when
needed and disabled when not needed. When the core or oscillator are
disabled, they consume no current.

ADC10 Operation

16-7ADC10

16.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of sample input
signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

� The ADC10SC bit
� The Timer_A Output Unit 1
� The Timer_A Output Unit 0
� The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SHTx bits select the sample period tsample to be 4, 8, 16, or 64 ADC10CLK
cycles. The sampling timer sets SAMPCON high for the selected sample
period after synchronization with ADC10CLK. Total sampling time is tsample
plus tsync.The high-to-low SAMPCON transition starts the analog-to-digital
conversion, which requires 13 ADC10CLK cycles as shown in Figure 16−3.

Figure 16−3. Sample Timing

Start
Sampling

Stop
Sampling

Conversion
Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC10CLKs

Start
Conversion

ADC10CLK

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, as shown below in Figure 16−4. An internal MUX-on
input resistance RI (max. 2 kΩ) in series with capacitor CI (max. 27 pF) is seen
by the source. The capacitor CI voltage VC must be charged to within � LSB
of the source voltage VS for an accurate 10-bit conversion.

ADC10 Operation

16-8 ADC10

Figure 16−4. Analog Input Equivalent Circuit

RS RI
VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax
VS = External source voltage
RS = External source resistance
RI = Internal MUX-on input resistance
CI = Input capacitance
VC = Capacitance-charging voltage

The resistance of the source RS and RI affect tsample.The following equations
can be used to calculate the minimum sampling time for a 10-bit conversion.

tsample � (RS � RI) � ln(211) � CI

Substituting the values for RI and CI given above, the equation becomes:

tsample � (RS � 2k) � 7.625 � 27pF

For example, if RS is 10 kΩ, tsample must be greater than 2.47 µs.

When the reference buffer is used in burst mode, the sampling time must be
greater than the sampling time calculated and the settling time of the buffer,
tREFBURST:

tsample ��(RS � RI) � ln(211) � CI
tREFBURST

For example, if VRef is 1.5 V and RS is 10 kΩ, tsample must be greater than 2.47
µs when ADC10SR = 0, or 2.5 µs when ADC10SR = 1. See the device-specific
datasheet for parameters.

To calculate the buffer settling time when using an external reference, the
formula is:

tREFBURST � SR � VRef � 0.5�s

Where:

SR: Buffer slew rate
(~1 µs/V when ADC10SR = 0 and ~2 µs/V when ADC10SR = 1)

Vref: External reference voltage

ADC10 Operation

16-9ADC10

16.2.6 Conversion Modes

The ADC10 has four operating modes selected by the CONSEQx bits as
discussed in Table 16−1.

Table 16−1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel
single-conversion

A single channel is converted once.

01 Sequence-of-
channels

A sequence of channels is converted once.

10 Repeat single
channel

A single channel is converted repeatedly.

11 Repeat sequence-
of-channels

A sequence of channels is converted
repeatedly.

ADC10 Operation

16-10 ADC10

Single-Channel Single-Conversion Mode

A single channel selected by INCHx is sampled and converted once. The ADC
result is written to ADC10MEM. Figure 16−5 shows the flow of the
single-channel, single-conversion mode. When ADC10SC triggers a
conversion, successive conversions can be triggered by the ADC10SC bit.
When any other trigger source is used, ENC must be toggled between each
conversion.

Figure 16−5. Single-Channel Single-Conversion Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

Convert

ENC = 0

ENC = 0†

12 x ADC10CLK

Conversion
Completed,

Result to
ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

† Conversion result is unpredictable

ENC = 0†

ADC10ON = 1

CONSEQx = 00

(4/8/16/64) x ADC10CLK

x = input channel Ax

ADC10 Operation

16-11ADC10

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence stops after
conversion of channel A0. Figure 16−6 shows the sequence-of-channels
mode. When ADC10SC triggers a sequence, successive sequences can be
triggered by the ADC10SC bit . When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 16−6. Sequence-of-Channels Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample,
Input Channel Ax

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 01

MSC = 1
and
x ≠ 0

x = 0

If x > 0 then x = x −1

MSC = 0
and
x ≠ 0

(4/8/16/64) x ADC10CLK

If x > 0 then x = x −1

x = input channel Ax

ADC10 Operation

16-12 ADC10

Repeat-Single-Channel Mode

A single channel selected by INCHx is sampled and converted continuously.
Each ADC result is written to ADC10MEM. Figure 16−7 shows the
repeat-single-channel mode.

Figure 16−7. Repeat-Single-Channel Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

SAMPCON =

(4/8/16/64) × ADC10CLK

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 10

MSC = 1
and

ENC = 1

ENC = 0

MSC = 0
and

ENC = 1

Sample,
Input Channel Ax

x = input channel Ax

ADC10 Operation

16-13ADC10

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence ends after
conversion of channel A0, and the next trigger signal re-starts the sequence.
Figure 16−8 shows the repeat-sequence-of-channels mode.

Figure 16−8. Repeat-Sequence-of-Channels Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample
Input Channel Ax

ENC =

ENC =
SHS = 0

and
ENC = 1 or

and
ADC10SC =

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 11

MSC = 1
and

(ENC = 1
or

x ≠ 0)

ENC = 0
and
x = 0MSC = 0

and
(ENC = 1

or
x ≠ 0)

If x = 0 then x = INCH
else x = x −1

(4/8/16/64) x ADC10CLK

If x = 0 then x = INCH
else x = x −1

x = input channel Ax

SAMPCON =

ADC10 Operation

16-14 ADC10

Using the MSC Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC = 1 and CONSEQx > 0 the first rising edge of the SHI signal
triggers the first conversion. Successive conversions are triggered
automatically as soon as the prior conversion is completed. Additional rising
edges on SHI are ignored until the sequence is completed in the
single-sequence mode or until the ENC bit is toggled in repeat-single-channel,
or repeated-sequence modes. The function of the ENC bit is unchanged when
using the MSC bit.

Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

� Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the ADC10BUSY bit until reset before clearing ENC.

� Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

� Resetting ENC during a sequence or repeat sequence mode stops the
converter at the end of the sequence.

� Any conversion mode may be stopped immediately by setting the
CONSEQx=0 and resetting the ENC bit. Conversion data is unreliable.

ADC10 Operation

16-15ADC10

16.2.7 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer
conversion results from ADC10MEM to other on-chip memory locations. The
DTC is enabled by setting the ADC10DTC1 register to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and
loads the result to ADC10MEM, a data transfer is triggered. No software
intervention is required to manage the ADC10 until the predefined amount of
conversion data has been transferred. Each DTC transfer requires one CPU
MCLK. To avoid any bus contention during the DTC transfer, the CPU is halted,
if active, for the one MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must
ensure that no active conversion or sequence is in progress when the DTC is
configured:

; ADC10 activity test

BIC.W #ENC,&ADC10CTL0 ;

busy_test BIT.W #BUSY,&ADC10CTL1;

JNZ busy_test ;

MOV.W #xxx,&ADC10SA ; Safe

MOV.B #xx,&ADC10DTC1 ;

; continue setup

ADC10 Operation

16-16 ADC10

One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in
ADC10DTC1 defines the total number of transfers for a block. The block start
address is defined anywhere in the MSP430 address range using the 16-bit
register ADC10SA. The block ends at ADC10SA+2n–2. The one-block
transfer mode is shown in Figure 16−9.

Figure 16−9. One-Block Transfer

ADC10SA

ADC10SA+2

ADC10SA+2n−2

ADC10SA+2n−4

1st transfer

’n’th transfer

2nd transfer

TB=0

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer, the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. No additional DTC transfers
will occur until a write to ADC10SA. When using the DTC in the one-block
mode, the ADC10IFG flag is set only after a complete block has been
transferred. Figure 16−10 shows a state diagram of the one-block mode.

ADC10 Operation

16-17ADC10

Figure 16−10. State Diagram for Data Transfer Control in One-Block Transfer Mode

DTC idle

DTC reset

n=0 (ADC10DTC1)

Initialize
Start Address in ADC10SA

Wait until ADC10MEM
is written

Wait
for

CPU ready

Write to ADC10MEM
completed

Transfer data to
Address AD

AD = AD + 2
x = x − 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare
DTC

DTC
operation

Write to ADC10SA
or

n = 0

Write to ADC10SA

x = n

AD = SA

n = 0

ADC10IFG=1

ADC10TB = 0
and

ADC10CT = 0

ADC10TB = 0
and

ADC10CT = 1

n ≠ 0

ADC10 Operation

16-18 ADC10

Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in
ADC10DTC1 defines the number of transfers for one block. The address
range of the first block is defined anywhere in the MSP430 address range with
the 16-bit register ADC10SA. The first block ends at ADC10SA+2n–2. The
address range for the second block is defined as SA+2n to SA+4n–2. The
two-block transfer mode is shown in Figure 16−11.

Figure 16−11.Two-Block Transfer

ADC10SA

ADC10SA+2

ADC10SA+2n−2

ADC10SA+2n−4

1st transfer

’n’th transfer

2nd transfer

ADC10SA+4n−2

ADC10SA+4n−4

2 x ’n’th transfer

TB=1

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue, with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. At this point, block one is full
and both the ADC10IFG flag the ADC10B1 bit are set. The user can test the
ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is
automatically reloaded with ’n’. At the next load of the ADC10MEM, the DTC
begins transferring conversion results to block two. After n transfers have
completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit
is cleared. User software can test the cleared ADC10B1 bit to determine that
block two is full. Figure 16−12 shows a state diagram of the two-block mode.

ADC10 Operation

16-19ADC10

Figure 16−12. State Diagram for Data Transfer Control in Two-Block Transfer Mode

DTC idle

DTC reset

ADC10B1 = 0
ADC10TB = 1

n=0 (ADC10DTC1)

Initialize
Start Address in ADC10SA

Wait until ADC10MEM
is written

Wait
for

CPU ready

Write to ADC10MEM
completed

Transfer data to
Address AD

AD = AD + 2
x = x − 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare
DTC

DTC
operation

Write to ADC10SA
or

n = 0

ADC10IFG=1

Toggle
ADC10B1

Write to ADC10SA

x = n

If ADC10B1 = 0
then AD = SA

ADC10B1 = 1
or

ADC10CT=1

ADC10CT = 0
and

ADC10B1 = 0

n = 0
n ≠ 0

ADC10 Operation

16-20 ADC10

Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC will not stop
after block one in (one-block mode) or block two (two-block mode) has been
transferred. The internal address pointer and transfer counter are set equal to
ADC10SA and n respectively. Transfers continue starting in block one. If the
ADC10CT bit is reset, DTC transfers cease after the current completion of
transfers into block one (in the one-block mode) or block two (in the two-block
mode) have been transfer.

DTC Transfer Cycle Time

For each ADC10MEM transfer, the DTC requires one or two MCLK clock
cycles to synchronize, one for the actual transfer (while the CPU is halted), and
one cycle of wait time. Because the DTC uses MCLK, the DTC cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DTC uses the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DTC temporarily restarts MCLK, sourced with DCOCLK, only during
a transfer. The CPU remains off and after the DTC transfer, MCLK is again
turned off. The maximum DTC cycle time for all operating modes is show in
Table 16−2.

Table 16−2.Maximum DTC Cycle Time

CPU Operating Mode Clock Source Maximum DTC Cycle Time

Active mode MCLK=DCOCLK 3 MCLK cycles

Active mode MCLK=LFXT1CLK 3 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 4 MCLK cycles + 2 µs†

Low-power mode LPM0/1 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 4 MCLK cycles + 2 µs†

† The additional 2 µs are needed to start the DCOCLK. See device-datasheet for parameters.

ADC10 Operation

16-21ADC10

16.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 16−13.
When using the temperature sensor, the sample period must be greater than
30 µs. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See the device-specific datasheet for the
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltage source for the temperature sensor. However, it does not
enable the VREF+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 16−14. Typical Temperature Sensor Transfer Function

Celsius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

−50

0.700

VTEMP=0.00355(TEMPC)+0.986

50210751
高亮

50210751
高亮

ADC10 Operation

16-22 ADC10

16.2.9 ADC10 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted
parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 16−15 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design is important to achieve high accuracy.

Figure 16−16. ADC10 Grounding and Noise Considerations

VCC

VSS

Power Supply
Decoupling

MSP430F2xx

Ve REF+

VREF−

10 uF 100 nF

+

External
Reference

ADC10 Operation

16-23ADC10

16.2.10 ADC10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as
shown in Figure 16−17. When the DTC is not used (ADC10DTC1 = 0)
ADC10IFG is set when conversion results are loaded into ADC10MEM. When
DTC is used (ADC10DTC1 > 0) ADC10IFG is set when a block transfer
completes and the internal transfer counter ’n’ = 0. If both the ADC10IE and
the GIE bits are set, then the ADC10IFG flag generates an interrupt request.
The ADC10IFG flag is automatically reset when the interrupt request is
serviced or may be reset by software.

Figure 16−17. ADC10 Interrupt System

D Q IRQ, Interrupt Service Requested

Reset
ADC10CLK

POR

’n’ = 0
Set ADC10IFG

IRACC, Interrupt Request Accepted

ADC10IE

ADC10 Registers

16-24 ADC10

16.3 ADC10 Registers

The ADC10 registers are listed in Table 16−3.

Table 16−3.ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 Input enable register 0 ADC10AE0 Read/write 04Ah Reset with POR

ADC10 Input enable register 1 ADC10AE1 Read/write 04Bh Reset with POR

ADC10 control register 0 ADC10CTL0 Read/write 01B0h Reset with POR

ADC10 control register 1 ADC10CTL1 Read/write 01B2h Reset with POR

ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTC0 Read/write 048h Reset with POR

ADC10 data transfer control register 1 ADC10DTC1 Read/write 049h Reset with POR

ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR

ADC10 Registers

16-25ADC10

ADC10CTL0, ADC10 Control Register 0

15 14 13 12 11 10 9 8

SREFx ADC10SHTx ADC10SR REFOUT REFBURST

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC10ON ADC10IE ADC10IFG ENC ADC10SC

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Modifiable only when ENC = 0

SREFx Bits
15-13

Select reference
000 VR+ = VCC and VR− = VSS
001 VR+ = VREF+ and VR− = VSS
010 VR+ = VeREF+ and VR− = VSS
011 VR+ = Buffered VeREF+ and VR− = VSS
100 VR+ = VCC and VR− = VREF−/ VeREF−
101 VR+ = VREF+ and VR− = VREF−/ VeREF−
110 VR+ = VeREF+ and VR− = VREF−/ VeREF−
111 VR+ = Buffered VeREF+ and VR− = VREF−/ VeREF−

ADC10
SHTx

Bits
12-11

ADC10 sample-and-hold time
00 4 x ADC10CLKs
01 8 x ADC10CLKs
10 16 x ADC10CLKs
11 64 x ADC10CLKs

ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for
the maximum sampling rate. Setting ADC10SR reduces the current
consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps

REFOUT Bit 9 Reference output
0 Reference output off
1 Reference output on

REFBURST Bit 8 Reference burst.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

ADC10 Registers

16-26 ADC10

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling requires a rising edge of the SHI signal to trigger each

sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but

further sample-and-conversions are performed automatically as soon
as the prior conversion is completed

REF2_5V Bit 6 Reference-generator voltage. REFON must also be set.
0 1.5 V
1 2.5 V

REFON Bit 5 Reference generator on
0 Reference off
1 Reference on

ADC10ON Bit 4 ADC10 on
0 ADC10 off
1 ADC10 on

ADC10IE Bit 3 ADC10 interrupt enable
0 Interrupt disabled
1 interrupt enabled

ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion
result. It is automatically reset when the interrupt request is accepted, or it may
be reset by software. When using the DTC this flag is set when a block of
transfers is completed.
0 No interrupt pending
1 Interrupt pending

ENC Bit 1 Enable conversion
0 ADC10 disabled
1 ADC10 enabled

ADC10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start.
ADC10SC and ENC may be set together with one instruction. ADC10SC is
reset automatically.
0 No sample-and-conversion start
1 Start sample-and-conversion

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

ADC10 Registers

16-27ADC10

ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11 10 9 8

INCHx SHSx ADC10DF ISSH

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

ADC10DIVx ADC10SSELx CONSEQx ADC10
BUSY

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−0

Modifiable only when ENC = 0

INCHx Bits
15-12

Input channel select. These bits select the channel for a single-conversion or
the highest channel for a sequence of conversions.
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+
1001 VREF−/VeREF−
1010 Temperature sensor
1011 (VCC – VSS) / 2
1100 (VCC – VSS) / 2, A12 on MSP430x22x4 devices
1101 (VCC – VSS) / 2, A13 on MSP430x22x4 devices
1110 (VCC – VSS) / 2, A14 on MSP430x22x4 devices
1111 (VCC – VSS) / 2, A15 on MSP430x22x4 devices

SHSx Bits
11-10

Sample-and-hold source select
00 ADC10SC bit
01 Timer_A.OUT1
10 Timer_A.OUT0
11 Timer_A.OUT2 (Timer_A.OUT1 on MSP43020x2 devices)

ADC10DF Bit 9 ADC10 data format
0 Straight binary
1 2’s complement

ISSH Bit 8 Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

50210751
高亮

ADC10 Registers

16-28 ADC10

ADC10DIVx Bits
7-5

ADC10 clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC10
SSELx

Bits
4-3

ADC10 clock source select
00 ADC10OSC
01 ACLK
10 MCLK
11 SMCLK

CONSEQx Bits
2-1

Conversion sequence mode select
00 Single-channel-single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC10
BUSY

Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation
0 No operation is active.
1 A sequence, sample, or conversion is active.

50210751
高亮

ADC10 Registers

16-29ADC10

ADC10AE0, Analog (Input) Enable Control Register 0

7 6 5 4 3 2 1 0

ADC10AE0x

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

ADC10AE0x Bits
7-0

ADC10 analog enable. These bits enable the corresponding pin for analog
input. BIT0 corresponds to A0, BIT1 corresponds to A1, etc.
0 Analog input disabled
1 Analog input enabled

ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430x22x4 only)

7 6 5 4 3 2 1 0

ADC10AE1x Reserved Reserved Reserved Reserved

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

ADC10AE1x Bits
7-4

ADC10 analog enable. These bits enable the corresponding pin for analog
input. BIT4 corresponds to A12, BIT5 corresponds to A13, BIT6 corresponds
to A14, and BIT7 corresponds to A15.
0 Analog input disabled
1 Analog input enabled

ADC10 Registers

16-30 ADC10

ADC10MEM, Conversion-Memory Register, Binary Format

15 14 13 12 11 10 9 8

0 0 0 0 0 0 Conversion Results

r0 r0 r0 r0 r0 r0 r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion
Results

Bits
15-0

The 10-bit conversion results are right justified, straight-binary format. Bit 9
is the MSB. Bits 15-10 are always 0.

ADC10MEM, Conversion-Memory Register, 2’s Complement Format

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0 0 0

r r r0 r0 r0 r0 r0 r0

Conversion
Results

Bits
15-0

The 10-bit conversion results are left-justified, 2’s complement format. Bit 15
is the MSB. Bits 5-0 are always 0.

ADC10 Registers

16-31ADC10

ADC10DTC0, Data Transfer Control Register 0

7 6 5 4 3 2 1 0

Reserved ADC10TB ADC10CT ADC10B1 ADC10
FETCH

r0 r0 r0 r0 rw−(0) rw−(0) rw−(0) rw−(0)

Reserved Bits
7-4

Reserved. Always read as 0.

ADC10TB Bit 3 ADC10 two-block mode.
0 One-block transfer mode
1 Two-block transfer mode

ADC10CT Bit 2 ADC10 continuous transfer.
0 Data transfer stops when one block (one-block mode) or two blocks

(two-block mode) have completed.
1 Data is transferred continuously. DTC operation is stopped only if

ADC10CT cleared, or ADC10SA is written to.

ADC10B1 Bit 1 ADC10 block one. This bit indicates for two-block mode which block is filled
with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has
been set the first time during DTC operation. ADC10TB must also be set
0 Block 2 is filled
1 Block 1 is filled

ADC10
FETCH

Bit 0 This bit should normally be reset.

ADC10 Registers

16-32 ADC10

ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0

DTC Transfers

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

DTC
Transfers

Bits
7-0

DTC transfers. These bits define the number of transfers in each block.
0 DTC is disabled
01h-0FFh Number of transfers per block

ADC10SA, Start Address Register for Data Transfer

15 14 13 12 11 10 9 8

ADC10SAx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(1) rw−(0)

7 6 5 4 3 2 1 0

ADC10SAx 0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r0

ADC10SAx Bits
15-1

ADC10 start address. These bits are the start address for the DTC. A write
to register ADC10SA is required to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.

17-1SD16_A

������

The SD16_A module is a single-converter 16-bit, sigma-delta analog-to-digital
conversion module with high impedance input buffer. This chapter describes
the SD16_A. The SD16_A module is implemented in the MSP430x20x3
devices.

Topic Page

17.1 SD16_A Introduction 17-2.

17.2 SD16_A Operation 17-4.

17.3 SD16_A Registers 17-15.

Chapter 17

SD16_A Introduction

17-2 SD16_A

17.1 SD16_A Introduction

The SD16_A module consists of one sigma-delta analog-to-digital converter
with an high impedance input buffer and an internal voltage reference. It has
up to 8 fully differential multiplexed inputs including a built-in temperature
sensor. The converter is based on a second-order oversampling sigma-delta
modulator and digital decimation filter. The decimation filter is a comb type
filter with selectable oversampling ratios of up to 1024. Additional filtering can
be done in software.

The high impedance input buffer is not implemented in MSP430x20x3
devices.

Features of the SD16_A include:

� 16-bit sigma-delta architecture

� Up to 8 multiplexed differential analog inputs per channel

� Software selectable on-chip reference voltage generation (1.2V)

� Software selectable internal or external reference

� Built-in temperature sensor

� Up to 1.1 MHz modulator input frequency

� High impedance input buffer

� Selectable low-power conversion mode

The block diagram of the SD16_A module is shown in Figure 17−1.

SD16_A Introduction

17-3SD16_A

Figure 17−1. SD16_A Block Diagram

15 0

SD16DIVx

ACLK

TACLK

SD16SSELx

00

01

10

11

00

01

10

11

MCLK

SMCLK

AVCC
VREF

Divider
1/2/4/8

A0 000

SD16INCHx

+
−

001+
−

010+
−

011+
−

100+
−

101+
−

110+
−

111+
−

A1

A2

A3

A4

A5

A6

2nd Order
Σ∆ Modulator

SD16GAINx

SD16DF

SD16LP

SD16SC

SD16OSRx

SD16SNGL

SD16MEM0

Reference

A7

SD16VMIDON

SD16REFON

fM

Reference
1.2V

Start Conversion
Logic

AVSS

SD16XDIVx

Divider
1/3/16/48

SD16XOSR

BUF

1

0

SD16UNI

1

AVCC

SD16INCHx=101
Temp.
sensor

PGA
1..32

5R

R

5R

SD16BUFx†

†Not Implemented in MSP430x20x3 devices

Reference

SD16_A Operation

17-4 SD16_A

17.2 SD16_A Operation

The SD16_A module is configured with user software. The setup and
operation of the SD16_A is discussed in the following sections.

17.2.1 ADC Core

The analog-to-digital conversion is performed by a 1-bit, second-order
sigma-delta modulator. A single-bit comparator within the modulator quantizes
the input signal with the modulator frequency fM. The resulting 1-bit data
stream is averaged by the digital filter for the conversion result.

17.2.2 Analog Input Range and PGA

The full-scale input voltage range for each analog input pair is dependent on
the gain setting of the programmable gain amplifier of each channel. The
maximum full-scale range is ±VFSR where VFSR is defined by:

���� �
������

���	
��

For a 1.2V reference, the maximum full-scale input range for a gain of 1 is:

� ���� �
������

�
�� ����

Refer to the device-specific data sheet for full-scale input specifications.

17.2.3 Voltage Reference Generator

The SD16_A module has a built-in 1.2V reference. It is enabled by the
SD16REFON bit. When using the internal reference an external 100nF
capacitor connected from VREF to AVSS is recommended to reduce noise. The
internal reference voltage can be used off-chip when SD16VMIDON = 1. The
buffered output can provide up to 1mA of drive. When using the internal
reference off-chip, a 470nF capacitor connected from VREF to AVSS is
required. See device-specific data sheet for parameters.

An external voltage reference can be applied to the VREF input when
SD16REFON and SD16VMIDON are both reset.

17.2.4 Auto Power-Down

The SD16_A is designed for low power applications. When the SD16_A is not
actively converting, it is automatically disabled and automatically re-enabled
when a conversion is started. The reference is not automatically disabled, but
can be disabled by setting SD16REFON = 0. When the SD16_A or reference
are disabled, they consume no current.

SD16_A Operation

17-5SD16_A

17.2.5 Channel Selection

The SD16_A can convert up to 8 differential pair inputs multiplexed into the
PGA. Up to five input pairs (A0-A4) are available externally on the device. A
resistive divider to measure the supply voltage is available using the A5
multiplexer input. An internal temperature sensor is available using the A6
multiplexer input. Input A7 is a shorted connection between the + and - input
pair and can be used to calibrate the offset of the SD16_A input stage.

Analog Input Setup

The analog input is configured using the SD16INCTL0 and the SD16AE
registers. The SD16INCHx bits select one of eight differential input pairs of the
analog multiplexer. The gain for the PGA is selected by the SD16GAINx bits.
A total of six gain settings are available. The SD16AEx bits enable or disable
the analog input pin. Setting any SD16AEx bit disables the multiplexed digital
circuitry for the associated pin. See the device-specific datasheet for pin
diagrams.

During conversion any modification to the SD16INCHx and SD16GAINx bits
will become effective with the next decimation step of the digital filter. After
these bits are modified, the next three conversions may be invalid due to the
settling time of the digital filter. This can be handled automatically with the
SD16INTDLYx bits. When SD16INTDLY = 00h, conversion interrupt requests
will not begin until the 4th conversion after a start condition.

The high impedance input buffer can be enabled using the SD16BUFx bits.
The speed settings are selected based on the SD16_A modulator frequency
as shown in Table 17−1.

Table 17−1.High Input Impedance Buffer

SD16BUFx Buffer SD16 Modulator Frequency fM

00 Buffer disabled

01 Low speed/current fM < 200kHz

10 Medium speed/current 200kHz < fM < 700kHz

11 High speed/current 700kHz < fM < 1.1MHz

An external R-C anti-aliasing filter is recommended for the SD16_A to prevent
aliasing of the input signal. The cutoff frequency should be < 10 kHz for a 1 Mhz
modulator clock and OSR = 256. The cutoff frequency may set to a lower
frequency for applications that have lower bandwidth requirements.

SD16_A Operation

17-6 SD16_A

17.2.6 Analog Input Characteristics

The SD16_A uses a switched-capacitor input stage that appears as an
impedance to external circuitry as shown in Figure 17−2.

Figure 17−2. Analog Input Equivalent Circuit

RS 1 k�
VS+

MSP430

CS

VS+ = Positive external source voltage
VS− = Negative external source voltage
RS = External source resistance
CS = Sampling capacitance

RS 1 k�
VS−

CS

AVCC / 2

†Not implemented in MSP430x20x3 devices

†

†

When the buffers are used, RS does not affect the sampling frequency.
However, when the buffers are not used or are not present on the device, the
maximum sampling frequency may be calculated from the minimum settling
time of the sampling circuit given by:

�� � ��� � �����
� � �	� ����

���	� ��
 � �
��

�
where

�� �
�

�� ��
 and �

��
� 	��

�

 �� 	

CS varies with the gain setting as shown in Table 17−2.

Table 17−2.Sampling Capacitance

PGA Gain Sampling Capacitance CS

1 1.25 pF

2, 4 2.5 pF

8 5 pF

16, 32 10 pF

SD16_A Operation

17-7SD16_A

17.2.7 Digital Filter

The digital filter processes the 1-bit data stream from the modulator using a
SINC3 comb filter. The transfer function is described in the z-Domain by:

���� � � �

���
� �
 �
���

�
 �
�
�
�

and in the frequency domain by:

���� ��
�

���������
�

�
�

�

������ �

�
�

� �
�

�

�

��
�

�
�

���
�

�
	����� ��
�

�
�

��

�
	���
�

�
�

��
�
�

�

�

where the oversampling rate, OSR, is the ratio of the modulator frequency fM
to the sample frequency fS. Figure 17−3 shows the filter’s frequency response
for an OSR of 32. The first filter notch is at fS = fM/OSR. The notch’s frequency
can be adjusted by changing the modulator’s frequency, fM, using
SD16SSELx and SD16DIVx and the oversampling rate using the SD16OSRx
and SD16XOSR bits .

The digital filter for each enabled ADC channel completes the decimation of
the digital bit-stream and outputs new conversion results to the SD16MEM0
register at the sample frequency fS.

Figure 17−3. Comb Filter’s Frequency Response with OSR = 32

−140

−120

−100

−80

−60

−40

−20

0

Frequency

G
A

IN
 [

d
B

]

fS fM

SD16_A Operation

17-8 SD16_A

Figure 17−4 shows the digital filter step response and conversion points. For
step changes at the input after start of conversion a settling time must be
allowed before a valid conversion result is available. The SD16INTDLYx bits
can provide sufficient filter settling time for a full-scale change at the ADC
input. If the step occurs synchronously to the decimation of the digital filter the
valid data will be available on the third conversion. An asynchronous step will
require one additional conversion before valid data is available.

Figure 17−4. Digital Filter Step Response and Conversion Points

1

2

3

4
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2

3

Asynchronous Step Synchronous Step

%
 V

F
S

R

Conversion Conversion

SD16_A Operation

17-9SD16_A

Digital Filter Output

The number of bits output by the digital filter is dependent on the oversampling
ratio and ranges from 15 to 30 bits. Figure 17−5 shows the digital filter output
and their relation to SD16MEM0 for each OSR, LSBACC, and SD16UNI
setting. For example, for OSR = 1024, LSBACC = 0, and SD16UNI = 1, the
SD16MEM0 register contains bits 28 − 13 of the digital filter output. When OSR
= 32, the one (SD16UNI = 0) or two (SD16UNI=1) LSBs are always zero.

The SD16LSBACC and SD16LSBTOG bits give access to the least significant
bits of the digital filter output. When SD16LSBACC = 1 the 16 least significant
bits of the digital filter’s output are read from SD16MEM0 using word
instructions. The SD16MEM0 register can also be accessed with byte
instructions returning only the 8 least significant bits of the digital filter output.

When SD16LSBTOG = 1 the SD16LSBACC bit is automatically toggled each
time SD16MEM0 is read. This allows the complete digital filter output result to
be read with two reads of SD16MEM0. Setting or clearing SD16LSBTOG does
not change SD16LSBACC until the next SD16MEM0 access.

Figure 17−5. Used Bits of Digital Filter Output

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=1

SD16_A Operation

17-10 SD16_A

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=32, LSBACC=x, SD16UNI=1

OSR=32, LSBACC=x, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=1

SD16_A Operation

17-11SD16_A

17.2.8 Conversion Memory Register: SD16MEM0

The SD16MEM0 register is associated with the SD16_A channel. Conversion
results are moved to the SD16MEM0 register with each decimation step of the
digital filter. The SD16IFG bit is set when new data is written to SD16MEM0.
SD16IFG is automatically cleared when SD16MEM0 is read by the CPU or
may be cleared with software.

Output Data Format

The output data format is configurable in two’s complement, offset binary or
unipolar mode as shown in Table 17−3.The data format is selected by the
SD16DF and SD16UNI bits.

Table 17−3.Data Format

SD16UNI SD16DF Format Analog Input SD16MEM0† Digital Filter Output
(OSR =256)

Bipolar
+FSR FFFF FFFFFF

0 0
Bipolar
Offset ZERO 8000 8000000 0 Offset
Binary −FSR 0000 000000

Bipolar
+FSR 7FFF 7FFFFF

0 1
Bipolar
Two’s ZERO 0000 0000000 1 Two s

compliment −FSR 8000 800000

+FSR FFFF FFFFFF

1 0 Unipolar ZERO 0000 8000001 0 Unipolar

−FSR 0000 000000
† Independent of SD16OSRx and SD16XOSR settings; SD16LSBACC = 0.

Figure 17−6 shows the relationship between the full-scale input voltage range
from −VFSR to +VFSR and the conversion result. The data formats are
illustrated.

Figure 17−6. Input Voltage vs. Digital Output

Input
Voltage

SD16MEMx

−VFSR

+V FSR

7FFFh

8000h

Bipolar Output: 2’s complement

Input
Voltage

SD16MEMx

−VFSR +V FSR

FFFFh

8000h

Bipolar Output: Offset Binary

0000h

0000h

Input
Voltage

SD16MEMx

−VFSR +V FSR

FFFFh

Unipolar Output

0000h

SD16_A Operation

17-12 SD16_A

17.2.9 Conversion Modes

The SD16_A module can be configured for two modes of operation, listed in
Table 17−4. The SD16SNGL bit selects the conversion mode.

Table 17−4.Conversion Mode Summary

SD16SNGL Mode Operation

1 Single conversion The channel is converted once.

0 Continuous conversion The channel is converted continuously.

Single Conversion

Setting the SD16SC bit of the channel initiates one conversion on that channel
when SD16SNGL = 1. The SD16SC bit will automatically be cleared after
conversion completion.

Clearing SD16SC before the conversion is completed immediately stops
conversion of the channel, the channel is powered down and the
corresponding digital filter is turned off. The value in SD16MEM0 can change
when SD16SC is cleared. It is recommended that the conversion data in
SD16MEM0 be read prior to clearing SD16SC to avoid reading an invalid
result.

Continuous Conversion

When SD16SNGL = 0 continuous conversion mode is selected. Conversion
of the channel will begin when SD16SC is set and continue until the SD16SC
bit is cleared by software.

Clearing SD16SC immediately stops conversion of the selected channel, the
channel is powered down and the corresponding digital filter is turned off. The
value in SD16MEM0 can change when SD16SC is cleared. It is recommended
that the conversion data in SD16MEM0 be read prior to clearing SD16SC to
avoid reading an invalid result.

Figure 17−7 shows conversion operation.

Figure 17−7. Single Channel Operation

SD16SNGL = 1

Time

Conversion

SD16SC

SD16SNGL = 0

Conversion

SD16SC

Conversion Conversion

Set by SW Auto−clear

Set by SW

Conv

Cleared by SW

= Result written to SD16MEM0

SD16_A Operation

17-13SD16_A

17.2.10 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel SD16INCHx = 110 and sets SD16REFON = 1. Any other configuration
is done as if an external channel was selected, including SD16INTDLYx and
SD16GAINx settings. Because the internal reference must be on to use the
temperature sensor, it is not possible to use an external reference for the
conversion of the temperature sensor voltage. Also, the internal reference will
be in contention with any used external reference. In this case, the
SD16VMIDON bit may be set to minimize the affects of the contention on the
conversion.

The typical temperature sensor transfer function is shown in Figure 17−8.
When switching inputs of an SD16_A channel to the temperature sensor,
adequate delay must be provided using SD16INTDLYx to allow the digital filter
to settle and assure that conversion results are valid. The temperature sensor
offset error can be large, and may need to be calibrated for most applications.
See device-specific data sheet for temperature sensor parameters.

Figure 17−8. Typical Temperature Sensor Transfer Function

Celsius

Volts

0 50 100

0.350

0.250

0.300

0.400

0.450

0.500

−50

0.200

VSensor,typ = TCSensor(273 + T[oC]) + VOffset, sensor [mV]

SD16_A Operation

17-14 SD16_A

17.2.11 Interrupt Handling

The SD16_A has 2 interrupt sources for its ADC channel:

� SD16IFG

� SD16OVIFG

The SD16IFG bit is set when the SD16MEM0 memory register is written with
a conversion result. An interrupt request is generated if the corresponding
SD16IE bit and the GIE bit are set. The SD16_A overflow condition occurs
when a conversion result is written to SD16MEM0 location before the previous
conversion result was read.

SD16IV, Interrupt Vector Generator

All SD16_A interrupt sources are prioritized and combined to source a single
interrupt vector. SD16IV is used to determine which enabled SD16_A interrupt
source requested an interrupt. The highest priority SD16_A interrupt request
that is enabled generates a number in the SD16IV register (see register
description). This number can be evaluated or added to the program counter
to automatically enter the appropriate software routine. Disabled SD16_A
interrupts do not affect the SD16IV value.

Any access, read or write, of the SD16IV register has no effect on the
SD16OVIFG or SD16IFG flags. The SD16IFG flags are reset by reading the
SD16MEM0 register or by clearing the flags in software. SD16OVIFG bits can
only be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the SD16OVIFG and one or more SD16IFG
interrupts are pending when the interrupt service routine accesses the SD16IV
register, the SD16OVIFG interrupt condition is serviced first and the
corresponding flag(s) must be cleared in software. After the RETI instruction
of the interrupt service routine is executed, the highest priority SD16IFG
pending generates another interrupt request.

Interrupt Delay Operation

The SD16INTDLYx bits control the timing for the first interrupt service request
for the corresponding channel. This feature delays the interrupt request for a
completed conversion by up to four conversion cycles allowing the digital filter
to settle prior to generating an interrupt request. The delay is applied each time
the SD16SC bit is set or when the SD16GAINx or SD16INCHx bits for the
channel are modified. SD16INTDLYx disables overflow interrupt generation
for the channel for the selected number of delay cycles. Interrupt requests for
the delayed conversions are not generated during the delay.

SD16_A Registers

17-15SD16_A

17.3 SD16_A Registers

The SD16_A registers are listed in Table 17−5:

Table 17−5.SD16_A Registers

Register Short Form Register Type Address Initial State

SD16_A Control SD16CTL Read/write 0100h Reset with PUC

SD16_A Interrupt Vector SD16IV Read/write 0110h Reset with PUC

SD16_A Channel 0 Control SD16CCTL0 Read/write 0102h Reset with PUC

SD16_A Conversion Memory SD16MEM0 Read/write 0112h Reset with PUC

SD16_A Input Control SD16INCTL0 Read/write 0B0h Reset with PUC

SD16_A Analog Enable SD16AE Read/write 0B7h Reset with PUC

SD16_A Registers

17-16 SD16_A

SD16CTL, SD16_A Control Register

15 14 13 12 11 10 9 8

Reserved SD16XDIVx SD16LP

r0 r0 r0 r0 rw−0 rw−0 rw−0 rw−0

7 6 5 4 3 2 1 0

SD16DIVx SD16SSELx SD16
VMIDON

SD16
REFON SD16OVIE Reserved

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 r0

Reserved Bits
15-12

Reserved

SD16XDIVx Bits
11-9

SD16_A clock divider
000 /1
001 /3
010 /16
011 /48
1xx Reserved

SD16LP Bit 8 Low power mode. This bit selects a reduced speed, reduced power mode
0 Low-power mode is disabled
1 Low-power mode is enabled. The maximum clock frequency for the

SD16_A is reduced.

SD16DIVx Bits
7-6

SD16_A clock divider
00 /1
01 /2
10 /4
11 /8

SD16SSELx Bits
5-4

SD16_A clock source select
00 MCLK
01 SMCLK
10 ACLK
11 External TACLK

SD16
VMIDON

Bit 3 VMID buffer on
0 Off
1 On

SD16
REFON

Bit 2 Reference generator on
0 Reference off
1 Reference on

SD16OVIE Bit 1 SD16_A overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

Reserved Bit 0 Reserved

SD16_A Registers

17-17SD16_A

SD16CCTL0, SD16_A Control Register 0

15 14 13 12 11 10 9 8

Reserved SD16BUFx† SD16UNI SD16XOSR SD16SNGL SD16OSRx

r0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

7 6 5 4 3 2 1 0

SD16
LSBTOG

SD16
LSBACC

SD16
OVIFG SD16DF SD16IE SD16IFG SD16SC Reserved

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 r−0

†Reserved in MSP430x20x3 devices

Reserved Bit 15 Reserved

SD16BUFx Bits
14−13

High impedance input buffer mode
00 Buffer disabled
01 Slow speed/current
10 Medium speed/current
11 High speed/current

SD16UNI Bit 12 Unipolar mode select
0 Bipolar mode
1 Unipolar mode

SD16XOSR Bit 11 Extended oversampling ratio. This bit, along with the SD16OSRx bits,
select the oversampling ratio. See SD16OSRx bit description for settings.

SD16SNGL Bit 10 Single conversion mode select
0 Continuous conversion mode
1 Single conversion mode

SD16OSRx Bits
9-8

Oversampling ratio
When SD16XOSR = 0
00 256
01 128
10 64
11 32
When SD16XOSR = 1
00 512
01 1024
10 Reserved
11 Reserved

SD16
LSBTOG

Bit 7 LSB toggle. This bit, when set, causes SD16LSBACC to toggle each time
the SD16MEM0 register is read.
0 SD16LSBACC does not toggle with each SD16MEM0 read
1 SD16LSBACC toggles with each SD16MEM0 read

SD16_A Registers

17-18 SD16_A

SD16
LSBACC

Bit 6 LSB access. This bit allows access to the upper or lower 16-bits of the
SD16_A conversion result.
0 SD16MEMx contains the most significant 16-bits of the conversion.
1 SD16MEMx contains the least significant 16-bits of the conversion.

SD16OVIFG Bit 5 SD16_A overflow interrupt flag
0 No overflow interrupt pending
1 Overflow interrupt pending

SD16DF Bit 4 SD16_A data format
0 Offset binary
1 2’s complement

SD16IE Bit 3 SD16_A interrupt enable
0 Disabled
1 Enabled

SD16IFG Bit 2 SD16_A interrupt flag. SD16IFG is set when new conversion results are
available. SD16IFG is automatically reset when the corresponding
SD16MEMx register is read, or may be cleared with software.
0 No interrupt pending
1 Interrupt pending

SD16SC Bit 1 SD16_A start conversion
0 No conversion start
1 Start conversion

Reserved Bit 0 Reserved

SD16_A Registers

17-19SD16_A

SD16INCTL0, SD16_A Input Control Register

7 6 5 4 3 2 1 0

SD16INTDLYx SD16GAINx SD16INCHx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

SD16
INTDLYx

Bits
7-6

Interrupt delay generation after conversion start. These bits select the
delay for the first interrupt after conversion start.
00 Fourth sample causes interrupt
01 Third sample causes interrupt
10 Second sample causes interrupt
11 First sample causes interrupt

SD16GAINx Bits
5-3

SD16_A preamplifier gain
000 x1
001 x2
010 x4
011 x8
100 x16
101 x32
110 Reserved
111 Reserved

SD16INCHx Bits
2-0

SD16_A channel differential pair input
000 A0
001 A1
010 A2
011 A3
100 A4
101 A5− (AVCC − AVSS) / 11
110 A6- Temperature Sensor
111 A7- Short for PGA offset measurement

SD16_A Registers

17-20 SD16_A

SD16MEM0, SD16_A Conversion Memory Register

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion
Result

Bits
15-0

Conversion Results. The SD16MEMx register holds the upper or lower
16-bits of the digital filter output, depending on the SD16LSBACC bit.

SD16AE, SD16_A Analog Input Enable Register

7 6 5 4 3 2 1 0

SD16AE7 SD16AE6 SD16AE5 SD16AE4 SD16AE3 SD16AE2 SD16AE1 SD16AE0

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

SD16AEx Bits
7-0

SD16_A analog enable
0 External input disabled. Negative inputs are internally connected to

VSS.
1 External input enabled.

SD16_A Registers

17-21SD16_A

SD16IV, SD16_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SD16IVx 0

r0 r0 r0 r−0 r−0 r−0 r−0 r0

SD16IVx Bits
15-0

SD16_A interrupt vector value

SD16IV
Contents Interrupt Source Interrupt Flag

Interrupt
Priority

000h No interrupt pending −

002h SD16MEMx overflow SD16CCTLx
SD16OVIFG

Highest

004h SD16_A Interrupt SD16CCTL0
SD16IFG

006h Reserved −

008h Reserved −

00Ah Reserved −

00Ch Reserved −

00Eh Reserved −

010h Reserved − Lowest

	IMPORTANT NOTICE
	Preface - Read This First
	About This Manual
	Related Documentation From Texas Instruments
	FCC Warning
	Notational Conventions
	Glossary
	Register Bit Conventions

	Contents
	Introduction
	Architecture
	Flexible Clock System
	Embedded Emulation
	Address Space
	Flash/ROM
	RAM
	Peripheral Modules
	Special Function Registers (SFRs)
	Memory Organization

	MSP430x2xx Family Enhancements

	System Resets, Interrupts, and Operating Modes
	System Reset and Initialization
	Brownout Reset (BOR)
	Device Initial Conditions After System Reset
	Software Initialization

	Interrupts
	(Non)-Maskable Interrupts (NMI)
	Reset/NMI Pin
	Flash Access Violation
	Oscillator Fault
	Example of an NMI Interrupt Handler

	Maskable Interrupts
	Interrupt Processing
	Interrupt Acceptance
	Return From Interrupt
	Interrupt Nesting

	Interrupt Vectors

	Operating Modes
	Entering and Exiting Low-Power Modes

	Principles for Low-Power Applications
	Connection of Unused Pins

	RISC 16-Bit CPU
	CPU Introduction
	CPU Registers
	Program Counter (PC)
	Stack Pointer (SP)
	Status Register (SR)
	Constant Generator Registers CG1 and CG2
	Constant Generator - Expanded Instruction Set

	General-Purpose Registers R4 - R15

	Addressing Modes
	Register Mode
	Indexed Mode
	Symbolic Mode
	Absolute Mode
	Indirect Register Mode
	Indirect Autoincrement Mode
	Immediate Mode

	Instruction Set
	Double-Operand (Format I) Instructions
	Single-Operand (Format II) Instructions
	Jumps
	* ADC[.W] Add carry to destination * ADC.B Add carry to destination
	ADD[.W] Add source to destination ADD.B Add source to destination
	ADDC[.W] Add source and carry to destination ADDC.B Add source and carry to destination
	AND[.W] Source AND destination AND.B Source AND destination
	BIC[.W] Clear bits in destination BIC.B Clear bits in destination
	BIS[.W] Set bits in destination BIS.B Set bits in destination
	BIT[.W] Test bits in destination BIT.B Test bits in destination
	* BR, BRANCH Branch to destination
	CALL Subroutine
	* CLR[.W] Clear destination * CLR.B Clear destination
	* CLRC Clear carry bit
	* CLRN Clear negative bit
	* CLRZ Clear zero bit
	CMP[.W] Compare source and destination CMP.B Compare source and destination
	* DADC[.W] Add carry decimally to destination * DADC.B Add carry decimally to destination
	DADD[.W] Source and carry added decimally to destination DADD.B Source and carry added decimally to destination
	* DEC[.W] Decrement destination * DEC.B Decrement destination
	* DECD[.W] Double-decrement destination * DECD.B Double-decrement destination
	* DINT Disable (general) interrupts
	* EINT Enable (general) interrupts
	* INC[.W] Increment destination * INC.B Increment destination
	* INCD[.W] Double-increment destination * INCD.B Double-increment destination
	* INV[.W] Invert destination * INV.B Invert destination
	JC Jump if carry set JHS Jump if higher or same
	JEQ, JZ Jump if equal, jump if zero
	JGE Jump if greater or equal
	JL Jump if less
	JMP Jump unconditionally
	JN Jump if negative
	JNC Jump if carry not set JLO Jump if lower
	JNE Jump if not equal JNZ Jump if not zero
	MOV[.W] Move source to destination MOV.B Move source to destination
	* NOP No operation
	* POP[.W] Pop word from stack to destination * POP.B Pop byte from stack to destination
	PUSH[.W] Push word onto stack PUSH.B Push byte onto stack
	* RET Return from subroutine
	RETI Return from interrupt
	* RLA[.W] Rotate left arithmetically * RLA.B Rotate left arithmetically
	* RLC[.W] Rotate left through carry * RLC.B Rotate left through carry
	RRA[.W] Rotate right arithmetically RRA.B Rotate right arithmetically
	RRC[.W] Rotate right through carry RRC.B Rotate right through carry
	* SBC[.W] Subtract source and borrow/.NOT. carry from destination * SBC.B Subtract source and borrow/.NOT. carry from destination
	* SETC Set carry bit
	* SETN Set negative bit
	* SETZ Set zero bit
	SUB[.W] Subtract source from destination SUB.B Subtract source from destination
	SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination
	SWPB Swap bytes
	SXT Extend Sign
	* TST[.W] Test destination * TST.B Test destination
	XOR[.W] Exclusive OR of source with destination XOR.B Exclusive OR of source with destination

	Instruction Cycles and Lengths
	Interrupt and Reset Cycles
	Format-II (Single Operand) Instruction Cycles and Lengths
	Format-III (Jump) Instruction Cycles and Lengths
	Format-I (Double Operand) Instruction Cycles and Lengths

	Instruction Set Description

	Basic Clock Module+
	Basic Clock Module+ Introduction
	Basic Clock Module+ Operation
	Basic Clock Module+ Features for Low-Power Applications
	Internal Very Low Power, Low Frequency Oscillator
	LFXT1 Oscillator
	XT2 Oscillator
	Digitally-Controlled Oscillator (DCO)
	Disabling the DCO
	Adjusting the DCO frequency
	Using an External Resistor (ROSC) for the DCO

	DCO Modulator
	Basic Clock Module+ Fail-Safe Operation
	Sourcing MCLK from a Crystal

	Synchronization of Clock Signals

	Basic Clock Module+ Registers
	DCOCTL, DCO Control Register
	BCSCTL1, Basic Clock System Control Register 1
	BCSCTL2, Basic Clock System Control Register 2
	BCSCTL3, Basic Clock System Control Register 3
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Flash Memory Controller
	Flash Memory Introduction
	Flash Memory Segmentation
	SegmentA

	Flash Memory Operation
	Flash Memory Timing Generator
	Flash Timing Generator Clock Selection

	Erasing Flash Memory
	Initiating an Erase from Within Flash Memory
	Initiating an Erase from RAM

	Writing Flash Memory
	Byte/Word Write
	Initiating a Byte/Word Write from Within Flash Memory
	Initiating a Byte/Word Write from RAM
	Block Write
	Block Write Flow and Example

	Flash Memory Access During Write or Erase
	Stopping a Write or Erase Cycle
	Configuring and Accessing the Flash Memory Controller
	Flash Memory Controller Interrupts
	Programming Flash Memory Devices
	Programming Flash Memory via JTAG
	Programming Flash Memory via the Bootstrap loader (BSL)
	Programming Flash Memory via a Custom Solution

	Flash Memory Registers
	FCTL1, Flash Memory Control Register
	FCTL2, Flash Memory Control Register
	FCTL3, Flash Memory Control Register FCTL3

	Digital I/O
	Digital I/O Introduction
	I/O Operation
	Input Register PxIN
	Output Registers PxOUT
	Direction Registers PxDIR
	Pull-Up/Down Resistor Enable Registers PxREN
	Function Select Registers PxSEL
	P1 and P2 Interrupts
	Interrupt Flag Registers P1IFG, P2IFG
	Interrupt Edge Select Registers P1IES, P2IES
	Interrupt Enable P1IE, P2IE

	Configuring Unused Port Pins

	Digital I/O Registers

	Watchdog Timer+
	Watchdog Timer+ Introduction
	Watchdog Timer+ Operation
	Watchdog timer+ Counter
	Watchdog Mode
	Interval Timer Mode
	Watchdog timer+ Interrupts
	Watchdog timer+ Clock Fail-safe Operation
	Operation in Low-Power Modes
	Software Examples

	Watchdog Timer+ Registers
	WDTCTL, Watchdog timer+ Register
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Timer_A
	Timer_A Introduction
	Timer_A Operation
	16-Bit Timer Counter
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TACCR0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Period Register TACCR0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example—Timer in Up/Down Mode

	Timer_A Interrupts
	TACCR0 Interrupt
	TAIV, Interrupt Vector Generator
	TAIV Software Example

	Timer_A Registers
	TACTL, Timer_A Control Register
	TAR, Timer_A Register
	TACCTLx, Capture/Compare Control Register
	TAIV, Timer_A Interrupt Vector Register

	Timer_B
	Timer_B Introduction
	Similarities and Differences From Timer_A

	Timer_B Operation
	16-Bit Timer Counter
	TBR Length
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TBCL0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Value of Period Register TBCL0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode
	Compare Latch TBCLx
	Grouping Compare Latches

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example - Timer in Up/Down Mode

	Timer_B Interrupts
	TBCCR0 Interrupt Vector
	TBIV, Interrupt Vector Generator
	TBIV, Interrupt Handler Examples

	Timer_B Registers
	Timer_B Registers
	TBR, Timer_B Register
	TBCCTLx, Capture/Compare Control Register
	TBIV, Timer_B Interrupt Vector Register

	Universal Serial Interface
	USI Introduction
	USI Operation
	USI Initialization
	USI Clock Generation
	SPI Mode
	SPI Master Mode
	SPI Slave Mode
	USISR Operation
	SPI Interrupts

	I2C Mode
	I2C Master Mode
	I2C Slave Mode
	I2C Transmitter
	I2C Receiver
	START Condition
	STOP Condition
	Releasing SCL
	Arbitration
	I2C Interrupts

	USI Registers
	USICTL0, USI Control Register 0
	USICTL1, USI Control Register 1
	USICTL1, USI Control Register 1
	USICNT, USI Bit Counter Register
	USISRL, USI Low Byte Shift Register
	USISRH, USI High Byte Shift Register

	Universal Serial Communication Interface, UART Mode
	USCI Overview
	USCI Introduction: UART Mode
	USCI Operation: UART Mode
	USCI Initialization and Reset
	Character Format
	Asynchronous Communication Formats
	Idle-Line Multiprocessor Format
	Transmitting an Idle Frame
	Address-Bit Multiprocessor Format
	Break Reception and Generation

	Automatic Baud Rate Detection
	Transmitting a Break/Synch Field

	IrDA Encoding and Decoding
	IrDA Encoding
	IrDA Decoding

	Automatic Error Detection
	USCI Receive Enable
	Receive Data Glitch Suppression

	USCI Transmit Enable
	UART Baud Rate Generation
	Low-Frequency Baud Rate Generation
	Oversampling Baud Rate Generation

	Setting a Baud Rate
	Low–Frequency Baud Rate Mode Setting
	Oversampling Baud Rate Mode Setting

	Transmit Bit Timing
	Low–Frequency Baud Rate Mode Bit Timing
	Oversampling Baud Rate Mode Bit Timing

	Receive Bit Timing
	Typical Baud Rates and Errors
	Using the USCI Module in UART Mode with Low Power Modes
	USCI Interrupts
	USCI Transmit Interrupt Operation
	USCI Receive Interrupt Operation
	USCI Interrupt Usage
	Shared Interrupt Vectors Software Example

	USCI Registers: UART Mode
	UCAxCTL0, USCI_Ax Control Register 0
	UCAxCTL1, USCI_Ax Control Register 1
	UCAxBR0, USCI_Ax Baud Rate Control Register 0
	UCAxBR1, USCI_Ax Baud Rate Control Register 1
	UCAxMCTL, USCI_Ax Modulation Control Register
	UCAxSTAT, USCI_Ax Status Register
	UCAxRXBUF, USCI_Ax Receive Buffer Register
	UCAxTXBUF, USCI_Ax Transmit Buffer Register
	UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register
	UCAxIRRCTL, USCI_Ax IrDA Receive Control Register
	UCAxABCTL, USCI_Ax Auto Baud Rate Control Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_A1 Interrupt Enable Register
	UC1IFG, USCI_A1 Interrupt Flag Register

	Universal Serial Communication Interface, SPI Mode
	USCI Overview
	USCI Introduction: SPI Mode
	USCI Operation: SPI Mode
	USCI Initialization and Reset
	Character Format
	Master Mode
	Four-Pin SPI Master Mode

	Slave Mode
	Four-Pin SPI Slave Mode

	SPI Enable
	Transmit Enable
	Receive Enable

	Serial Clock Control
	Serial Clock Polarity and Phase

	Using the SPI Mode with Low Power Modes
	SPI Interrupts
	SPI Transmit Interrupt Operation
	SPI Receive Interrupt Operation
	USCI Interrupt Usage
	Shared Interrupt Vectors Software Example

	USCI Registers: SPI Mode
	UCAxCTL0, USCI_Ax Control Register 0 UCBxCTL0, USCI_Bx Control Register 0
	UCAxCTL1, USCI_Ax Control Register 1 UCBxCTL1, USCI_Bx Control Register 1
	UCAxBR0, USCI_Ax Bit Rate Control Register 0 UCBxBR1, USCI_Bx Bit Rate Control Register 0
	UCAxBR1, USCI_Ax Bit Rate Control Register 1 UCBxBR1, USCI_Bx Bit Rate Control Register 1
	UCAxSTAT, USCI_Ax Status Register UCBxSTAT, USCI_Bx Status Register
	UCAxRXBUF, USCI_Ax Receive Buffer Register UCBxRXBUF, USCI_Bx Receive Buffer Register
	UCAxTXBUF, USCI_Ax Transmit Buffer Register UCBxTXBUF, USCI_Bx Transmit Buffer Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register
	UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

	Universal Serial Communication Interface, I2C Mode
	USCI Overview
	USCI Introduction: I2C Mode
	USCI Operation: I2C Mode
	USCI Initialization and Reset
	I2C Serial Data
	I2C Addressing Modes
	7-Bit Addressing
	10-Bit Addressing
	Repeated Start Conditions

	I2C Module Operating Modes
	Slave Mode
	I2C Slave Transmitter Mode
	I2C Slave Receiver Mode
	I2C Slave 10-bit Addressing Mode

	Master Mode
	I2C Master Transmitter Mode
	I2C Master Receiver Mode
	I2C Master 10-bit Addressing Mode
	Arbitration

	I2C Clock Generation and Synchronization
	Using the USCI Module in I2C Mode with Low Power Modes
	USCI Interrupts in I2C Mode
	I2C Transmit Interrupt Operation
	I2C Receive Interrupt Operation
	I2C State Change Interrupt Operation.
	Interrupt Vector Assignment
	Shared Interrupt Vectors Software Example

	USCI Registers: I2C Mode
	UCBxCTL0, USCI_Bx Control Register 0
	UCBxCTL1, USCI_Bx Control Register 1
	UCBxBR0, USCI_Bx Baud Rate Control Register 0
	UCBxBR1, USCI_Bx Baud Rate Control Register 1
	UCBxSTAT, USCI_Bx Status Register
	UCBxRXBUF, USCI_Bx Receive Buffer Register
	UCBxTXBUF, USCI_Bx Transmit Buffer Register
	UCBxI2COA, USCIBx I2C Own Address Register
	UCBxI2CSA, USCI_Bx I2C Slave Address Register
	UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_B1 Interrupt Enable Register
	UC1IFG, USCI_B1 Interrupt Flag Register

	OA
	OA Introduction
	OA Operation
	OA Amplifier
	OA Input
	OA Output and Feedback Routing
	OA Configurations
	General Purpose Opamp Mode
	Unity Gain Mode for Differential Amplifier
	Unity Gain Mode
	Comparator Mode
	Non-Inverting PGA Mode
	Cascaded Non-Inverting PGA Mode
	Inverting PGA Mode
	Differential Amplifier Mode

	OA Registers
	OAxCTL0, Opamp Control Register 0
	OAxCTL1, Opamp Control Register 1

	Comparator_A+
	Comparator_A+ Introduction
	Comparator_A+ Operation
	Comparator
	Input Analog Switches
	Input Short Switch
	Output Filter
	Voltage Reference Generator
	Comparator_A+, Port Disable Register CAPD
	Comparator_A+ Interrupts
	Comparator_A+ Used to Measure Resistive Elements

	Comparator_A+ Registers
	CACTL1, Comparator_A+ Control Register 1
	CACTL2, Comparator_A+, Control Register
	CAPD, Comparator_A+, Port Disable Register

	ADC10
	ADC10 Introduction
	ADC10 Operation
	10-Bit ADC Core
	Conversion Clock Selection

	ADC10 Inputs and Multiplexer
	Analog Port Selection

	Voltage Reference Generator
	Internal Reference Low-Power Features

	Auto Power-Down
	Sample and Conversion Timing
	Sample Timing Considerations

	Conversion Modes
	Single-Channel Single-Conversion Mode
	Sequence-of-Channels Mode
	Repeat-Single-Channel Mode
	Repeat-Sequence-of-Channels Mode
	Using the MSC Bit
	Stopping Conversions

	ADC10 Data Transfer Controller
	One-Block Transfer Mode
	Two-Block Transfer Mode
	Continuous Transfer
	DTC Transfer Cycle Time

	Using the Integrated Temperature Sensor
	ADC10 Grounding and Noise Considerations
	ADC10 Interrupts

	ADC10 Registers
	ADC10CTL0, ADC10 Control Register 0
	ADC10CTL1, ADC10 Control Register 1
	ADC10AE0, Analog (Input) Enable Control Register 0
	ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430x22x4 only)
	ADC10MEM, Conversion-Memory Register, Binary Format
	ADC10MEM, Conversion-Memory Register, 2’s Complement Format
	ADC10DTC0, Data Transfer Control Register 0
	ADC10DTC1, Data Transfer Control Register 1
	ADC10SA, Start Address Register for Data Transfer

	SD16_A
	SD16_A Introduction
	SD16_A Operation
	ADC Core
	Analog Input Range and PGA
	Voltage Reference Generator
	Auto Power-Down
	Channel Selection
	Analog Input Setup

	Input Characteristics
	Digital Filter
	Digital Filter Output

	Conversion Memory Register: SD16MEM0
	Output Data Format

	Conversion Modes
	Single Conversion
	Continuous Conversion

	Using the Integrated Temperature Sensor
	Interrupt Handling
	SD16IV, Interrupt Vector Generator
	Interrupt Delay Operation

	SD16_A Registers
	SD16CTL, SD16_A Control Register
	SD16CCTL0, SD16_A Control Register 0
	SD16INCTL0, SD16_A Input Control Register
	SD16MEM0, SD16_A Conversion Memory Register
	SD16AE, SD16_A Analog Input Enable Register
	SD16IV, SD16_A Interrupt Vector Register

