{'f TeEXAS
INSTRUMENTS

MSP430x2xx Family

User's Guide

2006 Mixed Signal Products
SLAU144B

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

T1 does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated Tl product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x2xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational paramenters differ
from device-to-device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
I/O
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See Basic Clock Module

See RISC 16-Bit CPU

See FLL+ in MSP430x4xx Family User’s Guide

See System Resets Interrupts and Operating Modes

See Digital I/O

See System Resets Interrupts and Operating Modes

See Basic Clock Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See Basic Clock Module
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key

Bit Accessibility

rw
r
ro
r1
w
w0

wi

(W)

ho
h1
0,1

Read/write
Read only
Read as 0
Read as 1
Write only
Write as 0
Write as 1

No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

Cleared by hardware
Set by hardware
Condition after PUC

-(0),-(1) Condition after POR

Contents

INtrodUCtioNt i i 1-1
1.1 ArchiteCture e 1-2
1.2 Flexible CloCK System 1-2
1.3 Embedded Emulation 1-3
1.4 AdAreSS SPACEottt it et 1-4
1.4.1 Flash/ROM e 1-4
14,2 RAM L 1-4
1.4.3 Peripheral Modules e 1-5
1.4.4 Special Function Registers (SFRS) i 1-5
1.45 Memory Organization it 1-5
1.5 MSP430x2xx Family Enhancements i 1-6
System Resets, Interrupts, and OperatingModescciiiiiiiiiiiinnnnnans 2-1
2.1 System Reset and Initialization 2-2
2.1.1 Brownout Reset (BOR) ...t 2-3
2.1.2 Device Initial Conditions After System Reset 2-4
2.2 M BITUDES .t 2-5
2.2.1 (Non)-Maskable Interrupts (NMI) e 2-6
2.2.2 Maskable Interrupts 2-9
2.2.3 Interrupt ProCessingoouiiii 2-10
224 Interrupt VeCtorso e 2-12
2.3 Operating Modest 2-14
2.3.1 Entering and Exiting Low-Power Modes oo, 2-16
2.4 Principles for Low-Power Applications i 2-17
2.5 Connectionof Unused Pins 2-17

Vii

Contents

3 BRISCI6-Bit CPUttt ia it eaasaaa s asnnannansseannnnnnnns 3-1
3.1 CPUINroduCtioN e 3-2
3.2 CPU REQISIEIS ...ttt 3-4

3.2.1 Program Counter (PC)t 3-4
3.2.2 Stack Pointer (SP) e 3-5
3.2.83 Status Register (SR) 3-6
3.2.4 Constant Generator Registers CG1and CG2, 3-7
3.2.5 General-Purpose Registers R4 -R15 i 3-8
3.3 AdAressing MOdest s 3-9
3.3.1 RegisterMode 3-10
3.32 Indexed MOde o 3-11
3.3.3 SymbolicMode 3-12
3.3.4 Absolute Mode 3-13
3.3.5 Indirect Register Mode 3-14
3.3.6 Indirect AutoincrementMode 3-15
3.3.7 Immediate Mode 3-16
3.4 Instruction Set 3-17
3.4.1 Double-Operand (Format I) Instructions oo, 3-18
3.4.2 Single-Operand (Format Il) Instructions 3-19
.43 JUMIPS o 3-20
3.4.4 Instruction Cyclesand Lengths i 3-72
3.4.5 Instruction Set Description i 3-74

4 BasicClock Module+iiiiiiiiiii i iiat s easaannasnsnsennnrannns 4-1
4.1 Basic Clock Module+ Introduction i 4-2
4.2 Basic Clock Module+ Operation i 4-4

4.2.1 Basic Clock Module+ Features for Low-Power Applications 4-4
4.2.2 Internal Very Low Power, Low Frequency Oscillator 4-4
423 LEXT1 Oscillator 4-5
424 XT2O0sCIllator 4-6
4.2.5 Digitally-Controlled Oscillator (DCO)ot 4-6
426 DCO Modulator e 4-9
4.2.7 Basic Clock Module+ Fail-Safe Operationcoiiin... 4-10
4.2.8 Synchronization of Clock Signals 4-12
4.3 Basic Clock Module+ Registersoiiiiiiiii e 4-13

5 Flash Memory Controlleroeeiiiiinerriinniinn s erenannanrr s 5-1
5.1 Flash Memory Introduction i e 5-2
5.2 Flash Memory Segmentation e 5-3

5.2.1 SegMENIA . e 5-4
5.3 Flash Memory Operation e 5-5
5.3.1 Flash Memory Timing Generatorcouuuiiiiiiiiiiinnnnnn. 5-5
5.3.2 Erasing Flash Memory e 5-7
5.83.3 Writing Flash Memory 5-10
5.3.4 Flash Memory Access During Write orErase 5-16
5.3.5 StoppingaWriteorEraseCycle 5-17
5.3.6 Configuring and Accessing the Flash Memory Controller 5-17
5.3.7 Flash Memory Controller Interrupts 5-17
5.3.8 Programming Flash Memory Devices oo, 5-17
5.4 Flash Memory Registers e 5-19

viii

Contents

6 Digital I/Oo e 6-1
6.1 Digital /O Introduction 6-2
6.2 Digital /O Operationt 6-3
6.2.1 Input Register PxIN 6-3

6.2.2 Output Registers PXOUT e 6-3

6.2.3 Direction Registers PxDIR 6-3

6.2.4 Pull-Up/Down Resistor Enable Registers PXxREN 6-3

6.2.5 Function Select Registers PXSEL 6-4

6.2.6 PlandP2Interrupts 6-5

6.2.7 ConfiguringUnused Port Pins 6-6

6.3 Digital /O Registers 6-7
7 Watchdog Timertciiii it it ettt e it es s nas s nas s s snnnasnnnnrnnns 7-1
7.1 Watchdog Timer+ Introduction 7-2
7.2 Watchdog Timer+ Operationt i 7-4
7.2.1 Watchdog timer+ Countert 7-4

7.22 Watchdog Mode 7-4

7.23 Interval TimerMode i 7-4

7.2.4 Watchdog timer+ Interrupts 7-5

7.2.5 Watchdog timer+ Clock Fail-safe Operation 7-5

7.2.6 Operation in Low-Power Modesttt 7-6

7.2.7 Software EXamples 7-6

7.3 Watchdog Timer+ Registers 7-7
. I 1 11T 8-1
8.1 Timer_Alntroduction 8-2
8.2 Timer_A Operationooiiiiiii 8-4
8.2.1 16-Bit Timer Counter i 8-4

8.2.2 Startingthe Timer 8-5

8.2.3 TimerMode Control 8-5

8.2.4 Capture/Compare BIOCKS 8-11

8.2.5 Output Unit 8-13

8.2.6 Timer_Alnterrupts 8-17

8.3 Timer_ARegisters 8-19
£ T I 1 11T] 9-1
9.1 Timer_Blntroduction 9-2
9.1.1 Similarities and Differences From Timer_A iiiinnn... 9-2

9.2 Timer_B Operationt 9-4
9.2.1 16-Bit Timer Counter i 9-4

9.2.2 Startingthe Timer 9-5

9.2.3 TimerMode Control 9-5

9.2.4 Capture/Compare BIOCKS e 9-11

9.25 Output Unit ... 9-14

9.26 Timer_Blinterrupts 9-18

9.3 Timer_BRegisters 9-20

Contents

10 Universal Serial Interface

1"

10.1

USHINtroduction oo e

10.2 USIOPErationt e e e e

10.2.1 USl Initialization i
10.2.2 USIClock Generationiiiiiiit ittt
10.2.3 SPIMOAE ... e
SPIMaster Mode e
SPISIave Modeo e
USISR Operation
SPlINterrupts o
10.2.4 12C MOE . ..o
[2C Master MOdeoii i e e e
[2C Slave Mode
12C Transmitter
I2C RECEIVE . .ottt e
START Condition oot e e e e

STOP Condition |
Releasing SCL oo

Arbitration
12C Interrupts . ..o

10.3 USI Registers

Universal Serial Communication Interface, UARTModeccviviirnnans

11.1
1.2
11.3

11.4

USCI OVEIVIEW . .\ttt e e e e e e e
USCI Introduction: UART Modeo e
USCI Operation: UART Modeo i
11.3.1 USClI Initializationand Reset i e
11.3.2 Character Format
11.3.3 Asynchronous Communication Formats
11.3.4 Automatic Baud Rate Detection i,
11.3.5 IrDA Encodingand Decodingc.oiiiiiiinii i
11.3.6 Automatic Error Detection i
11.3.7 USCIReceiveEnable i i
11.3.8 USCIl TransmitEnable i
11.3.9 UART Baud Rate Generationcciiiiiiiiiiiinnnnnn..
11.3.10 SettingaBaud Rate i
11.3.11 Transmit Bit TIMingo e
11.3.12 Receive Bit Timingo e
11.3.13 Typical Baud Rates and Errors i,
11.3.14 Using the USCI Module in UART Mode with Low Power Modes
11.3.15 USCIINnterrupts
USCI Registers: UART MOdeo ot

.[10-1
.110-2
.110-5
.110-5
.110-6
.|10-6
.|10-7

12 Universal Serial Communication Interface, SPIModeciiiiiiinnn.. 12-1
12,1 USCI OVEIVIEW . oot e e e e e 12-2
12.2 USCI Introduction: SPIMOdEt e 12-3
12.3 USCI Operation: SPIMOde e 12-5

12.3.1 USCl Initializationand Reset i 12-6
12.3.2 Character Format. 12-6
12.3.3 Master MOdeo e e 12-7
12.3.4 Slave MOde 12-9
12.3.5 SPIENableo 12-10
12.3.6 Serial Clock Controlt e e e 12-11
12.3.7 Using the SPI Mode with Low Power Modes 12-12
12.3.8 SPIINterruptso e 12-13
12.4 USCI Registers: SPIMOdEo e 12-15

13 Universal Serial Communication Interface,I2CMode iiiiiiiaan.. 13-1
131 USCI OVEIVIEW . oot e e e 13-2
13.2 USCI Introduction: [2C MOdet e 13-3
13.3 USCI Operation: 12C Modettt e e i 13-5

13.3.1 USCI Initializationand Reset i i 13-6
13.3.2 12C SerialDataooi i 13-7
13.3.3 12C Addressing Modest 13-8
13.3.4 12C Module Operating Modes 13-9
I2C Slave Transmitter Mode i [13-10 |
I2C Slave Receiver Modet e i e 13-12
I2C Slave 10-bit AddressingMode 13-14
I2C Master Transmitter Mode 13-15
I2C Master ReceiverMode i
[2C Master 10-bit AddressingMode i 13-19
Arbitration 13-20
13.3.5 12C Clock Generation and Synchronization 13-21
13.3.6 Using the USCI Module in 12C Mode with Low Power Modes 13-22
13.3.7 USCl Interrupts in12CModeo 13-23
13.4 USCI Registers: I2CMode 13-25

L S 14-1
141 OA INtrodUCHION 14-2
14.2 OA Operationo 14-4

14.2.1 OA AMPIifier ..o 14-4
14.2.2 OA INPUL .o 14-4
14.2.3 OA Output and Feedback Routing i, 14-5
14.2.4 OA Configurationsot 14-6
14.3 OA RegISters 14-12

Contents

Xi

Contents

15 ComMPArator A+t ... s 15-1
15.1 Comparator_ A+ INtroductiont 15-2
15.2 Comparator A+ Operationt 15-4

15.2.1 COMPAratorttt e e e 15-4
15.2.2 Input Analog Switches 15-4
15.2.3 InputShort Switch 15-5
15.2.4 Output Filter 15-6
15.2.5 Voltage Reference Generatorttt 15-6
15.2.6 Comparator_ A+, Port Disable Register CAPD 15-7
15.2.7 Comparator A+ Interrupts 15-7
15.2.8 Comparator_A+ Used to Measure Resistive Elements 15-8
15.3 Comparator A+ RegiSters 15-10

2 0T O 16-1
16.1 ADCT10 INtroduction oo 16-2
16.2 ADCT0 OPErationttt ettt e e et e e 16-4

16.2.1 10-Bit ADC COre . ..ottt e e e 16-4
16.2.2 ADC10 Inputs and Multiplexer 16-5
16.2.3 Voltage Reference Generator i, 16-6
16.2.4 AUt POWEr-DOWN 16-6
16.2.5 Sample and Conversion TiMiNGttt 16-7
16.2.6 Conversion Modesttt 16-9
16.2.7 ADC10 Data Transfer Controller, 16-15
16.2.8 Using the Integrated Temperature Sensor, 16-21
16.2.9 ADC10 Grounding and Noise Considerations 16-22
16.2.10 ADCT0 INterrupts . . . oot e 16-23
16.3 ADCTI0 Registers 16-24

10 1 17-1
17.1 SD16_A INtrodUCHioN o e 17-2
17.2 SD16_A Operationt 17-4

17.2.1 ADC COrE . .ttt e e e 17-4
17.2.2 AnalogIlnput Range and PGA 17-4
17.2.3 Voltage Reference Generator 17-4
17.2.4 AUt POWEr-DOWN 17-4
17.2.5 Channel Selection 17-5
17.2.6 Analog Input Characteristics 17-5
17.2.7 Digital Filter 17-6
17.2.8 Conversion Memory Register: SD16MEMO 17-10
17.2.9 Conversion MOdesot 17-11
17.2.10 Using the Integrated Temperature Sensor, 17-12
17.2.11 Interrupt Handling 17-13
17.3 SD16_A REQISIers 17-15

Xii

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
Uoll AENEENT® c000 1-2
1.2 Flexible CIOCK SYSTeMuueeerrreeeeeeeeereeeaneeeeennn 1-2]
1.3 Embedded EMUIAtioneeeeeeeeeeeeeeeaeeeaeaannn 1-3|
1 ACLIEES §EE3 0ooooo000 1-4
1.5 MSP430x2xx Family Enhancements 1-6

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

(O Ultralow-power architecture extends battery life
W 0.1-pA RAM retention
B 0.8-pA real-time clock mode

B 250-puA/ MIPS active

(1 High-performance analog ideal for precision measurement

B Comparator-gated timers for measuring resistive elements

[16-bit RISC CPU enables new applications at a fraction of the code size.
B Large register file eliminates working file bottleneck
Compact core design reduces power consumption and cost

Optimized for modern high-level programming

Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

(1 In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 2 us @ 1 Mhz.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power stand-by mode

(1 High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1. MSP430 Architecture

r—— """ =" ="="="="="=""""" A
| |
Clock [ACLK Flash/) I I
RAM Peripheral Peripheral[—|Peripheral
I System |, cvic1k ROM p [] p [|Perip =
| MCLK JANPAN AN AN AN N\ |
I I
| A I Iy |
o] MAB16BH > >
I RISC CPU § :
| 16-Bit S |
| = I
| 51 MDB 16-Bit us K MDB 8-Bit) |
| : ek = N
JTAG |
I N NS \i\/ AVAR J AR J AR |
I ACLK —) - - || |
: SMCLK —» Watchdog [|Peripheral Peripheral[| Peripheral[|Peripheral I
I I
T E———————— d

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

[Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

(10 Development is in-system subject to the same characteristics as the final
application.

(1 Mixed-signal integrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is 64 KB with future expansion planned.

Figure 1-2. Memory Map

Access

OFFFFh
OFFEOh

Interrupt Vector Table Word/Byte

OFFDFh

Flash/ROM Word/Byte

4
v

0200h

RAM Word/Byte

01FFh

0100h

16-Bit Peripheral Modules Word

OFFh
010h

8-Bit Peripheral Modules Byte

OFh
Oh

Special Function Registers Byte

1.4.1 Flash/ROM

1.4.2 RAM

1-4 Introduction

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is OFFFFh.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (OFFFEh).

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

Address Space

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

eeo XxxAh

15 14 .. Bits ... 9 8 xxx9h
7 6 .. Bits ... 1 0 xxx8h
Byte XXX7h

Byte xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

eoo xxx3h

Introduction 1-5

Address Space

1.5 MSP430x2xx Family Enhancements

Table 1-1 highlights enhancements made to the MSP430x2xx family. The
enhancements are discussed fully in the following chapters, or in the case of
improved device parameters, shown in the device-specific datasheet.

Table 1-1. MSP430x2xx Family Enhancements

Subject Enhancement

Reset — Brownout reset is included on all MSP430x2xx devices.
- PORIFG and RSTIFG flags have been added to IFG1 to indicate
the cause of a reset.
- An instruction fetch from the address range 0x0000 — OxO1FF
will reset the device.

Watchdog - All MSP430x2xx devices integrate the Watchdog Timer+

Timer module (WDT+). The WDT+ ensures the clock source for the
timer is never disabled.

Basic Clock - The LFXT1 oscillator has selectable load capacitors in LF mode.

System — The LFXT1 supports up to 16-MHz crystals in HF mode.

- The LFXT1 includes oscillator fault detection in LF mode.

— The XIN and XOUT pins are shared function pins on 20- and
28-pin devices.

- The external Rogc feature of the DCO not supported on some
devices. Software should not set the LSB of the BCSCTL2
register in this case. See the device-specific datasheet for
details.

- The DCO operating frequency has been significantly increased.

- The DCO temperature stability has been significantly improved.

Flash Memory - The information memory has 4 segments of 64-Bytes each.
- SegmentA is individually locked with the LOCKA bit.
- All information if protected from mass erase with the LOCKA bit.
- Segment erases can be interrupted by an interrupt.
- Flash updates can be aborted by an interrupt.
- Flash programming voltage has been lowered to 2.2 V
- Program/erase time has been reduced.
— Clock failure aborts a flash update.

Digital 1/0 - Ports 1 and 2 have integrated pull-up/down resistors.
- P2.6 and P2.7 functions have been added to 20- and 28- pin
devices. These are shared functions with XIN and XOUT.
Software must not clear the P2SELx bits for these pins if crystal
operation is required.

Comparator A - Comparator_A has expanded input capability with a new input
multiplexer.
Low Power - Typical LPM3 current consumption has been reduced almost
50% @3V.
- DCO startup time has been significantly reduced.
Operating - The target maximum operating frequency is 16Mhz @ 3.3V.
frequency
BSL - An incorrect password causes a mass erase.

- BSL entry sequence is more robust to prevent accidental entry
and erasure.

1-6 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x2xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initialization, @
27 IEAE8 0000000000000060000060000000000060000000000000000000 El
23 OperatingModes..........ccciiiiiiiiiiiiiin i rnnanenns @
2.4 Principles for Low-Power Applications E
25 ConnectionofUnusedPinsol E

2-1

System Reset and Initialization

21

System Reset and Initialization

The system reset circuitry shown in Figure 2—1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2-1. Power-On Reset and Power-Up Clear Schematic

2-2

Brownout

Reset POR
S Latch » POR

| >R
oV ~ 50us

SVS_PORs s,

RST/NMI
WDTNMIT
WDTSSELT @#————(

T
ey U e
caut :)mz

KEYV

(from flash module) T

Invalid instruction fetch MCLK

PUC

o 0 w0nonon

¢ YYVYYVYY

t From watchdog timer peripheral module
§ Devices with SVS only

A POR is a device reset. A POR is only generated by the following three
events:

(1 Powering up the device
[A low signal on the RST/NMI pin when configured in the reset mode
(1 An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

(1 A POR signal

[Watchdog timer expiration when in watchdog mode only
[0 Watchdog timer security key violation

(1 A Flash memory security key violation
d

A CPU instruction fetch from the peripheral address range Oh - 01FFh

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply
voltage is applied to or removed from the V¢ terminal. The brownout reset
circuit resets the device by triggering a POR signal when power is applied or
removed. The operating levels are shown in Figure 2-2.

The POR signal becomes active when V¢ crosses the Viogstart level. It
remains active until Vg crosses the V(g |14 threshold and the delay tgoRr)
elapses. The delay tgoR, is adaptive being longer for a slow ramping Ve, The
hysteresis Vhys@ I1-) ensures that the supply voltage must drop below
V(s_IT-) to generate another POR signal from the brownout reset circuitry.

Figure 2-2. Brownout Timing

A

I I V, | |

| | - | |

v | I I I

hys(‘B_IT—) | I |
Ve v o 7 S
VBUT) A <

I I I |
Vocgtary [AT T T T T T T T == SR

Set Signal for
POR circuitry

As the V(g |1 level is significantly above the Vi, level of the POR circuit, the
BOR provides a reset for power failures where Vg does not fall below Vpin.
See device-specific datasheet for parameters.

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

J
4

[

Software Initialization

2-4

The RST/NMI pin is configured in the reset mode.
1/O pins are switched to input mode as described in the Digital I/O chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFENh). If the reset vectors content is OFFFFh the device will
be disabled for minimum power consumption.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

4
J
4

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the application.

Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2-3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

[System reset
(1 (Non)-maskable NMI
(1 Maskable

Figure 2-3. Interrupt Priority

Priority High Low

GMIRS

CPU Module Module WDT Module Module
NMIRS 1 2 Timer m n

Y | A AS: A 7SE N4

PUC

<o

PUC

OSCfault
Flash ACCV

Circuit

4 Reset/NMI

T AN
WDT Security Key

<\ FlashSecurityKey N\ /7 N/ N4 S S AV

MAB - 5LSBs >

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2-4.

A (non)-maskable NMI interrupt can be generated by three sources:
(O An edge on the RST/NMI pin when configured in NMI mode
[0 An oscillator fault occurs

[An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh, and the RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

2-6 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Figure 2-4. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV j
ACCVIFG

T D~y
FCTL1.1 1
S
PORIFG
ACCVIE IFG1.2 [
IE1.5
Clear
ruc 3 4
RST/NMI Flash Module
! Y
S RSTIFG + +
IFG1.3 POR PUC
Clear
\ *A KEYV Vce
POR
> —» PUC
» System Reset
Ll
_F Generator
——p —» POR
A A Y
\
S' NMIIFG
IFG1.4 Clear WDTTMSEL
WDTNMIES WDTNMI WDTQn EQU PUC POR
R3 A
PUC I_
NMIIE = - -1 - - 7
I < WDTIFG I
IE1.4 I }IRQ I
Clear I IFG1.0 — I
I Clear |
PUC * I WDT I
| Counter |
OSCFault j | POR |
OFIFG I I
S 1\ | I
IFG1.1 |/ I I
I IRQA I
I I
OFIE | WDTTMSEL |
| WDTIE |
1E1.1 | |
Clear
| IE1.0 |
Clear
oue 4 4 nwiiRoA | |
I I
I Watchdog Timer Module PUC I
IRQA: Interrupt Request Accepted .- - _
System Resets, Interrupts, and Operating Modes 2-7

System Reset and Initialization

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIIE, ACCVIE

»
L

Reset OFIFG

Reset ACCVIFG

Reset NMIIFG

v

v

v

User’s Software,

User’s Software,

User’s Software,

Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional v
RETI)
End of NMI Interrupt
Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2-6. The interrupt logic executes
the following:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the stack.
3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SRis cleared. This terminates any low-power mode. Because the GIE
bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2-6. Interrupt Processing

Before After
Interrupt Interrupt
ltem1 ltem1
SP —» ltem2 TOS ltem2
PC
SP —» SR TOS

2-10 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2-7. Return From Interrupt

Before After
Return From Interrupt

ltem1 ltem1
ltem2 SP —» ltem2 TOS
PC PC
SP —» SR TOS SR

Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

224

2-12

Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range OFFFFh — OFFCOh as described in Table 2-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt
vector that is assigned to a module. A dummy interrupt service routine can
consist of just the RETI instruction and several interrupt vectors can point to
it.

Unassigned interrupt vectors can be used for regular program code if
necessary.

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific datasheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Table 2-1. Interrupt Sources, Flags, and Vectors

INTERRUPT SYSTEM WORD
INTERRUPT SOURCE FLAG INTERRUPT ADDRESS PRIORITY

Power-up, external

reset, watchdog, I;g'?lllf ((33

flash p.asswor.d, WDTIFG Reset OFFFEh 31, highest
illegal instruction KEYV

fetch

NMI, oscillator fault, NMIIFG (non)-maskable

flash memory access OFIFG (non)-maskable OFFFCh 30
violation ACCVIFG (non)-maskable

device-specific OFFFAh 29
device-specific OFFF8h 28
device-specific OFFF6h 27
Watchdog timer WDTIFG maskable OFFF4h 26
device-specific OFFF2h 25
device-specific OFFFOh 24
device-specific OFFEEh 23
device-specific OFFECh 22
device-specific OFFEAhN 21
device-specific OFFE8h 20
device-specific OFFE6h 19
device-specific OFFE4h 18
device-specific OFFE2h 17
device-specific OFFEOh 16
device-specific OFFDEh 15
device-specific OFFDCh 14
device-specific OFFDAh 13
device-specific OFFD8h 12
device-specific OFFD6h 11
device-specific OFFD4h 10
device-specific OFFD2h 9
device-specific OFFDOh 8
device-specific OFFCEh 7
device-specific OFFCCh 6
device-specific OFFCAh 5
device-specific OFFC8h 4
device-specific OFFC6h 3
device-specific OFFC4h 2
device-specific OFFC2h 1
device-specific OFFCOh 0, lowest

System Resets, Interrupts, and Operating Modes 2-13

Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2-9.

The operating modes take into account three different needs:
(O Ultralow-power
[Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 21x1 Devices vs Operating Modes

ICC/pA @ 1 MHz

315 +
270 +
225 1
180
135 +

300

20 +
45

1741 0907 0101 |

AM LPMO LPM2 LPM3 LPM4
Operating Modes

The low-power modes 0—4 are configured with the CPUOFF, OSCOFF, SCGO,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCGO0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

2-14 System Resets, Interrupts, and Operating Modes

50210751
矩形

Operating Modes

Figure 2-9. MSP430x2xx Operating Modes For Basic Clock System

RST/NMI
Reset Active Vae On
POR
WDT
Time Expired, Overflow WDTIFG = 1 WDTIFG =0
PUC) RST/NMI is Reset Pin
WDTIFG = 1 WDT is Active
. RST/NMI
WDT Actlv_e, . NMI Active
Security Key Violation
Active Mode
CPUOFF = 1 _ CPUlsActive CPUOFF = 1
SCGO = 0 Peripheral Modules Are Active OSCOFF = 1
SCG1=0 SCG0 =1
SCG1 =1
LPMO LPM4
CPU Off, MCLK Off,
SMCLK On, AGLK On CPU Off, MCLK Off, DCO
Off, ACLK Off
CPUOFF = 1
SCGO = 1 CPUOFF - 1 DC Generator Off
SCGT-0 CPUOFF = 1 SCGO = 1
CPU Off, MCLK Off, B CPU Off, MCLK Off, SMCLK
SMCLK On, ACLK On P Off, DCO Off, ACLK On
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On DC Generator Off
not used in active mode
SCG1 SCGO0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 Active CPU is active, all enabled clocks are active
LPMO CPU, MCLK are disabled
SMCLK , ACLK are active
0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled

DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

System Resets, Interrupts, and Operating Modes 2-15

Operating Modes

2.3.1

2-16

Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power

operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
Bm The CPUOFF, SCG1, and OSCOFF bits are automatically reset

(O Options for returning from the interrupt service routine:

B The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

Enter LPMO Example
BIS #GIE+CPUOFF, SR ; Enter LPMO
; Program stops here

Exit LPMO Interrupt Service Routine
BIC #CPUOFF, 0 (SP) ; Exit LPMO on RETI
RETT

Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCGO,SR ; Enter LPM3
; Program stops here

Exit LPM3 Interrupt Service Routine
BIC #CPUOFF+SCG1+SCGO0, 0 (SP) ; Exit LPM3 on RETI
RETI

System Resets, Interrupts, and Operating Modes

50210751
高亮

Principles for Low-Power Applications

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up.

[d Use interrupts to wake the processor and control program flow.

[Peripherals should be switched on only when needed.

(1 Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

[Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

[Awvoid frequent subroutine and function calls due to overhead.

(1 For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-2.

Table 2-2. Connection of Unused Pins

Pin Potential Comment

AVcc DVce

AVgs DVss

VREF:+ Open

VeReF+ DVss

VRer-/Veger- DVss

XIN DVcc

XOouT Open

XT2IN DVss

XT20UT Open

Px.0to Px.7 Open Switched to port function, output direction
or input with pull-up/down enabled

RST/NMI DVgcorVeoe 47 kQ pullup with 10nF pull down

Test Open 21x1, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open

System Resets, Interrupts, and Operating Modes

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction
set.

Topic Page
3.1 CPUINrOdUCHONeeeiiiiiieeeeeeeeeeeeeeeeeeaaaaaaaannnnns [3-2]
&7 U REESSEES 000000000000000006000000000000000060000000000000 3-4
3.3 AddressingModescii i, |3-9
34 InstructionSet................ciiiiiiii i | 3-17]

3-1

CPU Introduction

3.1

3-2

CPU Introduction

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

a
J

EI
4

RISC architecture with 27 instructions and 7 addressing modes

Orthogonal architecture with every instruction usable with every
addressing mode

Full register access including program counter, status registers, and stack
pointer

Single-cycle register operations
Large 16-bit register file reduces fetches to memory

16-bit address bus allows direct access and branching throughout entire
memory range

16-bit data bus allows direct manipulation of word-wide arguments

Constant generator provides six most used immediate values and
reduces code size

Direct memory-to-memory transfers without intermediate register holding

Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3-1.

RISC 16-Bit CPU

Figure 3-1. CPU Block

MDB - Memory Data Bus

16

Diagram

AN

15 0

RO/PC Program Counter |0

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

R10 General Purpose
| | | -
R11 General Purpose
R12 General Purpose
| | | -
R13 General Purpose
R14 General Purpose
| | | -
R15 General Purpose

QUL I]]

Negative, N

16-bit ALU

LOUI00UES 00000

4\

RISC 16-Bit CPU

Memory Address Bus - MAB

16

CPU Introduction

3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3-2 shows the program counter.

Figure 3-2. Program Counter

15 1 0

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL, PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14, PC ; Branch indirect to address in R14

3-4 RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

CPU Registers

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Pointer

15 1 0
Stack Pointer Bits 15 to 1 0
MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h
Figure 3-4. Stack Usage
Address PUSH #0123h POP R8
Oxxxh 1 1 11
Oxxxh - 2 12 12 12
Oxxxh - 4 13 <4— SP 13 I3 <4— SP
Oxxxh - 6 0123h [4— SP| 0123h
Oxxxh - 8

The special cases of using the SP as an argument to the PUSH and POP

instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP

SPoig —W

SP; —¥ SP4

The stack pointer is changed after
a PUSH SP instruction.

POP SP

SP, —b

SP,

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3-6 shows the SR bits.

Figure 3-6. Status Register Bits

15

OSC|CPU

SCGO | oFF |oFF

Reserved V GIE| N|Z|C

Table 3-1 describes the status register bits.

Table 3-1. Description of Status Register Bits

Bit

Description

\Y

SCG1
SCGo

OSCOFF

CPUOFF

GIE

N

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

Set when:

Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

ADD (.B) ,ADDC(.B)

Set when:

Positive — Negative = Negative
Negative - Positive = Positive,
otherwise reset

SUB(.B) ,SUBC(.B),CMP(.B)

System clock generator 1. This bit, when set, turns off the SMCLK.

System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation

is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

CPU Registers

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 ----- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator - Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:

ADD 0(R3) ,dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 - R15

The twelve registers, R4-R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
Unused Register Byte Memory
Byte Memory Oh Register
Example Register-Byte Operation Example Byte-Register Operation
R5 = 0A28Fh R5 = 01202h
R6 = 0203h R6 = 0223h
Mem(0203h) = 012h Mem(0223h) = 05Fh
ADD.B R5,0 (R6) ADD.B @R6, RS
08Fh 05Fh
+012h + 002h
0Ath 00061h
Mem (0203h) = 0A1h R5 = 00061h
C=0,Z=0,N=1 C=0,Z=0,N=0
(Low byte of register) (Addressed byte)
+ (Addressed byte) + (Low byte of register)
—>(Addressed byte) ->(Low byte of register, zero to High byte)

3-8 RISC 16-Bit CPU

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

011 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3-4. Register Mode Description

Assembler Code Content of ROM
MOV R10,R11 MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10,R11
Before: Atfter:

R10 0A023h R10 0A023h
R11 OFA15h R11 0A023h

PC PCoId PC PCoId +2

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5. Indexed Mode Description

Addressing Modes

Assembler Code

Content of ROM

MOV 2 (R5),6 (R6)

MOV X (R5),Y(R6)

X=2
Y=6
Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)

to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
is incremented
automatically so that program execution continues with the

indexed mode, the program counter

next instruction.

Comment: Valid for source and destination
Example: MOV 2 (R5),6(R6) ;
Before: After:
Address Register Address
Space Space

Oxxxxh

OFF16h | 00006h R5| 01080h OFF16h | 00006h

OFF14h | 00002h R6| 0108Ch OFF14h | 00002h

OFF12h | 04596h | PC OFF12h | 04596h
0108Ch

01094h Oxxxxh +0006h 01094h | Oxxxxh

01092h | 05555h 01092h 44492 [01234h

01090h | Oxxxxh 01090h | Oxxxxh
01080h

01084h | Oxxxxh +0002h 01084h | Oxxxxh

01082h | 01234h 01082h 01082h | 01234h

01080h | Oxxxxh 01080h | Oxxxxh

PC
R5
R6

RISC 16-Bit CPU

Register

01080h
0108Ch

3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3-6. Symbolic Mode Description

3-12

Assembler Code

Content of ROM

MOV EDE, TONI

MOV X (PC),Y(PC)

X =EDE - PC
Y = TONI - PC

Two or three words

Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution

continues with the next instruction.

Valid for source and destination

MOV EDE, TONI

Length:
Operation:
Comment:
Example:
Before:
Address
Space
OFF16h 011FEh
OFF14h OF102h
OFF12h 04090h
0F018h Oxxxxh
OF016h 0A123h
OF014h Oxxxxh
01116h Oxxxxh
01114h 05555h
01112h Oxxxxh

RISC 16-Bit CPU

PC

;Dest.
Register After:

OFF16h
OFF14h
OFF12h

OFF14h
+0F102h OF018h
OFO16h oEo16h
O0F014h

OFF16h
+011FEh 01116h
01114h 01114h
01112h

;Source address EDE
address TONI=01114h

Address
Space
Oxxxxh

011FEh

0F102h

04090h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

PC

0F016h

Register

3.3.4 Absolute Mode

Addressing Modes

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Assembler Code Content of ROM
MOV &EDE, &TONI MOV X (0),Y(0)
X = EDE
Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0F018h
O0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the

next instruction.

Valid for source and destination

MOV &EDE, &TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h
fter:
Address Register Address Register
Space Space
Oxxxxh | PC
01114h OFF16h | 01114h
0F016h OFF14h | OF016h
04292h | PC OFF12h | 04292h
Oxxxxh 0F018h Oxxxxh
0A123h OF016h | 0A123h
Oxxxxh OF014h | Oxxxxh
Oxxxxh 01116h Oxxxxh
01234h 01114h | 0A123h
Oxxxxh 01112h | Oxxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.3.5

Table 3-8. Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10,0(R11)

MOV @R10,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,0(R11)

0000h

R10

04AEBh

PC Ri1

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

012h

Oxxh

Register

O0FA33h

002A7h

OFF16h
OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

002A8h
002A7h
002A6h

Address

Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BCt1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h

002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+,0(R11)

MOV @R10+,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

010AAN
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is 0(Rd) plus second instruction INCD Rd.

Address
Space

Oxxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

R10
PC R11

MOV @R10+,0(R11)

Register

OFF18h
O0FA32h | OFF16h

010A8h | OFF14h
O0FF12h

OFA34h
O0FA32h
OFA30h

010AAN
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Register

O0FA34h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3-8.

Figure 3-8. Operand Fetch Operation

Instruction

Address

\ 4

Operand

+1/ +2

RISC 16-Bit CPU

Addressing Modes

3.3.7

Table 3-10.Immediate Mode Description

3-16

Immediate Mode

The immediate mode is described in Table 3-10.

Assembler Code

Content of ROM

MOV #45h, TONI

MOV @PC+,X (PC)

X =TONI - PC

45

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAhN
010A8h
010A6h

RISC 16-Bit CPU

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45h, TONI

Address
Space

01192h

00045h

040B0Oh

Oxxxxh

01234h

Oxxxxh

Register

PC

OFF16h
+01192h

010A8h

OFF18h
OFF16h

OFF14h
OFF12h

010AAh
010A8h
010A6h

Address
Space
Oxxxxh

01192h

00045h

040B0Oh

Oxxxxh

00045h

Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(g Dual-operand

[Single-operand

d Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used

for the source (src)
S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format l) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | B/IW As D-Reg

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
MOV (.B) src,dst src — dst - - - -
ADD (.B) src,dst src + dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB (.B) src,dst dst+ .not.src +1 — dst * * * *
SUBC(.B) src,dst dst+ .not.src +C — dst * * * *
CMP (.B) src,dst dst-src * * * *
DADD (.B) src,dst src+dst+ C — dst(decimally) * * * *
BIT(.B) src,dst src.and. dst 0 * * *
BIC(.B) src,dst .not.src.and. dst — dst - - - -
BIS(.B) src,dst src.or. dst — dst - - - -
XOR (.B) src,dst src.xor. dst — dst * * * *
AND (.B) src,dst src.and. dst — dst 0 * * *

* The status bit is affected

- The status bit is not affected
0 The status bit is cleared

1 The status bit is set

Note: Instructions cMP and SUB

The instructions cMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

3-18 RISC 16-Bit CPU

Instruction Set

3.4.2 Single-Operand (Format Il) Instructions

Figure 3-10 illustrates the single-operand instruction format.

Figure 3-10. Single Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code B/W Ad D/S-Reg

Table 3-12 lists and describes the single operand instructions.

Table 3-12.Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
RRC(.B) dst C - MSB-....... LSB - C * * * *
RRA(.B) dst MSB - MSB —...LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src - @SP - - - -
SWPB dst Swap bytes - - - -
CALL dst SP -2 SP, PC+2 - @SP - - - -
dst - PC
RETI TOS - SR, SP +2 - SP * * * *
TOS - PC,SP +2 - SP
SXT dst Bit 7 — Bit 8........ Bit 15 0 * * *

* The status bit is affected

- The status bit is not affected
0 The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.

RISC 16-Bit CPU 3-19

Instruction Set

3.4.3 Jumps

Figure 3-11 shows the conditional-jump instruction format.

Figure 3-11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from -511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCOld +2+ PCoffset X 2

3-20 RISC 16-Bit CPU

* ADC[.W]
* ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z. Set if result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to

by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADDI[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Setif there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) > 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDCI[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z. Set if result is zero, reset otherwise

C: Setifthere is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

ANDI[.W] Source AND destination
AND.B Source AND destination
Syntax AND src,dst or AND.W src,dst
AND.B src,dst
Operation src .AND. dst —> dst
Description The source operand and the destination operand are logically ANDed. The

result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.
MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;

...... ; Result is not zero

; or
AND #0AA55h, TOM
Jz TONI
Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.
AND.B #0A5h, TOM ; mask Lowbyte TOM with 0A5h
Jz TONI ;

...... : Result is not zero

3-24 RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src .AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #0FCO00h,LEO ; Clear 6 MSBs in MEM(LEO)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W] Set bits in destination
BIS.B Set bits in destination
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .OR. dst -> dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The six LSBs of the RAM word TOM are set.
BIS #003Fh, TOM; set the six LSBs in RAM location TOM
Example The three MSBs of RAM byte TOM are set.
BIS.B #0EOh,TOM ; set the 3 MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BITW src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Set if MSB of result is set, reset otherwise

Z: Setif result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

JNZ TOM ; Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
TXXXX OXXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC ccce
; MSB LSB
; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
; XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; €cCcCC ccee
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst -> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address

space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

3-28 RISC 16-Bit CPU

CALL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Subroutine

CALL dst

dst ->tmp dst is evaluated and stored
SP -2 ->SP

PC -> @SP PC updated to TOS

tmp ->PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP-2 —» SP, PC+2 - @SP, @PC+ — PC

EXEC ; Call on the address contained in EXEC
; SP-2 — SP, PC+2 — @SP, X(PC) —» PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 —» SP, PC+2 — @SP, X(0) —» PC
; Indirect address

R5 ; Call on the address contained in R5
; SP-2 — SP, PC+2 — @SP, R5 — PC
; Indirect R5
@R5 ; Call on the address contained in the word

; pointed to by R5
; SP-2 —» SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
: SP-2 - SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 —» SP, PC+2 — @SP, X(R5) — PC
; Indirect, indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —> dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ; 0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ; 0 —> TONI

3-30 RISC 16-Bit CPU

* CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

02
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZ

RISC 16-Bit CPU 3-33

Instruction Set

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1
or
(dst - src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)

Z: Setif result is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V. Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCKI1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI : MEM(EDE) = MEM(TONI)?
JEQ EQUAL : YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z. Setif dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADD[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; Clear carry

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW: ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; Clear carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT : = DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DECW dst
DEC.B dst
dst -1 —> dst

SuB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

N: Set if result is negative, reset if positive

Z. Set if dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

JNZ LS$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3-12.

Figure 3-12. Decrement Overlap

EDE
+—>
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Double-decrement destination
Double-decrement destination

DECD dst or DECD.W dst
DECD.B dst
dst - 2 —> dst

SUB #2,dst
SUB.B #2,dst

The destination operand is decremented by two. The original contents are lost.

Set if result is negative, reset if positive

Set if dst contained 2, reset otherwise

Reset if dst contained 0 or 1, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location

; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)
Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

* DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0 - GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set
*EINT

Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Enable (general) interrupts
EINT

1 — GIE
or
(0008h .OR. SR -—> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

*INCL.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

* INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCDW dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV[.W]
*INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5 is now negated, = R5 = OFF52h

Content of memory byte LEO is negated.

MOV.B #OAEh,LEO ; MEM(LEO) = OAEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal -> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 > 15
...... ; Continue here if R5 < 15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

IfZ=1: PC + 2 x offset -> PC
If Z = 0: execute following instruction

The status register zero bit (2) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 : Test R7
Jz TONI ; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
JZ LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) = 0 then jump to label: PC + 2 x offset -> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 > (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 > (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set
Jump if less
JL label

If (N .XOR. V) =1 then jump to label: PC + 2 x offset -> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset —-> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N =1: PC + 2 x offset -> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT - R5 -> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT=0

RISC 16-Bit CPU 3-49

Instruction Set

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CONT

Example

Jump if carry not set
Jump if lower

JNC label
JLO label

if C = 0: PC + 2 x offset -> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 -> BUFFER
JNC CONT ; No carry, jump to CONT
...... ; Error handler start

...... ; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 : STATUS < 2
...... ; STATUS > 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
JNZ label

If Z=0: PC + 2 x offset —> PC
If Z = 1: execute following instruction

The status register zero bit (2) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOV[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst
src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer

MOV #020h,R9 ; Prepare counter

MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter

JNZ Loop ; Counter # 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying

...... ; Copying completed

3-52 RISC 16-Bit CPU

* NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

[Tofill one, two, or three memory words
(1 To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
*POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP ->temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOVW @SP+,dst

MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSH.W src
PUSH.B src

SP-2-5SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

* RET
Syntax

Operation

Emulation

Description

Status Bits

3-56

Return from subroutine
RET

@SP— PC
SP+2—-SP

MOV @SP+,PC

The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status bits are not affected.

RISC 16-Bit CPU

Instruction Set

RETI Return from interrupt
Syntax RETI
Operation TOS — SR
SP +2 — SP
TOS — PC
SP +2 — SP
Description The status register is restored to the value at the beginning of the interrupt

service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

PC —6 [X X]
PC -4
Interrupt Request
PC -2 /
PC v Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi P YY)
Onto Stack
PC +4 PCi +2
PC +6 PCi +4
PC +8 °
v :
PCi +n-4
PCi +n-2
PCi +n RETI
- Vv

RISC 16-Bit CPU 3-57

Instruction Set

* RLA[.W] Rotate left arithmetically

* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 LSB+1 <-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3-14. Destination Operand—Arithmetic Shift Left

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

' Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

3-58 RISC 16-Bit CPU

* RLC[.W]
*RLC.B

Syntax

Operation
Emulation

Description

Instruction Set

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <- MSB <- MSB-1 LSB+1 <-LSB <-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 3-15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3-15. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

<SONZ

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 ;(R5x2)+C->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

RISC 16-Bit CPU 3-59

Instruction Set

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically
Syntax RRA dst or RRA.W dst
RRA.B dst
Operation MSB -> MSB, MSB -> MSB-1, ... LSB+1 ->LSB, LSB->C
Description The destination operand is shifted right one position as shown in Figure 3-16.

The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Figure 3-16. Destination Operand—Arithmetic Right Shift

Word 15 0
S >
Byte |
15 0
Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.
RRA R5 ; R5/2 -> R5
; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ;R5x0.5 -> R5
ADD @SP+,R5 ;R5x05+R5=15xR5 ->R5
RRA R5 ; (1.5xR5) x0.5=0.75xR5 —> R5
Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.
RRA.B R5 ; R5/2 —> R5: operation is on low byte only
; High byte of R5 is reset
PUSH.B R5 ;R5x 0.5 —> TOS
RRA.B @SP ; TOSx0.5=05%xR5x05=025xR5 —>TOS
ADD.B @SP+,R5 ;R5x05+R5x0.25=0.75xR5 ->R5

3-60 RISC 16-Bit CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C ->MSB -> MSB-1 LSB+1 ->LSB->C

The destination operand is shifted right one position as shown in Figure 3-17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3-17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
——————————————————
Byte 7 0

N: Set if result is negative, reset if positive
Z. Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h -> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setifresultis zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

*SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Instruction Set

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

RISC 16-Bit CPU 3-63

Instruction Set

* SETN Set negative bit

Syntax SETN

Operation 1->N

Emulation BIS #4,SR
Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

Instruction Set

*SETZ Set zero bit
Syntax SETZ
Operation 1->Z
Emulation BIS #2,SR
Description The zero bit (2) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

RISC 16-Bit CPU 3-65

Instruction Set

SUBI[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst - src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBC[.W]SBB[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst—src -1 + C —> dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z. Set if result is zero, reset otherwise.

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <—> bits 7t0 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #OFFOOh,R5 ;Correct the result

BIC #00FFh,R4 ;:Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit7 ->Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3-19.

N: Set if result is negative, reset if positive

Z. Set if result is zero, reset otherwise

C: Setifresult is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

*TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

Jz R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

JZ R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14. Interrupt and Reset Cycles

No. of Length of
Action Cycles Instruction
Return from interrupt (RETTI) 5 1

Interrupt accepted 6
WDT reset 4 -
Reset (RST/NMI) 4

Format-Il (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-Il instructions.

Table 3-15. Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB,SXT PUSH CALL |Instruction Example
Rn 1 3 4 1 SWPB RS
@Rn 3 4 4 1 RRC @R9
@Rn+ 3 5 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #0F000h
X(Rn) 4 5 5 2 CALL 2(R7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format Il Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-lll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-l (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I

instructions.

Table 3-16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MOV R5,R8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5,4 (R6)
EDE 4 2 XOR R8,EDE
&EDE 4 2 MOV RS, &EDE
@Rn Rm 2 1 AND @R4,R5
PC 2 1 BR @R8
x(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R5,EDE
&EDE 5 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6
PC 3 1 BR @R9+
Xx(Rm) 5 2 XOR @R5,8(R6)
EDE 5 2 MOV @R9+,EDE
&EDE 5 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9
PC 3 2 BR #2AEh
X(Rm) 5 3 MOV #0300h, 0 (SP)
EDE 5 3 ADD #33,EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2 (R5) ,R7
PC 3 2 BR 2 (R6)
TONI 6 3 MOV 4 (R7),TONI
x(Rm) 6 3 ADD 4 (R4),6(R9)
&TONI 6 3 MOV 2 (R4) , &TONI
EDE Rm 3 2 AND EDE, R6
PC 3 2 BR EDE
TONI 6 3 CMP EDE, TONI
x(Rm) 6 3 MOV EDE, 0 (SP)
&TONI 6 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8
PC 3 2 BRA &EDE
TONI 6 3 MOV &EDE, TONI
x(Rm) 6 3 MOV &EDE, 0 (SP)
&TONI 6 3 MOV &EDE, & TONT

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3-20 and the complete instruction set
is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

000 040 080 O0CO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

OXXX

4XXX

8XXX

Cxxx

1xxx || RRC |RRC.B | swPB RRA | RRAB| SXT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/UNZ

24xx JEQ/JZ

28xX JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xXXX MOV, MOV.B
BXXX ADD, ADD.B
BXXX ADDC, ADDC.B
XXX SUBC, SUBC.B
8XXX SUB, SUB.B
9XXX CMP, CMP.B
Axxx DADD, DADD.B
Bxxx BIT, BIT.B

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3-17.MSP430 Instruction Set

Instruction Set

Mnemonic Description \' N V4 Cc
apc(.B)t dast Add C to destination dst + C — dst * * * *
ADD(.B) src,dst Add source to destination src + dst — dst * * * *
ADDC (.B) src,dst Add source and C to destination src + dst + C — dst * * * *
AND (.B) src,dst AND source and destination src .and. dst — dst 0 * * *
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst - - - -
BIS(.B) src,dst Set bits in destination src .or. dst — dst - - - -
BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *
BrY dst Branch to destination dst - PC - - - -
CALL dst Call destination PC+2 — stack, dst — PC - - - -
ctr(.B)t dst Clear destination 0 — dst - - - -
cLret Clear C 0-C - - - 0
cLryt Clear N 0—>N - 0 - -
cLrzt Clear Z 02 - - 0 -
CMP (.B) src,dst Compare source and destination dst - src * * * *
papc(.B) T dst Add C decimally to destination dst + C — dst (decimally) * * * *
DADD (.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) * * * *
DEC(.B)T dst Decrement destination dst -1 — dst * * * *
DECD(.B)T dst Double-decrement destination dst -2 — dst * * * *
DINTT Disable interrupts 0— GIE - - - -
EINTt Enable interrupts 1 GIE - - - -
Nc(.p)t dst Increment destination dst +1 — dst * * * *
Nep (.B)T dst Double-increment destination dst+2 — dst * * * *
mwv(.B)t dst Invert destination .not.dst — dst * * * *
Jc/Jus label Jump if C set/Jump if higher or same - - - -
JEQ/JZ label Jump if equal/Jump if Z set - - - -
JGE label Jump if greater or equal - - - -
JL label Jump if less - - - -
JMP label Jump PC + 2 x offset — PC - - - -
JN label Jump if N set - - - -
JNC/JLO label Jump if C not set/Jump if lower - - - -
JNE/JNZ label Jump if not equal/Jump if Z not set - - - -
MOV (.B) src,dst Move source to destination src — dst - - - -
nopt No operation - - - -
pop(.B) T dst Pop item from stack to destination @SP — dst, SP+2 — SP - - - -
PUSH (.B) src Push source onto stack SP -2 — SP, src > @SP - - - -
RETT Return from subroutine @SP —» PC,SP+2 - SP - - - -
RETI Return from interrupt * * * *
RLAa(.B)T dst Rotate left arithmetically * * * *
rLc(.B)T ast Rotate left through C * * * *
RRA (.B) dst Rotate right arithmetically 0 * * *
RRC(.B) dst Rotate right through C * * * *
sBc(.B) T dst Subtract not(C) from destination dst + OFFFFh + C — dst * * * *
serct SetC 1-C - - - 1
sETNt SetN 1N - 1 - -
serzt SetZ 1-C - - 1 -
SUB (.B) src,dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TsT(.B)T dst Test destination dst + OFFFFh + 1 0 * * 1
XOR (.B) src,dst Exclusive OR source and destination src .xor. dst — dst * * * *

1t Emulated Instruction

RISC 16-Bit CPU 3-75

Chapter 4

Basic Clock Module+

The basic clock module+ provides the clocks for MSP430x2xx devices. This
chapter describes the operation of the basic clock module+. The basic clock
module+ is implemented in all MSP430x2xx devices.

Topic Page
4.1 Basic Clock Module Introduction E—Z]
4.2 Basic Clock Module Operation E—4]
4.3 Basic Clock Module Registers 4-13]

4-1

Basic Clock Module+ Introduction

4.1

4-2

Basic Clock Module+ Introduction

The basic clock module+ supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock
module+ can be configured to operate without any external components, with
one external resistor, with one or two external crystals, or with resonators,
under full software control.

The basic clock module+ includes three or four clock sources:

a

d
4

LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
with low-frequency watch crystals or external clock sources of 32,768-Hz.
or with standard crystals, resonators, or external clock sources in the
400-kHz to 16-MHz range.

XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 400-kHz to
16-MHz range.

DCOCLK: Internal digitally controlled oscillator (DCO).

VLOCLK: Internal very low power, low frequency oscillator with 12kHz
typical frequency.

Three clock signals are available from the basic clock module+:

a

ACLK: Auxiliary clock. ACLK is software selectable as LFXT1CLK or
VLOCLK. ACLK is divided by 1, 2, 4, or 8. ACLK is software selectable for
individual peripheral modules.

MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. MCLK is divided by
1, 2, 4, or 8. MCLK is used by the CPU and system.

SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. SMCLK is divided
by 1, 2, 4, or 8. SMCLK is software selectable for individual peripheral
modules.

The block diagram of the basic clock module+ is shown in Figure 4-1.

Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, Rosc
is not supported.

MSP430x21xx: Internal LP/LF oscillator is not present, XT2 is not present,
Rosc is not supported.

MSP430x22xx: XT2 is not present.

Basic Clock Module+

Basic Clock Module+ Introduction

Figure 4-1. Basic Clock Module+ Block Diagram

Internal | v ocLK
LP/LF DIVAX
Oscillatort T T
Divider
Min. Pulse| LFXT1CLK 1/2/4/8 >
Filter ACLK
Auxillary Clock
OSCOFF LFXT1Sx
XTS
[|
XIN
oV
e %ﬂ—ﬁ
T LF XT}
] LFOff XT10ff
XOUT ov
SELMx
L L LFXT1 Oscillator DIVMx
CPUOFF
00 T T
E 01 Divider

Min. Pulse /1/2/4/8
Filter T 1
/ 11 MCLK

Main System Clock

Connected only when
XT2 not present on-chip

MODx

TTTTY

Modulator

DCOR SCGO RSELx DCOx

TﬁTTTT T SELS DIVSx

T T SCG1
DC 1 Min. Puls

| pco ; Divider
Generator i Filter DCOCLK 11/2/4/8

SMCLK

Sub System Clock

TNote: Device-Specific Clock Variations
All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HF mode, XT2 is not present, Rosc
is not supported.

MSP430x21xx: Internal LP/LF oscillator is not present, XT2 is not present,
Rosc is not supported.

MSP430x22xx: XT2 is not present.

Basic Clock Module+ 4-3

Basic Clock Module+ Operation

4.2 Basic Clock Module+ Operation

4.2.1

4.2.2

4-4

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~1.1 MHz (see
device-specific datasheet for parameters) and ACLK is sourced from
LFXT1CLK in LF mode with an internal load capacitance of 6pF.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable portions of the basic clock
module+. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, BCSCTL2, and BCSCTLS3 registers configure the basic
clock module+.

The basic clock module+ can be configured or reconfigured by software at any
time during program execution, for example:

BIS.B #RSEL2+RSEL1+RSELO, &BCSCTL1l ; Select range 7
BIS.B #DCO2+DCO1+DCOO0, &DCOCTL ; Select max DCO tap

Basic Clock Module+ Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:
(1 Low clock frequency for energy conservation and time keeping

[High clock frequency for fast reaction to events and fast burst processing
capability

(O Clock stability over operating temperature and supply voltage

The basic clock module+ addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, ACLK can be sourced from
a low-power 32,768-Hz watch crystal, providing a stable time base for the
system and low power stand-by operation, or from the internal low-frequency
oscillator when crystal-accurate time keeping is not required.. The MCLK can
be configured to operate from the on-chip DCO that can be activated when
requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the
individual clock requirements.

Internal Very Low Power, Low Frequency Oscillator

The internal very-low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific datasheet for parameters) without
requiring a crystal. VLOCLK source is selected by setting LFXT1Sx = 10 when
XTS = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

Basic Clock Module+

Basic Clock Module+ Operation

4.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN
and XOUT without any other external components. The software-selectable
XCAPXx bits configure the internally provided load capacitance for the LFXT1
crystal in LF mode. This capacitance can be selected as 1pF, 6pF, 10pF or
12.5pF typical. Additional external capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1). The high-speed crystal or resonator connects to XIN and
XOUT and requires external capacitors on both terminals. These capacitors
should be sized according to the crystal or resonator specifications. When
LFXT1 is in HF mode, the LFXT1Sx bits select the range of operation.

LFXT1 may be used with an external clock signal on the XIN pin in either LF
or HF mode when LFXT1Sx = 11 and OSCOFF = 0. When used with an
external signal, the external frequency must meet the datasheet parameters
for the chosen mode. When the input frequency is below the specified lower
limit, the LFXT1OF bit may be set preventing the CPU from being clocked with
LFXT1CLK.

Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not
source SMCLK or MCLK, as shown in Figure 4-2.

Figure 4-2. Off Signals for the LFXT1 Oscillator

XTSm
ACLK _request \
OSCOFF J)
MCLK_request .:]f‘ »iDQ—>
CPUOFF — LFOff
SELMO = LEXT10ff
XSELM1 4DQ—>
XT2 XT10ff

XT2 is an Internal Signal
XT2 = 0: Devices without XT2 oscillator
XT2 = 1: Devices with XT2 oscillator

SMCLK_request
SCG1

SELS®

| Y

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

Basic Clock Module+ 4-5

mario
Highlight
外部晶体或晶振需外接电容

Basic Clock Module+ Operation

4.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2Sx bits
select the range of operation of XT2. The XT20FF bit disables the XT2
oscillator if XT2CLK is not used for MCLK or SMCLK as shown in Figure 4-3.

XT2 may be used with external clock signals on the XT2IN pin when XT2Sx
= 11 and XT20FF = 0. When used with an external signal, the external
frequency must meet the datasheet parameters for XT2. When the input
frequency is below the specified lower limit, the XT20F bit may be set
preventing the CPU from being clocked with XT2CLK.

Figure 4-3. Off Signals for Oscillator XT2

XT20FF =

MCLK_request
CPUOFF

SELMO)5 >—> XT20ff (Internal Signal)

XSELM1
SMCLK_request
SCG1
SELS 1 >:

4.2.5 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency
can be adjusted by software using the DCOx, MODx, and RSELXx bits.

Disabling the DCO

Software can disable DCOCLK by setting SCG0 when it is not used to source
SMCLK or MCLK in active mode, as shown in Figure 4-4.

Figure 4-4. On/Off Control of DCO

MCLK_request
CPUOFF
XSELM1 DCOCLK_on
A TE—
SMCLK_request b Q 1:on
SCG1 0: off
SELSm DCOCLK
DCOCLK —3> SYNC
XT2CLK —]
DCO_Gen_on
SCGOm é >—’1: on
0: off

4-6 Basic Clock Module+

Basic Clock Module+ Operation

Adjusting the DCO frequency

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a
mid-range frequency. MCLK and SMCLK are sourced from DCOCLK.
Because the CPU executes code from MCLK, which is sourced from the
fast-starting DCO, code execution typically begins from PUC in less than 2 ps.
The typical DCOx and RSELx ranges and steps are shown in Figure 4-5.

The frequency of DCOCLK is set by the following functions:

[The four RSELx bits select one of sixteen nominal frequency ranges for
the DCO. These ranges are defined for an individual device in the
device-specific data sheet.

[The three DCOx bits divide the DCO range selected by the RSELX bits into
8 frequency steps, separated by approximately 10%.

[The five MODx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCOx+1. When DCOx = 07h,
the MODx bits have no effect because the DCO is already at the highest
setting for the selected RSELx range.

Figure 4-5. Typical DCOx Range and RSELx Steps

foco RSEL =15

20000 kHz _;’_’_'_,_:.—’_'_'7
'

X RSEL=7
1000 kHz 4,_’_,_1—’_’_'7
)
100 kHz —4—

DCO=0 DCO=1 DCO=2 DCO=3 DCO=4 DCO=5 DCO=6 DCO=7

Basic Clock Module+ 4-7

50210751
线条

50210751
线条

Basic Clock Module+ Operation

Each MSP430F2xx device has calibrated DCOCTL and BCSCTL1 register
settings for specific frequencies stored in information memory segment A. To
use the calibrated settings, the information is copied into the DCOCTL and
BCSCTL1 registers. The calibrated settings affect the DCOx, MODx, and
RSELx bits, and clear all other bits, except XT20FF which remains set. The
remaining bits of BCSCTL1 can be set or cleared as needed with BIS.B or
BIC.B instructions.

; Set DCO to 1 MHz:

MOV.B §CALBC1l_1MHZ(, &BCSCTL1 ; Set range

MOV.B &CALDCO_1MHZ, &DCOCTL ; Set DCO step + modulation

Using an External Resistor (Rgsc) for the DCO

4-8

Some MSP430F2xx devices provide the option to source the DCO current
through an external resistor, Rosc, tied to DVgc when DCOR = 1. In this case,
the DCO has the same characteristics as MSP430x1xx devices, and the
RSELx setting is limited to 0 to 7 with the RSEL3 ignored. This option provides
an additional method to tune the DCO frequency by varying the resistor value.
See the device-specific datasheet for parameters.

Basic Clock Module+

50210751
矩形

Basic Clock Module+ Operation

4.2.6 DCO Modulator

The modulator mixes two DCO frequencies, fpco and fpco,1 to produce an
intermediate effective frequency between fpco and fpco4q1 and spread the
clock energy, reducing electromagnetic interference (EMI). The modulator
mixes fpco and fpco41 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:
t =(32- MODXx) x tpco + MODX X tpco+1

Because fpgo is lower than the effective frequency and fpgo, 1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.
It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 4-6 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLK can be compared to a stable frequency of known value and adjusted
with the DCOx, RSELx, and MODx bits. See http://www.msp430.com for
application notes and example code on configuring the DCO.

Figure 4-6. Modulator Patterns

MODx

31T—| L

15 s 1 e s 1 e I e e e
Hpipipipipipipipipipipipipipipinh

16
LUy
] [] M I Tl []
\ [] [] [] []
; [] [] [
, [] [
Lower DCO Tap Frequency fpco Upper DCO Tap Frequency fpco+1
1 | |
0

v

Basic Clock Module+ 4-9

Basic Clock Module+ Operation

4.2.7 Basic Clock Module+ Fail-Safe Operation

The basic clock module+ incorporates an oscillator-fault fail-safe feature. This
feature detects an oscillator fault for LFXT1 and XT2 as shown in Figure 4-7
The available fault conditions are:

(1 Low-frequency oscillator fault (LFXT10F) for LFXT1 in LF mode
(O High-frequency oscillator fault (LFXT1OF) for LFXT1 in HF mode
[High-frequency oscillator fault (XT20F) for XT2

The crystal oscillator fault bits LFXT10F, and XT20F are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally.

The OFIFG oscillator-fault flag is set and latched at POR or when an oscillator
fault (LFXT10F, or XT20F) is detected. When OFIFG is set, MCLK is sourced
from the DCO, and if OFIE is set, the OFIFG requests and NMI interrupt. When
the interrupt is granted, the OFIE is reset automatically. The OFIFG flag must
be cleared by software. The source of the fault can be identified by checking
the individual fault bits.

If a fault is detected for the crystal oscillator sourcing the MCLK, the MCLK is
automatically switched to the DCO for its clock source. This does not change
the SELMXx bit settings. This condition must be handled by user software.

Figure 4-7. Oscillator-Fault Logic

4-10

LF_OscFault

XTS
LFXT10F
Set OFIFG Flag

XT1_OscFault D—»

XT20F

XT2_OscFault

Basic Clock Module+

Sourcing MCLK from a Crystal

Basic Clock Module+ Operation

After a PUC, the basic clock module+ uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator and select appropriate mode

2) Clear the OFIFG flag

3) Wait at least 50 us

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select

BIC.
BIS.
MOV .
L1 BIC.
MOV .
L2 DEC.

JINZ

BIT.

JINZ

BIS.

=S =2 W ww =

LFXT1 (HF mode) for MCLK

#OSCOFF, SR

#XTS, &BCSCTL1
#LFXT1S0, &BCSCTL3
#OFIFG, &IFG1

#0FFh,R15
R15

L2

#OFIFG, &IFG1
L1

#SELM1+SELMO, &BCSCTL2

’

I

Turn on osc.
HF mode

1-3MHz Crystal
Clear OFIFG
Delay

Re-test OFIFG
Repeat test if needed
Select LFXTI1CLK

Basic Clock Module+ 4-11

Basic Clock Module+ Operation

4.2.8 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the
switch is synchronized to avoid critical race conditions as shown in Figure 4-8:

1) The current clock cycle continues until the next rising edge.
2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 4-8. Switch MCLK from DCOCLK to LFXT1CLK

Select
LFXT1CLK
v
DCOCLK
LFXT1CLK)
MCLK
—DCOCLK—p}— Wait for —IFXTICLK >
LFXT1CLK >

4-12 Basic Clock Module+

4.3 Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 4-1:

Table 4-1. Basic Clock module+ Registers

Basic Clock Module+ Registers

Register Short Form Register Type Address Initial State
DCO control register DCOCTL Read/write 056h 060h with PUC
Basic clock system control 1 BCSCTLA Read/write 057h 087h with POR
Basic clock system control 2 BCSCTL2 Read/write 058h Reset with PUC
Basic clock system control 3 BCSCTL3 Read/write 053h 005h with PUC
SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC

Basic Clock Module+ 4-13

Basic Clock Module+ Registers

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0
DCOx MODXx
rw-0 rw-1 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0
DCOx Bits DCO frequency select. These bits select which of the eight discrete DCO
7-5 frequencies within the range defined by the RSELXx setting is selected.
MODx Bits Modulator selection. These bits define how often the fpgo, 1 frequency is
4-0 used within a period of 32 DCOCLK cycles. During the remaining clock

cycles (32-MOD) the fpg frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

XT20FF XTS DIVAx RSELx

rw—(1) rw—(0) rw—(0) rw—(0) rw-0 rw-1 rw—1 rw—1

XT20FF Bit 7 XT2 off. This bit turns off the XT2 oscillator

0 XT2 is on
1 XT2 is off if it is not used for MCLK or SMCLK.
XTS Bit 6 LFXT1 mode select.

0 Low frequency mode
1 High frequency mode

DIVAX Bits Divider for ACLK
5-4 00 /1
01 /2
10 /4
11 /8
RSELXx Bits Range Select. Sixteen different frequency ranges are available. The lowest
3-0 frequency range is selected by setting RSELx=0. RSELS3 is ignored when
DCOR = 1.

4-14 Basic Clock Module+

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
矩形

50210751
高亮

50210751
矩形
计算标称频率

Basic Clock Module+ Registers

BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0
SELMx DIVMx SELS DIVSx DCORt
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

T Does not apply to MSP430x20xx or MSP430x21xx.

SELMx

DIVMx

SELS

DIVSx

DCOR

Bits
7-6

BitS
5-4

Bit 3

BitS
2-1

Bit 0

Select MCLK. These bits select the MCLK source.

00 DCOCLK

01 DCOCLK

10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK
when XT2 oscillator not present on-chip.

11 LFXT1CLK or VLOCLK

Divider for MCLK

o0 /1

o1 /2

10 /4

11 /8

Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK

1 XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when
XT2 oscillator not present

Divider for SMCLK
o0 /1

01 /2

10 /4

11 /8

DCO resistor select
0 Internal resistor

1 External resistor

Basic Clock Module+ 4-15

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

Basic Clock Module+ Registers

BCSCTL3, Basic Clock System Control Register 3

7 6 5 4 3 2 1 0
XT2Sx LFXT1Sx XCAPx XT20Ft LFXT10F
rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 ro r-(1)

1 Does not apply to MSP430x2xx, MSP430x21xx, or MSP430x22xx devices

XT2Sx Bits
7-6

LFXT1Sx Bits

5-4

XCAPX Bits
3-2

XT20F Bit 1

LFXT10F Bit 0

XT2 range select. These bits select the frequency range for XT2.
00 0.4 - 1MHz crystal or resonator

01 1 - 3MHz crystal or resonator

10 3 - 16MHz crystal or resonator

11 Digital external 0.4 — 16MHz clock source

Low-frequency clock select and LFXT1 range select. These bits select
between LFXT1 and VLO when XTS = 0, and select the frequency range
for LFXT1 when XTS = 1.

When XTS = 0:

00 32768 Hz Crystal on LFXT1

01 Reserved

10 VLOCLK (Reserved in MSP430x21x1 devices)

11 Digital external clock source

When XTS =1 (Not applicable for MSP430x20xx devices)

00 0.4 - 1MHz crystal or resonator

01 1 - 3MHz crystal or resonator

10 3 - 16MHz crystal or resonator

11 Digital external 0.4 - 16MHz clock source

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXT1 crystal when XTS = 0.

00 ~1pF

01 ~6pF
10 ~10pF
11 ~12.5pF

XT2 oscillator fault.
0 No fault condition present
1 Fault condition present

LFXT1 oscillator fault
0 No fault condition present
1 Fault condition present

4-16 Basic Clock Module+

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

Basic Clock Module+ Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
OFIE
rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV . B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits 0 This bit may be used by other modules. See device-specific datasheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
OFIFG
rw-1
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV . B or CLR . B instructions.
0 No interrupt pending
1 Interrupt pending
Bits 0 This bit may be used by other modules. See device-specific datasheet.

Basic Clock Module+ 4-17

Chapter 5

Flash Memory Controller

This chapter describes the operation of the MSP430x2xx flash memory
controller.

Topic

Page
5.1 Flash Memory Introductionoooiiiaa, |5-2
5.2 Flash Memory Segmentationciiiiiiiiiiinnennn. |5-3
5.3 Flash Memory Operationcciiiiiiiiinnrnnnnnennns |5-5
5.4 Flash Memory Registersccoiiiiiiiiiiiiininreinnnnnns 5-19]

5-1

Flash Memory Introduction

5.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three
registers, a timing generator, and a voltage generator to supply program and
erase voltages.

MSP430 flash memory features include:

[Internal programming voltage generation
(1 Bit, byte or word programmable

(1 Ultralow-power operation

[Segment erase and mass erase

The block diagram of the flash memory and controller is shown in Figure 5-1.

Note: Minimum V¢c During Flash Write or Erase

The minimum V¢ voltage during a flash write or erase operation is 2.2 V.
If Vg falls below 2.2 V during a write or erase, the result of the write or erase
will be unpredictable.

Figure 5-1. Flash Memory Module Block Diagram

i MAB {T o5
L 1 Iz 1

FCTL1 Address Latch P Data Latch
JL 3T 1 3C
FCTL2 Enable
l L i E Address
Latch
FCTL3 Flash
J\ Memory
|/ Array
Timing
Generator Enable
Data Latch
4
Programming
Voltage
Generator

5-2 Flash Memory Controller

Flash Memory Segmentation

5.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments. The main memory has
two or more 512-byte segments. See the device-specific datasheet for the
complete memory map of a device.

The segments are further divided into blocks. A block is 64 bytes, starting at
0xx00h, 0xx40h, 0xx80h, or 0xxCO0h, and ending at 0xx3Fh, 0xx7Fh, OxxBFh,
or OxxFFh.

Figure 5-2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and four information segments.

Figure 5-2. Flash Memory Segments, 4-KB Example

FFFFh

FOOOh
10FFh

1000h

4 KB + 256 byte

xxFFh
FFFFh Segment0 Block
4-kbyte FEOOh xxCoh
Flash FDFFh BN Block
Main Memory FCOoh Segment1 xx80h
xx7Fh
Segment2 xx40h Block
256-byte Xx3Fh Block
Flash Segment3 xx00h *
Information Memory|
Segment4
Segment5
Segment6
FOOOh Segment7
10FFh
SegmentA
SegmentB
SegmentC
1000h SegmentD

Flash Memory Controller

Flash Memory Segmentation

5.2.1 SegmentA

SegmentA of the information memory is locked separately from all other
segments with the LOCKA bit. When LOCKA = 1, SegmentA cannot be written
or erased and all information memory is protected from erasure during a mass
erase. When LOCKA = 0, SegmentA can be erased and written as any other
flash memory segment, and all information memory is erased during a mass
erase. Segments B, C, and D can always be erased with a segment erase,
regardless of the state of the LOCKA bit.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no affect. This allows existing flash programming routines to be

used unchanged.

; Unlock SegmentA

BIT
Jz
MOV

#LOCKA, &FCTL3
SEGA UNLOCKED
#FWKEY+LOCKA, &FCTL3

SEGA UNLOCKED
; SegmentA is unlocked

; Lock SegmentA

BIT
JNZ
MOV

#LOCKA, &FCTL3
SEGALOCKED
#FWKEY+LOCKA, &FCTL3

SEGA_LOCKED
; SegmentA is locked

5-4 Flash Memory Controller

Test LOCKA

; Already unlocked?
; No, unlock SegmentA

; Yes, continue

Test LOCKA

; Already locked?
; No, lock SegmentA

; Yes, continue

Flash Memory Operation

5.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

(1 Byte/word write
Block write
Segment Erase

Mass Erase (all main memory segments)

I I I Ay I

All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

5.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 5-3. The flash timing generator operating frequency, ferg, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific datasheet).

Figure 5-3. Flash Memory Timing Generator Block Diagram

ACLK
MCLK
SMCLK
SMCLK

FSSELx
FN5 eeeeeeee FNO PUC EMEX
00 T T T T
01 fFra Reset
10 Divider, 1-64
Flash Timing Generator
11

:

BUSY WAIT

Flash Memory Controller 5-5

Flash Memory Operation

Flash Timing Generator Clock Selection

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for fprg. If the fprg frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

If a clock failure is detected during a write or erase operation, the operation is
aborted, the FAIL flag is set, and the result of the operation is unpredictable.

While a write or erase operation is active the selected clock source can not be
disabled by putting the MSP430 into a low-power mode. The selected clock
source will remain active until the operation is completed before being
disabled.

5-6 Flash Memory Controller

Flash Memory Operation

5.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 5-1.

Table 5-1. Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 Erase all flash memory (main and information segments)

if LOCKA = 0. Main segments only if LOCKA = 1.

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 5-4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430F2xx devices.

Figure 5-4. Erase Cycle Timing

| [[|
' Erase Operation Active

|
Generate Remove
Programming Voltage Programming Voltage
I

| Erase Time, Vg Current Consumption is Increased

I
»
>
I
I |
BUSY
—I tmass erase = 10593/fFTG: tsegment erase = 481 9/fFTG I—

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Flash Memory Controller 5-7

Flash Memory Operation

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution

with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution

will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 5-5.

Figure 5-5. Erase Cycle from Within Flash Memory

Disable watchdog

v

Setup flash controller and erase
mode

v

Dummy write

v

Set LOCK=1, re-enable watchdog

; Segment Erase from flash. 514 kHz

; Assumes ACCVIE = NMIIE = OFIE =
MOV #WDTPW+WDTHOLD, &WDTCTL
MOV #FWKEY+FSSEL1+FNO, &FCTL2
MOV #FWKEY, &FCTL3
MOV #FWKEY+ERASE, &FCTL1
CLR &0FC10h
MOV #FWKEY+LOCK, &FCTL3

Flash Memory Controller

0.
; Disable WDT

’

’

< SMCLK < 952 kHz

SMCLK/ 2

Clear LOCK

Enable segment erase
Dummy write, erase S1
Done, set LOCK
Re-enable WDT?

Flash Memory Operation

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY=1, it is an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from RAM is shown in Figure 5-6.

Figure 5-6. Erase Cycle from Within RAM

Disable watchdog

Setup flash controller and
erase mode

Dummy write

R

Set LOCK = 1, re-enable
watchdog

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = O.

MOV HWDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ Ll ; Loop while busy

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV HFWKEY, &FCTL3 ; Clear LOCK

MOV #FWKEY+ERASE, &FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK

; Re-enable WDT?

Flash Memory Controller 5-9

Flash Memory Operation

5.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 5-1.

Table 5-2. Write Modes

BLKWRT WRT Write Mode
0 1 Byte/word write
1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block-write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 5-7.

Figure 5-7. Byte/Word Write Timing

5-10

OV

S/

Y
| | [|
| Programming Operation Active !

Generate Remove
Programming Voltage Programming Voltage
|

<
|‘
|
BUSY
_ tword write = 30/frTG

Programming Time, Vg Current Consumption is Increased

I___‘L__

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

Flash Memory Controller

Flash Memory Operation

In byte/word mode, the internally-generated programming voltage is applied
to the complete 64-byte block, each time a byte or word is written, for 27 of the
30 feg cycles. With each byte or word write, the amount of time the block is
subjected to the programming voltage accumulates. The cumulative
programming time, tcpt, must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific
datasheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 5-8.

Figure 5-8. Initiating a Byte/Word Write from Flash

Disable watchdog

v

Setup flash controller
and set WRT=1

v

Write byte or word

v

Set WRT=0, LOCK=1,
re-enable watchdog

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes OFFlEh is already erased
; Assumes ACCVIE = NMIIE = OFIE = O.

MOV HWDTPW+WDTHOLD, &WDTCTL ; Disable WDT

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2

MOV #FWKEY, &FCTL3 ; Clear LOCK

MOV #FWKEY+WRT, &FCTL1 ; Enable write

MOV #0123h, &0FF1Eh ; 0123h -> OFF1lEh
MOV #FWKEY, &FCTL1 ; Done. Clear WRT
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

; Re-enable WDT?

Flash Memory Controller 5-11

Flash Memory Operation

Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 5-9.

Figure 5-9. Initiating a Byte/Word Write from RAM

Disable watchdog

Setup flash controller
and set WRT=1

Write byte or word

o

Set WRT=0, LOCK = 1
re-enable watchdog

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = O.

MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy
MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/2
MOV HFWKEY, &FCTL3 ; Clear LOCK
MOV #HEWKEY+WRT, &FCTL1 ; Enable write
MOV #0123h, &0FF1Eh ; 0123h -> OFF1lEh
L2 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MOV #FWKEY, &FCTL1 ; Clear WRT
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

; Re-enable WDT?

5-12 Flash Memory Controller

Flash Memory Operation

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tcpt must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tgng. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 5-10 shows the block write timing.

Figure 5-10. Block-Write Cycle Timing

BLKWRT bit

_

Write to Flash e.g., MOV #123h, &Flash

¢ v

/L /L 1L
- - 7/~ |
d

». L
T T | L
|

< > I I >
Generate Programming Operation Active \ Remove
Programming Voltage i i i i Proglrammlng Voltage
I
I I

I
I I I I
I I I
Cumulative Programmmg T|me topT ~=< 4ms, Vg Current Consumption is Increased

|A
|

IuI
7T

77

__]__IL___

I

|
BUSY | L A e
Al | | |
| [[[
I [[[

tBiock, 0 = 25/fFTG .| 1Block, 1-63 = 18/fF1G .| 1Block, 1-63 = 18/fFra .| tend = 6/fFta

WAIT [« > ¢ < <

Flash Memory Controller 5-13

Flash Memory Operation
Block Write Flow and Example
A block write flow is shown in Figure 5-8 and the following example.

Figure 5-11. Block Write Flow

Disable watchdog

Setup flash controller

Set BLKWRT=WRT=1

Write byte or word

Block Border?

Set BLKWRT=0

Another
Block?

Set WRT=0, LOCK=1
re-enable WDT

5-14 Flash Memory Controller

L1

L2
L3

L4

Flash Memory Operation

Write one block starting at 0F000h.
Must be executed from RAM, Assumes Flash is already erased.
514 kHz < SMCLK < 952 kHz

Assumes ACCVIE = NMIIE = OFIE =
MOV #32,R5 Use as write counter
MOV #0F00Oh,R6 Write pointer
MOV #WDTPW+WDTHOLD, &WDTCTL Disable WDT
BIT #BUSY, &FCTL3 Test BUSY
JNZ Ll Loop while busy
MOV HFWKEY+FSSEL1+FNO, &FCTL2 SMCLK/ 2
MOV #FWKEY, &FCTL3 Clear LOCK
MOV HFWKEY+BLKWRT+WRT, &FCTL1 Enable block write
MOV Write Value, 0 (R6) Write location
BIT H#WAIT, &FCTL3 Test WAIT
JZ L3 Loop while WAIT=0
INCD R6 Point to next word
DEC R5 Decrement write counter
JINZ L2 End of block?
MOV #FWKEY, &FCTL1 Clear WRT,BLKWRT
BIT #BUSY, &FCTL3 Test BUSY
JNZ L4 Loop while busy
MOV #FWKEY+LOCK, &FCTL3 Set LOCK

Flash Memory Controller

Re-enable WDT if needed

5-15

Flash Memory Operation

5.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 5-3.

Table 5-3. Flash Access While BUSY =1

Flash Flash WAIT Result
Operation Access
Read 0 ACCVIFG = 0. 03FFFh is the value read
Any erase, or Write 0 ACCVIFG = 1. Write is ignored
Byte/word write | \iruction 0 ACCVIFG = 0. CPU fetches 03FFFh. This
fetch is the JMP PC instruction.
Any 0 ACCVIFG =1, LOCK =1
Read 1 ACCVIFG = 0, 03FFFh is the value read
Block write Write 1 ACCVIFG = 0, Flash is written
Instruction 1 ACCVIFG =1, LOCK =1
fetch

Interrupts are automatically disabled during any flash operation when EEI =
0 and EEIEX = 0 and on MSP430x20xx devices where EEI and EEIEX are not
present. After the flash operation has completed, interrupts are automatically
re-enabled. Any interrupt that occurred during the operation will have its
associated flag set, and will generate an interrupt request when re-enabled.

When EEIEX = 1 and GIE = 1, an interrupt will immediately abort any flash
operation and the FAIL flag will be set. When EEI = 1, GIE = 1, and EEIEX =
0, a segment erase will be interrupted by a pending interrupt every 32 ferg
cycles. After servicing the interrupt, the segment erase is continued for at least
32 ferg cycles or until it is complete. During the servicing of the interrupt, the
BUSY bit remains set but the flash memory can be accessed by the CPU
without causing an access violation occurs. Nested interrupts are not
supported.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset will abort the erase and the result will be unpredictable.
After the erase cycle has completed, the watchdog may be re-enabled.

5-16 Flash Memory Controller

Flash Memory Operation

5.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

5.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode when WAIT=0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY=1 is an access violation.

Any FCTLx register may be read when BUSY=1. A read will not cause an
access violation.

5.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

5.3.8 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

(4 Program via JTAG
(1 Program via the Bootstrap Loader

(1] Program via a custom solution

Flash Memory Controller 5-17

Flash Memory Operation

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally Ve and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.msp430.com.

Programming Flash Memory via the Bootstrap loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the Application report
Features of the MSP430 Bootstrap Loader at www.ti.com/msp430.

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 5-12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 5-12. User-Developed Programming Solution

Host

+’ MSP430 -1 Px.x, ——p| CPU executes |—Pppi

5-18

Flash Memory
Commands, data, etc.

UART, l

<4{ SPI, |« user software j€—

etc.

Read/write flash memory

Flash Memory Controller

5.4 Flash Memory Registers

Flash Memory Registers

The flash memory registers are listed in Table 5-4.

Table 5-4. Flash Memory Registers

Register Short Form Register Type Address Initial State
Flash memory control register 1 FCTLA1 Read/write 0128h 09600h with PUC
Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC
Flash memory control register 3 FCTL3 Read/write 012Ch 09658h with PUC
Interrupt Enable 1 IE1 Read/write 000h Reset with PUC

Flash Memory Controller 5-19

Flash Memory Registers

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0
BLKWRT WRT Reserved EEIEXt EEIT MERAS ERASE Reserved
rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 r0

1 Not present on MSP430x20xx Devices

FRKEY/ Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
FWKEY 15-8 will be generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bit 5 Reserved. Always read as 0.

EEIEX Bit 4 Enable Emergency Interrupt Exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.

0 Exit interrupt disabled.
1 Exit on interrupt enabled.

EEI Bits3 Enable Erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced the erase
cycle is resumed. EEI is automatically reset when EMEX is set.

0 Interrupts during segment erase disabled.

1 Interrupts during segment erase enabled.
MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode.
ERASE Bit 1 MERAS and ERASE are automatically reset when EMEX is set.
MERAS ERASE Erase Cycle
0 0 No erase
0 1 Erase individual segment only
1 0 Erase all main memory segments
1 1 Erase all main and information memory segments if LOCKA

= 0. Main segments only if LOCKA = 1.

5-20 Flash Memory Controller

Flash Memory Registers

Reserved Bit 0 Reserved. Always read as 0.

Flash Memory Controller 5-21

Flash Memory Registers

FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYX, Read as 096h
Must be written as 0A5h

FSSELx FNx ‘

rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

FWKEYXx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.

FSSELx Bits Flash controller clock source select
7-6 00 ACLK
01 MCLK
10 SMCLK
11 SMCLK
FNx Bits Flash controller clock divider. These six bits select the divider for the flash
5-0 controller clock. The divisor value is FNx + 1. For example, when FNx=00h,

the divisor is 1. When FNx=03Fh the divisor is 64.

5-22 Flash Memory Controller

Flash Memory Registers

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8
FWKEYX, Read as 096h ‘
Must be written as 0A5h
7 6 5 4 3 2 1 0
FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY ‘
r(w)-0 r(w)-1 rw-0 rw-1 r-1 rw-0 rw-(0) r(w)-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.

FAIL Bit 7 Operation failure. This bit is set if the ferg clock source fails, or a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.

0 No failure
1 Failure

LOCKA Bit 6 SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has
no effect.

0 Segment A unlocked and all information memory is erased during a
mass erase.

1 Segment A locked and all information memory is protected from erasure
during a mass erase.

EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block write mode if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.

0 Unlocked

1 Locked
WAIT Bit 3 Wait. Indicates the flash memory is being written to.

0 The flash memory is not ready for the next byte/word write

1 The flash memory is ready for the next byte/word write
ACCVIFG Bit 2 Access violation interrupt flag. ACCVIFG must be reset with software.

0 No interrupt pending
1 Interrupt pending

Flash Memory Controller 5-23

Flash Memory Registers

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.

0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not Busy
1 Busy

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE
rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
‘o
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV . B or CLR. B instructions.

0 Interrupt not enabled

1 Interrupt enabled

5-24 Flash Memory Controller

Digital I/0

This chapter describes the operation of the digital I/O ports.

Topic Page
6.1 Digital I/O Introductioncciiiiiiiiiiiiiii 6-2 |
6.2 Digital /O OPerationuueeeuueeeunereunesenneeennnnns [6-3]
6.3 Digital /ORegistersooviiiiiiiiiiiiiiiiiiiiiiaaaaas 6-7

6-1

6.1 Digital I/O Introduction

MSP430 devices have up to 6 digital I/O ports implemented, P1 - P6. Each port
has eight I/O pins. Every 1/O pin is individually configurable for input or output
direction, and each 1/O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 1/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

(1 Independently programmable individual 1/0Os
(1 Any combination of input or output

(1 Individually configurable P1 and P2 interrupts
(1 Independent input and output data registers
U

Individually configurable pull-up or pull-down resistors

6-2

6.2 Digital /0 Operation

The digital I/O is configured with user software. The setup and operation of the
digital I/O is discussed in the following sections.

6.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

6.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/O pin when the pin is configured as I/O function, output direction, and the
pull-up/down resistor is disabled.

Bit = 0: The output is low
Bit = 1: The output is high

If the pin’s pull-up/down resistor is enabled, the corresponding bit in the
PxOUT register selects pull-up or pull-down.

Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

6.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding 1/0
pin, regardless of the selected function for the pin. PxDIR bits for 1/O pins that
are selected for other functions must be set as required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

6.2.4 Pull-Up/Down Resistor Enable Registers PxREN

Each bit in each PXREN register enables or disables the pull-up/down resistor
of the corresponding 1/O pin. The corresponding bit in the PxOUT register
selects if the pin is pulled up or pulled down.

Bit = 0: Pull-up/down resistor disabled

Bit = 1: Pull-up/down resistor enabled

6-3

6.2.5 Function Select Registers PxSEL

6-4

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PxSEL bit is used
to select the pin function - I/O port or peripheral module function.

Bit = 0: I/0 Function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

Setting PxSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific datasheet.

;Output ACLK on P2.0 on MSP430F21x1
BIS.B #01lh,&P2SEL ; Select ACLK function for pin
BIS.B #01h,&P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx=1, the internal input signal follows the signal at the pin. However, if
the PxSELx=0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELXx bit was reset.

6.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine, or is set after the RETT instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P20UT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

6-5

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding 1/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PXIESx
Writing to P1IES, or P2IES can result in setting the corresponding interrupt

flags.
PxIESx PxINx PxIFGx
0—>1 0 May be set
0—-1 1 Unchanged
1->0 0 Unchanged
10 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled
Bit = 1: The interrupt is enabled

6.2.7 Configuring Unused Port Pins

Unused I/O pins should be configured as 1/O function, output direction, and left
unconnected on the PC board, to prevent a floating input and reduce power
consumption. The value of the PxOUT bit is don’t care, since the pin is
unconnected. Alternatively, the integrated pull-up/down resistor can be
enabled by setting the PXxREN bit of the unused pin to prevent the floating
input. See chapter System Resets, Interrupts, and Operating Modes for
termination unused pins.

6-6

6.3 Digital /0O Registers

Table 6-1. Digital I/O Registers

The digital I/O registers are listed in Table 6-1.

Port Register Short Form Address Register Type Initial State
P1 Input P1IN 020h Read only -
Output P10OUT 021h Read/write Unchanged
Direction P1DIR 022h Read/write Reset with PUC
Interrupt Flag P1IFG 023h Read/write Reset with PUC
Interrupt Edge Select P1IES 024h Read/write Unchanged
Interrupt Enable P1IE 025h Read/write Reset with PUC
Port Select P1SEL 026h Read/write Reset with PUC
Resistor Enable P1REN 027h Read/write Reset with PUC
P2 Input P2IN 028h Read only -
Output P20UT 029h Read/write Unchanged
Direction P2DIR 02Ah Read/write Reset with PUC
Interrupt Flag P2IFG 02Bh Read/write Reset with PUC
Interrupt Edge Select P2IES 02Ch Read/write Unchanged
Interrupt Enable P2IE 02Dh Read/write Reset with PUC
Port Select P2SEL 02Eh Read/write 0COh with PUC
Resistor Enable P2REN 02Fh Read/write Reset with PUC
P3 Input P3IN 018h Read only -
Output P30OUT 019h Read/write Unchanged
Direction P3DIR 01Ah Read/write Reset with PUC
Port Select P3SEL 01Bh Read/write Reset with PUC
Resistor Enable P3REN 010h Read/write Reset with PUC
P4 Input P4IN 01Ch Read only -
Output P4OUT 01Dh Read/write Unchanged
Direction P4DIR 01Eh Read/write Reset with PUC
Port Select P4SEL 01Fh Read/write Reset with PUC
Resistor Enable P4REN 011h Read/write Reset with PUC
P5 Input P5IN 030h Read only -
Output P50UT 031h Read/write Unchanged
Direction P5DIR 032h Read/write Reset with PUC
Port Select P5SEL 033h Read/write Reset with PUC
Resistor Enable P5REN 012h Read/write Reset with PUC
P6 Input P6IN 034h Read only -
Output P6OUT 035h Read/write Unchanged
Direction P6DIR 036h Read/write Reset with PUC
Port Select P6SEL 037h Read/write Reset with PUC
Resistor Enable P6REN 013h Read/write Reset with PUC

Watchdog Timer+

The watchdog timer+ (WDT+) is a 16-bit timer that can be used as a watchdog

or as an interval timer. This chapter describes the WDT+ The WDT+ is
implemented in all MSP430x2xx devices.

Topic Page
7.1 Watchdog Timer+ Introductionccooiiiiiiiiiins, 7-2
7.2 Watchdog Timer+ Operationc.oviiiiiiiiiniininnnnnnn 7-4 |
7.2 Watchdog Timer+ Registerscciiiiiiiiiiiiininenna, 7-7 |

7-1

Watchdog Timer+ Introduction

7.1 Watchdog Timer+ Introduction

The primary function of the watchdog timer+ (WDT+) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer+ module include:

Four software-selectable time intervals

Watchdog mode

Interval mode

Access to WDT+ control register is password protected
Control of RST/NMI pin function

Selectable clock source

Can be stopped to conserve power

U U U o d o o d

Clock fail-safe feature

The WDT+ block diagram is shown in Figure 7-1.

Note: Watchdog timer+ Powers Up Active

After a PUC, the WDT+ module is automatically configured in the watchdog
mode with an initial ~32-ms reset interval using the DCOCLK. The user must
setup or halt the WDT+ prior to the expiration of the initial reset interval.

7-2 Watchdog Timer+

Watchdog Timer+ Introduction

Figure 7-1. Watchdog Timer+ Block Diagram

WDTCTL
VAN
- | eE MDB
N 0o—» <«
Int WDTQn 3 <C)9_
« . Y 1 —p 4—
Flag » Q13
< ! Q15 0
1|l
T | C 16-bit 1 > Password <
Pulse Counter > Compare <
Generator A 1
B 0—p <«
Clear 11— <4— 16-bit
PUC
> sy | LK o ol =
| Write Enable
] EQU Low Byte —
Fail-Safe R/W
MCLK » Logic <—CC —— 1 7'
SMCLK > T —<¢ WDTHOLD
ACLK S WDTNMIES
—J L WDTNMI
— 1A EN —®@
—WDTTMSEL
WDTCNTCL
@ WDTSSEL
WDTISH
WDTISO0 LSB
| V

Clock |———®» MCLKActive
Requ_est —————p SMCLK Active
Legie |) ACLKAdtive

Watchdog Timer+ 7-3

Watchdog Timer+ Operation

7.2 Watchdog Timer+ Operation

7.2.1

The WDT+ module can be configured as either a watchdog or interval timer
with the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte.

Watchdog timer+ Counter

The watchdog timer+ counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer+ control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

7.2.2 Watchdog Mode

7.2.3

7-4

After a PUC condition, the WDT+ module is configured in the watchdog mode
with an initial ~32-ms reset interval using the DCOCLK. The user must setup,
halt, or clear the WDT+ prior to the expiration of the initial reset interval or
another PUC will be generated. When the WDT+ is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT+
to its default condition and configures the RST/NMI pin to reset mode.

Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog timer+

The WDT+ interval should be changed together with WDTCNTCL = 1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT+ should be halted before changing the clock source to avoid a
possible incorrect interval.

Watchdog Timer+

Watchdog Timer+ Operation

7.2.4 Watchdog timer+ Interrupts
The WDT+ uses two bits in the SFRs for interrupt control.
(1 The WDT+ interrupt flag, WDTIFG, located in IFG1.0
(1 The WDT+ interrupt enable, WDTIE, located in IE1.0

When using the WDT+ in the watchdog mode, the WDTIFG flag sources a
reset vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer+ initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT+ in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT+ interval timer interrupt if the
WDTIE and the GIE bits are set. The interval timer interrupt vector is different
from the reset vector used in watchdog mode. In interval timer mode, the
WDTIFG flag is reset automatically when the interrupt is serviced, or can be
reset with software.

7.2.5 Watchdog timer+ Clock Fail-safe Operation

The WDT+ module provides a fail-safe clocking feature assuring the clock to
the WDT+ cannot be disabled while in watchdog mode. This means the
low-power modes may be affected by the choice for the WDT+ clock. For
example, if ACLK is the WDT+ clock source, LPM4 will not be available,
because the WDT+ will prevent ACLK from being disabled. Also, if ACLK or
SMCLK fail while sourcing the WDT+, the WDT+ clock source is automatically
switched to MCLK. In this case, if MCLK is sourced from a crystal, and the
crystal has failed, the fail-safe feature will activate the DCO and use it as the
source for MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe
feature for the clock source.

Watchdog Timer+ 7-5

Watchdog Timer+ Operation

7.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT+ should be
configured. For example, the WDT+ should not be configured in watchdog
mode with SMCLK as its clock source if the user wants to use low-power mode
3 because the WDT+ will keep SMCLK enabled for its clock source, increasing
the current consumption of LPM3. When the watchdog timer+ is not required,
the WDTHOLD bit can be used to hold the WDTCNT, reducing power
consumption.

7.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog
MOV #WDTPW+WDTCNTCL, &WDTCTL

; Change watchdog timer+ interval
MOV #WDTPW+WDTCNTL+SSEL, &WDTCTL

; Stop the watchdog
MOV #WDTPW+WDTHOLD, &§WDTCTL

; Change WDT+ to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTISO, &WDTCTL

7-6 Watchdog Timer+

Watchdog Timer+ Registers

7.3 Watchdog Timer+ Registers

The WDT+ registers are listed in Table 7-1.

Table 7-1. Watchdog timer+ Registers

Register Short Form Register Type Address Initial State
Watchdog timer+ control register WDTCTL Read/write 0120h 06900h with PUC
SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUCT

T WDTIFG is reset with POR

Watchdog Timer+ 7-7

Watchdog Timer+ Registers

WDTCTL, Watchdog timer+ Register

15

14

13 12 11 10 9 8

Read as 069h
WDTPW, must be written as 05Ah

7

6

5 4 3 2 1 0

WDTHOLD

WDTNMIES WDTNMI | WDTTMSEL | WDTCNTCL | WDTSSEL WDTISx ‘

w

w

rw-0

DTPW

DTHOLD

WDTNMIES

w

WDTTMSEL

WDTCNTCL

w

w

7-8

DTNMI

DTSSEL

DTISx

rw-0

Bits
15-8

Bit 7
Bit 6
Bit 5

Bit 4

Bit 3

Bit 2

Bits
1

rw-0 rw-0 ro(w) rw-0 rw-0 rw-0

Watchdog timer+ password. Always read as 069h. Must be written as 05Ah,
or a PUC will be generated.

Watchdog timer+ hold. This bit stops the watchdog timer+. Setting
WDTHOLD = 1 when the WDT+ is not in use conserves power.

0 Watchdog timer+ is not stopped

1 Watchdog timer+ is stopped

Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the
NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTNMI = 0 to avoid triggering an accidental NMI.

0 NMI on rising edge

1 NMI on falling edge

Watchdog timer+ NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

Watchdog timer+ mode select
0 Watchdog mode
1 Interval timer mode

Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count
value to 0000h. WDTCNTCL is automatically reset.

0 No action

1 WDTCNT = 0000h

Watchdog timer+ clock source select
0 SMCLK
1 ACLK

Watchdog timer+ interval select. These bits select the watchdog timer+
interval to set the WDTIFG flag and/or generate a PUC.

00 Watchdog clock source /32768

01 Watchdog clock source /8192

10 Watchdog clock source /512

11 Watchdog clock source /64

Watchdog Timer+

Watchdog Timer+ Registers

IE1, Interrupt Enable Register 1

7 5 4 3 2 1 0
NMIIE WDTIE
rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
7-5
NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific datasheet.
3-1
WDTIE Bit 0 Watchdog timer+ interrupt enable. This bit enables the WDTIFG interrupt for

interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV . B
or CLR. B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Watchdog Timer+ 7-9

Watchdog Timer+ Registers

IFG1, Interrupt Flag Register 1

7 5 4 3 2 1 0
NMIIFG WDTIFG
rw-(0)
Bits These bits may be used by other modules. See device-specific datasheet.
7-5
NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
usingBIS.BorBIC.B instructions, rather than MOV .B or CLR . B instructions.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
3-1
WDTIFG Bit 0 Watchdog timer+ interrupt flag. In watchdog mode, WDTIFG remains set until

7-10

reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or can be reset by software. Because other bits in IFG1
may be used for other modules, it is recommended to clear WDTIFG by using
BIS.B or BIC.B instructions, rather than MOV.B or CLR. B instructions.

0 No interrupt pending

1 Interrupt pending

Watchdog Timer+

Chapter 8

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_A. Timer_AS3 (three capture/compare registers) is
implemented in all MSP430x2xx devices, except for MSP430x20xx devices.
Those devices implement Timer_A2 (two capture/compare registers).

Topic Page
8.1 Timer_Alntroductionccoiiiiiiiiiiii e |8-2
82 Timer_AOperationiiiiiiiiiiiiiiiiiiiiiiiaa |8-4
8.3 Timer_ ARegisterscciiiiiiiiiiiiiiiiiiiiiiii i 8-19]

8-1

Timer_A Introduction

8.1 Timer_A Introduction

8-2

Timer_A

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

4
J
d
4
J
4

Asynchronous 16-bit timer/counter with four operating modes
Selectable and configurable clock source

Two or Three configurable capture/compare registers
Configurable outputs with PWM capability

Asynchronous input and output latching

Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 8-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.

Timer_A Introduction

Figure 8-1. Timer_A Block Diagram

. Timer Block
TASSELXx IDx Timer Clock o
i e 1
TACLK —] 00 ivi 16-bit Timer
ACLK 01 ?;Z;ig TAR — ﬁ%‘g’;t <« EQUO
Clear RC —
SMCLK 10
INCLK 1 \—> Set TAIFG
TACLR
CCRO
CCR1
CCR2
CCISx CMx
CCl2A Capture
Mode 15 B
CCl2B
TACCR2
GND Timer Clock
VCC {}
Comparator 2
EQU2 CAP
A
SCCl m— Y
- 0 Set TACCR2
1 CCIFG
ouT _)—‘
Output —
M U D =et Q OUT?2 Signal
Favo Timer Clock —

Reset

e T

OUTMODx

Timer_A 8-3

Timer_A Operation

8.2 Timer_A Operation

8.2.1

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

8-4

Timer_A

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK
or INCLK. The clock source is selected with the TASSELX bits. The selected
clock source may be passed directly to the timer or divided by 2, 4, or 8, using
the IDx bits. The timer clock divider is reset when TACLR is set.

8.2.2 Starting the Timer

Timer_A Operation

The timer may be started, or restarted in the following ways:

(1 The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCRO. The timer may then be restarted by writing a
nonzero value to TACCRO. In this scenario, the timer starts incrementing
in the up direction from zero.

8.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 8-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 8-1. Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of
TACCRO
10 Continuous The timer repeatedly counts from zero to OFFFFh.
1 Up/down The timer repeatedly counts from zero up to the value of

TACCRO and back down to zero.

Timer_A

8-5

Timer_A Operation

Up Mode

Figure 8-2. Up Mode

OFFFFh
TACCRO

Oh

The up mode is used if the timer period must be different from OFFFFh counts.
The timer repeatedly counts up to the value of compare register TACCRO,
which defines the period, as shown in Figure 8-2. The number of timer counts
in the period is TACCRO+1. When the timer value equals TACCRO the timer
restarts counting from zero. If up mode is selected when the timer value is
greater than TACCRO, the timer immediately restarts counting from zero.

The TACCRO CCIFG interrupt flag is set when the timer counts to the TACCRO
value. The TAIFG interrupt flag is set when the timer counts from TACCRO to
zero. Figure 8-3 shows the flag set cycle.

Figure 8-3. Up Mode Flag Setting

Timer Clock _/__/__/__/__/_“__/__/__/__

i (
Timer XCCRO—1 CCROX oh X 1th)(j(’ X CCRo-1X CCRo oOh

Set TAIFG

Set TACCRO CCIFG

Changing the Period Register TACCRO

8-6

Timer_A

When changing TACCRO while the timer is running, if the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

Timer_A Operation

Continuous Mode

In the continuous mode, the timer repeatedly counts up to OFFFFh and restarts
from zero as shown in Figure 8-4. The capture/compare register TACCRO
works the same way as the other capture/compare registers.

Figure 8-4. Continuous Mode

OFFFFh

Oh

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero.
Figure 8-5 shows the flag set cycle.

Figure 8-5. Continuous Mode Flag Setting

<

Timer Y FFFEh X FFFFh X oh X 1h)(::(’ X Frren Y FFFFh Y oh
I I

)

Set TAIFG I

Timer_A 8-7

Timer_A Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRXx register in the
interrupt service routine. Figure 8-6 shows two separate time intervals ty and
t; being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 8-6. Continuous Mode Time Intervals

8-8

Timer_A

OFFFF:

TACCROa / 7/

TACCR1b TACCR1c
TACCROb TACCROC TACCROd

TACCR1a / TACCR1d

4 ‘ tq tq

Time intervals can be produced with other modes as well, where TACCRO is
used as the period register. Their handling is more complex since the sum of
the old TACCRx data and the new period can be higher than the TACCRO
value. When the previous TACCRXx value plus ty is greater than the TACCRO
data, the TACCRO value must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_A Operation

The up/down mode is used if the timer period must be different from OFFFFh
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCRO and back down to zero,
as shown in Figure 8-7. The period is twice the value in TACCRO.

Figure 8-7. Up/Down Mode

OFFFFh

TACCRO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the timer clock divider.

In up/down mode, the TACCRO CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCRO CCIFG interrupt flag is set when the timer counts from TACCRO-1
to TACCRO, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 8-8 shows the flag set cycle.

Figure 8-8. Up/Down Mode Flag Setting

Timer Clock
Timer
Up/Down
Set TAIFG

Set TACCRO CCIFG

B U o U o N an N 22N an N an W an

(
X coro-1)Y CCRo XCCR0—1XCCR0—2)Q{ X 1h Oh
)

({4
)

({¢
R

Timer_A 8-9

Timer_A Operation

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The new period
takes affect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 8-9 the tyeaq is:

tgead = ttimer X (TACCR1 - TACCR2)

With: tgeaq Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TACCRx Content of capture/compare register x

The TACCRXx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 8-9. Output Unit in Up/Down Mode

8-10

OFFFFh
TACCRO
TACCR1
TACCR2 /
Oh
» &4 | p» |4 DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQU1 EQU1 EQU1 Interrupt Events
TAIFG EQUO TAIFG EQUO p
EQU2 EQU2 EQU2 EQU2
Timer_A

Timer_A Operation

8.2.4 Capture/Compare Blocks

Capture Mode

Two or Three identical capture/compare blocks, TACCRX, are present in
Timer_A. Any of the blocks may be used to capture the timer data, or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxXA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

[The timer value is copied into the TACCRXx register
(1 The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 8-10.

Figure 8-10. Capture Signal (SCS=1)

Timer Clock
Timer

CClI
Capture

Set TACCRx CCIFG

X e Y X n (o Y me Y s Y e X
[]]

"\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 8-11. COV must be
reset with software.

Timer_A 8-11

Timer_A Operation

Figure 8-11. Capture Cycle

in Register TACCTLx

Idle

Capture Capture Read

No Capture Read
Capture Taﬁ)(en Taken
Taken Capture

Capture Read and No Capture

Capture
Clear Bit COV

Second
Capture
Taken
COV =1

Idle

Capture

Capture Initiated by Software

Compare Mode

8-12

Timer_A

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCISO0 to switch the
capture signal between V¢ and GND, initiating a capture each time CCISO
changes state:

MOV #CAP+SCS+CCI81+CM_3, &TACCTLx ; Setup TACCTLx
XOR #CCISO, &TACCTLx ; TACCTLx = TAR

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRXx:

1 Interrupt flag CCIFG is set
1 Internal signal EQUx = 1
(1 EQUx affects the output according to the output mode

(1 The input signal CCl is latched into SCCI

8.2.5 Output Unit

Timer_A Operation

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.

Output Modes

The output modes are defined by the OUTMODX bits and are described in
Table 8-2. The OUTXx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQUO.

Table 8-2. Output Modes

OUTMODx

Mode

Description

000

001

010

011

100

101

110

111

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reset

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTx is updated.

The output is set when the timer counts
to the TACCRXx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

The output is toggled when the timer
counts to the TACCRXx value. It is reset
when the timer counts to the TACCRO
value.

The output is set when the timer counts
to the TACCRXx value. It is reset when the
timer counts to the TACCRO value.

The output is toggled when the timer
counts to the TACCRXx value. The output
period is double the timer period.

The output is reset when the timer counts
to the TACCRXx value. It remains reset
until another output mode is selected and
affects the output.

The output is toggled when the timer
counts to the TACCRXx value. It is set
when the timer counts to the TACCRO
value.

The output is reset when the timer counts
to the TACCRX value. It is set when the
timer counts to the TACCRO value.

Timer_A 8-13

Timer_A Operation

Output Example—Timer in Up Mode

The OUTXx signal is changed when the timer counts up to the TACCRx value,
and rolls from TACCRO to zero, depending on the output mode. An example
is shown in Figure 8-12 using TACCRO and TACCR1.

Figure 8-12. Output Example—Timer in Up Mode

OFFFFh
TACCRO
TACCR*
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
‘ Output Mode 6: Toggle/Set
‘ Output Mode 7: Reset/Set
EQUO EQU1 EQUO EQU1 EQUO
TAIFG TAIFG TAIFG Interrupt Events

8-14 Timer_ A

Timer_A Operation

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCRO values, depending on the output mode. An example is shown in
Figure 8-13 using TACCRO and TACCR1.

Figure 8-13. Output Example—Timer in Continuous Mode

OFFFFh
TACCRO
TACCRA1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TAIFG EQU1 EQUO TAIFG EQU1 EQUO Interrupt Events

Timer_A 8-15

Timer_A Operation

Output Example—Timer in Up/Down Mode

The OUTXx signal changes when the timer equals TACCRX in either count
direction and when the timer equals TACCRO, depending on the output mode.
An example is shown in Figure 8-14 using TACCRO and TACCR2.

Figure 8-14. Output Example—Timer in Up/Down Mode

OFFFFh
TACCRO
TACCR2
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU2 EQU2 EQU2 EQU2 Interrupt Events
TAIFG EQUO TAIFG EQUO P

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7, &TACCTLx ; Set output mode=7
BIC #OUTMODxX, &TACCTLx ; Clear unwanted bits

8-16 Timer_ A

Timer_A Operation

8.2.6 Timer_A Interrupts

TACCRO Interrupt

Two interrupt vectors are associated with the 16-bit Timer_A module:
(1 TACCRQO interrupt vector for TACCRO CCIFG
(1 TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRX register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRXx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

The TACCRO CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 8-15. The TACCRO CCIFG
flag is automatically reset when the TACCRO interrupt request is serviced.

Figure 8-15. Capture/Compare TACCRO Interrupt Flag

Capture

EQUO
CAP

D_ b Set Q CCE.—D—} IRQ, Interrupt Service Requested

Timer Clock —{

Reset

IRACC, Interrupt Request Accepted
POR

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.

Timer_A 8-17

Timer_A Operation

TAIV Software Example

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump

to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling

itself. The latencies are:

[Capture/compare block TACCRO

(O Capture/compare blocks TACCR1, TACCR2

(O Timer overflow TAIFG

; Interrupt handler for TACCRO CCIFG.

CCIFG_0_ HND

11 cycles
16 cycles
14 cycles

Cycles

; e ; Start of handler Interrupt latency 6

RETI

; Interrupt handler for TAIFG, TACCR1l and TACCR2 CCIFG.

TA_HND e ;
ADD &TAIV,PC ;
RETI ;
JMP CCIFG 1 HND ;
JMP CCIFG 2 HND ;
RETI ;
RETTI ;

TAIFG HND ;
RETT

CCIFG 2 HND ;
RETT ;

CCIFG 1 HND ;

RETI ;

8-18 Timer_A

Interrupt latency

Add offset to Jump table
0:

Vector
Vector
Vector
Vector
Vector

Vector 10:

2
4:
6
8

No interrupt
TACCR1
TACCR2
Reserved
Reserved

TAIFG Flag

Task starts here

Vector 4:

TACCR2

Task starts here

Back to main program

Vector 2:

TACCR1

Task starts here

Back to main program

U NN NN U O

8.3 Timer_A Registers

The Timer_A registers are listed in Table 8-3:

1 Not present on MSP430x20xx Devices

Table 8-3. Timer_A Registers

Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR
Timer_A counter TAR Read/write 0170h Reset with POR
Timer_A capture/compare control 0 TACCTLO Read/write 0162h Reset with POR
Timer_A capture/compare 0 TACCRO Read/write 0172h Reset with POR
Timer_A capture/compare control 1 TACCTLA Read/write 0164h Reset with POR
Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR
Timer_A capture/compare control 2 TACCTL2t Read/write 0166h Reset with POR
Timer_A capture/compare 2 TACCR2t Read/write 0176h Reset with POR
Timer_A interrupt vector TAIV Read only 012Eh Reset with POR

1 Not present on MSP430x20xx Devices

Timer_A 8-19

Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8
Unused TASSELXx ‘
rw—-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w-(0) rw—(0) rw—(0)
Unused Bits Unused
15-10
TASSELx Bits Timer_A clock source select
9-8 00 TACLK
01 ACLK
10 SMCLK
11 INCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 /1
01 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_A is not in use conserves
5-4 power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCRO
10 Continuous mode: the timer counts up to OFFFFh
11 Up/down mode: the timer counts up to TACCRO then down to 0000h
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending
8-20 Timer_A

Timer_A Registers

TAR, Timer_A Register

15 14 13 12 11 10 9 8
TARX ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
TARX ‘
rw-(0) rw—-(0) rw-(0) rw-(0) rw-(0) rw—(0) rw-(0) rw-(0)
TARX Bits Timer_A register. The TAR register is the count of Timer_A.

15-0

Timer_A 8-21

Timer_A Registers

TACCTLx, Capture/Compare Control Register

15

14

13 12 11 10 9 8

CMx

CCISx SCS SCCI Unused CAP ‘

rw—-(0)

rw-(0)

6

rw-(0) rw-(0) rw-(0) r ro rw-(0)

OUTMODx CCIE CCl ouT cov CCIFG ‘

rw—(0)

CMx

CCISx

SCs

SCCI

Unused

CAP

OUTMODx

8-22

rw—(0)

Bit
15-14

Bit
13-12

Bit 11

Bit 10

Bit 9
Bit 8

Bits
7-5

Timer_A

rw-(0) rw—-(0) r rw-(0) rw-(0) rw-(0)

Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

Capture/compare input select. These bits select the TACCRX input signal.
See the device-specific datasheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 Ve

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUX signal and can be read via this bit

Unused. Read only. Always read as 0.

Capture mode
0 Compare mode
1 Capture mode

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO because EQUx
= EQUO.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE

CcCi
ouT

cov

CCIFG

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_A Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0 ‘
r0 ro r0 r0 r0 ro r0 r0
7 6 5 4 3 2 1 0
0 0 0 0 TAIVX 0 ‘
r0 r0 r0 r0 r—(0) r-(0) r—(0) r0
TAIVX Bits Timer_A Interrupt Vector value
15-0

Interrupt

TAIV Contents Interrupt Source Interrupt Flag Priority

00h No interrupt pending -

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2f TACCR2 CCIFG

06h Reserved -

08h Reserved -

OAh Timer overflow TAIFG

0Ch Reserved -

OEh Reserved - Lowest

t Not Implemented in MSP430x20xx, devices

Timer_A 8-23

Chapter 9

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_B. Timer_B3 (three capture/compare registers) is
implemented in MSP430x22x4 devices.

Topic Page
9.1 Timer_BlIntroduction i 9-2 |
9.2 Timer_BOperationcciiiiiiiiiiii 9-4 |
9.3 Timer_BRegisterscciiiiiiiiiiiiiii i |9-20]

9-1

Timer_B Introduction

9.1 Timer_B Introduction

9.1.1

9-2

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

[Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

Selectable and configurable clock source
Three or seven configurable capture/compare registers
Configurable outputs with PWM capability

Double-buffered compare latches with synchronized loading

I N Ny A

Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 9-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

Similarities and Differences From Timer_A

Timer_ B

Timer_B is identical to Timer_A with the following exceptions:

[The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
(O Timer_B TBCCRx registers are double-buffered and can be grouped.
(1 All Timer_B outputs can be put into a high-impedance state.

(1 The SCCI bit function is not implemented in Timer_B.

Timer_B Introduction

Figure 9-1. Timer_B Block Diagram
) Timer Block
TBSSELx Dx Timer Clock MCx
T T - 16-bit Ti : T T
TBCLK —@——— 00 i —bit Timer
e H e L P [
Clear 8 10 12 16
SMCLK 10 CNTLx
—Do— 11
TBCLR
00
TBCLGRPx
01
T T Set TBIFG
10
Group 11
Load Logic
CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
CCISx CMx CCR6
CCIl6A 00 Capture
ccieB —] ot Mode 0
TBCCR6
GND 10 Timer Clock
vCC 11 {}
CLLDx Load
CClI Group »1 Compare Latch TBCL6
Load Logic
veo \/
TBR=0 D Comparator 6
EQUO —
UP/DOWN _ﬁ CCR4 — EQUe | caP
f CCR1
Set TBCCR6
1 CCIFG
ouT I—T)
Output
—» Uni Set i
> Unit6 D =€t Q|- OUT6 Signal
EQUO Timer Clock —
Reset
POR
OUTMODx

Timer_B 9-3

Timer_B Operation

9.2 Timer_B Operation

9.2.1

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

16-Bit Timer Counter

TBR Length

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR will take effect immediately.

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBRmay), for the selectable lengths
is OFFh, 03FFh, OFFFh, and OFFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

9-4

Timer_ B

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK
or INCLK. The clock source is selected with the TBSSELX bits. The selected
clock source may be passed directly to the timer or divided by 2,4, or 8, using
the IDx bits. The clock divider is reset when TBCLR is set.

Timer_B Operation

9.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
(1 The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCLO. The timer may then be restarted by loading a
nonzero value to TBCLO. In this scenario, the timer starts incrementing in
the up direction from zero.

9.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 9-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 9-1. Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of

compare register TBCLO.

10 Continuous The timer repeatedly counts from zero to the value
selected by the TBCNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCLO and then back down to zero.

Timer_B 9-5

Timer_B Operation

Up Mode

The up mode is used if the timer period must be different from TBR(max) counts.
The timer repeatedly counts up to the value of compare latch TBCLO, which
defines the period, as shown in Figure 9-2. The number of timer counts in the
period is TBCLO+1. When the timer value equals TBCLO the timer restarts
counting from zero. If up mode is selected when the timer value is greater than
TBCLO, the timer immediately restarts counting from zero.

Figure 9-2. Up Mode

TBR(max)
TBCLO

Oh

The TBCCRO CCIFG interrupt flag is set when the timer counts to the TBCLO

value. The TBIFG interrupt flag is set when the timer counts from TBCLO to
zero. Figure 8-3 shows the flag set cycle.

Figure 9-3. Up Mode Flag Setting

mmerciesk /" __" _/ _/ N\
(
Ti TBCLO-1f TBCLO Oh 1h ’ TBCLO-1f TBCLO Oh
mer Y X

Set TBIFG

Set TBCCRO CCIFG

Changing the Period Register TBCLO

9-6

Timer_ B

When changing TBCLO while the timer is running and when the TBCLO load
mode is immediate, if the new period is greater than or equal to the old period,
or greater than the current count value, the timer counts up to the new period.
If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

Timer_B Operation

Continuous Mode

In continuous mode the timer repeatedly counts up to TBRnax) and restarts
from zero as shown in Figure 9-4. The compare latch TBCLO works the same
way as the other capture/compare registers.

Figure 9-4. Continuous Mode

TBR(max)

Oh

The TBIFG interrupt flag is set when the timer counts from TBR pay) to zero.
Figure 9-5 shows the flag set cycle.

Figure 9-5. Continuous Mode Flag Setting

Timer xTBR (mﬂﬂx TBR (max)i(Oh X 1h X—‘)‘) XTBR (mﬂﬂx TBR (mﬂli(Oh
LC I

)

Set TBIFG |

Timer_B 9-7

Timer_B Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 9-6 shows two separate time intervals ty and t; being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 9-6. Continuous Mode Time Intervals

9-8

TBR(max)

EQUO Interrupt

EQU1 Interrupt

TBCL1b TBCLic
TBCLOb TBCLOG TBCLOd
TBCL1a TBCL1d
TBCLOa / /
oh
to to to
1 1 ty

Timer_ B

Time intervals can be produced with other modes as well, where TBCLO is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCLO value.
When the sum of the previous TBCLx value plus ty is greater than the TBCLO
data, the old TBCLO value must be subtracted to obtain the correct time
interval.

Up/Down Mode

Timer_B Operation

The up/down mode is used if the timer period must be different from TBR max)
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare laich TBCLO, and back down to zero, as
shown in Figure 9-7. The period is twice the value in TBCLO.

Note: TBCLO > TBR(max)

If TBCLO > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR yay) to zero.

Figure 9-7. Up/Down Mode

TBCLO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the clock divider.

In up/down mode, the TBCCRO CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCRO CCIFG interrupt flag is set when the timer counts from TBCLO-1 to
TBCLO, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 9-8 shows the flag set cycle.

Figure 9-8. Up/Down Mode Flag Setting

Timer X TBCLO-1) TBCLO XTBCLO—1XTBCLO—2X:2() X 1h oh 1h
)

Up/Down
Set TBIFG

Set TBCCRO CCIFG

(¢

({4
)

<C
))

({4

)

Timer_B 9-9

Timer_B Operation

Changing the Value of Period Register TBCLO

Use of the Up/Down

When changing TBCLO while the timer is running, and counting in the down
direction, and when the TBCLO load mode is immediate, the timer continues
its descent until it reaches zero. The new period takes effect after the counter
counts down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCLO, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCLO is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 9-9 the tgeaq is:

tdead = ttimer X (TBCL1 - TBCL3)

With: tgeag Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 9-9. Output Unit in Up/Down Mode

TBR(max)
TBCLO
TBCL1
TBCL3 Vi
Oh
» |4 | P € DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQU1 EQU1 EQU1 Interrupt Events
TBIFG EQUO TBIFG EQUO p
EQU3 EQU3 EQU3 EQU3

9-10 Timer_ B

Timer_B Operation

9.2.4 Capture/Compare Blocks

Capture Mode

Three or seven identical capture/compare blocks, TBCCRYX, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxXA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

(1 The timer value is copied into the TBCCRXx register
(1 The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 9-10.

Figure 9-10. Capture Signal (SCS=1)

Timer X n-2 X n-1 X n X n+1 X n+2 X n+3 X n+4 X

CCl
Capture

Set TBCCRx CCIFG

[1]

"\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 9-11. COV must be
reset with software.

Timer_B 9-11

Timer_B Operation

Figure 9-11. Capture Cycle

in Register TBCCTLx

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV

Second
Capture
Taken
COV =1

Idle

Capture

Capture Initiated by Software

Compare Mode

9-12

Timer_ B

Captures can be initiated by software. The CMXx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCISO0 to switch
the capture signal between Ve and GND, initiating a capture each time
CCIS0 changes state:

MOV #CAP+SCS+CCI81+CM_3, &TBCCTLx ; Setup TBCCTLx
XOR #CCISO, &TBCCTLx ; TBCCTLx = TBR

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

(1 Interrupt flag CCIFG is set
1 Internal signal EQUx = 1

(1 EQUx affects the output according to the output mode

Timer_B Operation

Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 9-2.

Table 9-2. TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRX is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRXx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCLO value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPXx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRXx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 9-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRXx are set to zero, all compare latches
update immediately when their corresponding TBCCRx is written - no
compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRXx registers of the group must be updated, even when new
TBCCRXx data = old TBCCRXx data. Second, the load event must occur.

Table 9-3. Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2 TBCCR1
TBCL3+TBCL4 TBCCR3

TBCL5+TBCL6 TBCCR5

10 TBCL1+TBCL2+TBCL3 TBCCR1
TBCL4+TBCL5+TBCL6 TBCCR4

11 TBCLO+TBCL1+TBCL2+ TBCCR1

TBCL3+TBCL4+TBCL5+TBCL6

Timer_B 9-13

Timer_B Operation

9.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.

Output Modes

The output modes are defined by the OUTMODXx bits and are described in
Table 9-4. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQUO.

Table 9-4. Output Modes

OUTMODXx Mode Description

000 Output The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCLO
value.

011 Set/Reset The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCLO value.

100 Toggle The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCLO value.

111 Reset/Set The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCLO value.

9-14 Timer_ B

Timer_B Operation

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCLO to zero, depending on the output mode. An example is shown
in Figure 9-12 using TBCLO and TBCL1.

Figure 9-12. Output Example—Timer in Up Mode

TBR(max)
TBCLO
TBCL1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
‘ Output Mode 6: Toggle/Set
‘ Output Mode 7: Reset/Set
EQUO EQUA EQUO EQU1 EQUO
TBIFG TBIFG TBIFG Interrupt Events

Timer_B 9-15

Timer_B Operation

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TBCLx and TBCLO
values, depending on the output mode, An example is shown in Figure 9-13
using TBCLO and TBCLI1.

Figure 9-13. Output Example—Timer in Continuous Mode

TBR(max)
TBCLO
TBCL1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TBIFG EQU1 EQUO TBIFG EQU1 EQUO Interrupt Events

9-16 Timer_ B

Output Example - Timer in Up/Down Mode

Figure 9-14. Output Example—Timer in Up/Down Mode

Timer_B Operation

The OUTXx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCLO, depending on the output mode.
An example is shown in Figure 9-14 using TBCLO and TBCLS3.

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBR(max)
TBCLO
TBCL3
Oh
EQU3 EQU3 EQU3 EQU3
TBIFG EQUO TBIFG EQUO

Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as

a transition state:

BIS
BIC

#OUTMOD_7, &TBCCTLx ; Set output mode=7
#OUTMODx, &TBCCTLx

; Clear unwanted bits

Timer_B 9-17

Timer_B Operation

9.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:
(1 TBCCRO interrupt vector for TBCCRO CCIFG
[TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRx register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCRO Interrupt Vector

The TBCCRO CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 9-15. The TBCCRO CCIFG
flag is automatically reset when the TBCCRO interrupt request is serviced.

Figure 9-15. Capture/Compare TBCCRO Interrupt Flag

Capture

EQUO
CAP

:)_ D Set Q CCE.’} IRQ, Interrupt Service Requested

Timer Clock —{

Reset

IRACC, Interrupt Request Accepted
POR

TBIV, Interrupt Vector Generator

9-18

Timer_ B

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCRO CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCRO CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.

Timer_B Operation

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

(1 Capture/compare block CCRO 11 cycles

(1 Capture/compare blocks CCR1 to CCR6 16 cycles

(4 Timer overflow TBIFG 14 cycles

The following software example shows the recommended use of TBIV for
Timer_B3.

; Interrupt handler for TBCCRO CCIFG. Cycles

CCIFG 0 HND
; Start of handler Interrupt latency 6
RETT

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.

TB_HND R ; Interrupt latency 6
ADD &TBIV, PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP CCIFG_1 HND ; Vector 2: Module 1 2
JMP CCIFG_2 HND ; Vector 4: Module 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ; Vector 12
TBIFG HND ; Vector 14: TIMOV Flag
; Task starts here
RETI 5
CCIFG_2 HND ; Vector 4: Module 2
.. ; Task starts here
RETI ; Back to main program 5
; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCIFG_ 1 HND ; Vector 6: Module 3
.. ; Task starts here
JMP TB_HND ; Look for pending ints 2

Timer_B 9-19

Timer_B Registers

9.3 Timer_B Registers

The Timer_B registers are listed in Table 9-5:

Table 9-5. Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR
Timer_B counter TBR Read/write 0190h Reset with POR
Timer_B capture/compare control 0 TBCCTLO Read/write 0182h Reset with POR
Timer_B capture/compare 0 TBCCRO Read/write 0192h Reset with POR
Timer_B capture/compare control 1 TBCCTLA Read/write 0184h Reset with POR
Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR
Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR
Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR
Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR
Timer_B capture/compare 3 TBCCRS3 Read/write 0198h Reset with POR
Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR
Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR
Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR
Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR
Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR
Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR
Timer_B Interrupt Vector TBIV Read only 011Eh Reset with POR

9-20 Timer B

Timer_B Registers

Timer_B Control Register TBCTL

15 14 13 12 11 10 9 8
Unused TBCLGRPx CNTLx Unused TBSSELx ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TBCLR TBIE TBIFG ‘
rw-(0) rw—-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)
Unused Bit 15 Unused
TBCLGRP Bit TBCLx group
14-13 00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCRS5 CLLDx bits control the update)
TBCLO independent
10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCLO independent
11 TBCLO+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)
CNTLx Bits Counter Length
12-11 00 16-bit, TBR(max) = OFFFFh
01 12-bit, TBR(max) = OFFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = OFFh
Unused Bit10 Unused
TBSSELx Bits Timer_B clock source select.
9-8 00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 N
o1 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_B is not in use conserves
5-4 power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCLO

10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCLO and down to 0000h

Timer_B 9-21

Timer_B Registers

Unused

TBCLR

TBIE

TBIFG

Bit 3
Bit 2

Bit 1

Bit 0

Unused

Timer_B clear. Setting this bit resets TBR, the clock divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 11 10 9 8
TBRx
rw—-(0) rw-(0) rw-(0) rw—-(0) rw—(0) rw-(0) rw-(0) rw—(0)
7 6 5 4 3 2 1 0
TBRx
rw—-(0) rw-(0) rw-(0) rw—-(0) rw—(0) rw-(0) rw-(0) rw—(0)
TBRx Bits Timer_B register. The TBR register is the count of Timer_B.
15-0
9-22 Timer_ B

Timer_B Registers

TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8
CMx CCISx SCs CLLDx CAP ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r-(0) rw—(0)
7 6 5 4 3 2 1 0
OUTMODx CCIE ccl out cov CCIFG ‘
rw-(0) rw—-(0) rw-(0) rw-(0) r rw—(0) rw-(0) rw-(0)
CMx Bit Capture mode
15-14 00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges
CCISx Bit Capture/compare input select. These bits select the TBCCRXx input signal.
13-12 See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 Ve
SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture
CLLDx Bit Compare latch load. These bits select the compare latch load event.
10-9 00 TBCLx loads on write to TBCCRXx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)
TBCLx loads when TBR counts to TBCLO or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx
CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits Output mode. Modes 2, 3, 6, and 7 are not useful for TBCLO because EQUx
7-5 = EQUO.

000 OUT bit value
001 Set

010 Toggle/reset
011 Set/reset
100 Toggle

101 Reset

110 Toggle/set
111 Reset/set

Timer_B 9-23

Timer_B Registers

CCIE

CCi
ouT

cov

CCIFG

9-24

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_ B

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TBIV, Timer_B Interrupt Vector Register

Timer_B Registers

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0 ‘
r0 ro ro r0 r0 ro ro r0
7 6 5 4 3 2 1 0
0 0 0 0 TBIVx 0 ‘
r0 ro r0 r0 r-(0) r-(0) r-(0) r0
TBIVxX Bits Timer_B interrupt vector value
15-0
Interrupt
TBIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TBCCR1 CCIFG Highest
04h Capture/compare 2 TBCCR2 CCIFG
06h Capture/compare 3t TBCCR3 CCIFG
08h Capture/compare 41 TBCCR4 CCIFG
0Ah Capture/compare 57 TBCCR5 CCIFG
0Ch Capture/compare 61 TBCCR6 CCIFG
OEh Timer overflow TBIFG Lowest

t Not available on all devices

Timer_B

9-25

Chapter 10

Universal Serial Interface

The Universal Serial Interface (USI) module provides SPI and I2C serial
communication with one hardware module. This chapter discusses both
modes. The USI module is implemented in the MSP430x20xx devices.

Topic Page
10.1 USlIntroductiono i 10-2]
10.2 USIOPErationeeeeeeeennnnnnseseeeseeeeeennnnnnnnnns 10-5 |
10.3 USIREQISIErS ... uuuueeeeeeeeeeeeeiiaaaaaeeeaeaeenennnnns 10-13 |

10-1

10.1 USI Introduction

10-2

The USI module provides the basic functionality to support synchronous serial
communication. In its simplest form, it is an 8- or 16-bit shift register that can
be used to output data streams, or when combined with minimal software, can
implement serial communication. In addition, the USI includes built-in
hardware functionality to ease the implementation of SPI and [2C
communication. The USI module also includes interrupts to further reduce the
necessary software overhead for serial communication and to maintain the
ultralow-power capabilities of the MSP430.

The USI module features include:

Three-wire SPI mode support

I2C mode support

Variable data length

Slave operation in LPM4 - no internal clock required

Selectable MSB or LSB data order

START and STOP detection for 12C mode with automatic SCL control
Arbitration lost detection in master mode

Programmable clock generation

U U uJ o oUd o od

Selectable clock polarity and phase control

Figure 10-1 shows the USI module in SPI mode. Figure 10-2 shows the USI
module in 12C mode.

Figure 10-1. USI Block Diagram: SPI Mode

USIOE ysipEs

SDO

USIPE7

—r

USIPE5

USIGE
usli2C =0 T
D Q
Dl
uUsiieB USILSB
8/16 Bit Shift Register
o -« 9
EN USISR
USICNTx USIIFGCC
Bit Counter
P Set USIIFG
USISWRSTm—— EN
USICKPH
USICKPL
Shift Clock 1
0
USISSELx
SCLK — 000
USIDIVxX USIMST
ACLK — 001 f T f
SMCLK — 010
Clock Divider
SMCLK —1 011 /1/2/4/8.../128
USISWCLK®—] 100
HOLD
TAO — 101
TA1 —] 110
TA2 —] 111
L—
USIIFG

S s

10-3

Figure 10-2. USI Block Diagram: 12C Mode

USIOE
USli2C = 1
USICKPL = 1 Set USIAL,
USICKPH = 0 _} D QI Clear UsiOE
USILSB =0 w
USI16B = 0 ’7
USIGE
|]
D Qle
NS e
USIPE7
LSB
8-Bit Shift Register SDA
o <
EN USISRL
USICNTx USIIFGCC <
Bit Counter START
L P Set USIIFG L P Set USISTTIFG
USISWRST®——| EN Detect
—| sToP
L P Set USISTP
USICKPH L4 Detect
USICKPL
USIPE6
Shift Clock K
SCL
L
USISTTIFG
USIIFG SCL Hold
USISCLREL NS
USISSELx
SCLK — 000
USIDIVx
ACLK —] 001 L
svek —loto | | o
SMCLK —] 011 Clock Divider USICLK
swcLke—] 100 /1/2/4/8.../128
A0 —] 101
a1 —] 110
TA2 — 111
L—

10-4

10.2 USI Operation

The USI module is a shift register and bit counter that includes logic to support
SPI and 12C communication. The USI shift register, USISR, is directly
accessible by software and contains the data to be transmitted or the data that
has been received.

The bit counter counts the number of sampled bits and sets the USI interrupt
flag USIIFG when the USICNTx value becomes zero - either by decrementing
or by directly writing zero to the USICNTX bits. Writing USICNTx with a value
> 0 automatically clears USIIFG when USIIFGCC = 0, otherwise USIIFG is not
affected. The USICNTXx bits stop decrementing when they become 0. They will
not underflow to OFFh.

Both the counter and the shift register are driven by the same shift clock. On
a rising shift clock edge, USICNTx decrements and USISR samples the next
bit input. The latch connected to the shift register’s output delays the change
of the output to the falling edge of shift clock. It can be made transparent by
setting the USIGE bit. This setting will immediately output the MSB or LSB of
USISR to the SDO pin, depending on the USILSB bit.

10.2.1 USI Initialization

While the USI software reset bit, USISWRST, is set, the flags USIIFG,
USISTTIFG, USISTP, and USIAL will be held in their reset state. USISR and
USICNTXx are not clocked and their contents are not affected. In 12C mode, the
SCL line is also released to the idle state by the USI hardware.

To activate USI port functionality the corresponding USIPEX bits in the USI
control register must be set. This will select the USI function for the pin and
maintains the PxIN and PxIFG functions for the pin as well. With this feature,
the port input levels can be read via the PxIN register by software and the
incoming data stream can generate port interrupts on data transitions. This is
useful, for example, to generate a port interrupt on a START edge.

10-5

10.2.2 USI Clock Generation

10.2.3 SPI Mode

The USI clock generator contains a clock selection multiplexer, a divider, and
the ability to select the clock polarity as shown in the block diagrams
Figure 11-1 and Figure 10-2.

The clock source can be selected from the internal clocks ACLK or SMCLK,
from an external clock SCLK, as well as from the capture/compare outputs of
Timer_A. In addition, it is possible to clock the module by software using the
USISWCLK bit when USISSELx = 100.

The USIDIVx bits can be used to divide the selected clock by a power of 2 up
to 128. The generated clock, USICLK, is stopped when USIIFG = 1 or when
the module operates in slave mode.

The USICKPL bit is used to select the polarity of USICLK. When USICKPL =
0, the inactive level of USICLK is low. When USICKPL = 1 the inactive level
of USICLK is high.

The USI module is configured in SPI mode when USII2C = 0. Control bit
USICKPL selects the inactive level of the SPI clock while USICKPH selects the
clock edge on which SDO is updated and SDI is sampled. Figure 10-3 shows
the clock/data relationship for an 8-bit, MSB-first transfer. USIPE5, USIPESG,
and USIPE7 must be set to enable the SCLK, SDO, and SDI port functions.

Figure 10-3. SPI Timing

CLIJ<IS?’IH CL:(SPIL USICNTx 0
o o SCLK
0 SCLK
1 0 SCLK
1 SCLK
0 X SDO/SDI

10-6

X SDO/SDI :)

Load USICNTx

0o9C]

900y

>
<
2]
o

-
w
vy]

“HOCCD
siBISEE
A0
MAICC T
A0 C D

<
)
vs)
> S
> S
G
vs)

USIIFG

SPI Master Mode

SPI Slave Mode

The USI module is configured as SPI master by setting the master bit USIMST
and clearing the 12C bit USII2C. Since the master provides the clock to the
slave(s) an appropriate clock source needs to be selected and SCLK
configured as output. When USIPES = 1, SCLK is automatically configured as
an output.

When USIIFG = 0 and USICNTx > 0, clock generation is enabled and the
master will begin clocking in/out data using USISR.

Received data must be read from the shift register before new data is written
into it for transmission. In a typical application, the USI software will read
received data from USISR, write new data to be transmitted to USISR, and
enable the module for the next transfer by writing the number of bits to be
transferred to USICNTX.

The USI module is configured as SPI slave by clearing the USIMST and the
USII2C bits. In this mode, when USIPES = 1 SCLK is automatically configured
as an input and the USI receives the clock externally from the master.

If the USI is to transmit data, the shift register must be loaded with the data
before the master provides the first clock edge. The output must be enabled
by setting USIOE. When USICKPH = 1, the MSB will be visible on SDO
immediately after loading the shift register.

The SDO pin can be disabled by clearing the USIOE bit. This is useful if the
slave is not addressed in an environment with multiple slaves on the bus.

Once all bits are received, the data must be read from USISR and new data
loaded into USISR before the next clock edge from the master. In a typical
application, after receiving data, the USI software will read the USISR register,
write new data to USISR to be transmitted, and enable the USI module for the
next transfer by writing the number of bits to be transferred to USICNTXx.

10-7

USISR Operation

The 16-bit USISR is made up of two 8-bit registers, USISRL and USISRH.
Control bit USI16B selects the number of bits of USISR that are used for data
transmit and receive. When USI16B = 0, only the lower 8 bits, USISRL, are
used.

To transfer < 8 bits, the data must be loaded into USISRL such that unused bits
are not shifted out. The data must be MSB- or LSB-aligned depending on
USILSB. Figure 10-4 shows an example of 7-bit data handling.

Figure 10-4. Data adjustments for 7-bit SPI Data

7-bit SPI Mode, MSB first 7-bit SPI Mode, LSB first
Transmit data in memory Transmit data in memory
7-bit Data 7-bit Data
Shift with software Move
X y y X
-« | USISRL USISRL >
RX RX
USISRL ¢ P USISRL
Move Shift with software
\ A Y
7-bit Data 7-bit Data
Received data in memory Received data in memory
When USI16B = 1, all 16 bits are used for data handling. When using USISR
to access both USISRL and USISRH, the data needs to be properly adjusted
when < 16 bits are used in the same manner as shown in Figure 10-4.
SPI Interrupts

10-8

There is one interrupt vector associated with the USI module, and one interrupt
flag, USIIFG, relevant for SPI operation. When USIIE and the GIE bit are set,
the interrupt flag will generate an interrupt request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTX bits. USIIFG is cleared by writing a value > 0 to the
USICNTXx bits when USIIFGCC = 0, or directly by software.

10.2.4 12C Mode

I12C Master Mode

I12C Slave Mode

I12C Transmitter

The USI module is configured in 12C mode when USII2C =1, USICKPL = 1, and
USICKPH = 0. For I2C data compatibility, USILSB and USI16B must be
cleared. USIPE6 and USIPE7 must be set to enable the SCL and SDA port
functions.

To configure the USI module as an 12C master the USIMST bit must be set. In
master mode, clocks are generated by the USI module and output to the SCL
line while USIIFG = 0. When USIIFG = 1, the SCL will stop at the idle, or high,
level. Multi-master operation is supported as described in the Arbitration
section.

The master supports slaves that are holding the SCL line low only when
USIDIVx > 0. When USIDIVx is set to /1 clock division (USIDIVXx = 0),
connected slaves must not hold the SCL line low during data transmission.
Otherwise the communication may fail.

To configure the USI module as an I2C slave the USIMST bit must be cleared.
In slave mode, SCL is held low if USIIFG = 1, USISTTIFG = 1 or if
USICNTx = 0. USISTTIFG must be cleared by software after the slave is setup
and ready to receive the slave address from a master.

In transmitter mode, data is first loaded into USISRL. The output is enabled
by setting USIOE and the transmission is started by writing 8 into USICNTx.
This clears USIIFG and SCL is generated in master mode or released from
being held low in slave mode. After the transmission of all 8 bits, USIIFG is set,
and the clock signal on SCL is stopped in master mode or held low at the next
low phase in slave mode.

To receive the 12C acknowledgement bit, the USIOE bit is cleared with software
and USICNTXx is loaded with 1. This clears USIIFG and one bit is received into
USISRL. When USIIFG becomes set again, the LSB of USISRL is the received
acknowledge bit and can be tested in software.

; Receive ACK/NACK

BIC.B #USIOE, &USICTLO ; SDA input
MOV.B #01h, &USICNT ; USICNTx = 1
TEST USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
Jz TEST_USIIFG
BIT.B #01lh, &USISRL ; Test received ACK bit
JNZ HANDLE NACK ; Handle if NACK

..Else, handle ACK

10-9

12C Receiver

START Condition

10-10

In I2C receiver mode the output must be disabled by clearing USIOE and the
USI module is prepared for reception by writing 8 into USICNTXx. This clears
USIIFG and SCL is generated in master mode or released from being held low
in slave mode. The USIIFG bit will be set after 8 clocks. This stops the clock
signal on SCL in master mode or holds SCL low at the next low phase in slave
mode.

To transmit an acknowledge or no-acknowledge bit, the MSB of the shift
register is loaded with 0 or 1, the USIOE bit is set with software to enable the
output, and 1 is written to the USICNTXx bits. As soon as the MSB bit is shifted
out, USIIFG will be become set and the module can be prepared for the
reception of the next 12C data byte.

; Generate ACK

BIS.B #USIOE, &USICTLO ; SDA output
MOV.B #00h, &USISRL ; MSB = 0
MOV.B #01lh, &USICNT ; USICNTx = 1
TEST USIIFG
BIT.B #USIIFG, &USICTL1 ; Test USIIFG
Jz TEST USIIFG
...continue...

; Generate NACK

BIS.B #USIOE, &USICTLO ; SDA output
MOV.B #0FFh, &USISRL ; MSB = 1
MOV.B #01h, &USICNT ; USICNTx = 1
TEST USIIFG
BIT.B #USIIFG, &USICTL1 ; Test USIIFG
Jz TEST USIIFG
...continue...

A START condition is a high-to-low transition on SDA while SCL is high. The
START condition can be generated by setting the MSB of the shift register to
0. Setting the USIGE and USIOE bits makes the output latch transparent and
the MSB of the shift register is immediately presented to SDA and pulls the line
low. Clearing USIGE resumes the clocked-latch function and holds the 0 on
SDA until data is shifted out with SCL.

; Generate START

MOV.B #000h, &USISRL ; MSB = 0

BIS.B #USIGE+USIOE, &USICTLO ; Latch/SDA output enabled

BIC.B #USIGE, &USICTLO ; Latch disabled
..continue...

STOP Condition

Releasing SCL

A STOP condition is a low-to-high transition on SDA while SCL is high. To finish
the acknowledgment bit and pull SDA low to prepare the STOP condition
generation requires clearing the MSB in the shift register and loading 1 into
USICNTx. This will generate a low pulse on SCL and during the low phase
SDA is pulled low. SCL stops in the idle, or high, state since the module is in
master mode. To generate the low-to-high transition, the MSB is set in the shift
register and USICNTX is loaded with 1. Setting the USIGE and USIOE bits
makes the output latch transparent and the MSB of USISRL releases SDA to
the idle state. Clearing USIGE stores the MSB in the output latch and the
output is disabled by clearing USIOE. SDA remains high until a START
condition is generated because of the external pull-up..

; Generate STOP
BIS.B #USIOE, &USICTLO ; SDA=output
MOV.B #000H, &USISRL ; MSB = 0
MOV.B #001H, &USICNT ; USICNT = 1 for one clock
TEST USIIFG
BIT.B #USIIFG,&USICTL1 ; Test USIIFG
JZ TEST USIIFG ;
MOV.B #O0FFH, &USISRL ; USISRL = 1 to drive SDA high
BIS.B #USIGE, &USICTLO ; Transparent latch enabled
BIC.B #USIGE+USIOE, &USICTL; Latch/SDA output disabled

..continue...

Setting the USISCLREL bit will release SCL if it is being held low by the USI
module without requiring USIIFG to be cleared. The USISCLREL bit will be
cleared automatically if a START condition is received and the SCL line will be
held low on the next clock.

In slave operation this bit should be used to prevent SCL from being held low
when the slave has detected that it was not addressed by the master. On the
next START condition USISCLREL will be cleared and the USISTTIFG will be
set.

10-11

Arbitration

I2C Interrupts

10-12

The USI module can detect a lost arbitration condition in multi-master 12C
systems. The I2C arbitration procedure uses the data presented on SDA by
the competing transmitters. The first master transmitter that generates a logic
high loses arbitration to the opposing master generating a logic low. The loss
of arbitration is detected in the USI module by comparing the value presented
to the bus and the value read from the bus. If the values are not equal
arbitration is lost and the arbitration lost flag, USIAL, is set. This also clears the
output enable bit USIOE and the USI module no longer drives the bus. In this
case, user software must check the USIAL flag together with USIIFG and
configure the USI to slave receiver when arbitration is lost. The USIAL flag
must be cleared by software.

To prevent other faster masters from generating clocks during the arbitration
procedure SCL is held low if another master on the bus drives SCL low and
USIIFG or USISTTIFG is set, or if USICNTx = 0.

There is one interrupt vector associated with the USI module with two interrupt
flags relevant for 12C operation, USIIFG and USISTTIFG. Each interrupt flag
has its own interrupt enable bit, USIIE and USISTTIE. When an interrupt is
enabled, and the GIE bit is set, a set interrupt flag will generate an interrupt
request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTX bits. USIIFG is cleared by writing a value > 0 to the
USICNTXx bits when USIIFGCC = 0, or directly by software.

USISTTIFG is set when a START condition is detected. The USISTTIFG flag
must be cleared by software.

The reception of a STOP condition is indicated with the USISTP flag but there
is no interrupt function associated with the USISTP flag. USISTP is cleared by
writing a value > 0 to the USICNTXx bits when USIIFGCC = 0 or directly by
software.

10.3 USI Registers

The USI registers are listed in Table 10-1:

Table 10-1.USI Registers

Register Short Form Register Type Address Initial State
USI control register 0 USICTLO Read/write 078h 01h with PUC
USI control register 1 USICTLA Read/write 079h 01h with PUC
USI clock control USICKCTL Read/write 07Ah Reset with PUC
USI bit counter USICNT Read/write 07Bh Reset with PUC
USI low byte shift register USISRL Read/write 07Ch Unchanged

USI high byte shift register USISRH Read/write 07Dh Unchanged

The USI registers can be accessed with word instructions as shown in
Table 10-2:

Table 10-2. Word Access to USI Registers

High-Byte Low-Byte

Register Short Form Register Register Address
USI control register USICTL USICTLA USICTLO 078h
USI clock and counter control register USICCTL USICNT USICKCTL 07Ah
USI shift register USISR USISRH USISRL 07Ch

10-13

USICTLO, USI Control Register 0

7 6 5 4 3 2 1 0
USIPE7 USIPE6 USIPE5 USILSB USIMST USIGE USIOE USISWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
USIPE7 Bit 7 USI SDI/SDA port enable
Input in SPI mode, input or open drain output in 12C mode.
0 USI function disabled
1 USI function enabled
USIPE6 Bit 6 USI SDO/SCL port enable
Output in SPI mode, input or open drain output in 12C mode.
0 USI function disabled
1 USI function enabled
USIPE5 Bit 5 USI SCLK port enable
Input in SPI slave mode, or 12C mode, output in SPI master mode.
0 USI function disabled
1 USI function enabled
USILSB Bit 4 LSB first select. This bit controls the direction of the receive and transmit
shift register.
0 MSB first
1 LSB first
USIMST Bit 3 Master select
0 Slave mode
1 Master mode
USIGE Bit 2 Output latch control
0 Output latch enable depends on shift clock
1 Output latch always enabled and transparent
USIOE Bit 1 Data output enable
0 Output disabled
1 Output enabled
USISWRST Bit0 USI software reset

10-14

0 USI released for operation.
1 USI logic held in reset state.

USICTL1, USI Control Register 1

7 6 5 4 3 2 1 0
USICKPH usli2c USISTTIE USIIE USIAL USISTP | USISTTIFG USIIFG
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
USICKPH Bit 7 Clock phase select
0 Data is changed on the first SCLK edge and captured on the
following edge.
1 Data is captured on the first SCLK edge and changed on the
following edge.
usii2c Bit 6 I12C mode enable
0 I12C mode disabled
1 I12C mode enabled
USISTTIE Bit 5 START condition interrupt-enable
0 Interrupt on START condition disabled
1 Interrupt on START condition enabled
USIIE Bit 4 USI counter interrupt enable
0 Interrupt disabled
1 Interrupt enabled
USIAL Bit 3 Arbitration lost
0 No arbitration lost condition
1 Arbitration lost
USISTP Bit 2 STOP condition received. USISTP is automatically cleared if USICNTX is
loaded with a value > 0 when USIIFGCC = 0.
0 No STOP condition received
1 STOP condition received
USISTTIFG Bit 1 START condition interrupt flag
0 No START condition received. No interrupt pending.
1 START condition received. Interrupt pending.
USIIFG Bit 1 USI counter interrupt flag. Set when the USICNTx = 0. Automatically

cleared if USICNTX is loaded with a value > 0 when USIIFGCC = 0.
0 No interrupt pending
1 Interrupt pending

10-15

USICKCTL, USI Clock Control Register

6

5 4 3

1

0

USIDIVx

USISSELx

USICKPL

USISWCLK

rw-0

USIDIVx

USISSELX

USICKPL

USISWCLK

10-16

rw-0

Bits

Bit 1

Bit 0

rw-0 rw-0 rw-0

Clock divider select
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Divide by 8
100 Divide by 16
101 Divide by 32
110 Divide by 64
111 Divide by 128

rw-0

Clock source select. Not used in slave mode.

000 SCLK (Not used in SPI mode)
001 ACLK

010 SMCLK

011 SMCLK

100 USISWCLK bit

101 TACCRO

110 TACCR{

rw-0

111 TACCR2 (Reserved on MSP430F20xx devices)

Clock polarity select
0 Inactive state is low
1 Inactive state is high

Software clock
0 Input clock is low
1 Input clock is high

rw-0

USICNT, USI Bit Counter Register

7 6 5 4 3 2 1 0
USISCLREL | USI16B USIIFGCC USICNTx
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
USISCLREL Bit7 SCL release. The SCL line is released from low to idle. USISCLREL is
cleared if a START condition is detected.
0 SCL line is held low if USIIFG is set
1 SCL line is released
usii6B Bit 6 16-bit shift register enable
0 8-bit shift register mode. Low byte register USISRL is used.
1 16-bit shift register mode. Both high and low byte registers USISRL
and USISRH are used. USISR addresses all 16 bits simultaneously.
USIIFGCC Bit5 USI interrupt flag clear control. When USIIFGCC = 1 the USIIFG will not be
cleared automatically when USICNTX is written with a value > 0.
0 USIIFG automatically cleared on USICNTx update
1 USIIFG is not cleared automatically
USICNTx Bits USI bit count
4-0 The USICNTX bits set the number of bits to be received or transmitted.

10-17

USISRL, USI Low Byte Shift Register

USISRLXx

USISRLx Bits Contents of the USI low byte shift register
7-0

USISRH, USI High Byte Shift Register

USISRHx

USISRHx Bits Contents of the USI high byte shift register. Ignored when USI16B = 0.
7-0

10-18

Chapter 11

Universal Serial Communication Interface,
UART Mode

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the asynchronous UART mode.

Topic Page
11.1 USCIOVEIVIBW . .t [11-2]
11.2 USCI Introduction: UART Mode, | 11-3]
11.3 USCI Operation: UART MOGEot [115]
11.4 USCI Registers: UARTMode | 11-28]

11-1

USCI Overview

11.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_AO and USCI_AL. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

0 UART mode

[Pulse shaping for IrDA communications

[Automatic baud rate detection for LIN communications
[0 SPI mode

The USCI_Bx modules support:

1 12C mode
0 SPImode

11-2 Universal Serial Communication Interface, UART Mode

USCI Introduction: UART Mode

11.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an
external system via two external pins, UCAXRXD and UCAXTXD. UART mode
is selected when the UCSYNC bit is cleared.

UART mode features include:

a

I I A

I N I I

7- or 8-bit data with odd, even, or non-parity
Independent transmit and receive shift registers
Separate transmit and receive buffer registers
LSB-first or MSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for
multiprocessor systems

Receiver start-edge detection for auto-wake up from LPMx modes
Programmable baud rate with modulation for fractional baud rate support
Status flags for error detection and suppression

Status flags for address detection

Independent interrupt capability for receive and transmit

Figure 11-1 shows the USCI_Ax when configured for UART mode.

Universal Serial Communication Interface, UART Mode 11-3

USCI Introduction: UART Mode

Figure 11-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

UCRXEIE®R— crorFlags [—®UCRXERR
UCMODEX UCSPB UCDORM 9% |_auceE
UCRXBRKIE m—
}2 T - mUCFE
- mUCOE

Receive State Machine »| SetFlags

P| Set RXIFG —» Set UCORXIFG

—p» Set UCBRK
—p» Set UCADDR/UCIDLE

UCIRRXPL
UCIRRXFLx
] UCIRRXFE
Receive Buffer UCORXBUF UCIREN n }6 UCLISTEN
f IrDA Decoder
1

o Receive Shift Register

UCPEN UCPAR UCMSB UCT7BIT

UCABEN
UCSSELX
Receive Baudrate Generator
UCOBRx
UCOCLK —| 00 }16
ACLK 01 .
Prescaler/Divider Receive Clock
SMCLK 10 | BRCLK
MCLK 11
sme Modulator Transmit Clock
.
UCBRFx UCBRSx UCOS16

UCPEN UCPAR UCMSB UCT7BIT UCIREN
’
[Transmit Shift Register 0
A 1 UCOTX
IrDA Encoder
Transmit Buffer UCOTXBUF

ie
UCIRTXPLx

Transmit State Machine | B Set UCOTXIFG
—a UCTXBRK
—a UCTXADDR

iz
UCMODEx UCSPB

11-4 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

11.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USCI. The transmit and receive functions use the
same baud rate frequency.

11.3.1 USCI Initialization and Reset

The USCl is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bitresets the UCAXRXIE, UCAXTXIE, UCAXRXIFG,
UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and
sets the UCAXTXIFG bit. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST, &UCAXCTL1)

2) Initialize all USCI registers with UCSWRST = 1 (including UCAXCTL1)
3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST, &UCAxXCTL1)

5) Enable interrupts (optional) via UCAXRXIE and/or UCAXTXIE

11.3.2 Character Format

The UART character format, shown in Figure 11-2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 11-2. Character Format

— — Mark

_|ST| DO PYYS D6 ‘ D7 ‘AD ‘PA |SP : SP_L___ Space

\— [2nd Stop Bit, UCSPB = 1]
[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEXx = 10]
[Optional Bit, Condition] [8th Data Bit, UC7BIT = 0]

Universal Serial Communication Interface, UART Mode 11-5

USCI Operation: UART Mode

11.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is
required for the protocol. When three or more devices communicate, the USCI
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When UCMODEX = 01, the idle-line multiprocessor format is selected. Blocks
of data are separated by an idle time on the transmit or receive lines as shown
in Figure 11-3. An idle receive line is detected when 10 or more continuous
ones (marks) are received after the one or two stop bits of a character. The
baud rate generator is switched off after reception of an idle line until the next
start edge is detected. When an idle line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The
UCIDLE bitis used as an address tag for each block of characters. In idle-line
multiprocessor format, this bit is set when a received character is an address

Figure 11-3. Idle-Line Format

Blocks of
,/ Characters
|

UCAXTXD/RXD M | | T | [| |»
: Idle Periods of 10 Bits or More
| UCAXTXD/RXD Expanded
I
I
I
I
I
I
UCAXTXD/RXD—I sT| Address [sp|sT| Data sp s Data sp
First Character Within Block Character Within Block Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More Idle Period Less Than 10 Bits

11-6 Universal Serial Communication Interface, UART Mode

Transmitting an Idle

USCI Operation: UART Mode

The UCDORM bit is used to control data reception in the idle-line
multiprocessor format. When UCDORM = 1, all non-address characters are
assembled but not transferred into the UCAXRXBUF, and interrupts are not
generated. When an address character is received, the character is
transferred into UCAXRXBUF, UCAXRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character
is recieved but has a framing error or parity error, the character is not
transferred into UCAXRXBUF and UCAXRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters will be received. When UCDORM is cleared during the
reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware
automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USCI to generate address character identifiers
on UCAXTXD. The double-buffered UCTXADDR flag indicates if the next
character loaded into UCAXTXBUF is preceded by an idle line of 11 bits.
UCTXADDR is automatically cleared when the start bit is generated.

Frame

The following procedure sends out an idle frame to indicate an address
character followed by associated data:

1) Set UCTXADDR, then write the address character to UCAXTXBUF.
UCAXTXBUF must be ready for new data (UCAXTXIFG = 1).

This generates an idle period of exactly 11 bits followed by the address
character. UCTXADDR is reset automatically when the address character
is transferred from UCAXTXBUF into the shift register.

2) Write desired data characters to UCAXTXBUF. UCAXTXBUF must be
ready for new data (UCAXTXIFG = 1).

The data written to UCAXTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

The idle-line time must not be exceeded between address and data
transmission or between data transmissions. Otherwise, the transmitted
data will be misinterpreted as an address.

Universal Serial Communication Interface, UART Mode 11-7

USCI Operation: UART Mode

Address-Bit Multiprocessor Format

11-8

When UCMODEX = 10, the address-bit multiprocessor format is selected.
Each processed character contains an extra bit used as an address indicator
shown in Figure 11-4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USCI
UCADDR bit is set when a received character has its address bit set and is
transferred to UCAXRXBUF.

The UCDORM bit is used to control data reception in the address-bit
multiprocessor format. When UCDORM is set, data characters with address
bit = 0 are assembled by the receiver but are not transferred to UCAXRXBUF
and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAXRXBUF, UCAXRXIFG is
set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
=0 and a character containing a set address bit is received, but has a framing
error or parity error, the character is not transferred into UCAXRXBUF and
UCAXRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters with address bit = 1 will be received. The UCDORM bit is
not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAXRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is completed.

For address transmission in address-bit multiprocessor mode, the address bit
of a character is controlled by the UCTXADDR bit. The value of the
UCTXADDR bit is loaded into the address bit of the character transferred from
UCAXTXBUF to the transmit shift register. UCTXADDR is automatically
cleared when the start bit is generated.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

Figure 11-4. Address-Bit Multiprocessor Format

Blocks of
,/ Characters \‘

UCAXTXD/UCAXRXD / \

Idle Periods of No Significance

I

I

| UCAXTXD/UCAXRXD

| Expanded

I

I

I

I

I

UCAXTXD/UCAXRXD —l sT| Address 1 [sP|sT]| Data [o| s |sT] paa [of sp

First Character Within Block AD Bit Is 0 for T
Is an Address. AD BitIs 1 Data Within Block. Idle Time Is of No Significance

Break Reception and Generation

When UCMODEX = 00, 01, or 10 the receiver detects a break when all data,
parity, and stop bits are low, regardless of the parity, address mode, or other
character settings. When a break is detected, the UCBRK bit is set. If the break
interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCAXRXIFG
will also be set. In this case, the value in UCAXRXBUF is Oh since all data bits
were zero.

To transmit a break set the UCTXBRK bit, then write Oh to UCAXTXBUF.
UCAXTXBUF must be ready for new data (UCAXTXIFG = 1). This generates
a break with all bits low. UCTXBRK is automatically cleared when the start bit
is generated.

Universal Serial Communication Interface, UART Mode 11-9

USCI Operation: UART Mode

11.3.4 Automatic Baud Rate Detection

When UCMODEXx = 11 UART mode with automatic baud rate detection is
selected. For automatic baud rate detection, a data frame is preceded by a
synchronization sequence that consists of a break and a synch field. A break
is detected when 11 or more continuous zeros (spaces) are received. If the
length of the break exceeds 22 bit times the break timeout error flag UCBTOE
is set. The synch field follows the break as shown in Figure 11-5.

Figure 11-5. Auto Baud Rate Detection — Break/Synch Sequence

Break Delimiter Synch
- >«

For LIN conformance the character format should be set to 8 data bits, LSB
first, no parity and one stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in
Figure 11-6. The synchronization is based on the time measurement between
the first falling edge and the last falling edge of the pattern. The transmit baud
rate generator is used for the measurement if automatic baud rate detection
is enabled by setting UCABDEN. Otherwise, the pattern is received but not
measured. The result of the measurement is transferred into the baud rate
control registers UCAXBRO, UCAxBR1, and UCAXMCTL. If the length of the
synch field exceeds the measurable time the synch timeout error flag
UCSTOE is set.

Figure 11-6. Auto Baud Rate Detection — Synch Field

11-10

- Synch
8 Bit Times
g P
I N
Sé";‘t" 01 2 3 4 5 6 7 Sé‘i’tp

The UCDORM bit is used to control data reception in this mode. When
UCDORM is set, all characters are received but not transferred into the
UCAXRXBUF, and interrupts are not generated. When a break/synch field is
detected the UCBRK flag is set. The character following the break/synch field
is transferred into UCAXRXBUF and the UCAXRXIFG interrupt flag is set. Any
applicable error flag is also set. If the UCBRKIE bit is set, reception of the
break/synch sets the UCAXRXIFG. The UCBRK bit is reset by user software
or by reading the receive buffer UCAXRXBUF.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

When a break/synch field is received, user software must reset UCDORM to
continue receiving data. If UCDORM remains set, only the character after the
next reception of a break/synch field will be received. The UCDORM bit is not
modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAXRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is complete.

Transmitting a Break/Synch Field
The following procedure transmits a break/synch field:
1) Set UCTXBRK with UMODEx = 11.

2) Write 055h to UCAXTXBUF. UCAXTXBUF must be ready for new data
(UCAXTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the
synch character. The length of the break delimiter is controlled with the
UCDELIMx bits. UCTXBRK is reset automatically when the synch
character is transferred from UCAXTXBUF into the shift register.

3) Write desired data characters to UCAXTXBUF. UCAXTXBUF must be
ready for new data (UCAXTXIFG = 1).

The data written to UCAXTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

Universal Serial Communication Interface, UART Mode 11-11

USCI Operation: UART Mode

11.3.5 IrDA Encoding and Decoding

IrDA Encoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide
hardware bit shaping for I'DA communication.

The encoder sends a pulse for every zero bit in the transmit bit stream coming
from the UART as shown in Figure 11-7. The pulse duration is defined by
UCIRTXPLXx bits specifying the number of half clock periods of the clock
selected by UCIRTXCLK.

Figure 11-7. UART vs. IrDA Data Format

IrDA Decoding

Start Stop
Bit Data Bits Bit
< <P

I e I
))

To set the pulse time of 3/16 bit period required by the IrDA standard the
BITCLK16 clock is selected with UCIRTXCLK = 1 and the pulse length is set
to 6 half clock cycles with UCIRTXPLx =6 -1 =5.

When UCIRTXCLK = 0, the pulse length tpy| sg is based on BRCLK and is
calculated as follows:

UCIRTXPLX = tpyce * 2 * fapox — 1

When UCIRTXCLK = 0 the prescaler UCBRx must to be set to a value greater
or equal to 5.

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects
low pulses. In addition to the analog deglitch filter an additional programmable
digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is
set, only pulses longer than the programmed filter length are passed. Shorter
pulses are discarded. The equation to program the filter length UCIRRXFLx
is:

UCIRRXFLX = (tpuise — twake) * 2 * ferok — 4

where:
tpuLsE: Minimum receive pulse width
tWAKE: Wake time from any low power mode. Zero when

MSP430 is in active mode.

11-12 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

11.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any
pulse on UCAXRXD shorter than the deglitch time t; (approximately 150 ns)
will be ignored. See the device-specific datasheet for parameters.

When a low period on UCAXRXD exceeds t; a majority vote is taken for the
start bit. If the majority vote fails to detect a valid start bit the USCI halts
character reception and waits for the next low period on UCAXRXD. The
majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun
errors, and break conditions when receiving characters. The bits UCFE,
UCPE, UCOE, and UCBRK are set when their respective condition is
detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is
also set. The error conditions are described in Table 11-1.

Table 11-1. Receive Error Conditions

Error Condition Error Description
Flag

A framing error occurs when a low stop bit is
detected. When two stop bits are used, both
stop bits are checked for framing error. When a
framing error is detected, the UCFE bit is set.

A parity error is a mismatch between the
number of 1s in a character and the value of
the parity bit. When an address bit is included
in the character, it is included in the parity
calculation. When a parity error is detected, the
UCPE bit is set.

An overrun error occurs when a character is
loaded into UCAXRXBUF before the prior
character has been read. When an overrun
occurs, the UCOE bit is set.

When not using automatic baud rate detection,
a break is detected when all data, parity, and
stop bits are low. When a break condition is

Break conditon UCBRK detected, the UCBRK bit is set. A break
condition can also set the interrupt flag
UCAXRXIFG if the break interrupt enable
UCBRKIE bit is set.

Framing error UCFE

Parity error UCPE

Receive overrun UCOE

When UCRXEIE = 0 and a framing error, or parity error is detected, no
character is received into UCAXRXBUF. When UCRXEIE = 1, characters are
received into UCAXRXBUF and any applicable error bit is set.

When UCFE, UCPE, UCOE, UCBRK, or UCRXERR is set, the bit remains set
until user software resets it or UCAXRXBUF is read. UCOE must be reset by
reading UCAXRXBUF. Otherwise it will not function properly.

Universal Serial Communication Interface, UART Mode 11-13

USCI Operation: UART Mode

11.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver
isready and in anidle state. The receive baud rate generator is in a ready state
but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART
state machine checks for a valid start bit. If no valid start bit is detected the
UART state machine returns to its idle state and the baud rate generator is
turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEX = 01 the
UART state machine checks for anidle line after receiving a character. If a start
bit is detected another character is received. Otherwise the UCIDLE flag is set
after 10 ones are received and the UART state machine returns to its idle state
and the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any
glitch on UCAXRXD shorter than the deglitch time t; (approximately 150 ns)
will be ignored by the USCI and further action will be initiated as shown in
Figure 11-8. See the device-specific datasheet for parameters.

Figure 11-8. Glitch Suppression, USCI Receive Not Started

URXDx

URXS

L

When a glitch is longer than t; or a valid start bit occurs on UCAXRXD, the
USCI receive operation is started and a majority vote is taken as shown in
Figure 11-9. If the majority vote fails to detect a start bit the USCI halts
character reception.

Figure 11-9. Glitch Suppression, USCI Activated

11-14

URXDx

URXS

R —

Majority Vote Taken

‘p—q—tr

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

11.3.8 USCI Transmit Enable

The USClmodule is enabled by clearing the UCSWRST bit and the transmitter
is ready and in an idle state. The transmit baud rate generator is ready but is
not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAXTXBUF. When this occurs,
the baud rate generator is enabled and the data in UCAXTXBUF is moved to
the transmit shift register on the next BITCLK after the transmit shift register
is empty. UCAXTXIFG is set when new data can be written into UCAXTXBUF.

Transmission continues as long as new data is available in UCAXTXBUF at the
end of the previous byte transmission. If new data is not in UCAXTXBUF when
the previous byte has transmitted, the transmitter returns to its idle state and
the baud rate generator is turned off.

11.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. It provides two modes of operation
selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows
generation of baud rates from low frequency clock sources (e.g. 9600 baud
from a 32768Hz crystal). By using a lower input frequency the power
consumption of the module is reduced. Using this mode with higher
frequencies and higher prescaler settings will cause the majority votes to be
taken in an increasingly smaller window and thus decrease the benefit of the
majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one
modulator to generate bit clock timing. This combination supports fractional
divisors for baud rate generation. In this mode, the maximum USCI baud rate
is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 11-10. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2 —1/2,
N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

Universal Serial Communication Interface, UART Mode 11-15

USCI Operation: UART Mode

Figure 11-10.BITCLK Baud Rate Timing with UCOS16 =0

Majority Vote: (M= 0)m
. (m=1)
Bit Start (I % m

)) (J (J ()S

BRCLK S | | | | | | | | | | | | | | I | I | I | I | I | I | S
1 | N2 ;N2-1 N/2-2 1, N2 N2-1
Counter N/2 N/2-1 N/2-2
0 | N2 Ni2-1 1 0 i N2
S) (}()
BITCLK a " .
4—— INT(N/2) +m(= 0) —Pp NEVEN: INT(N/2) —P»
4+ INT(N/2) + m(= 1) —> Nopp : INT(N/2) + R(= 1) —p»
< Bit Period | SR

m: corresponding modulation bit
R: Remainder from N/2 division

Modulation is based on the UCBRSKx setting as shown in Table 11-2. A1 in the
table indicates that m = 1 and the corresponding BITCLK period is one BRCLK
period longer than a BITCLK period with m = 0. The modulation wraps around
after 8 bits but restarts with each new start bit.

Table 11-2. BITCLK Modulation Pattern

UCBRSX (Sti'rtt %it) Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0
3 0 1 0 1 0 1 0 0
4 0 1 0 1 0 1 0 1
5 0 1 1 1 0 1 0 1
6 0 1 1 1 0 1 1 1
7 0 1 1 1 1 1 1 1

11-16 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

Oversampling Baud Rate Generation

The oversampling mode is selected when UCOS16 = 1. This mode supports
sampling a UART bit stream with higher input clock frequencies. This results
in majority votes that are always 1/16 of a bit clock period apart. This mode also
easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and
decoder are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16
clock that is 16 times faster than the BITCLK. An additional divider and
modulator stage generates BITCLK from BITCLK16. This combination
supports fractional divisions of both BITCLK16 and BITCLK for baud rate
generation. In this mode, the maximum USCI baud rate is 1/16 the UART
source clock frequency BRCLK. When UCBRXx s setto 0 or 1 the first prescaler
and modulator stage is bypassed and BRCLK is equal to BITCLK16.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in
Table 11-3. A 1 in the table indicates that the corresponding BITCLK16 period
is one BRCLK period longer than the periods m=0. The modulation restarts
with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in
Table 11-2 as previously described.

Table 11-3. BITCLK16 Modulation Pattern

No. of BITCLK16 Clocks after last falling BITCLK edge

UCBRFx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01lh 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
OAh 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
OEh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
OFh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Universal Serial Communication Interface, UART Mode 11-17

USCI Operation: UART Mode

11.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required
division factor N:

— fBRCLK
Baudrate

The division factor N is often a non-integer value thus at least one divider and
one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode
can be chosen by setting UCOS16.

Low—Frequency Baud Rate Mode Setting

Oversampling Baud

In the low-frequency mode, the integer portion of the divisor is realized by the
prescaler:

UCBRx = INT(N)
and the fractional portion is realized by the modulator with the following
nominal formula:

UCBRSx =round((N —INT(N))*8)
Incrementing or decrementing the UCBRSx setting by one count may give a
lower maximum bit error for any given bit. To determine if this is the case, a

detailed error calculation must be performed for each bit for each UCBRSXx
setting.

Rate Mode Setting

In the oversampling mode the prescaler is set to:

UCBRX = INT(N/16).

and the first stage modulator is set to:

UCBRFx = round(((N/16) — INT(N/16)) * 16)

When greater accuracy is required, the UCBRSx modulator can also be
implemented with values from 0 — 7. To find the setting that gives the lowest
maximum bit error rate for any given bit, a detailed error calculation must be
performed for all settings of UCBRSx from 0 — 7 with the initial UCBRFx setting
and with the UCBRFx setting incremented and decremented by one.

11-18 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

11.3.11Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the
modulation features of the baud rate generator reduces the cumulative bit
error. The individual bit error can be calculated using the following steps.

Low—Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Tyt Tx[i] based on the
UCBRx and UCBRSX settings:

Tyrdi] = 7= (UCBRX + My cgrsdil

fBRCLK

where:

Mycersxll]: Modulation of bit i from Table 11-2

Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of biti Tyt Tx[i] based on
the baud rate generator UCBRx, UCBRFx and UCBRSXx settings:

15

Toirxll] = f L ((16 + Mycersdil) - UCBRx + Z mUCBRFx[j])
BRCLK =

where:

15
Z Mycerexli]: Sum of ones from the corresponding row in Table 11-3
j=0

Mycarsxll]: Modulation of bit i from Table 11-2

This results in an end-of-bit time ty;; Tx[i] equal to the sum of all previous and
the current bit times:

il = > Tl
i=o

To calculate bit error, this time is compared to the ideal bit time tyjt jgeal T[]

. 1)
toitdear Tx[1] = m(l +1)

This results in an error normalized to one ideal bit time (1/baudrate):

Error,[i] = (tbit,TX[i] - tbit,ideaI,TX[i]) - Baudrate - 100%

Universal Serial Communication Interface, UART Mode 11-19

USCI Operation: UART Mode

11.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit
timing error similar to the transmit bit timing error. The second is the error
between a start edge occurring and the start edge being accepted by the USCI
module. Figure 11-11 shows the asynchronous timing errors between data on
the UCAXRXD pin and the internal baud-rate clock. This resultsin an additional
synchronization error. The synchronization error tgync IS between
—0.5 BRCLKs and +0.5 BRCLKs independent of the selected baud rate
generation mode.

Figure 11-11. Receive Error

i | 0 | 1 I 2

tideall to | ty |
|1]2|3]4]s]e|7]|8]9l0l11|12/1314/ 1| 2] 3] 4] 5]6 |7 |8] 9l10l11|1213]14 1] 2| 3] 4] 5|67

UCAXRXD _l ! ST | DO D1
| : . i

RXD synch. _:_l | ST | DO D1
[[T T
v T P

— Synchronization Error + 0.5x BRCLK
I
/T /

/1 /1A /
Majority Vote Taken Majority Vote Taken Majority Vote Taken

I
Sample |
RXD synch. —

I
I

e I

The ideal sampling time t;;s.arx[i] is in the middle of a bit period:

. 1 .
toitjdearrxli] = m(' +0.5)

The real sampling time t; z«[i] is equal to the sum of all previous bits according
to the formulas shown in the transmit timing section, plus one half BITCLK for
the current bit i, plus the synchronization error tgync.

This results in the following t,; z«[i] for the low-frequency baud rate mode

i-1
toirxll] = toyne + ZTbit,RXU] + L('NT(%UCBRX) + mUCBRSx[i])

i=o fBRCLK
where:
Toirxlll = f 1 (UCBRX + Mycgrs,dil)
BRCLK
Mycarsxli]: Modulation of bit i from Table 11-2

11-20 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

For the oversampling baud rate mode the sampling time t,; zx[i] Of bit i is
calculated by:

i—1
tbit,RX[i] = tsyne T ZTbit,RX[j]
j=0

7+mycersxd]

1 (8 + mUCBRSx[i]) - UCBRx + Z Mycarexd]

T
BRCLK i=o

where:

Toirxll = 1 ((16 + Mycersilil) - UCBRx + i mUCBRFx[j])

7+Mycersxll
Mycarelil: Sum of ones from columns 0 — 7 4+ Mcgraxli]
- from the corresponding row in Table 11-3
Mycersxli]: Modulation of bit i from Table 11-2

This results in an error normalized to one ideal bit time (1/baudrate) according
to the following formula:

Errorgy[i] = (tbit,RX[i] - tbit,ideaI,RX[i]) - Baudrate - 100%

11.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx and UCBRFx are listed in
Table 11-4 and Table 11-5 for a 32,768 Hz crystal sourcing ACLK and typical
SMCLK frequencies.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The worst case error is given for the reception of an 8-bit
character with parity and one stop bit including synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the
bit period. The worst case error is given for the transmission of an 8-bit
character with parity and stop bit.

Universal Serial Communication Interface, UART Mode 11-21

USCI Operation: UART Mode

Table 11-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 =0

BRCLK Baud

frequency Rate UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]
[Hz] [Baud]

32,768 1200 27 2 0 -2.8 1.4 -5.9 2.0

32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3

32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0

32,768 9600 3 3 0 -21.1 15.2 —-44.3 21.3
1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8
1,048,576 19200 54 5 0 -1.1 1.0 -1.5 2.5
1,048,576 38400 27 2 0 -2.8 14 -5.9 2.0
1,048,576 56000 18 6 0 -3.9 11 -4.6 5.7
1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3
1,048,576 128000 8 1 0 -8.9 7.5 -13.8 14.8
1,048,576 256000 4 1 0 -2.3 25.4 -13.4 38.8
1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2
1,000,000 19200 52 0 0 -1.8 0 —2.6 0.9
1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8
1,000,000 56000 17 7 0 -4.8 0.8 -8.0 3.2
1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1
1,000,000 128000 7 7 0 -10.4 6.4 -18.0 11.6
1,000,000 256000 3 7 0 -29.6 0 —43.6 5.2
4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4
4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8
4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2
4,000,000 56000 71 4 0 -0.6 1.0 -1.7 1.3
4,000,000 115200 34 6 0 -2.1 0.6 -2.5 3.1
4,000,000 128000 31 2 0 -0.8 1.6 -3.6 2.0
4,000,000 256000 15 5 0 -4.0 3.2 -8.4 5.2
8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1
8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4
8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8
8,000,000 56000 142 7 0 -0.6 0.1 -0.7 0.8
8,000,000 115200 69 4 0 -0.6 0.8 -1.8 1.1
8,000,000 128000 62 4 0 -0.8 0 -1.2 1.2
8,000,000 256000 31 2 0 -0.8 1.6 -3.6 2.0

11-22 Universal Serial Communication Interface, UART Mode

50210751
高亮

USCI Operation: UART Mode

Table 11-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (Continued)

12,000,000 9600 1250 0 0 0 0 -0.05 0.05
12,000,000 19200 625 0 0 0 0 -0.2 0

12,000,000 38400 312 4 0 -0.2 0 -0.2 0.2
12,000,000 56000 214 2 0 -0.3 0.2 -0.4 0.5
12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2
12,000,000 128000 93 6 0 -0.8 0 -1.5 0.4
12,000,000 256000 46 7 0 -1.9 0 -2.0 2.0
16,000,000 9600 1666 6 0 —-0.05 0.05 —0.05 0.1
16,000,000 19200 833 2 0 -0.1 0.05 -0.2 0.1
16,000,000 38400 416 6 0 -0.2 0.2 -0.2 0.4
16,000,000 56000 285 6 0 -0.3 0.1 -0.5 0.2
16,000,000 115200 138 7 0 -0.7 0 -0.8 0.6
16,000,000 128000 125 0 0 0 0 -0.8 0

16,000,000 256000 62 4 0 -0.8 0 -1.2 1.2

Universal Serial Communication Interface, UART Mode 11-23

50210751
高亮

USCI Operation: UART Mode

Table 11-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 =1

BRCLK Baud

frequency Rate UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]
[Hz] [Baud]

32,768 1200 1 2 11 -2.8 1.4 -2.2 5.6
1,048,576 9600 6 0 13 -2.3 0 -2.2 0.8
1,048,576 19200 3 1 6 —4.6 3.2 -5.0 4.7
1,048,576 38400 1 2 11 -2.8 1.4 2.2 5.6
1,048,576 56000 1 6 2 -3.9 11 -4.6 5.7
1,000,000 9600 6 0 8 -1.8 0 -2.2 0.4
1,000,000 19200 3 0 4 -1.8 0 -2.6 0.9
1,000,000 38400 1 0 10 -1.8 0 -3.6 1.8
1,000,000 56000 1 7 1 -4.8 0.8 2.4 8.8
4,000,000 9600 26 0 1 0 0.9 0 11
4,000,000 19200 13 0 0 -1.8 0 -1.9 0.2
4,000,000 38400 6 0 8 -1.8 0 2.2 0.4
4,000,000 56000 4 5 5 -3.4 3.2 -1.7 6.3
4,000,000 115200 3 2 -2.1 4.8 -2.5 7.3
4,000,000 128000 2 15 -0.8 1.6 -3.6 5.2
8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1
8,000,000 19200 26 0 0 0.9 0 11
8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2
8,000,000 56000 8 0 15 0 11 -0.7 11
8,000,000 115200 4 5 3 -3.5 3.2 -1.8 6.4
8,000,000 128000 4 13 2.4 0 -1.2 2.8
8,000,000 256000 1 2 15 -0.8 1.6 -3.6 5.2
12,000,000 9600 78 0 2 0 0 —-0.05 0.05
12,000,000 19200 39 0 1 0 0 0 0.2
12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1
12,000,000 56000 13 0 6 -15 0 -1.6 0.2
12,000,000 115200 6 0 8 -1.8 0 2.2 0.4
12,000,000 128000 5 0 14 0 2.9 -0.4 3.3
12,000,000 256000 2 4 14 -1.9 2.7 -2.0 4.7
16,000,000 9600 104 0 3 0 0.2 0 0.3
16,000,000 19200 52 0 -0.4 0 -0.4 0.1
16,000,000 38400 26 0 0 0.9 0 11
16,000,000 56000 17 0 14 0 1.1 -0.1 1.2
16,000,000 115200 8 0 11 0 0.9 0 1.6
16,000,000 128000 7 0 13 0 0 0 0.8
16,000,000 256000 3 4 13 2.4 0 -1.2 2.8

11-24 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

11.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

Universal Serial Communication Interface, UART Mode 11-25

USCI Operation: UART Mode

11.3.15 USCI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

USCI Transmit Interrupt Operation

The UCAXTXIFG interrupt flag is set by the transmitter to indicate that
UCAXTXBUF is ready to accept another character. An interrupt request is
generated if UCAXTXIE and GIE are also set. UCAXTXIFG is automatically
reset if a character is written to UCAXTXBUF.

UCAXTXIFG is set after a PUC or when UCSWRST = 1. UCAXTXIE is reset
after a PUC or when UCSWRST = 1.

USCI Receive Interrupt Operation

11-26

The UCAXRXIFG interrupt flag is set each time a character is received and
loaded into UCAXRXBUF. An interrupt request is generated if UCAXRXIE and
GIE are also set. UCAXRXIFG and UCAXRXIE are reset by a system reset
PUC signal or when UCSWRST = 1. UCAXRXIFG is automatically reset when
UCAXRXBUF is read.

Additional interrupt control features include:
(1 When UCAXRXEIE = 0 erroneous characters will not set UCAXRXIFG.

(1 When UCDORM =1, non-address characters will not set UCAXRXIFG in
multiprocessor modes.

[When UCBRKIE = 1 a break condition will set the UCBRK bit and the
UCAXRXIFG flag.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAXRXIFG and UCBXRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAXTXIFG and UCBXTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_AO in either UART or SPI
mode and USCI_BO in SPI mode.

USCIAO RX_USCIBO RX_ ISR
BIT.B #UCAORXIFG, &IFG2 ; USCI_AO0 Receive Interrupt?
JINZ USCIAO_RX ISR
USCIBO RX_ISR?
; Read UCBORXBUF (clears UCBORXIFG)
RETT
USCIAO RX_ISR
; Read UCAORXBUF (clears UCAORXIFG)

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts from USCI_AOQ in either UART or SPI
mode and USCI_BO in SPI mode.

USCIAO0 TX USCIBO TX ISR
BIT.B #UCAOTXIFG, &IFG2 ; USCI_AO0 Transmit Interrupt?
JINZ USCIAO0 TX ISR
USCIBO_TX ISR
; Write UCBOTXBUF (clears UCBOTXIFG)
RETI
USCIAO0_TX ISR
; Write UCAOTXBUF (clears UCAQTXIFG)

RETI

Universal Serial Communication Interface, UART Mode 11-27

USCI Registers: UART Mode

11.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode are listed in Table 11-6 and
Table 11-7.

Table 11-6. USCI_AO Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_AO control register 0 UCAOCTLO Read/write 060h Reset with PUC
USCI_AO control register 1 UCAOCTL1 Read/write 061h 001h with PUC
USCI_AO Baud rate control register O UCAOBRO Read/write 062h Reset with PUC
USCI_AO Baud rate control register 1 UCAOBR1 Read/write 063h Reset with PUC
USCI_AO modulation control register UCAOMCTL Read/write 064h Reset with PUC
USCI_AO status register UCAOSTAT Read/write 065h Reset with PUC
USCI_AO Receive buffer register UCAORXBUF Read 066h Reset with PUC
USCI_AO Transmit buffer register UCAOTXBUF Read/write 067h Reset with PUC
USCI_AO Auto Baud control register UCAOABCTL Read/write 05Dh Reset with PUC
USCI_AO IrDA Transmit control register UCAOIRTCTL Read/write O5Eh Reset with PUC
USCI_AO IrDA Receive control register UCAOIRRCTL Read/write 05Fh Reset with PUC
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits
To avoid modifying control bits of other modules, it is recommended to set

or clear the IEx and IFGx bitsusing BIS . B or BIC. B instructions, rather than
MOV .B or CLR. B instructions.

Table 11-7.USCI_A1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCAILCTLO Read/write 0DOh Reset with PUC
USCI_AL1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC
USCI_A1 Baud rate control register O UCA1BRO Read/write 0D2h Reset with PUC
USCI_AL1 Baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC
USCI_A1 modulation control register UCALIOMCTL Read/write 0D4h Reset with PUC
USCI_A1 status register UCALSTAT Read/write 0D5h Reset with PUC
USCI_AL1 Receive buffer register UCALIRXBUF Read 0D6h Reset with PUC
USCI_AL1 Transmit buffer register UCALTXBUF Read/write 0D7h Reset with PUC
USCI_A1 Auto Baud control register UCA1ABCTL Read/write 0CDh Reset with PUC
USCI_AL IrDA Transmit control register UCALIRTCTL Read/write 0CEh Reset with PUC
USCI_AL1 IrDA Receive control register UCAL1IRRCTL Read/write OCFh Reset with PUC
USCI_A1/B1 interrupt enable register UCLIE Read/write 006h Reset with PUC
USCI_A1/B1 interrupt flag register UCLIFG Read/write 007h 00Ah with PUC

11-28

Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXCTLO, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0
UCPEN UCPAR UCMSB UCT7BIT UCSPB UCMODEX UCSYNC=0
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
UCPEN Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UCAXTXD) and expected
(UCAXRXD). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.
UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.
0 Odd parity
1 Even parity
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first
Uc7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits
UCMODEXx Bits USCI mode. The UCMODEX bits select the asynchronous mode when
2-1 UCSYNC = 0.
00 UART Mode.
01 Idle-Line Multiprocessor Mode.
10 Address-Bit Multiprocessor Mode.
11 UART Mode with automatic baud rate detection.
UCSYNC Bit 0 Synchronous mode enable

0 Asynchronous mode
1 Synchronous Mode

Universal Serial Communication Interface, UART Mode

11-29

USCI Registers: UART Mode

UCAXCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0
UCSSELX UCRXEIE UCBRKIE UCDORM | UCTXADDR | UCTXBRK | UCSWRST
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—1
UCSSELX Bits USCI clock source select. These bits select the BRCLK source clock.
7-6 00 UCLK
01 ACLK
10 SMCLK
11 SMCLK
UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCAXRXIFG is not set
1 Erroneous characters received will set UCAXRXIFG
UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCAXRXIFG.
1 Received break characters set UCAXRXIFG.
UCDORM Bit 3 Dormant. Puts USCI into sleep mode.

UCTXADDR Bit 2

UCTXBRK

UCSWRST

11-30

Bit 1

Bit O

0 Not dormant. All received characters will set UCAXRXIFG.

1 Dormant. Only characters that are preceded by an idle-line or with
address bit set will set UCAXRXIFG. In UART mode with automatic baud
rate detection only the combination of a break and synch field will set
UCAXRXIFG.

Transmit address. Next frame to be transmitted will be marked as address
depending on the selected multiprocessor mode.

0 Next frame transmitted is data

1 Next frame transmitted is an address

Transmit break. Transmits a break with the next write to the transmit buffer.
In UART mode with automatic baud rate detection 055h must be written
into UCAXTXBUF to generate the required break/synch fields. Otherwise
Oh must be written into the transmit buffer.

0 Next frame transmitted is not a break

1 Next frame transmitted is a break or a break/synch

Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

Universal Serial Communication Interface, UART Mode

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

USCI Registers: UART Mode

UCAXBRO, USCI_Ax Baud Rate Control Register 0

UCBRx

rw

'w

UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0
UCBRXx
rw 'w w rw 'w 'w rw 'w
UCBRX Clock prescaler setting of the Baud rate generator.

UCAXMCTL, USCI_Ax Modulation Control Register

7 5 4 3 2 1 0
UCBRFx UCBRSX UCOS16
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
UCBRFx Bits First modulation stage select. These bits determine the modulation pattern
7-4 for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 11-3
shows the modulation pattern.
UCBRSX Bits Second modulation stage select. These bits determine the modulation
3-1 pattern for BITCLK. Table 11-2 shows the modulation pattern.
UCOS16 Bit 0 Oversampling mode enabled

0 Disabled
1 Enabled

Universal Serial Communication Interface, UART Mode 11-31

USCI Registers: UART Mode

UCAXSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0
UCLISTEN UCFE UCOE UCPE UCBRK | UCRXERR | [GODE | ucsusy
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 r—0

UCLISTEN Bit7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled
1 Enabled. UCAXTXD is internally fed back to the receiver.
UCFE Bit 6 Framing error flag

0 No error
1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCAXRXBUF before the previous character was read. UCOE is cleared
automatically when UCXRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.

0 No error
1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error

UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred

UCRXERR Bit2 Receive error flag. This bit indicates a character was received with error(s).
When UCRXERR = 1, on or more error flags (UCFE, UCPE, UCOE) is also
set. UCRXERR is cleared when UCAXRXBUF is read.

0 No receive errors detected
1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in
progress.
0 USClI inactive
1 USCI transmitting or receiving

11-32 Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXRXBUF, USCI_Ax Receive Buffer Register

UCRXBUFx

UCRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UCAXRXBUF resets the
receive-error bits, the UCADDR or UCIDLE bit, and UCAXRXIFG. In 7-bit
data mode, UCAXRXBUF is LSB justified and the MSB is always reset.

UCAXTXBUF, USCI_Ax Transmit Buffer Register

UCTXBUFx

UCTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting to
7-0 be moved into the transmit shift register and transmitted on UCAXTXD.
Writing to the transmit data buffer clears UCAXTXIFG. The MSB of
UCAXTXBUF is not used for 7-bit data and is reset.

Universal Serial Communication Interface, UART Mode 11-33

USCI Registers: UART Mode

UCAXIRTCTL, USCI_Ax IrDA Transmit Control Register

7 6 5 4 3 2 1 0
UCIRTXPLX el UCIREN
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
UCIRTXPLx Bits Transmit pulse length
7-2 Pulse Length tpy sg = (UCIRTXPLX + 1) / (2 * fiRTXCLK)

UCIRTXCLK Bit1 IrDA transmit pulse clock select

0 BRCLK

1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK
UCIREN Bit 0 IrDA encoder/decoder enable.

0 IrDA encoder/decoder disabled

1 IrDA encoder/decoder enabled

UCAXIRRCTL, USCI_AXx IrDA Receive Control Register

7 6 5 4 3 2 1 0
UCIRRXFLx UCIRRXPL | UCIRRXFE
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
UCIRRXFLx Bits Receive filter length. The minimum pulse length for receive is given by:

7-2 tmin = (UCIRRXFLX + 4) / (2 * fiRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAXRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen
1 IrDA transceiver delivers a low pulse when a light pulse is seen

UCIRRXFE Bit O IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled

11-34 Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0
Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN
-0 r—0 rw—0 rw—0 rw—0 rw—0 r-0 rw—0
Reserved Bits Reserved
7-6
UCDELIMx Bits Break/synch delimiter length
5-4 00 1 bittime
01 2 bittimes
10 3 bittimes
11 4 bittimes
UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.
UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.
Reserved Bit 1 Reserved
UCABDEN Bit0 Automatic baud rate detect enable

0 Baud rate detection disabled. Length of break and synch field is not
measured.

1 Baud rate detection enabled. Length of break and synch field is
measured and baud rate settings are changed accordingly.

Universal Serial Communication Interface, UART Mode 11-35

USCI Registers: UART Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UCAOTXIE | UCAORXIE
rw—0 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
UCAOTXIE Bitl USCI_AO transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAORXIE BitO USCI_AQO receive interrupt enable

0 Interrupt disabled
1 Interrupt enabled

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UCAO UCAO
TXIFG RXIFG
rw—1 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
UCAO Bit 1 USCI_AO transmit interrupt flag. UCAOTXIFG is set when UCAOTXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCAO Bit 0 USCI_AQO receive interrupt flag. UCAORXIFG is set when UCAORXBUF has
RXIFG received a complete character.
0 No interrupt pending
1 Interrupt pending
11-36 Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCL1IE, USCI_A1 Interrupt Enable Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused UCAILTXIE UCAI1RXIE
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
Unused Bits Unused
7-4
Bits These bits may be used by other USCI modules. See device-specific
3-2 datasheet.
UCALTXIE Bit1l USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAIRXIE BitO USCI_A1 receive interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UC1IFG, USCI_A1 Interrupt Flag Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused -Pﬁéé I%?Iéé
rw—0 rw—0 rw—0 rw—0 rw—1 rw—0
Unused Bits Unused
7-4
Bits These bits may be used by other USCI modules. See device-specific
3-2 datasheet.
UCA1 Bit 1 USCI_A1 transmit interrupt flag. UCALTXIFG is set when UCALTXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCA1 Bit 0 USCI_A1 receive interrupt flag. UCALRXIFG is set when UCA1RXBUF has
RXIFG

received a complete character.
0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, UART Mode 11-37

50210751
高亮

50210751
高亮

Chapter 12

Universal Serial Communication Interface,
SPI Mode

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the synchronous peripheral interface or SPI mode.

Topic Page
12.1 USCIOVEIVIBW . .. [12-2]
12.2 USCI Introduction: SPIMode ..., |12-3]
12.3 USCI Operation: SPIMode ...ttt |12-5]
12.4 USCI Registers: SPIMode | 12-15]

12-1

USCI Overview

12.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_AO and USCI_AL. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

0 UART mode

[Pulse shaping for IrDA communications

[Automatic baud rate detection for LIN communications
(0 SPI mode

The USCI_Bx modules support:

1 12C mode
[SPImode

12-2 Universal Serial Communication Interface, SPI Mode

USCI Introduction: SPI Mode

12.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system
via three or four pins: UCXSIMO, UCxSOMI, UCXCLK, and UCXSTE. SPI
mode is selected when the UCSYNC bit is set and SPI mode (3-pin or 4-pin)
is selected with the UCMODEX bits.

SPI mode features include:

7- or 8-bit data length

LSB-first or MSB-first data transmit and receive
3-pin and 4-pin SPI operation

Master or slave modes

Independent transmit and receive shift registers
Separate transmit and receive buffer registers
Continuous transmit and receive operation
Selectable clock polarity and phase control
Programmable clock frequency in master mode

Independent interrupt capability for receive and transmit

[Ny Ny A N A A N B E N

Slave operation in LPM4

Figure 12—1 shows the USCI when configured for SPI mode.

Universal Serial Communication Interface, SPI Mode 12-3

USCI Introduction: SPI Mode

Figure 12-1. USCI Block Diagram: SPI Mode

Receive State Machine

P Set UCOE

Receive Buffer UCXRXBUF

*

Receive Shift Register

P Set UCXRXIFG

UCLISTEN UCMST

0

UCMSB UC7BIT

N

Bit Clock Generator
UCXBRX

}16

UCSSELX
N/A 00
ACLK 01
SMCLK 10
SMCLK 11

12-4

BRCLK

Prescaler/Divider

UCCKPH UCCKPL

UCxsSoMI
D

S

Clock Direction,
Phase and Polarity

UCXCLK

UCMSB UCT7BIT

’

’

Transmit Shift Register

UCxSIMO

+

Transmit Buffer UCXTXBUF

Transmit State Machine

UCMODEXx

',

UCXSTE

Transmit Enable
Control

N

} Set UCFE

Universal Serial Communication Interface, SPI Mode

P Set UCXTXIFG

12.3 USCI Operation: SPI Mode

USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, UCXSTE, is provided
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

[UCxSIMO

1 UCxXSOMI

[UCXCLK

1 UCXSTE

Table 12—-1.UCXSTE Operation

Slave in, master out
Master mode: UCxSIMO is the data output line.
Slave mode: UCXSIMO is the data input line.

Slave out, master in
Master mode: UCxSOMI is the data input line.
Slave mode: UCxSOMI is the data output line.

USCI SPI clock
Master mode: UCXCLK is an output.
Slave mode: UCXCLK is an input.

Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode. Table 12—-1
describes the UCXSTE operation.

UCMODEXx UCXSTE Active State UCXSTE Slave Master
) 0 inactive active
01 high 1 active inactive
0 active inactive
10 low . . .
1 inactive active

Universal Serial Communication Interface, SPI Mode 12-5

USCI Operation: SPI Mode

12.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCXRXIE, UCXTXIE, UCXRXIFG,
UCOE, and UCFE bits and sets the UCXTXIFG flag. Clearing UCSWRST
releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST, &UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCXCTL1)
3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST, &UCxCTL1)
5) Enable interrupts (optional) via UCXRXIE and/or UCXTXIE

12.3.2 Character Format

12-6

The USCI module in SPI mode supports 7- and 8-bit character lengths
selected by the UC7BIT bit. In 7-bit data mode, UCXRXBUF is LSB justified
and the MSB is always reset. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first.

I
Note: Default Character Format

The default SPI character transmission is LSB first. For communication with
other SPI interfaces it MSB-first mode may be required.

Note: Character Format for Figures
Figures throughout this chapter use MSB first format.

Universal Serial Communication Interface, SPI Mode

12.3.3 Master Mode

USCI Operation: SPI Mode

Figure 12-2. USCI Master and External Slave

MASTER UCXSIMO SIMO SLAVE
>
Receive Buffer Transmit Buffer .
UCXRXBUF UCXTXBUF SPI Receive Buffer
Px.x > STE
P ES
UCXSTE < Port.x
UCx
. . . e , SOMI SOMI , .
Receive Shift Register —‘ L1 Transmit Shift Register < Data Shift Register (DSR) |
UCxXCLK > SCLK
MSP430 USCI COMMON SPI

Figure 12-2 shows the USCI as a master in both 3-pin and 4-pin
configurations. The USCI initiates data transfer when data is moved to the
transmit data buffer UCXTXBUF. The UCXTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on
UCxSIMO starting with either the most-significant or least-significant bit
depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive
shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer
UCxRXBUF and the receive interrupt flag, UCXRXIFG, is set, indicating the
RX/TX operation is complete.

A set transmit interrupt flag, UCXTXIFG, indicates that data has moved from
UCXTXBUF to the TX shift register and UCXTXBUF is ready for new data. It
does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to
UCXTXBUF because receive and transmit operations operate concurrently.

Universal Serial Communication Interface, SPl Mode 12-7

USCI Operation: SPI Mode

Four-Pin SPI Master Mode

In 4-pin master mode, UCXSTE is used to prevent conflicts with another
master and controls the master as described in Table 12—-1. When UCXSTE
is in the master-inactive state:

[UCXSIMO and UCXCLK are set to inputs and no longer drive the bus

[The error bit UCFE is set indicating a communication integrity violation to
be handled by the user.

[0 The internal state machines are reset and the shift operation is aborted.

If data is written into UCXTXBUF while the master is held inactive by UCXSTE,
it will be transmit as soon as UCXSTE transitions to the master-active state.
If an active transfer is aborted by UCXSTE transitioning to the master-inactive
state, the data must be re-written into UCXTXBUF to be transferred when
UCXSTE transitions back to the master-active state. The UCXSTE input signal
is not used in 3-pin master mode.

12-8 Universal Serial Communication Interface, SPI Mode

12.3.4 Slave Mode

USCI Operation: SPI Mode

Figure 12-3. USCI Slave and External Master

MASTER SIMO R UCXSIMO SLAVE
SPI Receive Buff Transmit Buffer Receive Buffer
eceive butler UCXTXBUF UCXRXBUF
Px.x > UCXSTE
S
STE <
Port.x
UCx
. . SOMI SOMI
L{ Data Shift Register DSR < Transmit Shift Register Receive Shift Register =
SCLK > UCxCLK
COMMON SPI MSP430 USCI

Figure 12-3 shows the USCI as a slave in both 3-pin and 4-pin configurations.
UCXCLK is used as the input for the SPI clock and must be supplied by the
external master. The data-transfer rate is determined by this clock and not by
the internal bit clock generator. Data written to UCXTXBUF and moved to the
TX shift register before the start of UCXCLK is transmitted on UCxSOMI. Data
on UCXSIMO is shifted into the receive shift register on the opposite edge of
UCxXCLK and moved to UCXRXBUF when the set number of bits are received.
When data is moved from the RX shift register to UCXRXBUF, the UCXRXIFG
interrupt flag is set, indicating that data has been received. The overrun error
bit, UCOE, is set when the previously received data is not read from
UCXRXBUF before new data is moved to UCXRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, UCXSTE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master. When UCXSTE is in the
slave-active state, the slave operates normally. When UCXSTE is in the slave-
inactive state:

[Any receive operation in progress on UCxSIMO is halted
[UCXSOMI is set to the input direction

(1 The shift operationis halted until the UCXSTE line transitions into the slave
transmit active state.

The UCXSTE input signal is not used in 3-pin slave mode.

Universal Serial Communication Interface, SPI Mode 12-9

USCI Operation: SPI Mode

12.3.5 SPI Enable

Transmit Enable

Receive Enable

12-10 Universal Seri

When the USCI module is enabled by clearing the UCSWRST bit it is ready
to receive and transmit. In master mode the bit clock generator is ready, but
is not clocked nor producing any clocks. In slave mode the bit clock generator
is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active
transfer is terminated.

In master mode, writing to UCXTXBUF activates the bit clock generator and
the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in
4-pin mode, when the UCXSTE is in the slave-active state.

The SPI receives data when a transmission is active. Receive and transmit
operations operate concurrently.

al Communication Interface, SPI Mode

USCI Operation: SPI Mode

12.3.6 Serial Clock Control

UCXCLK is provided by the master on the SPI bus. When UCMST = 1, the bit
clockis provided by the USCI bit clock generator on the UCXCLK pin. The clock
used to generate the bit clock is selected with the UCSSELx bits. When
UCMST = 0, the USClI clock is provided on the UCXCLK pin by the master, the
bit clock generator is not used, and the UCSSELX bits are don’t care. The SPI
receiver and transmitter operate in parallel and use the same clock source for
data transfer.

The 16-bit value of UCBRXx in the bit rate control registers UCxxBR1 and
UCxxBRO is the division factor of the USCI clock source, BRCLK. The
maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAXMCTL should be cleared when
using SPI mode for USCI_A. The UCAXCLK/UCBXCLK frequency is given by:

_ fBRCLK

fBitCIock " UCBRX

Serial Clock Polarity and Phase

The polarity and phase of UCXCLK are independently configured via the
UCCKPL and UCCKPH control bits of the USCI. Timing for each case is shown
in Figure 12—4.

Figure 12—4. USCI SPI Timing with UCMSB = 1

uc uc
CKPH CKpL Cvycle#

0 0 UCxCLK_/

0o 1 UCXCLK \

53c

SRl
255¢
SRl
2550
259

~ [

UCXSIMOf_X MSB

X LSB

10 UCXCLK |
11 UCXCLK |

UCXSTE\
0 X ycxsomi__
L X Jcxsom

1l aac-
1l €aac

MSB

X X LsB

Move to UCXTXBUF |

TX Data Shifted Out

RX Sample Points

Universal Serial Communication Interface, SPl Mode 12-11

USCI Operation: SPI Mode

12.3.7 Using the SPI Mode with Low Power Modes

12-12

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In SPI slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in SPI slave
mode while the device is in LPM4 and all clock sources are disabled. The
receive or transmit interrupt can wake up the CPU from any low power mode.

Universal Serial Communication Interface, SPI Mode

USCI Operation: SPI Mode

12.3.8 SPI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UCXTXIFG interrupt flag is set by the transmitter to indicate that
UCXTXBUF is ready to accept another character. An interrupt request is
generated if UCXTXIE and GIE are also set. UCXTXIFG is automatically reset
if a character is written to UCXTXBUF. UCXTXIFG is set after a PUC or when
UCSWRST = 1. UCXTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCXTXBUF in SPI Mode

Data written to UCXTXBUF when UCXTXIFG = 0 may result in erroneous
data transmission.

SPI Receive Interrupt Operation

The UCXRXIFG interrupt flag is set each time a character is received and
loaded into UCXRXBUF. Aninterrupt requestis generated if UCXRXIE and GIE
are also set. UCXRXIFG and UCXRXIE are reset by a system reset PUC signal
or when UCSWRST = 1. UCXRXIFG is automatically reset when UCXRXBUF
is read.

Universal Serial Communication Interface, SPI Mode 12-13

USCI Operation: SPI Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAXRXIFG and UCBXRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAXTXIFG and UCBXTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

12-14

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_AO in either UART or SPI
mode and USCI_BO in SPI mode.

USCIAO0 RX _USCIBO RX ISR
BIT.B #UCAORXIFG, &IFG2 ; USCI_AO0 Receive Interrupt?
JNZ USCIAO0_RX ISR
USCIBO_RX_TISR?
; Read UCBORXBUF (clears UCBORXIFG)
RETT
USCIAO0 RX_ ISR
; Read UCAORXBUF (clears UCAORXIFG)

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts from USCI_AOQ in either UART or SPI
mode and USCI_BO in SPI mode.

USCIAQ0 TX USCIBO TX ISR
BIT.B #UCAQOTXIFG, &IFG2 ; USCI_AO0 Transmit Interrupt?
JNZ USCIAO0 TX ISR
USCIBO_TX ISR
; Write UCBOTXBUF (clears UCBOTXIFG)
RETI
USCIAO0_TX ISR
; Write UCAQOTXBUF (clears UCAQTXIFG)

RETI

Universal Serial Communication Interface, SPI Mode

USCI Registers: SPI Mode

12.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode for USCI_AO and USCI_BO are
listed in Table 12-2. Registers applicable in SPI mode for USCI_Al and
USCI_B1 are listed in Table 12-3.

Table 12-2.USCI_A0 and USCI_BO0 Control and Status Registers

Register Short Form Register Type Address Initial State
USCI_AO control register 0 UCAOCTLO Read/write 060h Reset with PUC
USCI_AO control register 1 UCAOCTL1 Read/write 061h 001h with PUC
USCI_AO Baud rate control register 0 UCAOBRO Read/write 062h Reset with PUC
USCI_AO Baud rate control register 1 UCAOBR1 Read/write 063h Reset with PUC
USCI_AO0 modulation control register UCAOMCTL Read/write 064h Reset with PUC
USCI_AO status register UCAOSTAT Read/write 065h Reset with PUC
USCI_AO Receive buffer register UCAORXBUF Read 066h Reset with PUC
USCI_AO Transmit buffer register UCAOTXBUF Read/write 067h Reset with PUC
USCI_BO control register 0 UCBOCTLO Read/write 068h 001h with PUC
USCI_BO control register 1 UCBOCTL1 Read/write 069h 001h with PUC
USCI_BO Bit rate control register 0 UCBOBRO Read/write 06Ah Reset with PUC
USCI_BO Bit rate control register 1 UCBOBR1 Read/write 06Bh Reset with PUC
USCI_BO status register UCBOSTAT Read/write 06Dh Reset with PUC
USCI_BO0 Receive buffer register UCBORXBUF Read 06Eh Reset with PUC
USCI_BO Transmit buffer register UCBOTXBUF Read/write 06Fh Reset with PUC
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clearthe IEx and IFGx bits using BIS . B or BIC. B instructions, rather than
MOV.B or CLR.B instructions.

Universal Serial Communication Interface, SPI Mode 12-15

USCI Registers: SPI Mode

Table 12-3.USCI_A1 and USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCAILCTLO Read/write 0DOh Reset with PUC
USCI_AL1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC
USCI_AL1 Baud rate control register 0 UCAI1BRO Read/write 0D2h Reset with PUC
USCI_AL Baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC
USCI_A1 modulation control register UCALOMCTL Read/write 0D4h Reset with PUC
USCI_A1 status register UCALSTAT Read/write 0D5h Reset with PUC
USCI_A1 Receive buffer register UCA1IRXBUF Read 0D6h Reset with PUC
USCI_A1 Transmit buffer register UCALTXBUF Read/write 0D7h Reset with PUC
USCI_B1 control register 0 UCBI1CTLO Read/write 0D8h 001h with PUC
USCI_B1 control register 1 UCB1CTL1 Read/write 0D9%h 001h with PUC
USCI_B1 Bit rate control register 0 UCB1BRO Read/write ODAh Reset with PUC
USCI_B1 Bit rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC
USCI_BL1 status register UCBI1STAT Read/write 0DDh Reset with PUC
USCI_B1 Receive buffer register UCB1RXBUF Read ODEh Reset with PUC
USCI_B1 Transmit buffer register UCB1TXBUF Read/write ODFh Reset with PUC
USCI_A1/B1 interrupt enable register UCIIE Read/write 006h Reset with PUC
USCI_A1/B1 interrupt flag register UCLIFG Read/write 007h 00Ah with PUC

12-16 Universal Serial Communication Interface, SPI Mode

USCI Registers: SPI

UCAXCTLO, USCI_Ax Control Register 0
UCBXCTLO, USCI_Bx Control Register 0

Mode

7 6 5 4 3 2 1 0
UCCKPH UCCKPL UCMSB UCT7BIT UCMST UCMODEX UCSYNC=1
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the
following edge.
1 Data is captured on the first UCLK edge and changed on the
following edge.
UCCKPL Bit 6 Clock polarity select.
0 The inactive state is low.
1 The inactive state is high.
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first
UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode
UCMODEXx Bits USCI Mode. The UCMODEX bits select the synchronous mode when
2-1 UCSYNC = 1.
00 3-Pin SPI
01 4-Pin SPI with UCXSTE active high: slave enabled when UCXSTE =1
10 4-Pin SPI with UCXSTE active low: slave enabled when UCXSTE =0
11 12C Mode
UCSYNC Bit O Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode
Universal Serial Communication Interface, SPl Mode 12-17

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

USCI Registers: SPI Mode

UCAXCTL1, USCI_Ax Control Register 1
UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0
UCSSELX Unused UCSWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
UCSSELX Bits USCI clock source select. These bits select the BRCLK source clock in
7-6 master mode. UCXCLK is always used in slave mode.
00 NA
01 ACLK
10 SMCLK
11 SMCLK
Unused Bits Unused
5-1

UCSWRST Bit0 Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

12-18 Universal Serial Communication Interface, SPI Mode

UCAXBRO, USCI_Ax Bit Rate Control Register 0
UCBxBR1, USCI_Bx Bit Rate Control Register O

USCI Registers: SPI Mode

7 6 5 4 3 2 1 0
UCBRx
rw 'w w rw 'w w rw 'w
UCAxBR1, USCI_Ax Bit Rate Control Register 1
UCBxBR1, USCI_Bx Bit Rate Control Register 1
7 6 5 4 3 2 1 0
UCBRx
rw 'w rw rw 'w w w 'w
UCBRx Bit clock prescaler. The 16-bit value of {UCxxBRO+UCxxBR1} form the

prescaler value.

Universal Serial Communication Interface, SPI Mode 12-19

USCI Registers: SPI Mode

UCAXSTAT, USCI_Ax Status Register
UCBXSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0
UCLISTEN UCFE UCOE Unused Unused Unused Unused UCBUSY
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0
UCLISTEN Bit7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. The transmitter output is internally fed back to the receiver.
UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode.
UCFE is not used in 3-wire master or any slave mode.
0 No error
1 Bus conflict occurred
UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCxXRXBUF before the previous character was read. UCOE is cleared
automatically when UCXRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred
Unused Bits Unused
4-1
UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in

progress.
0 USClI inactive
1 USCI transmitting or receiving

12-20 Universal Serial Communication Interface, SPI Mode

USCI Registers: SPI Mode

UCAXRXBUF, USCI_Ax Receive Buffer Register
UCBXxRXBUF, USCI_Bx Receive Buffer Register

UCRXBUFx

UCRXBUFx Bits

The receive-data buffer is user accessible and contains the last received
7-0

character from the receive shift register. Reading UCXRXBUF resets the

receive-error bits, and UCXRXIFG. In 7-bit data mode, UCXRXBUF is LSB
justified and the MSB is always reset.

UCAXTXBUF, USCI_Ax Transmit Buffer Register
UCBXxTXBUF, USCI_Bx Transmit Buffer Register

UCTXBUFx

rw 'w 'w rw r'w 'w rw r'w

UCTXBUFx Bits

The transmit data buffer is user accessible and holds the data waiting to
7-0

be moved into the transmit shift register and transmitted. Writing to the

transmit data buffer clears UCXTXIFG. The MSB of UCXTXBUF is not
used for 7-bit data and is reset.

Universal Serial Communication Interface, SPl Mode 12-21

USCI Registers: SPI Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UCBOTXIE | UCBORXIE | UCAOTXIE | UCAORXIE
rw-0 rw-0 rw-0 rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
7-4
UCBOTXIE Bit3 USCI_BO transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCBORXIE Bit 2 USCI_BO receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAOTXIE Bit1 USCI_AO transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAORXIE Bit0 USCI_AO receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled
12-22 Universal Serial Communication Interface, SPI Mode

USCI Registers: SPI Mode

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UCBO UCBO UCAO UCAQ
TXIFG RXIFG TXIFG RXIFG
rw-1 rw-0 rw-1 rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
7-4

UCBO Bit 3 USCI_BO transmit interrupt flag. UCBOTXIFG is set when UCBOTXBUF is
TXIFG empty.

0 No interrupt pending

1 Interrupt pending
ucBoO Bit 2 USCI_BO receive interrupt flag. UCBORXIFG is set when UCBORXBUF has
RXIFG received a complete character.

0 No interrupt pending

1 Interrupt pending
UCAO Bit 1 USCI_AO transmit interrupt flag. UCAOTXIFG is set when UCAOTXBUF
TXIFG empty.

0 No interrupt pending

1 Interrupt pending
UCAO Bit 0 USCI_AO receive interrupt flag. UCAORXIFG is set when UCAORXBUF has
RXIFG received a complete character.

0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, SPI Mode 12-23

USCI Registers: SPI Mode

UCL1IE, USCI_A1/USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused UCBL1TXIE UCB1RXIE UCALTXIE UCAL1RXIE
rw—0 rw-0 rw-0 rw—0 rw—0 rw-0 rw-0 rw—0
Unused Bits Unused
7-4

UCBITXIE Bit3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCBIRXIE Bit2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCAILTXIE Bit1 USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCAIRXIE Bit0 USCI_A1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

12-24 Universal Serial Communication Interface, SPI Mode

USCI Registers: SPI Mode

UCL1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused %SE%; ’%%Eé %%éé F%%Iéé
rw—0 rw-0 rw—0 rw—0 rw-1 rw—0 rw-1 rw—0
Unused Bits Unused
7-4
ucCBl1 Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
ucB1 Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
RXIFG received a complete character.
0 No interrupt pending
1 Interrupt pending
UCA1l Bit 1 USCI_A1 transmit interrupt flag. UCALTXIFG is set when UCA1TXBUF
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCA1 Bit 0 USCI_A1 receive interrupt flag. UCALRXIFG is set when UCA1RXBUF has
RXIFG received a complete character.

0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, SPI Mode 12-25

Chapter 13

Universal Serial Communication Interface,
12C Mode

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the 12C mode.

Topic Page
13.1 USCIOVEIVIBW . et eeeeeeeeeeeeaeeeaennn [132]
13.2 USCI Introduction: I2C MOuurereeeeeeeeeeeeeeennnn [13-3]
13.3 USCI Operation: I2C MOAeeeeeeeeeeeeeeeeeeeennnn [135]
13.4 USCI Registers: 12CModecoiiiiiiiiiaaa... | 13-25]

13-1

USCI Overview

13.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_AO and USCI_AT1. See the device-specific datasheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

0 UART mode

[Pulse shaping for IrDA communications

[Automatic baud rate detection for LIN communications
[0 SPlmode

The USCI_Bx modules support:

] 12C mode
[0 SPlmode

13-2 Universal Serial Communication Interface,

USCI Introduction: 12C Mod

13.2 USCI Introduction: 12C Mode

In 12C mode, the USCI module provides an interface between the MSP430 and
[2C-compatible devices connected by way of the two-wire 12C serial bus.
External components attached to the I2C bus serially transmit and/or receive
serial data to/from the USCI module through the 2-wire I2C interface.

The 12C mode features include:

1 Compliance to the Philips Semiconductor 12C specification v2.1

7-bit and 10-bit device addressing modes

General call

START/RESTART/STOP

Multi-master transmitter/receiver mode

Slave receiver/transmitter mode

Standard mode up t0100 kbps and fast mode up to 400 kbps support

Programmable UCxXCLK frequency in master mode
Designed for low power

Slave receiver START detection for auto-wake up from LPMx modes

(I IR A

Slave operation in LPM4

Figure 13-1 shows the USCI when configured in I2C mode.

Universal Serial Communication Interface, 13-3

USCI Introduction: 12C Mod

Figure 13-1. USCI Block Diagram: 12C Mode

UC1CLK
ACLK
SMCLK
SMCLK

13-4

UCA10 UCGCEN

Own Address UC10A

*

T Receive Shift Register

UCxSDA

v

Receive Buffer UC1RXBUF

12C State Machine

Transmit Buffer UC1TXBUF

v

*—| Transmit Shift Register

%

Slave Address UC1SA

"
UCSLA10

UCxSCL

UCMSTI—) >

UCSSELx
Bit Clock Generator
UCxBRx
00).(16
01
Prescaler/Divider

10 | BRCLK

11

Universal Serial Communication Interface,

USCI Operation: I1°C Mode

13.3 USCI Operation: I2C Mode

The 12C mode supports any slave or master |12C-compatible device.
Figure 13-2 shows an example of an I12C bus. Each I2C device is recognized
by a unique address and can operate as either a transmitter or a receiver. A
device connected to the 12C bus can be considered as the master or the slave
when performing data transfers. A master initiates a data transfer and
generates the clock signal SCL. Any device addressed by a master is
considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock
pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a
positive supply voltage using a pull-up resistor.

Figure 13-2. 12C Bus Connection Diagram

Serial Data (SDA)
Serial Clock (SCL)

Vee

MSP430 Device A

Device B Device C

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430
Ve level.

Universal Serial Communication Interface, 13-5

USCI Operation: 12C Mode

13.3.1 USCI Initialization and Reset

The USClI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition. To
select 12C operation the UCMODEX bits must be set to 11. After module
initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and re-configuring the USCI module should be done when
UCSWRST is set to avoid unpredictable behavior. Setting UCSWRST in 12C
mode has the following effects:

I2C communication stops

SDA and SCL are high impedance
UCBxI2CSTAT, bits 6-0 are cleared
UCBXTXIE and UCBXRXIE are cleared
UCBXTXIFG and UCBxRXIFG are cleared

All other bits and registers remain unchanged.

Uooooo

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BIS.B #UCSWRST, &UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST, &UCxCTL1)
5) Enable interrupts (optional) via UCXRXIE and/or UCXTXIE

13-6 Universal Serial Communication Interface,

USCI Operation: I1°C Mode

13.3.2 12C Serial Data

One clock pulse is generated by the master device for each data bit
transferred. The 12C mode operates with byte data. Data is transferred most
significant bit first as shown in Figure 13-3.

The first byte after a START condition consists of a 7-bit slave address and the
R/W bit. When R/W = 0, the master transmits data to a slave. When R/W =1,
the master receives data from a slave. The ACK bit is sent from the receiver
after each byte on the 9th SCL clock.

Figure 13-3. I°C Module Data Transfer

r—

SNV @ GG G\ WD 6 G & ANV

‘ ‘ MSB

Acknowledgement Acknowledgement ‘ ‘

Signal From Receiver Signal From Receiver
L1

L1
START
Condition (S)

1 2

7 8 9 12 8 9
- STOP
RW ACK ACK " condition (P)

START and STOP conditions are generated by the master and are shown in
Figure 13-3. A START condition is a high-to-low transition on the SDA line
while SCL is high. A STOP condition is a low-to-high transition on the SDA line
while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in
Figure 13-4. The high and low state of SDA can only change when SCL is low,
otherwise START or STOP conditions will be generated.

Figure 13-4. Bit Transfer on the I°C Bus

SDA

SCL

Data Line
: Stable Data !

L
1

I I
Ii—'l— Change of Data Allowed

Universal Serial Communication Interface, 13-7

USCI Operation: 12C Mode

13.3.3 12C Addressing Modes
The 12C mode supports 7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 13-5, the first byte is the 7-bit
slave address and the R/W bit. The ACK bit is sent from the receiver after each
byte.

Figure 13-5. 12C Module 7-Bit Addressing Format

i 7 JANIRN, : JR, : JRNN
| Slave Address | RW | ACK| | | | ACK | P|

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 13-6, the first byte is made
up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte. The next byte is the
remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the
8-bit data.

Figure 13-6. 12C Module 10-Bit Addressing Format

» & »

| 1K 7 L L 8 o1 8 ¥ o1
| S |Slave Address 1st byte | RW | ACK | Slave Address 2nd byte] ACK | |
[1 1 1 1 0 X X|

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first
stopping a transfer, by issuing a repeated START condition. This is called a
RESTART. After a RESTART is issued, the slave address is again sent out with
the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 13-7.

Figure 13-7. 12C Module Addressing Format with Repeated START Condition

Rk, NI N - S s e R R el s MR A

| S | Slave Address | R/W | ACK| Data |ACK| S | Slave Address | RW | ACK| Data |ACK| P |
le 1 sle Any — ke 1 - Any Number—
Number

13-8 Universal Serial Communication Interface,

USCI Operation: I1°C Mode

13.3.4 12C Module Operating Modes

In 12C mode the USCI module can operate in master transmitter, master
receiver, slave transmitter, or slave receiver mode. The modes are discussed
in the following sections. Time lines are used to illustrate the modes.

Figure 13-8 shows how to interpret the time line figures. Data transmitted by
the master is represented by grey rectangles, data transmitted by the slave by
white rectangles. Data transmitted by the USCI module, either as master or
slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow
indicating where in the the data stream the action occurs. Actions that must
be handled with software are indicated with white rectangles with an arrow
pointing to where in the data stream the action must take place.

Figure 13-8. I2C Time line Legend
[otmerMastr
ol L omersae

USCI Master

USCI Slave

‘ Bits set or reset by software

‘ Bits set or reset by hardware

Universal Serial Communication Interface, 13-9

USCI Operation: 12C Mode

Slave Mode

The USCI module is configured as an I12C slave by selecting the [2C mode with
UCMODEXx = 11 and UCSYNC = 1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing
the UCTR bit to receive the I12C address. Afterwards, transmit and receive
operations are controlled automatically depending on the R/W bit received
together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When
UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing
is selected. The UCGCEN bit selects if the slave responds to a general call.

When a START condition is detected on the bus, the USCI module will receive
the transmitted address and compare it against its own address stored in
UCBxI2COA. The UCSTTIFG flag is set when address received matches the
USCI slave address.

I2C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the
master is identical to its own address with a set R/W bit. The slave transmitter
shifts the serial data out on SDA with the clock pulses that are generated by
the master device. The slave device does not generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been
transmitted.

If the master requests data from the slave the USCI module is automatically
configured as a transmitter and UCTR and UCBXTXIFG become set. The SCL
line is held low until the first data to be sent is written into the transmit buffer
UCBXTXBUF. Then the address is acknowledged, the UCSTTIFG flag is
cleared, and the data is transmitted. As soon as the data is transferred into the
shift register the UCBXTXIFG is set again. After the data is acknowledged by
the master the next data byte written into UCBXTXBUF is transmitted or if the
buffer is empty the bus is stalled during the acknowledge cycle by holding SCL
low until new data is written into UCBXTXBUF. If the master sends a NACK
succeeded by a STOP condition the UCSTPIFG flag is set. If the NACK is
succeeded by a repeated START condition the USCI I12C state machine
returns to its address-reception state.

Figure 13-9 illustrates the slave transmitter operation.

13-10 Universal Serial Communication Interface,

Figure 13-9. I2C Slave Transmitter Mode

USCI Operation: I1°C Mode

A

A | DATA I A

DATA

Reception of own s SLAR
address and
transmission of data A
bytes
UCTR_1 (T ransmltter)
UCSTT
UCBxTXIFG=1
UCSTPIFG=0
UCBXTXBUF discarded

Bus stalled (SCL held low)
until data available

Write data to UCBXTXBUF

Repeated start -
continue as
slave transmitter

Repeated start -
continue as
slave receiver

Arbitration lost as

master and

ot [

addressed as slave

Write data to UCBXTXBUF |

UCBXTXIFG=1

UCBXTXIFG=0

para |A|P]
A A
|UCBxTXIFG=0
UCSTPIFG=1
UCSTTIFG=0
\4 c——-
DATA TI S I SLAR
A J S

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBXTXIFG=1
UCBXTXBUF discarded

UCALIFG=1
UCMST=0

UCTR—1 (Transmltter)

UCSTT

UCBXTXI FG=1
UCSTPIFG=0

Universal Serial Communication Interface,

DATA

T|s| SLA/W

UCBXTXIFG=0

A A

UCTR= 0 (Recewer)
UCSTT!

13-11

USCI Operation: 12C Mode

I2C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the
master is identical to its own address and a cleared RW bit is received. In slave
receiver mode, serial data bits received on SDA are shifted in with the clock
pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required
after a byte has been received.

If the slave should receive data from the master the USCI module is
automatically configured as a receiver and UCTR is cleared. After the first data
byte is received the receive interrupt flag UCBxRXIFG is set. The USCI
module automatically acknowledges the received data and can receive the
next data byte.

If the previous data wasn not read from the receive buffer UCBXRXBUF at the
end of a reception, the bus is stalled by holding SCL low. As soon as
UCBXRXBUF is read the new data is transferred into UCBxRXBUF, an
acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master
during the next acknowledgment cycle. A NACK is sent even if UCBXRXBUF
is not ready to receive the latest data. If the UCTXNACK bit is set while SCL
is held low the bus will be released, a NACK is transmitted immediately, and
UCBxRXBUF is loaded with the last received data. Since the previous data
was not read that data will be lost. To avoid loss of data the UCBxRXBUF
needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I2C state
machine returns to its address reception state.

Figure 13-10 illustrates the the I12C slave receiver operation.

13-12 Universal Serial Communication Interface,

Figure 13-10.

I12C Slave Receiver Mode

USCI Operation: I1°C Mode

Reception of awn S DATA DATA DATA Pors
address and data I LA A A - e— A A I
bytes. All are A A A A o A
acknowledged. A |
UCBXRXIFG=1 |
T =
Bus stalled |
LESLEFESY (SCL held low) |
if UCBXRXBUF not read Refer to:
| ”Slave Transmitter’
Timing Diagram
|Read data from UCBXRXBUF |
A\ 4
\ 4
Last byte is not DATA | a| Pors I
acknowledged.
A A A
UCTXNACK=1 UCTXNACK=0
Bus not stalled even if
\ 4 UCBXRXBUF not read
Reception of the GenCall |
general call
address. A A
UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1
Arbitration lost as “"'T
master and g
addressed as slave Y
UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC-=1 if general call)
UCBXTXIFG=0
UCSTPIFG=0

Universal Serial Communication Interface,

13-13

USCI Operation: 12C Mode

I2C Slave 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in
Figure 13-11. In 10-bit addressing mode, the slave is in receive mode after the
full address is received. The USCI module indicates this by setting the
UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode the master sends a repeated START condition together with
the first byte of the address but with the R/W bit set. This will set the UCSTTIFG
flag if it was previously cleared by software and the USCI modules switches

to transmitter mode with UCTR = 1.

Figure 13-11.12C Slave 10-bit Addressing Mode

13-14

Slave Receiver

Reception of own |s 1110w | o | sta@) [a] pata | a DATA al Pors |
address anddata b " e el ——aaaaa
bytes. All are o A A
acknowledged. |
UCBXRXIFG=1
UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0
' -----
Reception of the GenCall | o| DATA | A DATA Al Pors |
generalcall @]] ' e oo
address. A A
UCTR=0 (Receiver) UCBXRXIFG=1
UCSTTIFG=1
UCGC=1

Slave Transmitter

Reception of own
address and

[s] 1100w]| A

SLA@) | a

s | 11110x0r | A

transmission of data
bytes

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

A A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBXTXIFG=1
UCSTPIFG=0

Universal Serial Communication Interface,

[ucsTTIFG=0

>|

USCI Operation: I1°C Mode

Master Mode

The USCI module is configured as an 12C master by selecting the 1°C mode
with UCMODEX = 11 and UCSYNC = 1 and setting the UCMST bit. When the
master is part of a multi-master system, UCMM must be set and its own
address must be programmed into the UCBxI2COA register. When UCA10 =
0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is
selected. The UCGCEN bit selects if the USCI module responds to a general
call.

12C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. The UCBXTXIFG bit is set when
the START condition is generated and the first data to be transmitted can be
written into UCBXTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBXTXBUF is transmitted if arbitration is not lost during
transmission of the slave address. UCBXTXIFG is set again as soon as the
data is transferred from the buffer into the shift register. If there is no data
loaded to UCBXTXBUF before the acknowledge cycle, the bus is held during
the acknowledge cycle with SCL low until data is written into UCBXxTXBUF.
Data is transmitted or the bus is held as long as the UCTXSTP bit or UCTXSTT
bit is not set.

Setting UCTXSTP will generate a STOP condition after the next acknowledge
from the slave. If UCTXSTP is set during the transmission of the slave’s
address or while the USCI module waits for data to be written into
UCBXTXBUF, a STOP condition is generated even if no data was transmitted
to the slave. When transmitting a single byte of data, the UCTXSTP bit must
be set while the byte is being transmitted, or anytime after transmission
begins, without writing new data into UCBxXxTXBUF. Otherwise, only the
address will be transmitted. When the data is transferred from the buffer to the
shift register, UCBXTXIFG will become set indicating data transmission has
begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTR may be set or cleared to configure transmitter or receiver, and a different
slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge
interrupt flag UCNACKIFG is set. The master must react with either a STOP
condition or a repeated START condition. If data was already written into
UCBXTXBUF it will be discarded. If this data should be transmitted after a
repeated START it must be written into UCBXTXBUF again.

Universal Serial Communication Interface, 13-15

USCI Operation: 12C Mode

Figure 13-12 illustrates the 12C master transmitter operation.

Figure 13-12.

12C Master Transmitter Mode

Successful

A A A A
transmission to a e it — DI — DA J— DA _li
slave receiver A =TT A
1) UCTR=1 (Transmitter) UCTXSTT=0 UCTXSTP=0
2) UCTXSTT=1
UCBXTXIFG=1 _
UCBXTXIFG=1 UGEXTXIF -0
UCBXTXBUF discarded |
Bus stalled (SCL held low) v
until data available -
Next transfer started DATA Als SLAW
with a repeated start Write data to UCBXTXBUF — F==
condition
1) UCTR=1 (Transmitter)
2) UCTXSTT=1
UgTX%'I‘I’:%'= Y -
UCNACKIFG=1 DATA A R
UCBXTXIFG=0 — S S -
UCBXTXBUF discarded ==
1) UCTR=0 (Receiver)
_ 2) UCTXSTT=1
UCTXSTP=1 3) UCBXTXIFG=0
A\ 4 Y
Not acknowledge A p
received after slave 00000 | b m e m = — - - 1— UCTXSTP=0
address
1) UCTR=1 (Transmitter)
=== |2) UCTXSTT=1
S S
v— - LAW === UCBXTXIFG=1
ALX UCBXTXBUF discarded
'— - e =
Not acknowledge A
received after a data _‘ - E SLAR = = == |[1) UCTR=0 (Receiver)
byte ~ A 2) UCTXSTT=1
UCNACKIFG=1
UCBXTXIFG=0
UCBXTXBUF discarded
Alrbitrat(ijodn lost in | Other master continues
slave addressor | | @ emeececececececc———-=
data byte ===--
_____________ UCALIFG=1
| Other master continues UCMST=0
—=——————-—-—--- (UCSTTIFG=0)
UCALIFG=1
UCMST=0
(UCSTTIFG=0)
Y e _______
Arbitration lost and A Other master continues
addressedasslave =@ == 0| ke cc e e e e e e ———
A
UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBXTXIFG=0
UCSTPIFG=0
USCI continues as Slave Receiver

13-16

Universal Serial Communication Interface,

USCI Operation: I1°C Mode

12C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. As soon as the slave
acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from
the slave is received and acknowledged and the UCBXRXIFG flag is set. Data
is received from the slave ss long as UCTXSTP or UCTXSTT is not set. If
UCBxRXBUF is not read the master holds the bus during reception of the last
data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the
not-acknowledge interrupt flag UCNACKIFG is set. The master must react
with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting
UCTXSTP, a NACK followed by a STOP condition is generated after reception
of the data from the slave, or immediately if the USCI module is currently
waiting for UCBXRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set
while the byte is being received. For this case, the UCTXSTT may be polled
to determine when it is cleared:

BIS.B #UCTXSTT, &UCBOCTL1 ;Transmit START cond.
POLL STT BIT.B #UCTXSTT, &UCBOCTL1 ;Poll UCTXSTT bit

Jc POLL_STT ;When cleared,

BIS.B #UCTXSTP, &UCBOCTL1 ;transmit STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTR may be set or cleared to configure transmitter or receiver, and a different
slave address may be written into UCBxI2CSA if desired.

Figure 13-13 illustrates the I2C master receiver operation.

Universal Serial Communication Interface, 13-17

fang
Setting the UCTXSTP bit will generate a STOP condition. After setting
UCTXSTP, a NACK followed by a STOP condition is generated after reception
of the data from the slave, or immediately if the USCI module is currently

fang
waiting for UCBxRXBUF to be read.

USCI Operation: 12C Mode

Figure 13-13. I2C Master Receiver Mode

Successful A DATA DATA DATA —
reception from a S SLAR I A A AlP

slave transmitter A \ A A

1) UCTR=0 (Receiver) ‘UCTXSTI':O ‘ ‘UCBXRXIFG=1 UCTXSTP=1 UCTXSTP=0
2) UCTXSTT=1

Next transfer started —

DATA AW
with a repeated start AlS S
condition A

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA |'A|s| SLAR

A
UCTXSTP=1 1) UCTR=0 (Receiver)
2) UCTXSTT=1
Y __ 4
Not acknowledge A p
received after slave UCTXSTP=0
address A
UGNAGKIFG-
1 | | —————ee
1) UCTR=1 (Transmitter)
Y..|S| StwW | ... |2)UCTXSTI=1
AT UCBXTXIFG=1
1) UCTR=0 (Receiver)
v..|S| SR 2) UCTXSTT=1
A

| S
Arbitration lost in E Other master continues
slave address or N -
data byte
¥ -------------------------- UCALIFG=1
Other master continues UCMST=0
.. cee (UCSTTIFG=0)
UCALIFG=1
UCMST=0
(UCSTTIFG=0)
Y o
Arbitration lost and A Other master continues
addressed as slave e . .ee .o
A
UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBXTXIFG=1
UCSTPIFG=0
USCI continues as Slave Transmitter

13-18 Universal Serial Communication Interface,

I12C Master 10-bit Addressing Mode

USCI Operation: I1°C Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in
Figure 13-14.

Figure 13-14. I2C Master 10-bit Addressing Mode

Master Transmitter

Successful
transmission to a
slave receiver

Master Receiver

Successful
reception from a
slave transmitter

S | 11110xxw | A

SLA (2)

A

A

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCBXTXIFG=1

DATA

ill

UCTXSTT=0

UCBXTXIFG=1

A

UCTXSTP=1

UCTXSTP=0

S | 11110xyW | A

SLA (2)

11110xx/R

A

\

1) UCTR=0 (Receiver)

2) UCTXSTT=1

DATA

AlP

| UCTXSTT=0

| UCBXRXIFG=1

Universal Serial Communication Interface,

UCTXSTP=1

A

UCTXSTP=0

13-19

USCI Operation: 12C Mode

Arbitration

If two or more master transmitters simultaneously start a transmission on the
bus, an arbitration procedure is invoked. Figure 13-15 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on SDA by the competing transmitters. The first master
transmitter that generates a logic high is overruled by the opposing master
generating a logic low. The arbitration procedure gives priority to the device
that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets
the arbitration lost flag UCALIFG. If two or more devices send identical first
bytes, arbitration continues on the subsequent bytes.

Figure 13-15. Arbitration Procedure Between Two Master Transmitters

Bus Line |
scL |
Device #1 Lost Arbitration

»~ and Switches Off

Data From
Device #1
Data From 0 0
Device #2
1 1
0 0

Bus Line
SDA

If the arbitration procedure is in progress when a repeated START condition
or STOP condition is transmitted on SDA, the master transmitters involved in
arbitration must send the repeated START condition or STOP condition at the
same position in the format frame. Arbitration is not allowed between:

(1 A repeated START condition and a data bit
[A STOP condition and a data bit
(1 A-repeated START condition and a STOP condition

13-20 Universal Serial Communication Interface,

USCI Operation: I1°C Mode

13.3.5 12C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the I12C bus. When the USCI
is in master mode, BITCLK is provided by the USCI bit clock generator and the
clock source is selected with the UCSSELX bits. In slave mode the bit clock
generator is not used and the UCSSELXx bits are don’t care.

The 16-bit value of UCBRX in registers UCBxBR1 and UCBxBRO is the division
factor of the USCI clock source, BRCLK. The maximum bit clock that can be
used in single master mode is fgrgLk/4- In multi-master mode the maximum
bit clock is fgrcLk/8. The BITCLK frequency is given by:

f _ fBRCLK
BitClock = UCBRXx

The minimum high and low periods of the generated SCL are

_ UCBRx/2
tHiGHMN =
BRCLK

_ _ UCBRx/2
towmn = tigHmNn = 7
BRCLK

when UCBRXx is even and

tLOW,MIN
when UCBRXx is odd.

The USCI clock source frequency and the prescaler setting UCBRx must to
be chosen such that the minimum low and high period times of the I2C specifi-
cation are met.

During the arbitration procedure the clocks from the different masters must be
synchronized. A device that first generates a low period on SCL overrules the
other devices forcing them to start their own low periods. SCL is then held low
by the device with the longest low period. The other devices must wait for SCL
to be released before starting their high periods. Figure 13-16 illustrates the
clock synchronization. This allows a slow slave to slow down a fast master.

Figure 13-16. Synchronization of Two I2C Clock Generators During Arbitration

SCL From
Device #1

SCL From
Device #2

Bus Line
SCL

Wait
—> j¢— Start HIGH
\ State \ Period

AN |

Universal Serial Communication Interface, 13-21

USCI Operation: 12C Mode

13.3.6 Using the USCI Module in I2C Mode with Low Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In 12C slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in 12C slave
mode while the device is in LPM4 and all internal clock sources are disabled.
The receive or transmit interrupts can wake up the CPU from any low power
mode.

13-22 Universal Serial Communication Interface,

USCI Operation: I1°C Mode

13.3.7 USCI Interrupts in 12C Mode

Their are two interrupt vectors for the USCI module in I2C mode. One interrupt
vector is associated with the transmit and receive interrupt flags. The other
interrupt vector is associated with the four state change interrupt flags. Each
interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and
the GIE bit is set, the interrupt flag will generate an interrupt request. DMA
transfers are controlled by the UCBXTXIFG and UCBxRXIFG flags on devices
with a DMA controller.

I2C Transmit Interrupt Operation

The UCBXTXIFG interrupt flag is set by the transmitter to indicate that
UCBXTXBUF is ready to accept another character. An interrupt request is
generated if UCBXTXIE and GIE are also set. UCBXTXIFG is automatically
reset if a character is written to UCBXTXBUF or if a NACK is received.
UCBXTXIFG is set when UCSWRST = 1 and the I2C mode is selected.
UCBXTXIE is reset after a PUC or when UCSWRST = 1.

I2C Receive Interrupt Operation

The UCBXRXIFG interrupt flag is set when a character is received and loaded
into UCBXxRXBUF. An interrupt request is generated if UCBxRXIE and GIE are
also set. UCBxRXIFG and UCBXRXIE are reset after a PUC signal or when
UCSWRST = 1. UCXRXIFG is automatically reset when UCXRXBUF is read.

I2C State Change Interrupt Operation.

Table 13-1 Describes the 12C state change interrupt flags.

Table 13-1.1°C State Change Interrupt Flags

Interrupt Flag Interrupt Condition

UCALIFG Arbitration-lost. Arbitration can be lost when two or more
transmitters start a transmission simultaneously, or when the
USCI operates as master but is addressed as a slave by another
master in the system. The UCALIFG flag is set when arbitration is
lost. When UCALIFG is set the UCMST bit is cleared and the 12C
controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge
is expected but is not received. UCNACKIFG is automatically
cleared when a START condition is received.

UCSTTIFG Start condition detected interrupt. This flag is set when the 12C
module detects a START condition together with its own address
while in slave mode. UCSTTIFG is used in slave mode only and
is automatically cleared when a STOP condition is received.

UCSTPIFG Stop condition detected interrupt. This flag is set when the 12C
module detects a STOP condition while in slave mode.
UCSTPIFG is used in slave mode only and is automatically
cleared when a START condition is received.

Universal Serial Communication Interface, 13-23

USCI Operation: 12C Mode

Interrupt Vector Assignment

USCI_Ax and USCI_Bx share the same interrupt vectors. In 12C mode the
state change interrupt flags UCSTTIFG, UCSTPIFG, UCIFG, UCALIFG from
USCI_Bx and UCAXRXIFG from USCI_Ax are routed to one interrupt vector.
The I12C transmit and receive interrupt flags UCBXTXIFG and UCBxRXIFG
from USCI_Bx and UCAXTXIFG from USCI_Ax share another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of the interrupt service
routine to handle data receive interrupts from USCI_AQ in either UART or SPI
mode and state change interrupts from USCI_BO in 12C mode.

USCIAO RX USCIBO I2C_STATE ISR
BIT.B #UCAORXIFG, &IFG2 ; USCI_AO0 Receive Interrupt?
JINZ USCIAO0_RX ISR
USCIBO I2C STATE ISR
; Decode I2C state changes
; Decode I2C state changes
RETT
USCIAO RX_ ISR
; Read UCAORXBUF ... - clears UCAORXIFG

RETI

The following software example shows an extract of the interrupt service
routine that handles data transmit interrupts from USCI_AO in either UART or
SPI mode and the data transfer interrupts from USCI_BO in 12C mode.

USCIAO TX USCIBO I2C DATA ISR
BIT.B #UCAQOTXIFG, &IFG2 ; USCI A0 Transmit Interrupt?
JNZ USCIAO TX ISR
USCIBO_ I2C DATA ISR
BIT.B #UCBORXIFG, &IFG2
JINZ USCIBO_I2C RX
USCIBO I2C TX

; Write UCBOTXBUF... - clears UCBOTXIFG
RETI

USCIBO I2C RX
; Read UCBORXBUF... - clears UCBORXIFG
RETI

USCIAO0 TX ISR
; Write UCAOTXBUF ... - clears UCAOTXIFG
RETI

13-24 Universal Serial Communication Interface,

USCI Registers: 12C Mode

13.4 USCI Registers: 12C Mode

The USCI registers applicable in 12C mode for USCI_BO are listed in
Table 13-2 and for USCI_B1 in Table 13-3.

Table 13-2.USCI_BO0 Control and Status Registers

Register Short Form Register Type Address Initial State
USCI_BO0 control register 0 UCBOCTLO Read/write 068h 001h with PUC
USCI_BO control register 1 UCBOCTLA Read/write 069h 001h with PUC
USCI_BO Bit rate control register 0 UCBOBRO Read/write 06Ah Reset with PUC
USCI_BO Bit rate control register 1 UCBOBR1 Read/write 06Bh Reset with PUC
USCI_BO 12C Interrupt enable register UCBOI2CIE Read/write 06Ch Reset with PUC
USCI_BO status register UCBOSTAT Read/write 06Dh Reset with PUC
USCI_BO Receive buffer register UCBORXBUF Read 06Eh Reset with PUC
USCI_BO Transmit buffer register UCBOTXBUF Read/write 06Fh Reset with PUC
USCI_BO0 12C Own Address register UCBOI2COA Read/write 0118h Reset with PUC
USCI_BO 12C Slave Address register UCBOI2CSA Read/write 011Ah Reset with PUC
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits
To avoid modifying control bits of other modules, it is recommended to set

or clear the IEx and IFGx bits using BIS.B or BIC. B instructions, rather than
MOV .B or CLR.B instructions.

Table 13-3.USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B1 control register 0 UCB1CTLO Read/write 0D8h Reset with PUC
USCI_B1 control register 1 UCB1CTLA1 Read/write 0D%h 001h with PUC
USCI_B1 Baud rate control register 0 UCB1BRO Read/write ODAh Reset with PUC
USCI_B1 Baud rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC
USCI_B1 12C Interrupt enable register UCB1I2CIE Read/write 0DCh Reset with PUC
USCI_BH1 status register UCB1STAT Read/write 0DDh Reset with PUC
USCI_B1 Receive buffer register UCB1RXBUF Read ODEh Reset with PUC
USCI_B1 Transmit buffer register UCB1TXBUF Read/write ODFh Reset with PUC
USCI_B1 12C Own Address register UCB112COA Read/write 017Ch Reset with PUC
USCI_B1 12C Slave Address register UCB1I2CSA Read/write 017Eh Reset with PUC
USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC
USCI_A1/B1 interrupt flag register UCITIFG Read/write 007h 00Ah with PUC

Universal Serial Communication Interface,

13-25

USCI Registers: 12C Mode

UCBxCTLO, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0
UCA10 UCSLA10 UcMM Unused UCMST UCMODEx=11 UCSYNC=1
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-1
UCA10 Bit 7 Own addressing mode select
0 Own address is a 7-bit address
1 Own address is a 10-bit address
UCSLA10 Bit 6 Slave addressing mode select
0 Address slave with 7-bit address
1 Address slave with 10-bit address
UCMM Bit 5 Multi-master environment select
0 Single master environment. There is no other master in the system.
The address compare unit is disabled.
1 Multi master environment
Unused Bit 4 Unused
UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master
environment (UCMM = 1) the UCMST bit is automatically cleared and the
module acts as slave.
0 Slave mode
1 Master mode
UCMODEx Bits USCI Mode. The UCMODEX bits select the synchronous mode when
2-1 UCSYNC = 1.
00 3-Pin SPI
01 4-Pin SPI (master/slave enabled if STE = 1)
10 4-Pin SPI (master/slave enabled if STE = 0)
11 12C Mode
UCSYNC Bit 0 Synchronous mode enable

13-26

0 Asynchronous mode
1 Synchronous Mode

Universal Serial Communication Interface,

USCI Registers: 12C Mode

UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0
UCSSELXx Unused UCTR UCTXNACK [UCTXSTP | UCTXSTT | UCSWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
UCSSELX Bits USCI clock source select. These bits select the BRCLK source clock.
7-6 00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK
Unused Bit 5 Unused
UCTR Bit 4 Transmitter/Receiver
0 Receiver
1 Transmitter
UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is
transmitted.
0 Acknowledge normally
1 Generate NACK
UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In
master receiver mode the STOP condition is preceded by a NACK.
UCTXSTP is automatically cleared after STOP is generated.
0 No STOP generated
1 Generate STOP
UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In
master receiver mode a repeated START condition is preceded by a
NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted.
Ignored in slave mode.
0 Do not generate START condition
1 Generate START condition
UCSWRST Bit0 Software reset enable

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

Universal Serial Communication Interface, 13-27

USCI Registers: 12C Mode

UCBxBRO, USCI_Bx Baud Rate Control Register 0

UCBRx

UCBxBR1, USCI_Bx Baud Rate Control Register 1

rw

7 6 5 4 3 2 1 0
UCBRXx

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler. The 16-bit value of {UCxxBR0O+UCxxBR1} form the

prescaler value.

13-28 Universal Serial Communication Interface,

USCI Registers: 12C Mode

UCBXxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0
Unused | getiow | UcGc | ucesusy | YGNACK | ycstpiFG | ucsTTiFG | ucaLFa
rw-0 r-0 rw-0 r-0 rw-0 rw-0 rw-0 rw-0
Unused Bit 7 Unused.
uc Bit 6 SCL low
SCLLOW 0 SCLis not held low
1 SCL is held low
UCGC Bit 5 General call address received. UCGC is automatically cleared when a
START condition is received.
0 No general call address received
1 General call address received
UCBBUSY Bit 4 Bus busy
0 Bus inactive
1 Bus busy
UCNACK Bit 3 Not-acknowledge received interrupt flag. UCNACKIFG is automatically
IFG cleared when a START condition is received.
0 No interrupt pending
1 Interrupt pending
UCSTPIFG Bit 2 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a
START condition is received.
0 No interrupt pending
1 Interrupt pending
UCSTTIFG Bit 1 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP
condition is received.
0 No interrupt pending
1 Interrupt pending
UCALIFG Bit 0 Arbitration lost interrupt flag

0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, 13-29

USCI Registers: 12C Mode

UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0
UCRXBUFx
r r r r r r r r
UCRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UCBxRXBUF resets
UCBXRXIFG.

UCBXxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0
UCTXBUFx
rw rw rw rw rw rw rw rw
UCTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting to
7-0 be moved into the transmit shift register and transmitted. Writing to the

transmit data buffer clears UCBXTXIFG.

13-30 Universal Serial Communication Interface,

USCI Registers: 12C Mode

UCBXxI2COA, USCIBx I2C Own Address Register

15 14 13 12 11 10 9 8
UCGCEN 0 0 o 0 0 I2COAX ‘
rw-0 ro ro r0 r0 ro rw-0 rw-0
7 6 5 4 3 2 1 0
12COAX ‘
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCGCEN Bit 15 General call response enable
0 Do not respond to a general call
1 Respond to a general call
12COAX Bits I2C own address. The I2COAX bits contain the local address of the USCI_Bx
9-0 I2C controller. The address is right-justified. In 7-bit addressing mode Bit 6 is

the MSB, Bits 9-7 are ignored. In 10-bit addressing mode Bit 9 is the MSB.

UCBxI2CSA, USCI_Bx I2C Slave Address Register

15 14 13 12 11 10 9 8
(] 0 0 (] 0 0 12CSAX ‘
r0 r0 r0 r0 r0 r0 rw-0 rw-0
7 6 5 4 3 2 1 0
12CSAX ‘
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
12CSAXx Bits I2C slave address. The 12CSAXx bits contain the slave address of the external
9-0 device to be addressed by the USCI_Bx module. It is only used in master

mode. The address is right-justified. In 7-bit slave addressing mode Bit 6 is
the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the
MSB.

Universal Serial Communication Interface, 13-31

USCI Registers: 12C Mode

UCBXxI2CIE, USCI_Bx I2C Interrupt Enable Register

7 6 5 4 3 2 1 0
Reserved UCNACKIE | UCSTPIE UCSTTIE UCALIE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Reserved Bits Reserved
7-4
UCNACKIE Bit3 Not-acknowledge interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCSTPIE Bit 2 Stop condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCSTTIE Bit 1 Start condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCALIE Bit 0 Arbitration lost interrupt enable

13-32

0 Interrupt disabled
1 Interrupt enabled

Universal Serial Communication Interface,

USCI Registers: 12C Mode

IE2, Interrupt Enable Register 2

7

6

5 4 3 2 1 0

UCBOTXIE | UCBORXIE

Bits
7-4

UCBOTXIE Bit3

UCBORXIE Bit2

rw-0 rw-0

These bits may be used by other modules. See device-specific datasheet.

USCI_BO0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI_BO receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

These bits may be used by other modules. See device-specific datasheet.

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UCBO UCBO
TXIFG RXIFG
rw-1 rw-0
Bits These bits may be used by other modules. See device-specific datasheet.
7-4
ucBoO Bit 3 USCI_BO transmit interrupt flag. UCBOTXIFG is set when UCBOTXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCcBoO Bit 2 USCI_BO receive interrupt flag. UCBORXIFG is set when UCBORXBUF has
RXIFG received a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
1-0

Universal Serial Communication Interface, 13-33

USCI Registers: 12C Mode

UC1IE, USCI_B1 Interrupt Enable Register

7 6 5 4 3 2
Unused Unused Unused Unused UCB1TXIE | UCB1RXIE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Unused Bits Unused
7-4
UCB1TXIE Bit3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCB1RXIE Bit2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled
Bits These bits may be used by other USCI modules. See device-specific
1-0 datasheet.

UC1IFG, USCI_B1 Interrupt Flag Register

7 6 5 4 3 2
Unused Unused Unused Unused 19)52(13 g)%gé
rw-0 rw-0 rw-0 rw-0 rw-1 rw-0
Unused Bits Unused.
7-4
ucB1 Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
ucBt1 Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
RXIFG received a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
1-0

13-34

Universal Serial Communication Interface,

OA

The OA is a general purpose operational amplifier. This chapter describes the
OA. Two OA modules are implemented in the MSP430x22x4 devices.

Topic Page
14.1 OAINtrOdUCHION\ eeeeeeeeeeeeeaeaaaannn [1a2]
14.2 OAOperationooiiiiiiiiiiii it iiii i aiai s |14-4]
14.3 OA REGISIEIS'''eeeeeeeeeeeeeeaaaaaeaennn [1a-12]

14-1

OA Introduction

14.1 OA Introduction

The OA op amps support front-end analog signal conditioning prior to
analog-to-digital conversion.

Features of the OA include:
Single supply, low-current operation
Rail-to-rail output

U
4
(10 Programmable settling time vs. power consumption
(O Software selectable configurations

4

Software selectable feedback resistor ladder for PGA implementations

Note: Multiple OA Modules

Some devices may integrate more than one OA module. In the case where
more than one OA is present on a device, the multiple OA modules operate
identically.

Throughout this chapter, nomenclature appears such as OAxCTLO to
describe register names. When this occurs, the x is used to indicate which
OA module is being discussed. In cases where operation is identical, the
register is simply referred to as OAXCTLO.

The block diagram of the OA module is shown in Figure 14-1.

14-2 OA

Figure 14-1. OA Block Diagram

OA Introduction

OAPx
OAPXx =3 —pp |
OAXI0»——100] OAFCx=6 —p—]
om0 > o1 | OANx=3—pT 1
OAPMX
OAXIA p—— 10 OA1TAP (OA0) 0
OAXIB 11 OA2TAP (OA1) 1
OA20UT (OAO) OAQTAP (0A2)
OAOOUT (OA1)
OA10UT (0A2)
OAFCx = 6
OAFCx =5 OaANx OANEXT
O——e
OAXxI0 ~e»——] 00 1
A1 (OA0)
OAxI1 <e»—— 01
000 pd A3 (OA1)
OAXIA ep——] 10 001 A5 (0A2)
OAXIB >—| 11 OAXR30TTOM
X OAFCx olse A1/0A00
3% A3/0A10
OARRIP o B A5/0A20
000 § A12 (OA0)
001 OAFBRx IS A13 (OA1)
S A14 (OA2)
) 010 qti MR A12/0A00
X
0 011 | OAXRop 000 S A13/0A10
% 100 4r% 3 A14/0A20
I 1 L
101 4R5E— 00 5 0AxOUT
OA1RgoTTOM(CAD) 110 ¢—| 010
OAZRBO'[TOM (OA1) 111 2R iE »
OAOR (0A2) & ot1 g
BOTTOM
2R$ L @ > OAXTAP
NS 3 e—| 100 2
R$
. i;— 101 OAADCx
—] 000 53 [P OAFCx = 0
001 R%
010 o—| 111
011 R |~
OAFBRX > 0 100 > OAXRBoTTOM
5 o |0
1 OANX
110
OAXIO 00 *}
OAXI1 01
OAXIA 10 OAXEB
OA20UT (OAO) 11
OAOOUT (OA1)
OA10UT (0A2)

OA 14-3

OA

14.2 OA Operation

The OA module is configured with user software. The setup and operation of
the OA is discussed in the following sections.

14.2.1 OA Amplifier

The OA is a configurable, low-current, rail-to-rail output operational amplifier.
It can be configured as an inverting amplifier, or a non-inverting amplifier, or
can be combined with other OA modules to form differential amplifiers. The
output slew rate of the OA can be configured for optimized settling time vs.
power consumption with the OAPMx bits. When OAPMx = 00 the OA is off and
the output is high-impedance. When OAPMx > 0, the OA is on. See the
device-specific datasheet for parameters.

14.2.2 OA Input

The OA has configurable input selection. The signals for the + and - inputs are
individually selected with the OANx and OAPX bits and can be selected as
external signals or internal signals. OAxI0 and OAxI1 are external signals
provided for each OA module. OAOI1 provides a non-inverting input that is tied
together internally for all OA modules. OAxIA and OAxIB provide
device-dependent inputs. Refer to the device datasheet for signal
connections.

When the external inverting input is not needed for a mode, setting the
OANEXT bit makes the internal inverting input externally available.

14-4 OA

OA

14.2.3 OA Output and Feedback Routing

The OA has configurable output selection controlled by the OAADCXx bits and
the OAFCx bits. The OA output signals can be routed to ADC12 inputs A12
(OA0), A13 (OA1), or A14 (OA2) internally, or can be routed to these ADC
inputs and their external pins. The OA output signals can also be routed to
ADC inputs A1 (OA0), A3 (OAT1), or A5 (OA2) and the corresponding external
pin. The OA output is also connected to an internal R-ladder with the OAFCx
bits. The R-ladder tap is selected with the OAFBRx bits to provide
programmable gain amplifier functionality.

Table 14-1 shows the OA output and feedback routing configurations. When
OAFCx = 0 the OA is in general-purpose mode and feedback is achieved
externally to the device. When OAFCx > 0 and when OAADCx = 00 or 11, the
output of the OA is kept internal to the device. When OAFCx > 0 and OAADCx
=01 or 10, the OA output is routed both internally and externally.

Table 14-1.OA Output Configurations

OAFCx OAADCx OA Output and Feedback Routing

=0 x0 OAxOUT connected to external pins and ADC input A1, A3,
or A5.

=0 x1 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

>0 00 OAxOUT used for internal routing only.

>0 01 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

>0 10 OAXxQOUT connected to external pins and ADC input A1, A3,
or A5.

>0 11 OAxOUT connected internally to ADC input A12, A13, or

A14. External A12, A13, or A14 pin connections are
disconnected from the ADC.

OA 14-5

OA

14.2.4 OA Configurations

The OA can be configured for different amplifier functions with the OAFCx bits
as listed in Table 14-2.

Table 14-2. OA Mode Select

OAFCx OA Mode

000 General-purpose opamp

001 Unity gain buffer for three-opamp differential amplifier
010 Unity gain buffer

011 Comparator

100 Non-inverting PGA amplifier

101 Cascaded non-inverting PGA amplifier

110 Inverting PGA amplifier

111 Differential amplifier

General Purpose Opamp Mode

In this mode the feedback resistor ladder is isolated from the OAx and the
OAXCTLO bits define the signal routing. The OAXx inputs are selected with the
OAPx and OANx bits. The OAx output is connected to the ADC12 input
channel as selected by the OAXCTLO bits.

Unity Gain Mode for Differential Amplifier

Unity Gain Mode

14-6

OA

In this mode the output of the OAXx is connected to the inverting input of the OAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The output of the OAXx is also routed through the resistor
ladder as part of the three-opamp differential amplifier. This mode is only for
construction of the three-opamp differential amplifier.

In this mode the output of the OAXx is connected to the inverting input of the OAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The OAx output is connected to the ADC12 input channel
as selected by the OAXCTLO bits.

Comparator Mode

OA

In this mode the output of the OAXx is isolated from the resistor ladder. Rygp
is connected to AVgg and RgotTowm is connected to AVgc when OARRIP = 0.
When OARRIP = 1, the connection of the resistor ladder is reversed. Rrop is
connected to AV and RgoTtTom is connected to AVgg The OAXTAP signal
is connected to the inverting input of the OAXx providing a comparator with a
programmable threshold voltage selected by the OAFBRx bits. The
non-inverting input is selected by the OAPXx bits. Hysteresis can be added by
an external positive feedback resistor. The external connection for the
inverting input is disabled and the OANX bits are don’t care. The OAXx output
is connected to the ADC12 input channel as selected by the OAXCTLO bits.

Non-Inverting PGA Mode

In this mode the output of the OAx is connected to Rtop and RgotToMm IS
connected to AVgg. The OAXTAP signal is connected to the inverting input of
the OAXx providing a non-inverting amplifier configuration with a programmable
gain of [1+OAXTAP ratio]. The OAXTAP ratio is selected by the OAFBRX bits.
If the OAFBRX bits = 0, the gain is unity. The non-inverting input is selected
by the OAPX bits. The external connection for the inverting input is disabled
and the OANX bits are don’t care. The OAXx output is connected to the ADC12
input channel as selected by the OAXCTLO bits.

Cascaded Non-Inverting PGA Mode

Inverting PGA Mode

This mode allows internal routing of the OA signals to cascade two or three OA
in non-inverting mode. In this mode the non-inverting input of the OAXx is
connected to OA20UT (OAQ0), OAOOUT (OA1), or OA10OUT (OA2) when
OAPx = 11. The OAXx outputs are connected to the ADC12 input channel as
selected by the OAXCTLO bits.

In this mode the output of the OAXx is connected to Rtop and RgoTtToM IS
connected to an analog multiplexer that multiplexes the OAxI0, OAxI1, OAXIA,
or the output of one of the remaining OAs, selected with the OANX bits. The
OAXTAP signal is connected to the inverting input of the OAx providing an
inverting amplifier with a gain of -OAXTAP ratio. The OAXTAP ratio is selected
by the OAFBRXx bits. The non-inverting input is selected by the OAPx bits. The
OAx output is connected to the ADC12 input channel as selected by the
OAXCTLO bits.

Note: Using OAx Negative Input Simultaneously as ADC Input

When the pin connected to the negative input multiplexer is also used as an
input to the ADC, conversion errors up to 5mV may be observed due to
internal wiring voltage drops.

OA 14-7

OA

Differential Amplifier Mode

This mode allows internal routing of the OA signals for a two-opamp or
three-opamp instrumentation amplifier. Figure 14-2 shows a two-opamp
configuration with OAO and OAT1. In this mode the output of the OAx is
connected to Rygp by routing through another OAx in the Inverting PGA mode.
ReoTtToMm is unconnected providing a unity gain buffer. This buffer is combined
with one or two remaining OAx to form the differential amplifier. The OAx
output is connected to the ADC12 input channel as selected by the OAXCTLO
bits.

Figure 14-2 shows an example of a two-opamp differential amplifier using
OAO0 and OAT1. The control register settings and are shown in Table 14-3. The
gain for the amplifier is selected by the OAFBRXx bits for OA1 and is shown in
Table 14-4. The OAXx interconnections are shown in Figure 14-3.

Table 14-3. Two-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)
OAOCTLO XX xx xx 0 0
OAOCTL1 000 111 O x
OA1CTLO 11 XX XX X X
OA1CTL1 xxx 110 0 x

Table 14-4. Two-Opamp Differential Amplifier Gain Settings

OA1 OAFBRx Gain

000 0
001 1/3
010 1
011 12/3
100 3
101 41/3
110 7

111 15

Figure 14-2. Two Opamp Differential Amplifier

14-8

OA

\Al

OA1

(V2-V1)xR2

+ Vdiff =
OAO0

R1

OA

Figure 14-3. Two Opamp Differential Amplifier OAx Interconnections

OAPXx

OAXI0 —p——— 00
OAOQl1 —p»———] 01
OAXIAp——1 10
OAxIB 1 1

0 OAPMx

OAPx
OAXI0 p———
OAOI1 —p————] 000
OAXIA p——— 001
OAXIB olse
L »
\
000 >
S~ 001 OAFBRx
000 -
010 3
001
011 | OAXRrop 000 >
010 | OAXRrop 100 4r3
011 SN 101 ¢ 001 >
100 000 4R% -
001 —1 110 e—| 010
101 11| 2R% o1 2
110 |
010 2R% - OAADCx
4} ot 3 !E— 100
|| R 3
e—| 101
100 oo0] R$ o
*—
101 001 R EE
110 010 e
R 3
011 e L
1 100
| — 00
101
01
110
10
» 111
| —
OAXFB

OA 14-9

OA

Figure 14-4 shows an example of a three-opamp differential amplifier using
OAO0, OA1 and OA2 (Three opamps are not available on all devices. See
device-specific datasheet for implementation.). The control register settings
are shown in Table 14-5. The gain for the amplifier is selected by the OAFBRx
bits of OAO and OA2. The OAFBRx settings for both OA0 and OA2 must be
equal. The gain settings are shown in Table 14-6. The OAx interconnections
are shown in Figure 14-5.

Table 14-5. Three-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)
OAOCTLO XX XX Xx 0 0
OAOCTL1 xxx 001 0 x
OA1CTLO XX XX Xx 0 0
OA1CTL1 000 111 0 x
OA2CTLO 11 11 XX X X
OA2CTL1 xxx 110 0 x

Table 14-6. Three-Opamp Differential Amplifier Gain Settings

OAO0/OA2 OAFBRx Gain

000 0
001 1/3
010 1

011 12/3
100 3
101 41/3
110 7

111 15

Figure 14-4. Three Opamp Differential Amplifier

V2
R1 R2

OAO0

(V2-VI)xR2

vdiff

2
Rl

14-10 OA

OA

Figure 14-5. Three Opamp Differential Amplifier OAx Interconnections

OAPx
OAXI0 I
OAOI OAPMx
—»—— 01 \
OAXIA 0 0
\ ’
OAXIB 1 000 |~
|~ OAFBRx
—1 oo1 ~ OAPMx
010 3 000 }
| on 000] []001 OAQTAP (OA2) |
100 | 4R% else |~
101 g | P> ~
4RE 000 OAFBR
110 e—| 010 7 X000
001
B ZRiE 011 010 ’ 001
'—
| — OAXR: else /
2R 011 O 000
e 100 | —
R$ 100| 4R%
e 101 g%
m RE 101| 4R
¢ 110 Aol e 1%
oot r% 2Rg
I 3 111 b
011 e 100)
R §
100 o cL 101
000 b4
101 R% — O
10 001 e—| 110
olo| R2
Pl -
011 R
oapx | = 100
00 101 >
OAXI0 P o1
OAOI1 — 110 2
voremm b 19 111
OAXIA 11 OAADCx
—»—+——1 10 \ /
OAXIB 1 000 OAXFB
+
001 o\
010 | OAx
o1 RFDP\)
000 / OAPMx
100
101 001 S~
110 000
010
— 111 0ot
011 Ielse
/
100
101
110

OA 14-11

OA Registers

14.3 OA Registers

The OA registers are listed in Table 14-7.

Table 14-7.

Register Short Form Register Type Address Initial State
OAO Control Register 0 OAOCTLO Read/write 0COh Reset with POR
OAO Control Register 1 OAOCTL1 Read/write 0C1h Reset with POR
OAT1 Control Register 0 OA1CTLO Read/write 0C2h Reset with POR
OAT1 Control Register 1 OA1CTL1 Read/write 0C3h Reset with POR
OA2 Control Register 0 OA2CTLO Read/write 0C4h Reset with POR
OA2 Control Register 1 OA2CTL1 Read/write 0C5h Reset with POR

14-12 OA

OA Registers

OAXCTLO, Opamp Control Register 0

7 6 5 4 3 2 1 0
OANX OAPx OAPMx OAADCx
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
OANXx Bits Inverting input select. These bits select the input signal for the OA inverting
7-6 input.
00 OAXxIo
01 OAXxI

10 OAXIA - refer to device datasheet for connected signal
11 OAXIB - refer to device datasheet for connected signal

OAPx Bits Non-inverting input select. These bits select the input signal for the OA
5-4 non-inverting input.
00 OAxIo
01 OAO0I1

10 OAXIA - refer to device datasheet for connected signal
11 OAxIB - refer to device datasheet for connected signal

OAPMXx Bits Slew rate select. These bits select the slew rate vs. current consumption
3-2 for the OA.
00 Off, output high Z

01 Slow
10 Medium
11 Fast

OAADCXx Bits OA output select. These bits, together with the OAFCx bits, control the
1-0 routing of the OAx output when OAPMx > 0.
When OAFCx = 0:
00 OAXxOUT connected to external pins and ADC input A1, A3, or A5
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAXxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected to external pins and ADC input A12, A13, or A14
When OAFCx > 0:
00 OAXxOUT used for internal routing only
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected internally to ADC input A12, A13, or A14.
External A12, A13, or A14 pin connections are disconnected from the
ADC.

OA 14-13

OA Registers

OAxCTL1, Opamp Control Register 1

7 6 5 4 3 2 1 0
OAFBRx OAFCx OANEXT OARRIPT
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
OAFBRXx Bits OAx feedback resistor select
7-5 000 Tap O - OR/16R
001 Tap1-4R/12R
010 Tap2 - 8R/8R
011 Tap 3 - 10R/6R
100 Tap 4 - 12R/4R
101 Tap 5 - 13R/3R
110 Tap 6 - 14R/2R
111 Tap 7 - 15R/1R
OAFCx Bits OAX function control. This bit selects the function of OAx
4-2 000 General purpose opamp
001 Unity gain buffer for three-opamp differential amplifier
010 Unity gain buffer
011 Comparator
100 Non-inverting PGA amplifier
101 Cascaded non-inverting PGA amplifier
110 Inverting PGA amplifier
111 Differential amplifier
OANEXT Bit 1 OAx Inverting input externally available. This bit, when set, connects the
inverting OAXx input to the external pin when the integrated resistor network
is used.
0 OAx inverting input not externally available
1 OAXx inverting input externally available
OARRIP Bit 0 OAX reverse resistor connection in comparator mode

14-14

OA

0

1

Rtop is connected to AVgg and RgoT1ToM IS connected to AVgc when

OAFCx =3

Rtop is connected to AVgc and RgotTom is connected to AVgs when

OAFCx = 3.

Chapter 15

Comparator A+

Comparator_A+ is an analog voltage comparator. This chapter describes
Comparator A+. The Comparator A+ is implemented in all MSP430x2xx
devices except MSP430x20x0 and MSP430x22x4 devices.

Topic Page
15.1 Comparator_A+ Introductionl 15-2]
15.2 Comparator_A+ Operationccoiiiiiiiiiinnnnnnnnns 15-4]

15.3 Comparator A+ Registersccciiiiiiiiiiiiiiinnnn, 15-10]

15-1

Comparator_A+ Introduction

15.1 Comparator_A+ Introduction

15-2

The Comparator_ A+ module supports precision slope analog-to-digital
conversions, supply voltage supervision, and monitoring of external analog
signals.

Features of Comparator_A+ include:

4
J
4
4
d
EI
4
d

Inverting and non-inverting terminal input multiplexer
Software selectable RC-filter for the comparator output
Output provided to Timer_A capture input

Software control of the port input buffer

Interrupt capability

Selectable reference voltage generator

Comparator and reference generator can be powered down

Input Multiplexer

The Comparator_A+ block diagram is shown in Figure 15-1.

Comparator A+

Figure 15-1. Comparator_A+ Block Diagram

CAO0
CA1
CA2

A

CAREFx

Comparator_A+ Introduction

CcciiB
CAOUT
Set_CAIFG
Tau ~ 2.0ns
ov
0.5xVCC
0.25xVCC

Comparator_A+ 15-3

Comparator_A+ Operation

15.2 Comparator_A+ Operation

15.2.1 Comparator

15.2.2 Input Analog

The Comparator_A+ module is configured with user software. The setup and
operation of Comparator_A+ is discussed in the following sections.

The comparator compares the analog voltages at the + and — input terminals.
If the + terminal is more positive than the — terminal, the comparator output
CAOUT is high. The comparator can be switched on or off using control bit
CAON. The comparator should be switched off when not in use to reduce
current consumption. When the comparator is switched off, the CAOUT is
always low.

Switches

The analog input switches connect or disconnect the two comparator input
terminals to associated port pins using the P2CAx bits. Both comparator
terminal inputs can be controlled individually. The P2CAXx bits allow:

(1 Application of an external signal to the + and — terminals of the comparator
(O Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path.

Note: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a
signal, power, or ground. Otherwise, floating levels may cause unexpected
interrupts and increased current consumption.

The CAEX bit controls the input multiplexer, exchanging which input signals
are connected to the comparator’s + and — terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.

15-4 Comparator A+

Comparator_A+ Operation

15.2.3 Input Short Switch

The CASHORT bit shorts the comparator_A+ inputs. This can be used to build
a simple sample-and-hold for the comparator as shown in Figure 15-2.

Figure 15-2. Comparator A+ Sample-And-Hold

Sampling Capacitor, C 4 i

| |~

The required sampling time is proportional to the size of the sampling capacitor
(Cs), the resistance of the input switches in series with the short switch (R;),
and the resistance of the external source (Rg). The total internal resistance
(R)) is typically in the range of 2 — 10 kQ. The sampling capacitor Cg should
be greater than 100pF. The time constant, Tau, to charge the sampling
capacitor Cg can be calculated with the following equation:

Tau = (R, + Rg) x Cg

Depending on the required accuracy 3 to 10 Tau should be used as a sampling
time. With 3 Tau the sampling capacitor is charged to approximately 95% of
the input signals voltage level, with 5 Tau it is charge to more than 99% and
with 10 Tau the sampled voltage is sufficient for 12-bit accuracy.

Comparator_A+ 15-5

Comparator_A+ Operation

15.2.4 Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power supply lines, and other parts of the system
are responsible for this behavior as shown in Figure 15-3. The comparator
output oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 15-3. RC-Filter Response at the Output of the Comparator

A
+ Terminal
- Terminal Comparator Inputs
Comparator Output
” ” ” ” ””””l Il Il Il Il Unfiltered at CAOUT
Comparator Output
|| ” ” ” | Filtered at CAOUT

15.2.5 Voltage Reference Generator

The voltage reference generator is used to generate Vgager, Which can be
applied to either comparator input terminal. The CAREFx bits control the
output of the voltage generator. The CARSEL bit selects the comparator
terminal to which Vcarer is applied. If external signals are applied to both
comparator input terminals, the internal reference generator should be turned
off to reduce current consumption. The voltage reference generator can
generate a fraction of the device’s V¢ or a fixed transistor threshold voltage
of ~0.55 V.

15-6 Comparator A+

Comparator_A+ Operation

15.2.6 Comparator_A+, Port Disable Register CAPD

The comparator input and output functions are multiplexed with the associated
I/O port pins, which are digital CMOS gates. When analog signals are applied
to digital CMOS gates, parasitic current can flow from Ve to GND. This
parasitic current occurs if the input voltage is near the transition level of the
gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption.

The CAPDx bits, when set, disable the corresponding P1 input and output
buffers as shown in Figure 15-4. When current consumption is critical, any
port pin connected to analog signals should be disabled with its CAPDx bit.

Selecting an input pin to the comparator multiplexer with the P2CAXx bits
automatically disables the input and output buffers for that pin, regardless of
the state of the associated CAPDXx bit.

Figure 15-4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

Vco‘
| H

VI — Vo lcc
‘ lcc

\
v
Vee } Vi

i [: T 0 cc

CAPD.x = 1 Vss

15.2.7 Comparator_A+ Interrupts

One interrupt flag and one interrupt vector are associated with the
Comparator_A+ as shown in Figure 15-5. The interrupt flag CAIFG is set on
either the rising or falling edge of the comparator output, selected by the
CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag
generates an interrupt request. The CAIFG flag is automatically reset when
the interrupt request is serviced or may be reset with software.

Figure 15-5. Comparator_A+ Interrupt System

SET_CAIFG

Voo CAIE

CAIES 1
IRQ, Interrupt Service Requested
0 D Q

Reset

IRACC, Interrupt Request Accepted
POR

Comparator_A+ 15-7

Comparator_A+ Operation

15.2.8 Comparator_A+ Used to Measure Resistive Elements

The Comparator_A+ can be optimized to precisely measure resistive
elements using single slope analog-to-digital conversion. For example,
temperature can be converted into digital data using a thermistor, by
comparing the thermistor’s capacitor discharge time to that of a reference
resistor as shown in Figure 15-6. A reference resister Rref is compared to
Rmeas.

Figure 15-6. Temperature Measurement System

Rref
Px.x
Rmeas
Px.y
CAO CCIB
+ Capture

g > g Igfp 'Llj'itmer_A

0.25xVcgo

The MSP430 resources used to calculate the temperature sensed by Rmeas
are:

Two digital I/O pins to charge and discharge the capacitor.

I/O set to output high (V) to charge capacitor, reset to discharge.

1/0O switched to high-impedance input with CAPDXx set when not in use.
One output charges and discharges the capacitor via Rref.

One output discharges capacitor via Rmeas.

The + terminal is connected to the positive terminal of the capacitor.
The —terminal is connected to a reference level, for example 0.25 x V.

The output filter should be used to minimize switching noise.

I Iy Ny AN A

CAOUT used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are
connected to CAO with available /O pins and switched to high impedance
when not being measured.

15-8 Comparator A+

Comparator_A+ Operation

The thermistor measurement is based on a ratiometric conversion principle.
The ratio of two capacitor discharge times is calculated as shown in
Figure 15-7.

Figure 15-7. Timing for Temperature Measurement Systems

Ve A I I (. I
R N :_: _____ N
I | | I [I
I I I I [I
I | | I [I
I I I I [I
I I I I [I
I I I I [I
I I | I
| L || I
|| I || | R
025xVeg —H —————— e = ——— N — _meas
| ™ | I~ et
| | | | | .
Phase [: | Il Phase Il: ll | Phase Il | l‘ Phase IV: 'l t
Charge | Discharge | Charge | Discharge |
l‘— tref —D' l‘_ tmeas _"

The V¢ voltage and the capacitor value should remain constant during the
conversion, but are not critical since they cancel in the ratio:

%
f
~Rmeas X C X In €L
Nmeas _ Vee
N v
ref —R,of X C X n V#ef
cc

Nmeas _ Rmeas
N R

ref ref

Nmeas
Rmeas = R of X —Nref

Comparator_A+ 15-9

Comparator_A+ Registers

15.3 Comparator_A+ Registers

The Comparator_A+ registers are listed in Table 15-1:

Table 15-1. Comparator_A+ Registers

Register

Short Form

Register Type Address

Initial State

Comparator_A+ control register 1
Comparator_A+ control register 2
Comparator_A+ port disable

CACTL1
CACTL2
CAPD

Read/write 059h
Read/write 05Ah
Read/write 05Bh

Reset with POR
Reset with POR
Reset with POR

15-10

Comparator A+

Comparator_A+ Registers

CACTL1, Comparator_A+ Control Register 1

6

CARSEL

CAREFx CAON CAIES CAIE CAIFG

CAEX

CARSEL

CAREF

CAON

CAIES

CAIE

CAIFG

rw-(0)

Bit 7

Bit 6

Bits

Bit 3

Bit 2

Bit 1

Bit 0

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

Comparator_A+ exchange. This bit exchanges the comparator inputs and
inverts the comparator output.

Comparator_A+ reference select. This bit selects which terminal the
VcaREE is applied to.

When CAEX = 0:

0 VcaREF is applied to the + terminal

1 VcaRer is applied to the — terminal

When CAEX = 1:

0 VcaRee is applied to the — terminal

1 VcaRee is applied to the + terminal

Comparator_A+ reference. These bits select the reference voltage Voarer,
00 Internal reference off. An external reference can be applied.

01 0.25*V¢¢

10 0.50*V¢c

11 Diode reference is selected

Comparator_A+ on. This bit turns on the comparator. When the
comparator is off it consumes no current. The reference circuitry is enabled
or disabled independently.

0 Off

1 On

Comparator_A+ interrupt edge select
0 Rising edge

1 Falling edge

Comparator_A+ interrupt enable

0 Disabled

1 Enabled

The Comparator_A+ interrupt flag
0 No interrupt pending
1 Interrupt pending

Comparator_A+ 15-11

Comparator_A+ Registers

CACTL2, Comparator_A+, Control Register

7

CASHORT

P2CA3 P2CA2 P2CA1 P2CA0 CAF CAOUT

rw—-(0)

CASHORT

P2CA4

P2CA3

P2CA2
P2CA1

P2CA0

CAF

CAOUT

Bit 7

Bit 6

Bits
5-3

Bit 2

Bit 1

Bit 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

Input short. This bit shorts the + and - input terminals.
0 Inputs not shorted.
1 Inputs shorted.

Input select. This bit together with P2CAOQ selects the + terminal input when
CAEX = 0 and the - terminal input when CAEX = 1.

Input select. These bits select the — terminal input when CAEX = 0 and the
+ terminal input when CAEX = 1.

000 No connection

001 CA1

010 CA2

011 CAS3

100 CA4

101 CA5

110 CA6

111 CA7

Input select. This bit, together with P2CA4, selects the + terminal input
when CAEX = 0 and the - terminal input when CAEX = 1.

00 No connection

01 CAO0

10 CA1

11 CA2

Comparator_A+ output filter
0 Comparator_A+ output is not filtered
1 Comparator_A+ output is filtered

Comparator_A+ output. This bit reflects the value of the comparator output.
Writing this bit has no effect.

15-12 Comparator A+

CAPD, Comparator_A+, Port Disable Register

Comparator_A+ Registers

7 6 5 4 3 2 1 0
CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPDO
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

CAPDx Bits Comparator_A+ port disable. These bits individually disable the input
7-0 buffer for the pins of the port associated with Comparator_ A+. For

example, if CAQ is on pin P2.3, the CAPDXx bits can be used to individually
enable or disable each P2.x pin buffer. CAPDO disables P2.0, CAPD1

disables P2.1, etc.
0 The input buffer is enabled.
1 The input buffer is disabled.

Comparator A+

15-13

ADC10

The ADC10 module is a high-performance 10-bit analog-to-digital converter.
This chapter describes the ADC10. The ADC10 is implemented in the
MSP430x20x2 and MSP430x22x4 devices.

Topic

Page
16.1 ADC10 INtrOdUCHONuueeeeeeeeeeeeeaaaaaaaaanns 16-2 |
16.2 ADC10 OPErationuuuuuennnenneeeeeeeaeeeeeeeennn 16-4 |
16.3 ADCT0 REGISIEIS 'eeeeeeeeeeeeeeaaenenenns [16-24]

16-1

ADC10 Introduction

16.1 ADC10 Introduction

16-2

ADC10

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The
module implements a 10-bit SAR core, sample select control, reference
generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in
memory without CPU intervention. The module can be configured with user
software to support a variety of applications.

ADC10 features include:

I Iy Ay A N N Ay A

(I

4
J

Greater than 200 ksps maximum conversion rate

Monotonic10-bit converter with no missing codes

Sample-and-hold with programmable sample periods

Conversion initiation by software or Timer_A

Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)
Software selectable internal or external reference

Eight external input channels (twelve on MSP430x22x4 devices)

Conversion channels for internal temperature sensor, Vg, and external
references

Selectable conversion clock source

Single-channel, repeated single-channel, sequence, and repeated
sequence conversion modes

ADC core and reference voltage can be powered down separately

Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 16-1.

Figure 16-1. ADC10 Block Diagram

ADC10 Introduction

VeREFR-
°
REFBURST
ADC10SR
EREFOUT
SREF1
2 5V REFON
" INCHx=0Ah
0
VRER | —
]
0 1.5V or25V — AVce
Reference
VREF-/VeREF- Ref x i%
AVce —~
INCHx
11 10 01 00 e mSREFT
4 / ® mSREFO
Auto | ™ CONSEQx
—a AVgs ADC100SC
A0 0000 SREF2 10 ADC100N ADC10SSELx
Al 0001
A2 0010 T ADC10DIVx
A3 — 0011 Sample VR- VR: T T T
A4 —@ 0100 ok .
A5 0101 . Divider
AB o110 [™| Hold 10-bit SAR nos MGLK
A7 0111 N S
— 188? Sl Conver ADC10CLK
1010 L SHSx
— 1011 BUSY ISSH
A12jfr 1100 ENC
A13 1101
Al 41 1110 SAMPCON Sampte Tmer | SH! T 00 |—& ADC10SC
A15 111 | e 6/64 w syme | o[™
/ 10 TAO
A L L L 11 TA2t
cc ADC10DF ADC10SHTx MSC
INCHx=0Bh T AV
ADC10MEM
Ref_x v A
R Data Transfer
Controller n RAM, Flash, Peripherials
ADC10SA “»
R
AVss ADC10CT ADC10TB ADGC10B1

tMSP430x22x4 devices only. Channels A12-A15 tied to channel A11 in other devices
$TA1 on MSP43020x2 devices

ADC10 16-3

ADC10 Operation

16.2 ADC10 Operation

The ADC10 module is configured with user software. The setup and operation
of the ADC10 is discussed in the following sections.

16.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and
stores the result in the ADC10MEM register. The core uses two
programmable/selectable voltage levels (Vr, and VR_) to define the upper and
lower limits of the conversion. The digital output (Napc) is full scale (03FFh)
when the input signal is equal to or higher than Vg,, and zero when the input
signal is equal to or lower than Vg_. The input channel and the reference
voltage levels (Vr, and VR_) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format.
The conversion formula for the ADC result when using straight binary format
is:

Vin - Vg _

N Vv

ADC = 1023 x

R+~ VR-

The ADC10 core is configured by two control registers, ADC10CTLO and
ADC10CTL1. The core is enabled with the ADC100N bit. With few exceptions
the ADC10 control bits can only be modified when ENC = 0. ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection

16-4

ADC10

The ADC10CLK is used both as the conversion clock and to generate the
sampling period. The ADC10 source clock is selected using the ADC10SSELx
bits and can be divided from 1-8 using the ADC10DIVx bits. Possible
ADC10CLK sources are SMCLK, MCLK, ACLK and an internal oscillator
ADC100SC .

The ADC100SC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
datasheet for the ADC100SC specification.

The user must ensure that the clock chosen for ADC10CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete, and any result will be invalid.

50210751
矩形

ADC10 Operation

16.2.2 ADC10 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 16-2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (Vgg) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 16-2. Analog Multiplexer

R ~ 1000hm INCHx

| t

Analog Port Selection

L AN
ESD Protection

~

The ADC10 external inputs Ax, Vergrs, and VRrgp- share terminals with
general purpose I/O ports, which are digital CMOS gates (see device-specific
datasheet). When analog signals are applied to digital CMOS gates, parasitic
current can flow from Vg to GND. This parasitic current occurs if the input
voltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The ADC10AEX bits provide the ability to disable the port pin
input and output buffers.

; P2.3 on MSP430x22x4 device configured for analog input
BIS.B #08h,&ADC10AE0 ; P2.3 ADC10 function and enable

ADC10 16-5

ADC10 Operation

16.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable
voltage levels. Setting REFON = 1 enables the internal reference. When
REF2 5V = 1, the internal reference is 2.5 V. When REF2 5V = 0, the
reference is 1.5 V. The internal reference voltage may be used internally and,
when REFOUT = 0, externally on pin VRgp,.

External references may be supplied for Vg, and Vgr_through pins A4 and A3
respectively. When external references are used, or when Vg is used as the
reference, the internal reference may be turned off to save power.

An external positive reference Veggr, can be buffered by setting SREFO = 1
and SREF1 = 1. This allows using an external reference with a large internal
resistance at the cost of the buffer current. When REFBURST =1 the
increased current consumption is limited to the sample and conversion period.

External storage capacitance is not required for the ADC10 reference source
as on the ADC12.

Internal Reference Low-Power Features

The ADC10 internal reference generator is designed for low power
applications. The reference generator includes a band-gap voltage source
and a separate buffer. The current consumption of each is specified separately
in the device-specific datasheet. When REFON = 1, both are enabled and
when REFON = 0 both are disabled. The total settling time when REFON
becomes set is < 30 us.

When REFON = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is
disabled, it consumes no current. In this case, the band-gap voltage source
remains enabled.

When REFOUT = 1, the REFBURST bit controls the operation of the internal
reference buffer. When REFBURST = 0, the buffer will be on continuously,
allowing the reference voltage to be present outside the device continuously.
When REFBURST = 1, the buffer is automatically disabled when the ADC10
is not actively converting, and automatically re-enabled when needed.

The internal reference buffer also has selectable speed vs. power settings.
When the maximum conversion rate is below 50 ksps, setting ADC10SR = 1
reduces the current consumption of the buffer approximately 50%.

16.2.4 Auto Power-Down

16-6

ADC10

The ADC10 is designed for low power applications. When the ADC10 is not
actively converting, the core is automatically disabled and automatically
re-enabled when needed The ADC100SC is also automatically enabled when
needed and disabled when not needed. When the core or oscillator are
disabled, they consume no current.

ADC10 Operation

16.2.5 Sample and Conversion Timing

Figure 16-3. Sample

SHI

SAMPCON

ADC10CLK

An analog-to-digital conversion is initiated with a rising edge of sample input
signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

(1 The ADC10SC bit

(1 The Timer_A Output Unit 1
(1 The Timer_A Output Unit 0
(1 The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SHTX bits select the sample period tsampie to be 4, 8, 16, or 64 ADC10CLK
cycles. The sampling timer sets SAMPCON high for the selected sample
period after synchronization with ADC10CLK. Total sampling time is tsampie
plus tsync-The high-to-low SAMPCON transition starts the analog-to-digital
conversion, which requires 13 ADC10CLK cycles as shown in Figure 16-3.

Timing

Start Stop Start Conversion
Sampling Sampling Conversion Complete

v v v
[

13 x ADC10CLKs

4— tsample —pi——— teonuet————P
—p —

tsynci

A e AN o N an N AN an NV an\

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, @s shown below in Figure 16-4. An internal MUX-on
input resistance R (max. 2 kQ) in series with capacitor C; (max. 27 pF) is seen
by the source. The capacitor C; voltage V¢ must be charged to within 2 LSB
of the source voltage Vg for an accurate 10-bit conversion.

ADC10 16-7

ADC10 Operation

Figure 16-4. Analog Input Equivalent Circuit

Rs

16-8 ADC10

MSP430
V| = Input voltage at pin Ax
Vs = External source voltage

| R
\ Rs = External source resistance

| Ve R; = Internal MUX-on input resistance
C, = Input capacitance
} g G V¢ = Capacitance-charging voltage

The resistance of the source Rs and R, affect tsompie- The following equations
can be used to calculate the minimum sampling time for a 10-bit conversion.

t > (Rg + R) x n2') x ¢

sample

Substituting the values for R, and C, given above, the equation becomes:

t RS + 2k) X 7.625 x 27pF

sample > (

For example, if Rg is 10 kQ, tsample Must be greater than 2.47 ps.

When the reference buffer is used in burst mode, the sampling time must be
greater than the sampling time calculated and the settling time of the buffer,

tREFBURST:

(Rg + R) x @) x ¢,

t t
REFBURST

sample

For example, if Vgetis 1.5V and Rg is 10 kQ, tsample Must be greater than 2.47
us when ADC10SR = 0, or 2.5 us when ADC10SR = 1. See the device-specific
datasheet for parameters.

To calculate the buffer settling time when using an external reference, the
formula is:

tRerBURST = SR X Vger — 0.5us

Where:

SR: Buffer slew rate
(~1 us/V when ADC10SR = 0 and ~2 us/V when ADC10SR = 1)
Vref: External reference voltage

16.2.6 Conversion Modes

ADC10 Operation

The ADC10 has four operating modes selected by the CONSEQx bits as

discussed in Table 16-1.

Table 16-1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel A single channel is converted once.
single-conversion

01 Sequence-of- A sequence of channels is converted once.
channels

10 Repeat single A single channel is converted repeatedly.
channel

11 Repeat sequence- A sequence of channels is converted
of-channels repeatedly.

ADC10 16-9

ADC10 Operation

Single-Channel Single-Conversion Mode

A single channel selected by INCHx is sampled and converted once. The ADC
result is written to ADC10MEM. Figure 16-5 shows the flow of the
single-channel, single-conversion mode. When ADC10SC triggers a
conversion, successive conversions can be triggered by the ADC10SC bit.
When any other trigger source is used, ENC must be toggled between each
conversion.

Figure 16-5. Single-Channel Single-Conversion Mode

SHS =0
and
ENC=1or 4
and

(4/8/16/64) x ADC10CLK

Sample, Input
Channel

12 x ADC10CLK

Convert

1 x ADC10CLK

Conversion
Completed,
Result to
ADC10MEM,
ADC10IFG is Set

x = input channel Ax
T Conversion result is unpredictable

16-10 ADC10

ADC10 Operation

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence
begins with the channel selected by INCHx and decrements to channel AO.
Each ADC result is written to ADC10MEM. The sequence stops after
conversion of channel AO. Figure 16-6 shows the sequence-of-channels
mode. When ADC10SC triggers a sequence, successive sequences can be
triggered by the ADC10SC bit . When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 16-6. Sequence-of-Channels Mode

If x >0 then x =x -1

/

MSC =1
and
xz0

x = input channel Ax

SHS =0

and
ENC=1o0r 4
and
ADC10SC = 4 Wait for Trigger

X = INCHx
Wait for Enable

SAMPCON = &

(4/8/16/64) x ADC10CLK

Sample,
Input Channel Ax
If x> 0thenx=x-1

12 x ADC10CLK

Convert

1 x ADC10CLK

Conversion
Completed,
Result to ADC10MEM,
ADC10IFG is Set

ADC10 16-11

ADC10 Operation
Repeat-Single-Channel Mode

A single channel selected by INCHXx is sampled and converted continuously.

Each ADC result is written to ADC10MEM. Figure 16-7 shows the
repeat-single-channel mode.

Figure 16-7. Repeat-Single-Channel Mode

x = INCHx
Wait for Enable

SHS =0
and

ENC=1or 4

and

ADC10SC = 4 Wait for Trigger

SAMPCON = 4~ ENG = 0

(;1/8/1 6/64) x ADC10CLK

Sample,
Input Channel Ax

12 x ADC10CLK
MSC =1
and
ENC =1

Convert

1 x ADC10CLK

Conversion
Completed,
Result to ADC10MEM,
ADC10IFG is Set

x = input channel Ax

16-12 ADC10

ADC10 Operation

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence
begins with the channel selected by INCHx and decrements to channel AO.
Each ADC result is written to ADC10OMEM. The sequence ends after
conversion of channel A0, and the next trigger signal re-starts the sequence.
Figure 16-8 shows the repeat-sequence-of-channels mode.

Figure 16-8. Repeat-Sequence-of-Channels Mode

SHS =0
and
ENC= 1or 4
and
ADC10SC = 4

Wait for Trigger

SAMPCON = &

(4/8/16/64) x ADC10CLK \

If x = 0 then x = INCH

Sample
Input Channel Ax

else x = x -1
If x = 0 then x = INCH
else x = x -1 12 x ADC10CLK ENC =0
and
/ Convert x=0
MSC =1
and
(ENC =1 1 x ADC10CLK
or
x # 0) Conversion
Completed,
Result to ADC10MEM,

ADC10IFG is Set

x = input channel Ax

ADC10 16-13

ADC10 Operation

Using the MSC Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC = 1 and CONSEQx > 0 the first rising edge of the SHI signal
triggers the first conversion. Successive conversions are triggered
automatically as soon as the prior conversion is completed. Additional rising
edges on SHI are ignored until the sequence is completed in the
single-sequence mode or until the ENC bit is toggled in repeat-single-channel,
or repeated-sequence modes. The function of the ENC bit is unchanged when
using the MSC bit.

Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

(1 Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the ADC10BUSY bit until reset before clearing ENC.

[0 Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

[0 Resetting ENC during a sequence or repeat sequence mode stops the
converter at the end of the sequence.

[Any conversion mode may be stopped immediately by setting the
CONSEQx=0 and resetting the ENC bit. Conversion data is unreliable.

16-14 ADC10

ADC10 Operation

16.2.7 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer
conversion results from ADC10MEM to other on-chip memory locations. The
DTC is enabled by setting the ADC10DTC1 register to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and
loads the result to ADC10MEM, a data transfer is triggered. No software
intervention is required to manage the ADC10 until the predefined amount of
conversion data has been transferred. Each DTC transfer requires one CPU
MCLK. To avoid any bus contention during the DTC transfer, the CPU is halted,
if active, for the one MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must
ensure that no active conversion or sequence is in progress when the DTC is
configured :

; ADC10 activity test
BIC.W #ENC, &ADC10CTLO ;

busy test BIT.W #BUSY, &ADC10CTL1;
JNZ busy test i
MOV.W #xxx,&ADC10SA ; Safe
MOV.B #xx,&ADC10DTCL ;

; continue setup

ADC10 16-15

ADC10 Operation

One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in
ADC10DTC1 defines the total number of transfers for a block. The block start
address is defined anywhere in the MSP430 address range using the 16-bit
register ADC10SA. The block ends at ADC10SA+2n—2. The one-block
transfer mode is shown in Figure 16-9.

Figure 16-9. One-Block Transfer

16-16

ADC10

TB=0

'n’'th transfer ADC10SA+2n-2

ADC10SA+2n-4

\ 2nd transfer ADC10SA+2
ADC10SA

1st transfer

DTC

(¢
J)

[

J)

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer, the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. No additional DTC transfers
will occur until a write to ADC10SA. When using the DTC in the one-block
mode, the ADC10IFG flag is set only after a complete block has been
transferred. Figure 16-10 shows a state diagram of the one-block mode.

Figure 16-10. State Diagram for Data Transfer Control in One-Block Transfer Mode

n=0 (ADC10DTCH)

DTC reset

Wait for write to
ADC10SA

Initialize

DTC init Start Address in ADC10SA

Write to
ADC10SA

n is latched
AD = SA in counter ’x’

or Wait until ADC10MEM
n=0 is written

Write to ADC10MEM
completed

Write to ADC10SA

Synchronize

with MCLK x>0

Write to ADC10SA
1 x MCLK cycle

J

Transfer data to
Address AD

AD =AD +2

x=x-1 ADC10TB = 0

and
x=0 ADC10CT =1

ADC10TB =0

ADC10IFG=1 and
ADC10CT = 0

ADC10 Operation

Prepare
DTC

DTC
operation

ADC10

16-17

ADC10 Operation

Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in
ADC10DTC1 defines the number of transfers for one block. The address
range of the first block is defined anywhere in the MSP430 address range with
the 16-bit register ADC10SA. The first block ends at ADC10SA+2n-2. The
address range for the second block is defined as SA+2n to SA+4n-2. The
two-block transfer mode is shown in Figure 16-11.

Figure 16-11. Two-Block Transfer

16-18

ADC10

TB=1
2 x 'n’th transfer ADC10SA+4n-2
ADC10SA+4n-4
DTC ‘n’th transfer ADC10SA+2n-2
ADC10SA+2n-4
2nd transfer ADC10SA+2
1st transfer ADC10SA

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue, with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. At this point, block one is full
and both the ADC10IFG flag the ADC10B1 bit are set. The user can test the
ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is
automatically reloaded with ’'n’. At the next load of the ADC10MEM, the DTC
begins transferring conversion results to block two. After n transfers have
completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit
is cleared. User software can test the cleared ADC10B1 bit to determine that
block two is full. Figure 16-12 shows a state diagram of the two-block mode.

ADC10 Operation

Figure 16-12. State Diagram for Data Transfer Control in Two-Block Transfer Mode

n=0 (ADC10DTCH)

DTC reset

ADC10B1 =0
ADC10TB = 1

Wait for write to
ADC10SA

Initialize

DTC init Start Address in ADC10SA

Write to
ADC10SA

then AD = n is latched
in counter 'x’

Write to ADC10SA

or Wait until ADC10MEM
n=0 is written

Write to ADC10MEM
completed

Write to ADC10SA

CPU ready/ with MCLK x>0
Write to ADC10SA
1 x MCLK cycle
Transfer data to
Address AD
AD =AD + 2
Xx=x-1
ADC10B1 =1
x=0 or
ADC10CT=1
ADCA0IFG=1 "_/ADC1 0CT=0
and
Toggle ADC10B1 =0
ADC10B1

Prepare
DTC

DTC
operation

ADC10 16-19

ADC10 Operation

Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC will not stop
after block one in (one-block mode) or block two (two-block mode) has been
transferred. The internal address pointer and transfer counter are set equal to
ADC10SA and n respectively. Transfers continue starting in block one. If the
ADC10CT bit is reset, DTC transfers cease after the current completion of
transfers into block one (in the one-block mode) or block two (in the two-block
mode) have been transfer.

DTC Transfer Cycle Time

For each ADC10MEM transfer, the DTC requires one or two MCLK clock
cycles to synchronize, one for the actual transfer (while the CPU is halted), and
one cycle of wait time. Because the DTC uses MCLK, the DTC cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DTC uses the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DTC temporarily restarts MCLK, sourced with DCOCLK, only during
a transfer. The CPU remains off and after the DTC transfer, MCLK is again
turned off. The maximum DTC cycle time for all operating modes is show in
Table 16-2.

Table 16-2.Maximum DTC Cycle Time

16-20

ADC10

CPU Operating Mode Clock Source Maximum DTC Cycle Time
Active mode MCLK=DCOCLK 3 MCLK cycles

Active mode MCLK=LFXT1CLK 3 MCLK cycles

Low-power mode LPMO/1 MCLK=DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 4 MCLK cycles + 2 usf

Low-power mode LPM0/1 MCLK=LFXT1CLK 4 MCLK cycles
Low-power mode LPM3 MCLK=LFXT1CLK 4 MCLK cycles
Low-power mode LPM4 ~ MCLK=LFXT1CLK 4 MCLK cycles + 2 ust

 The additional 2 us are needed to start the DCOCLK. See device-datasheet for parameters.

ADC10 Operation

16.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 16-13.
When using the temperature sensor, the sample period must be greater than
30 us. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See the device-specific datasheet for the
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltage source for the temperature sensor. However, it does not
enable the Vrgp, output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 16-14. Typical Temperature Sensor Transfer Function

Volts

1.300

1.200

1.100

1.000

0.900

0.800

0.700

V1EMp=0.00355(TEMPG)+0.986

! ! ! Celsius

-50 0 50 100

ADC10 16-21

50210751
高亮

50210751
高亮

ADC10 Operation

16.2.9 ADC10 Grounding and Noise Considerations

Figure 16-16. ADC10 Grounding and Noise Considerations

16-22

ADC10

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted

parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The

connections shown in Figure 16-15 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion

result. A noise-free design is important to achieve high accuracy.

P

Decoupling

10 uF

_>

100 nF

External
Reference

_>

Vee
Vss
MSP430F2xx

Ve REF+

VREF-

ADC10 Operation

16.2.10 ADC10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as
shown in Figure 16-17. When the DTC is not used (ADC10DTC1 = 0)
ADC10IFG is set when conversion results are loaded into ADC10MEM. When
DTC is used (ADC10DTC1 > 0) ADC10IFG is set when a block transfer
completes and the internal transfer counter 'n’ = 0. If both the ADC10IE and
the GIE bits are set, then the ADC10IFG flag generates an interrupt request.
The ADC10IFG flag is automatically reset when the interrupt request is
serviced or may be reset by software.

Figure 16-17. ADC10 Interrupt System

Set ADC10IFG

n"=0

ADC10IE

) D Q _)—> IRQ, Interrupt Service Requested

ADC10CLK —§>

Reset

IRACC, Interrupt Request Accepted
POR

ADC10 16-23

ADC10 Registers

16.3 ADC10 Registers
The ADC10 registers are listed in Table 16-3.

Table 16-3.ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 Input enable register 0 ADC10AEOQ Read/write 04Ah Reset with POR
ADC10 Input enable register 1 ADC10AE1 Read/write 04Bh Reset with POR
ADC10 control register 0 ADC10CTLO Read/write 01B0h Reset with POR
ADC10 control register 1 ADC10CTLA1 Read/write 01B2h Reset with POR
ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTCO Read/write 048h Reset with POR
ADC10 data transfer control register 1 ADC10DTCH1 Read/write 049h Reset with POR
ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR

16-24 ADC10

ADC10 Registers

ADC10CTLO, ADC10 Control Register 0

15 14 13 12 11 10 9 8
SREFx ADC10SHTx ADC10SR REFOUT | REFBURST
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
MSC REF2_5V REFON ADC100N | ADC10IE | ADC10IFG ENC ADC10SC
rw-(0) rw—-(0) rw-(0) rw-(0) rw-(0) rw—(0) rw-(0) rw-(0)
Modifiable only when ENC = 0
SREFx Bits Select reference
15-13 000 Vg, =VgcandVR_=Vss
001 VR; = VRer; and VR_ = Vss
010 VR+ = VeRE,:+ and VR— = VSS
011 VR, = Buffered Vergr, and VR_ = Vgg
100 VR, =Vcc and VR_ = VRer_/ Vergr-
101 VR, = VRer: and VR_ = VRer_/ Verer-
110 VR, = Verer; and VR_ = VRer_/ VeReg-
111 VR, = Buffered Vergr, and VR_ = VREF—/ VeRer-
ADC10 Bits ADC10 sample-and-hold time
SHTx 12-11 00 4 xADC10CLKs
01 8xADC10CLKs
10 16 x ADC10CLKs
11 64 x ADC10CLKs
ADC10SR Bit10 = ADC10 sampling rate. This bit selects the reference buffer drive capability for
the maximum sampling rate. Setting ADC10SR reduces the current
consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps
REFOUT Bit 9 Reference output
0 Reference output off
1 Reference output on
REFBURST Bit8 Reference burst.

0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion

ADC10 16-25

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

ADC10 Registers

MSC

REF2_5V

REFON

ADC100N

ADC10IE

ADC10IFG

ENC

ADC10SC

16-26

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ADC10

Multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling requires a rising edge of the SHI signal to trigger each
sample-and-conversion.

1 The first rising edge of the SHI signal triggers the sampling timer, but
further sample-and-conversions are performed automatically as soon
as the prior conversion is completed

Reference-generator voltage. REFON must also be set.
0 1.5V
1 25V

Reference generator on
0 Reference off
1 Reference on

ADC10 on
0 ADC10 off
1 ADC10 on

ADC10 interrupt enable
0 Interrupt disabled
1 interrupt enabled

ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion
result. It is automatically reset when the interrupt request is accepted, or it may
be reset by software. When using the DTC this flag is set when a block of
transfers is completed.

0 No interrupt pending

1 Interrupt pending

Enable conversion
0 ADC10 disabled
1 ADC10 enabled

Start conversion. Software-controlled sample-and-conversion start.
ADC10SC and ENC may be set together with one instruction. ADC10SC is
reset automatically.

0 No sample-and-conversion start

1 Start sample-and-conversion

50210751
高亮

50210751
高亮

50210751
高亮

50210751
高亮

ADC10 Registers

ADC10CTL1, ADC10 Control Register 1

15

14

13 12 11 10 9

INCHx SHSx ADC10DF

rw-(0)

rw-(0)

6

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC10DIVx ADC10SSELx CONSEQx

rw-(0)

INCHXx

SHSx

ADC10DF

ISSH

rw—-(0)

rw-(0) rw-(0) rw-(0) rw—(0) rw-(0)

Modifiable only when ENC = 0

Bits
15-12

Bits
11-10

Bit 9

Bit 8

Input channel select. These bits select the channel for a single-conversion or

the highest channel for a sequence of conversions.
0000 A0

0001 At

0010 A2

0011 A3

0100 A4

0101 A5

0110 A6

o111 A7

1000 VeREF+

1001 VRgg_/Verer-

1010 Temperature sensor

1011 (
1100 (Voo — Vss) /2, A12 on MSP430x22x4 devices
1101 (Voo — Vss) / 2, A13 on MSP430x22x4 devices
1110 (Voo — Vss) / 2, A14 on MSP430x22x4 devices
1111 (Vcc — Vss) / 2, A15 on MSP430x22x4 devices

Sample-and-hold source select

00 ADC10SC bit

01 Timer_A.OUT1

10 Timer_A.OUTO

11 Timer_A.OUT2 (Timer_A.OUT1 on MSP43020x2 devices)

ADC10 data format
0 Straight binary
1 2’s complement

Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC10

16-27

50210751
高亮

ADC10 Registers

ADC10DIVx Bits

ADC10
SSELXx

CONSEQx

ADC10
BUSY

16-28

7-5

Bits

4-3

Bits
2-1

Bit 0

ADC10

ADC10 clock divider
000
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC10 clock source select
00 ADC100SC

01 ACLK
10 MCLK
11 SMCLK

Conversion sequence mode select

00 Single-channel-single-conversion
01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC10 busy. This bit indicates an active sample or conversion operation
0 No operation is active.
1 A sequence, sample, or conversion is active.

50210751
高亮

ADC10 Registers

ADC10AEOQ, Analog (Input) Enable Control Register 0

ADC10AEOx

rw-(0) rw-(0)

ADC10AEOx Bits
7-0

rw-(0) rw-(0) rw-(0) rw-(0)

ADC10 analog enable. These bits enable the corresponding pin for analog
input. BITO corresponds to A0, BIT1 corresponds to A1, etc.

0 Analog input disabled

1 Analog input enabled

ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430x22x4 only)

3

2

1

0

ADC10AE1x

Reserved

Reserved

Reserved

Reserved

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

ADC10AE1x Bits ADC10 analog enable. These bits enable the corresponding pin for analog
7-4 input. BIT4 corresponds to A12, BIT5 corresponds to A13, BIT6 corresponds
to A14, and BIT7 corresponds to A15.
0 Analog input disabled
1 Analog input enabled

ADC10 16-29

ADC10 Registers

ADC10MEM, Conversion-Memory Register, Binary Format

15 14 13 12 11 10 9 8
0 0 0 0 0 0 Conversion Results ‘
r0 r0 r0 r0 r0 r0 r r
7 6 5 4 3 2 1 0

Conversion Results ‘

Conversion Bits The 10-bit conversion results are right justified, straight-binary format. Bit 9
Results 15-0 is the MSB. Bits 15-10 are always 0.

ADC10MEM, Conversion-Memory Register, 2’s Complement Format

15 14 13 12 11 10 9 8

Conversion Results ‘

7 6 5 4 3 2 1 0
Conversion Results 0 0 0 0 0 0 ‘
r r r0 r0 r0 r0 r0 r0
Conversion Bits The 10-bit conversion results are left-justified, 2's complement format. Bit 15
Results 15-0 is the MSB. Bits 5-0 are always 0.

16-30 ADC10

ADC10DTCO, Data Transfer Control Register 0

ADC10 Registers

7 6 5 4 3 2 1 0
Reserved ADC10TB | ADC10CT | ADC10B1 | Forid
r0 ro r0 r0 rw-(0) rw-(0) rw-(0) rw-(0)

Reserved Bits Reserved. Always read as 0.

7-4
ADC10TB Bit 3 ADC10 two-block mode.
0 One-block transfer mode
1 Two-block transfer mode

ADC10CT Bit 2 ADC10 continuous transfer.

0 Data transfer stops when one block (one-block mode) or two blocks
(two-block mode) have completed.

1 Data is transferred continuously. DTC operation is stopped only if
ADC10CT cleared, or ADC10SA is written to.

ADC10B1 Bit 1 ADC10 block one. This bit indicates for two-block mode which block is filled
with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has
been set the first time during DTC operation. ADC10TB must also be set
0 Block 2 is filled
1 Block 1 is filled

ADC10 Bit0 This bit should normally be reset.

FETCH

ADC10

16-31

ADC10 Registers

ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0
DTC Transfers
rw—-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
DTC Bits DTC transfers. These bits define the number of transfers in each block.
Transfers 7-0 0 DTC is disabled
01h-OFFh Number of transfers per block
ADC10SA, Start Address Register for Data Transfer
15 14 13 12 1 10 9 8
ADC10SAx

rw—-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw—(1) rw-(0)

7 6 5 4 3 2 1 0

ADC10SAx 0

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r0

ADC10SAx Bits ADC10 start address. These bits are the start address for the DTC. A write

15-1 to register ADC10SA is required to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.

16-32 ADC10

SD16 A

The SD16_A module is a single-converter 16-bit, sigma-delta analog-to-digital
conversion module with high impedance input buffer. This chapter describes

the SD16_A. The SD16_A module is implemented in the MSP430x20x3
devices.

Topic Page
17.1 SD16_A Introduction..............c.ciiiiiiiiiiii i |17-2]
17.2 SD16_AOperationcoiiiiiiiiiiiiiiiiniienennnens |17-4]
17.3 SD16_A REQISIErS ... ''eeeeeeeeeeaaaaaaeaannn [17-15]

17-1

SD16_A Introduction

17.1 SD16_A Introduction

17-2

SD16 A

The SD16_A module consists of one sigma-delta analog-to-digital converter
with an high impedance input buffer and an internal voltage reference. It has
up to 8 fully differential multiplexed inputs including a built-in temperature
sensor. The converter is based on a second-order oversampling sigma-delta
modulator and digital decimation filter. The decimation filter is a comb type
filter with selectable oversampling ratios of up to 1024. Additional filtering can
be done in software.

The high impedance input buffer is not implemented in MSP430x20x3
devices.

Features of the SD16_A include:

16-bit sigma-delta architecture

Up to 8 multiplexed differential analog inputs per channel
Software selectable on-chip reference voltage generation (1.2V)
Software selectable internal or external reference

Built-in temperature sensor

Up to 1.1 MHz modulator input frequency

High impedance input buffer

U U U o od d oo

Selectable low-power conversion mode

The block diagram of the SD16_A module is shown in Figure 17-1.

SD16_A Introduction

Figure 17-1. SD16_A Block Diagram
SD16REFON

T

0 Reference SD16SSELx

1ov [AVee
SD16XDIVx SD16DIVx

~ T T T I 00 |— MCLK

AVss Divider Divider 01 SMCLK

VREF

Reference fM4 1/3/16/48 | 1/2/4/8 10 ACLK
1 TACLK
SD16VMIDON +
Start Conversion |—m SD16SC
SD16INCHx Logic —= SD16SNGL
A0 * 000
A1 * 001 SD16BUFX! SD160SR
- SD16GAINX S
A2 * 010
A3 + 011 do © :
z 2N%0rder \
Ad +_ 100 YA Modulator :> SD16MEMO
A5 t 101 L
+ SD16UNI SD16DF
A6 — |- mno SD16XOSR
+ Reference SD16LP
A7 O* 11
/ AVCC
Temp.
sensor SD16INCHx=101
5R
R
5R

TNot Implemented in MSP430x20x3 devices

SD16_A 17-3

SD16_A Operation

17.2 SD16_A Operation

17.2.1 ADC Core

The SD16_A module is configured with user software. The setup and
operation of the SD16_A is discussed in the following sections.

The analog-to-digital conversion is performed by a 1-bit, second-order
sigma-delta modulator. A single-bit comparator within the modulator quantizes
the input signal with the modulator frequency fyy. The resulting 1-bit data
stream is averaged by the digital filter for the conversion result.

17.2.2 Analog Input Range and PGA

The full-scale input voltage range for each analog input pair is dependent on
the gain setting of the programmable gain amplifier of each channel. The
maximum full-scale range is £Vggr where VggR is defined by:

Virer/2

VFSR = G A INPGA

For a 1.2V reference, the maximum full-scale input range for a gain of 1 is:

+ Vi = 1'21//2 =4 0.6V

Refer to the device-specific data sheet for full-scale input specifications.

17.2.3 Voltage Reference Generator

The SD16_A module has a built-in 1.2V reference. It is enabled by the
SD16REFON bit. When using the internal reference an external 100nF
capacitor connected from VRgp to AVgg is recommended to reduce noise. The
internal reference voltage can be used off-chip when SD16VMIDON = 1. The
buffered output can provide up to 1TmA of drive. When using the internal
reference off-chip, a 470nF capacitor connected from VRgr to AVgg is
required. See device-specific data sheet for parameters.

An external voltage reference can be applied to the Vygr input when
SD16REFON and SD16VMIDON are both reset.

17.2.4 Auto Power-Down

17-4

SD16 A

The SD16_A is designed for low power applications. When the SD16_A is not
actively converting, it is automatically disabled and automatically re-enabled
when a conversion is started. The reference is not automatically disabled, but
can be disabled by setting SD16REFON = 0. When the SD16_A or reference
are disabled, they consume no current.

SD16_A Operation

17.2.5 Channel Selection

Analog Input Setup

The SD16_A can convert up to 8 differential pair inputs multiplexed into the
PGA. Up to five input pairs (A0-A4) are available externally on the device. A
resistive divider to measure the supply voltage is available using the A5
multiplexer input. An internal temperature sensor is available using the A6
multiplexer input. Input A7 is a shorted connection between the + and - input
pair and can be used to calibrate the offset of the SD16_A input stage.

The analog input is configured using the SD16INCTLO and the SD16AE
registers. The SD16INCHXx bits select one of eight differential input pairs of the
analog multiplexer. The gain for the PGA is selected by the SD16GAINX bits.
A total of six gain settings are available. The SD16AEXx bits enable or disable
the analog input pin. Setting any SD16AEX bit disables the multiplexed digital
circuitry for the associated pin. See the device-specific datasheet for pin
diagrams.

During conversion any modification to the SD16INCHx and SD16GAINXx bits
will become effective with the next decimation step of the digital filter. After
these bits are modified, the next three conversions may be invalid due to the
settling time of the digital filter. This can be handled automatically with the
SD16INTDLYx bits. When SD16INTDLY = 00h, conversion interrupt requests
will not begin until the 4t conversion after a start condition.

The high impedance input buffer can be enabled using the SD16BUFXx bits.
The speed settings are selected based on the SD16_A modulator frequency
as shown in Table 17-1.

Table 17-1.High Input Impedance Buffer

SD16BUFx Buffer SD16 Modulator Frequency fy,
00 Buffer disabled
01 Low speed/current fm < 200kHz
10 Medium speed/current 200kHz < fyy < 700kHz
11 High speed/current 700kHz < fj < 1.1MHz

An external R-C anti-aliasing filter is recommended for the SD16_A to prevent
aliasing of the input signal. The cutoff frequency should be < 10 kHz for a 1 Mhz
modulator clock and OSR = 256. The cutoff frequency may set to a lower
frequency for applications that have lower bandwidth requirements.

SD16_A 17-5

SD16_A Operation

17.2.6 Analog Input Characteristics

The SD16_A uses a switched-capacitor input stage that appears as an
impedance to external circuitry as shown in Figure 17-2.

Figure 17-2. Analog Input Equivalent Circuit

| MSP430
|
\ Vg, = Positive external source voltage
Rs ‘ 1 kQ Vs_ = Negative external source voltage
v Rs = External source resistance
St | Cs = Sampling capacitance
| s
} AVge /2
\ Cs
|
\
Rs ‘ 1kQ

| TNotimplemented in MSP430x20x3 devices

When the buffers are used, Rg does not affect the sampling frequency.
However, when the buffers are not used or are not present on the device, the
maximum sampling frequency may be calculated from the minimum settling
time of the sampling circuit given by:

VREF
ty < (Rg + 1kQ2) x Cg X ln(GAlN NI VAx)
where
_ 1 _ ‘AVCC _ ‘
fS—ths and Ve = 5 Vs

Cg varies with the gain setting as shown in Table 17-2.

Table 17-2.Sampling Capacitance

PGA Gain Sampling Capacitance Cg
1 1.25 pF
2,4 2.5 pF
8 5 pF
16, 32 10 pF

17-6 SD16 A

17.2.7 Digital Filter

SD16_A Operation

The digital filter processes the 1-bit data stream from the modulator using a
SINC3 comb filter. The transfer function is described in the z-Domain by:

3
1 1 _Zf()SR
HE) = (o5r < =57

and in the frequency domain by:

3 3
sinc(OSRnf:i) sin(OSR X 7 X fi)
Hlf) = =\ - |ose -
. (f) OSR . (f)
sinc| i~ sin| 7w X+~
M M

where the oversampling rate, OSR, is the ratio of the modulator frequency fy
to the sample frequency fg. Figure 17-3 shows the filter’s frequency response
for an OSR of 32. The first filter notch is at fg = fy//OSR. The notch’s frequency
can be adjusted by changing the modulator’s frequency, fy, using
SD16SSELx and SD16DIVx and the oversampling rate using the SD160SRx
and SD16XOSR bits .

The digital filter for each enabled ADC channel completes the decimation of
the digital bit-stream and outputs new conversion results to the SD16MEMO
register at the sample frequency fs.

Figure 17-3. Comb Filter’s Frequency Response with OSR = 32

GAIN [dB]

0

-20+

|
[0
<

-1001 -|-

-1201 - -

-140

Frequency i

SD16_A 17-7

SD16_A Operation

Figure 17-4 shows the digital filter step response and conversion points. For
step changes at the input after start of conversion a settling time must be
allowed before a valid conversion result is available. The SD16INTDLYXx bits
can provide sufficient filter settling time for a full-scale change at the ADC
input. If the step occurs synchronously to the decimation of the digital filter the
valid data will be available on the third conversion. An asynchronous step will
require one additional conversion before valid data is available.

Figure 17-4. Digital Filter Step Response and Conversion Points

17-8

0.8+

0.6t

% VEsr

0.4+

0.2+

Asynchronous Step Synchronous Step
T T T T T T T T T
@ N C)
—
©)
2
4 0.8+ 4
41 0.6 4
©)
1 04 i
41 0.2 E
7
FrTTrTr T T T TT T T T T T T 1T 0 T TT1TT 17TT T7TT T T T T TT TT
Conversion Conversion
SD16 A

Digital Filter Output

SD16_A Operation

The number of bits output by the digital filter is dependent on the oversampling
ratio and ranges from 15 to 30 bits. Figure 17-5 shows the digital filter output
and their relation to SD16MEMO for each OSR, LSBACC, and SD16UNI
setting. For example, for OSR = 1024, LSBACC = 0, and SD16UNI = 1, the
SD16MEMO register contains bits 28 - 13 of the digital filter output. When OSR
= 32, the one (SD16UNI = 0) or two (SD16UNI=1) LSBs are always zero.

The SD16LSBACC and SD16LSBTOG bits give access to the least significant
bits of the digital filter output. When SD16LSBACC = 1 the 16 least significant
bits of the digital filter’s output are read from SD16MEMO using word
instructions. The SD16MEMO register can also be accessed with byte
instructions returning only the 8 least significant bits of the digital filter output.

When SD16LSBTOG = 1 the SD16LSBACC bit is automatically toggled each
time SD16MEMO is read. This allows the complete digital filter output result to
be read with two reads of SD16MEMO. Setting or clearing SD16LSBTOG does
not change SD16LSBACC until the next SD16MEMO access.

Figure 17-5. Used Bits of Digital Filter Output

OSR=1024, LSBACC=0, SD16UNI=1

co‘
<

|2

\
28|27|26|25|24|23|22|21 |20|19|18|17|16|15|14|13 12|11 |10| 9| 8| 7 | 6| 5| 4| 3| 2| 1 |0|

OSR=1024, LSBACC=1, SD16UNI=1

v 14
|29|28|27|26|25|24|23|22|21 |20|19|18|17|16 15|14|13|12|11 |10| 9| 8| 7 | 6| 5| 4| 3| 2| 1 |o

OSR=1024, LSBACC=0, SD16UNI=0

] v
29|28|27|26|25|24|23|22|21 |20|19|18|17|16|15|14 13|12|11 |10| 9| 8| 7 | 6| 5| 4| 3| 2| 1 |0|

OSR=1024, LSBACC=1, SD16UNI=0

\
|29|28|27|26|25|24|23|22|21 |20|19|18|17|16 15|14|13|12|11 |10| 9| 8| 7 | 6| 5| 4| 3| 2| 1 |0

OSR=512, LSBACC=0, SD16UNI=1

y
|29 28]27 |26

/ Y
25 [24]23]22]2120[19[18[17[16[15[14[13]12[11]10] 9 [8| 76| 5] 4[3] 2] 1] 0]

OSR=512, LSBACC=1, SD16UNI=1

\
|20] 28|27 |26 |25 |24 |23] 22[21]20[19[18[17] 16[15 |14 [13[12[11]10[o[8| 76| 5| 4| 3| 2| 1] 0

OSR=512, LSBACC=0, SD16UNI=0

v v
|20| 28|27 |26 |25 |24 |23 22[21 2019 |18]17[16]15 14 [13[12[11[10] 9| 8] 7|6 | 5] 4| 3| 2] 1] 0]

OSR=512, LSBACC=1, SD16UNI=0

\ \
|29|28|27|26|25|24|23|22|21 |20|19|18|17|16 15|14|13|12|11 |10| 9| 8| 7 | 6| 5| 4| 3| 2| 1 |0

SD16_A 17-9

SD16_A Operation

OSR=256, LSBACC=0, SD16UNI=1

\ /
20| 28] 27|26 |25 |24 |23 | 22| 21|20 [19[18]17]16[1514 |13[12[11]10[9 8| 7 |6 5| 4| 3] 2] 1] 0]

OSR=256, LSBACC=1, SD16UNI=1

\
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16

15\14‘13‘12‘11‘10\ 9‘ 8‘ 7‘ 6 ‘5\ 4\ 3\ 2\ 1 \o

OSR=256, LSBACC=0, SD16UNI=0

\
20| 28| 27|26 |25 |24 | 23] 22| 21|20 |19]18]17] 16] 15|14 [13[12]11[10| 9 | 8| 7|6 | 5| 4] 3] 2] 1] 0]

OSR=256, LSBACC=1, SD16UNI=0

‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16

15\14‘13‘12‘11‘10\ 9‘ 8‘ 7‘ 6 ‘5\ 4\ 3\ 2\ 1 \o

OSR=128, LSBACC=0, SD16UNI=1

1 [
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9\ 8‘ 7\ 6 \5\ 4 3\ 2\ 1\ o\

OSR=128, LSBACC=1, SD16UNI=1

\
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16

\4
15\14\13\12\11\10\ 9\ 8‘ 7\ 6 \5\ 4\ 3\ 2\ 1 \0

OSR=128, LSBACC=0, SD16UNI=0

/ /
‘29‘28‘27‘26‘25‘24‘23‘22‘21 20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9\ 8‘ 7\ 6 \5 4\ 3\ 2\ 1\ 0\

OSR=128, LSBACC=1, SD16UNI=0

\
\29\28\27\26\25\24\23\22\21\20\19\18\17\16

15/14[13[12[11]10[9| 8| 7|6]5] 4| 3] 2] 1]0

OSR=64, LSBACC=0, SD16UNI=1

\ Y
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17 16‘15‘14‘13‘12‘11‘10‘ 9\ 8‘ 7\ 6 \5\ 4\ 3\ 2\ 1 0\

OSR=64, LSBACC=1, SD16UNI=1

\ 4
20| 28| 27|26 |25 |24 23] 22| 21]20 |19 18[17[16

15[14[13[12/11 10/ 9| 8| 7|6 |5[4| 3] 2] 1]0

OSR=64, LSBACC=0, SD16UNI=0

A \ 4
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18 17‘16‘15‘14‘13‘12‘11‘10‘ 9‘ 8‘ 7‘ 6 ‘5‘ 4\ 3\ 2 1\ 0\

OSR=64, LSBACC=1, SD16UNI=0

y
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16

\/
15\14\13\12\11\10\ 9\ 8‘ 7\ 6 \5\ 4\ 3\ 2\ 1 \o

OSR=32, LSBACC=x, SD16UNI=1

/
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16‘15‘14 13‘12\11\10‘ 9‘ 8‘ 7‘ 6 ‘5‘ 4\ 3\ 2\ 1\ 0\

OSR=32, LSBACC=x, SD16UNI=0

/
‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19‘18‘17‘16‘15 14\13\12\11\10\ 9\ 8‘ 7\ 6 \5\ 4\ 3\ 2\ 1\ o\

17-10 SD16_A

SD16_A Operation

17.2.8 Conversion Memory Register: SD16MEMO

The SD16MEMO register is associated with the SD16_A channel. Conversion
results are moved to the SD16MEMO register with each decimation step of the
digital filter. The SD16IFG bit is set when new data is written to SD16MEMO.
SD16IFG is automatically cleared when SD16MEMO is read by the CPU or
may be cleared with software.

Output Data Format

The output data format is configurable in two’s complement, offset binary or
unipolar mode as shown in Table 17-3.The data format is selected by the
SD16DF and SD16UNI bits.

Table 17-3.Data Format

SD16UNI SD16DF Format Analog Input SD16MEMOt Digital Filter Output

(OSR =256)
. +FSR FFFF FFFFFF
Bipolar
0 0 Offset ZERO 8000 800000
Binary -FSR 0000 000000
. +FSR 7FFF 7FFFFF
Bipolar
0 1 Two's ZERO 0000 000000
compliment ~FSR 8000 800000
+FSR FFFF FFFFFF
1 0 Unipolar ZERO 0000 800000
“FSR 0000 000000

T Independent of SD160SRx and SD16XO0SR settings; SD16LSBACC = 0.

Figure 17-6 shows the relationship between the full-scale input voltage range
from -Vggr to +VEsr and the conversion result. The data formats are
illustrated.

Figure 17-6. Input Voltage vs. Digital Output

Bipolar Output: Offset Binary Bipolar Output: 2’s complement Unipolar Output
A SD16MEMX A SD16MEMX A SD16MEMx

FFFFh- TFFFh-——— - = - = —— FFFFh-

8000h

+VFSR -VFsSR

! —_ |- 8000h
-VFSR

SD16 A 17-11

SD16_A Operation

17.2.9 Conversion Modes

The SD16_A module can be configured for two modes of operation, listed in
Table 17-4. The SD16SNGL bit selects the conversion mode.

Table 17-4.Conversion Mode Summary

SD16SNGL Mode Operation
1 Single conversion The channel is converted once.
0 Continuous conversion The channel is converted continuously.

Single Conversion

Setting the SD16SC bit of the channel initiates one conversion on that channel
when SD16SNGL = 1. The SD16SC bit will automatically be cleared after
conversion completion.

Clearing SD16SC before the conversion is completed immediately stops
conversion of the channel, the channel is powered down and the
corresponding digital filter is turned off. The value in SD16MEMO can change
when SD16SC is cleared. It is recommended that the conversion data in
SD16MEMO be read prior to clearing SD16SC to avoid reading an invalid
result.

Continuous Conversion

When SD16SNGL = 0 continuous conversion mode is selected. Conversion
of the channel will begin when SD16SC is set and continue until the SD16SC
bit is cleared by software.

Clearing SD16SC immediately stops conversion of the selected channel, the
channel is powered down and the corresponding digital filter is turned off. The
value in SD16MEMO can change when SD16SC is cleared. It is recommended
that the conversion data in SD16MEMO be read prior to clearing SD16SC to
avoid reading an invalid result.

Figure 17-7 shows conversion operation.

Figure 17-7. Single Channel Operation

| Conversion (:)

SD16SNGL = 1
SD16SC } Set by SW |Auto—c|ear
| Conversion () Conversion () Conversion () ConvI
SD16SNGL =0 — — —
SD16SC } Set by SW Cleared by SW t
>
O = Result written to SD16MEMO Time

17-12 SD16_A

SD16_A Operation

17.2.10 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel SD16INCHx = 110 and sets SD16REFON = 1. Any other configuration
is done as if an external channel was selected, including SD16INTDLYx and
SD16GAINXx settings. Because the internal reference must be on to use the
temperature sensor, it is not possible to use an external reference for the
conversion of the temperature sensor voltage. Also, the internal reference will
be in contention with any used external reference. In this case, the
SD16VMIDON bit may be set to minimize the affects of the contention on the
conversion.

The typical temperature sensor transfer function is shown in Figure 17-8.
When switching inputs of an SD16_A channel to the temperature sensor,
adequate delay must be provided using SD16INTDLYXx to allow the digital filter
to settle and assure that conversion results are valid. The temperature sensor
offset error can be large, and may need to be calibrated for most applications.
See device-specific data sheet for temperature sensor parameters.

Figure 17-8. Typical Temperature Sensor Transfer Function

Volts

0.500 —

0.450 —

0.400 —

0.350 —

0.300 — Vsensortyp = TCsensor(273 + T[°C]) + Vosfiset, sensor [MV]

0.250 —

0.200 T T
Celsius

-50 0 50 100

SD16 A 17-13

SD16_A Operation

17.2.11

Interrupt Handling

The SD16_A has 2 interrupt sources for its ADC channel:
(1 SD16IFG
(1 SD160VIFG

The SD16IFG bit is set when the SD16MEMO memory register is written with
a conversion result. An interrupt request is generated if the corresponding
SD16IE bit and the GIE bit are set. The SD16_A overflow condition occurs
when a conversion result is written to SD16MEMO location before the previous
conversion result was read.

SD161V, Interrupt Vector Generator

All SD16_A interrupt sources are prioritized and combined to source a single
interrupt vector. SD161V is used to determine which enabled SD16_A interrupt
source requested an interrupt. The highest priority SD16_A interrupt request
that is enabled generates a number in the SD161V register (see register
description). This number can be evaluated or added to the program counter
to automatically enter the appropriate software routine. Disabled SD16_A
interrupts do not affect the SD161V value.

Any access, read or write, of the SD16IV register has no effect on the
SD160VIFG or SD16IFG flags. The SD16IFG flags are reset by reading the
SD16MEMO register or by clearing the flags in software. SD160VIFG bits can
only be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the SD160VIFG and one or more SD16IFG
interrupts are pending when the interrupt service routine accesses the SD161V
register, the SD160VIFG interrupt condition is serviced first and the
corresponding flag(s) must be cleared in software. After the RETI instruction
of the interrupt service routine is executed, the highest priority SD16IFG
pending generates another interrupt request.

Interrupt Delay Operation

17-14

SD16 A

The SD16INTDLYXx bits control the timing for the first interrupt service request
for the corresponding channel. This feature delays the interrupt request for a
completed conversion by up to four conversion cycles allowing the digital filter
to settle prior to generating an interrupt request. The delay is applied each time
the SD16SC bit is set or when the SD16GAINx or SD16INCHXx bits for the
channel are modified. SD16INTDLYx disables overflow interrupt generation
for the channel for the selected number of delay cycles. Interrupt requests for
the delayed conversions are not generated during the delay.

17.3 SD16_A Registers

The SD16_A registers are listed in Table 17-5:

Table 17-5.SD16_A Registers

SD16_A Registers

Register Short Form Register Type Address Initial State

SD16_A Control SD16CTL Read/write 0100h Reset with PUC
SD16_A Interrupt Vector SD16lV Read/write 0110h Reset with PUC
SD16_A Channel 0 Control SD16CCTLO Read/write 0102h Reset with PUC
SD16_A Conversion Memory SD16MEMO Read/write 0112h Reset with PUC
SD16_A Input Control SD16INCTLO Read/write 0BOh Reset with PUC
SD16_A Analog Enable SD16AE Read/write 0B7h Reset with PUC

SD16 A 17-15

SD16_A Registers

SD16CTL, SD16_A Control Register

15 14 13 12 1 10 9 8
Reserved SD16XDIVx SD16LP ‘
r0 r0 r0 r0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
SD16DIVx SD16SSELXx vnoeN Ropcey | SD16OVIE | Reserved ‘
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r0
Reserved Bits Reserved
15-12
SD16XDIVx Bits SD16_A clock divider
11-9 000 /1
001 /3
010 /16
011 /48
1xx Reserved
SD16LP Bit 8 Low power mode. This bit selects a reduced speed, reduced power mode
0 Low-power mode is disabled
1 Low-power mode is enabled. The maximum clock frequency for the
SD16_A is reduced.
SD16DIVx Bits SD16_A clock divider
7-6 00 /1
o1 /2
10 /4
1 /8
SD16SSELx Bits SD16_A clock source select
5-4 00 MCLK
01 SMCLK
10 ACLK
11 External TACLK
SD16 Bit 3 Vmip buffer on
VMIDON 0 Off
1 On
SD16 Bit 2 Reference generator on
REFON 0 Reference off
1 Reference on
SD160VIE Bit 1 SD16_A overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled
Reserved Bit 0 Reserved

17-16 SD16_A

SD16_A Registers

SD16CCTLO, SD16_A Control Register 0

15 14 13 12 11 10 9 8
Reserved SD16BUFxt SD16UNI SD16XOSR | SD16SNGL SD160SRx ‘
r0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
7 6 5 4 3 2 1 0
Lomiee | LSASs | ShI& | spieDF | SD16IE | SDIGIFG | SD16SC | Reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0

tReserved in MSP430x20x3 devices

Reserved

SD16BUFx

SD16UNI

SD16XOSR

SD16SNGL

SD160SRx

SD16
LSBTOG

Bit 15

Bits
14-13

Bit 12

Bit 11

Bit 10

Bits

Bit 7

Reserved

High impedance input buffer mode
00 Buffer disabled

01 Slow speed/current

10 Medium speed/current

11 High speed/current

Unipolar mode select
0 Bipolar mode
1 Unipolar mode

Extended oversampling ratio. This bit, along with the SD160SRXx bits,
select the oversampling ratio. See SD160SRXx bit description for settings.

Single conversion mode select
0 Continuous conversion mode
1 Single conversion mode

Oversampling ratio
When SD16XOSR =0

00 256

01 128

10 64

11 32

When SD16XOSR = 1
00 512

01 1024

10 Reserved
11 Reserved

LSB toggle. This bit, when set, causes SD16LSBACC to toggle each time
the SD16MEMO register is read.

0 SD16LSBACC does not toggle with each SD16MEMO read

1 SD16LSBACC toggles with each SD16MEMO read

SD16_A 17-17

SD16_A Registers

SD16
LSBACC

Bit 6

SD160VIFG Bit 5

SD16DF

SD16IE

SD16IFG

SD16SC

Reserved

17-18

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

SD16 A

LSB access. This bit allows access to the upper or lower 16-bits of the
SD16_A conversion result.

0 SD16MEMXx contains the most significant 16-bits of the conversion.
1 SD16MEMXx contains the least significant 16-bits of the conversion.

SD16_A overflow interrupt flag
0 No overflow interrupt pending
1 Overflow interrupt pending

SD16_A data format
0 Offset binary
1 2’s complement

SD16_A interrupt enable
0 Disabled
1 Enabled

SD16_A interrupt flag. SD16IFG is set when new conversion results are
available. SD16IFG is automatically reset when the corresponding
SD16MEMX register is read, or may be cleared with software.

0 No interrupt pending

1 Interrupt pending

SD16_A start conversion
0 No conversion start
1 Start conversion

Reserved

SD16_A Registers

SD16INCTLO, SD16_A Input Control Register

7 6 5 4 3 2 1 0
SD16INTDLYx SD16GAINX SD16INCHx
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
SD16 Bits Interrupt delay generation after conversion start. These bits select the
INTDLYX 7-6 delay for the first interrupt after conversion start.

00 Fourth sample causes interrupt
01 Third sample causes interrupt
10 Second sample causes interrupt
11 First sample causes interrupt

SD16GAINXx Bits SD16_A preamplifier gain
5-3 000 x1
001 x2
010 x4
011 x8
100 x16
101 x32
110 Reserved
111 Reserved

SD16INCHx Bits SD16_A channel differential pair input

2-0 000 AO
001 A1
010 A2
011 A3
100 A4
101 A5- (AVge — AVgs) / 11
110 A6- Temperature Sensor
111 A7- Short for PGA offset measurement

SD16 A 17-19

SD16_A Registers

SD16MEMO, SD16_A Conversion Memory Register

15 14 13 12 11 10 9 8
Conversion Results
r r r r r r r r
7 6 5 4 3 2 1 0
Conversion Results
r r r r r r r r
Conversion Bits Conversion Results. The SD16MEMXx register holds the upper or lower
Result 15-0 16-bits of the digital filter output, depending on the SD16LSBACC bit.
SD16AE, SD16_A Analog Input Enable Register
7 6 5 4 3 2 1 0
SD16AE7 | SD16AE6 | SD16AE5 | SD16AE4 | SD16AE3 | SD16AE2 | SD16AE1 SD16AEO
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
SD16AEXx Bits SD16_A analog enable
7-0 0 External input disabled. Negative inputs are internally connected to

VSS.
1 External input enabled.

17-20 SD16_A

SD161V, SD16_A Interrupt Vector Register

SD16_A Registers

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0 ‘
r0 ro ro r0 r0 ro ro r0
7 6 5 4 3 2 1 0
0 0 0 SD161Vx 0 ‘
r0 ro ro r-0 r-0 r-0 r-0 r0
SD16IVx Bits SD16_A interrupt vector value
15-0
SD16IvV Interrupt
Contents Interrupt Source Interrupt Flag Priority
000h No interrupt pending -
002h SD16MEMXx overflow SD16CCTLx Highest
SD160VIFG
004h SD16_A Interrupt SD16CCTLO
SD16IFG
006h Reserved -
008h Reserved -
00Ah Reserved -
00Ch Reserved -
00Eh Reserved -
010h Reserved - Lowest

SD16 A

17-21

	IMPORTANT NOTICE
	Preface - Read This First
	About This Manual
	Related Documentation From Texas Instruments
	FCC Warning
	Notational Conventions
	Glossary
	Register Bit Conventions

	Contents
	Introduction
	Architecture
	Flexible Clock System
	Embedded Emulation
	Address Space
	Flash/ROM
	RAM
	Peripheral Modules
	Special Function Registers (SFRs)
	Memory Organization

	MSP430x2xx Family Enhancements

	System Resets, Interrupts, and Operating Modes
	System Reset and Initialization
	Brownout Reset (BOR)
	Device Initial Conditions After System Reset
	Software Initialization

	Interrupts
	(Non)-Maskable Interrupts (NMI)
	Reset/NMI Pin
	Flash Access Violation
	Oscillator Fault
	Example of an NMI Interrupt Handler

	Maskable Interrupts
	Interrupt Processing
	Interrupt Acceptance
	Return From Interrupt
	Interrupt Nesting

	Interrupt Vectors

	Operating Modes
	Entering and Exiting Low-Power Modes

	Principles for Low-Power Applications
	Connection of Unused Pins

	RISC 16-Bit CPU
	CPU Introduction
	CPU Registers
	Program Counter (PC)
	Stack Pointer (SP)
	Status Register (SR)
	Constant Generator Registers CG1 and CG2
	Constant Generator - Expanded Instruction Set

	General-Purpose Registers R4 - R15

	Addressing Modes
	Register Mode
	Indexed Mode
	Symbolic Mode
	Absolute Mode
	Indirect Register Mode
	Indirect Autoincrement Mode
	Immediate Mode

	Instruction Set
	Double-Operand (Format I) Instructions
	Single-Operand (Format II) Instructions
	Jumps
	* ADC[.W] Add carry to destination * ADC.B Add carry to destination
	ADD[.W] Add source to destination ADD.B Add source to destination
	ADDC[.W] Add source and carry to destination ADDC.B Add source and carry to destination
	AND[.W] Source AND destination AND.B Source AND destination
	BIC[.W] Clear bits in destination BIC.B Clear bits in destination
	BIS[.W] Set bits in destination BIS.B Set bits in destination
	BIT[.W] Test bits in destination BIT.B Test bits in destination
	* BR, BRANCH Branch to destination
	CALL Subroutine
	* CLR[.W] Clear destination * CLR.B Clear destination
	* CLRC Clear carry bit
	* CLRN Clear negative bit
	* CLRZ Clear zero bit
	CMP[.W] Compare source and destination CMP.B Compare source and destination
	* DADC[.W] Add carry decimally to destination * DADC.B Add carry decimally to destination
	DADD[.W] Source and carry added decimally to destination DADD.B Source and carry added decimally to destination
	* DEC[.W] Decrement destination * DEC.B Decrement destination
	* DECD[.W] Double-decrement destination * DECD.B Double-decrement destination
	* DINT Disable (general) interrupts
	* EINT Enable (general) interrupts
	* INC[.W] Increment destination * INC.B Increment destination
	* INCD[.W] Double-increment destination * INCD.B Double-increment destination
	* INV[.W] Invert destination * INV.B Invert destination
	JC Jump if carry set JHS Jump if higher or same
	JEQ, JZ Jump if equal, jump if zero
	JGE Jump if greater or equal
	JL Jump if less
	JMP Jump unconditionally
	JN Jump if negative
	JNC Jump if carry not set JLO Jump if lower
	JNE Jump if not equal JNZ Jump if not zero
	MOV[.W] Move source to destination MOV.B Move source to destination
	* NOP No operation
	* POP[.W] Pop word from stack to destination * POP.B Pop byte from stack to destination
	PUSH[.W] Push word onto stack PUSH.B Push byte onto stack
	* RET Return from subroutine
	RETI Return from interrupt
	* RLA[.W] Rotate left arithmetically * RLA.B Rotate left arithmetically
	* RLC[.W] Rotate left through carry * RLC.B Rotate left through carry
	RRA[.W] Rotate right arithmetically RRA.B Rotate right arithmetically
	RRC[.W] Rotate right through carry RRC.B Rotate right through carry
	* SBC[.W] Subtract source and borrow/.NOT. carry from destination * SBC.B Subtract source and borrow/.NOT. carry from destination
	* SETC Set carry bit
	* SETN Set negative bit
	* SETZ Set zero bit
	SUB[.W] Subtract source from destination SUB.B Subtract source from destination
	SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination
	SWPB Swap bytes
	SXT Extend Sign
	* TST[.W] Test destination * TST.B Test destination
	XOR[.W] Exclusive OR of source with destination XOR.B Exclusive OR of source with destination

	Instruction Cycles and Lengths
	Interrupt and Reset Cycles
	Format-II (Single Operand) Instruction Cycles and Lengths
	Format-III (Jump) Instruction Cycles and Lengths
	Format-I (Double Operand) Instruction Cycles and Lengths

	Instruction Set Description

	Basic Clock Module+
	Basic Clock Module+ Introduction
	Basic Clock Module+ Operation
	Basic Clock Module+ Features for Low-Power Applications
	Internal Very Low Power, Low Frequency Oscillator
	LFXT1 Oscillator
	XT2 Oscillator
	Digitally-Controlled Oscillator (DCO)
	Disabling the DCO
	Adjusting the DCO frequency
	Using an External Resistor (ROSC) for the DCO

	DCO Modulator
	Basic Clock Module+ Fail-Safe Operation
	Sourcing MCLK from a Crystal

	Synchronization of Clock Signals

	Basic Clock Module+ Registers
	DCOCTL, DCO Control Register
	BCSCTL1, Basic Clock System Control Register 1
	BCSCTL2, Basic Clock System Control Register 2
	BCSCTL3, Basic Clock System Control Register 3
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Flash Memory Controller
	Flash Memory Introduction
	Flash Memory Segmentation
	SegmentA

	Flash Memory Operation
	Flash Memory Timing Generator
	Flash Timing Generator Clock Selection

	Erasing Flash Memory
	Initiating an Erase from Within Flash Memory
	Initiating an Erase from RAM

	Writing Flash Memory
	Byte/Word Write
	Initiating a Byte/Word Write from Within Flash Memory
	Initiating a Byte/Word Write from RAM
	Block Write
	Block Write Flow and Example

	Flash Memory Access During Write or Erase
	Stopping a Write or Erase Cycle
	Configuring and Accessing the Flash Memory Controller
	Flash Memory Controller Interrupts
	Programming Flash Memory Devices
	Programming Flash Memory via JTAG
	Programming Flash Memory via the Bootstrap loader (BSL)
	Programming Flash Memory via a Custom Solution

	Flash Memory Registers
	FCTL1, Flash Memory Control Register
	FCTL2, Flash Memory Control Register
	FCTL3, Flash Memory Control Register FCTL3

	Digital I/O
	Digital I/O Introduction
	I/O Operation
	Input Register PxIN
	Output Registers PxOUT
	Direction Registers PxDIR
	Pull-Up/Down Resistor Enable Registers PxREN
	Function Select Registers PxSEL
	P1 and P2 Interrupts
	Interrupt Flag Registers P1IFG, P2IFG
	Interrupt Edge Select Registers P1IES, P2IES
	Interrupt Enable P1IE, P2IE

	Configuring Unused Port Pins

	Digital I/O Registers

	Watchdog Timer+
	Watchdog Timer+ Introduction
	Watchdog Timer+ Operation
	Watchdog timer+ Counter
	Watchdog Mode
	Interval Timer Mode
	Watchdog timer+ Interrupts
	Watchdog timer+ Clock Fail-safe Operation
	Operation in Low-Power Modes
	Software Examples

	Watchdog Timer+ Registers
	WDTCTL, Watchdog timer+ Register
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Timer_A
	Timer_A Introduction
	Timer_A Operation
	16-Bit Timer Counter
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TACCR0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Period Register TACCR0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example—Timer in Up/Down Mode

	Timer_A Interrupts
	TACCR0 Interrupt
	TAIV, Interrupt Vector Generator
	TAIV Software Example

	Timer_A Registers
	TACTL, Timer_A Control Register
	TAR, Timer_A Register
	TACCTLx, Capture/Compare Control Register
	TAIV, Timer_A Interrupt Vector Register

	Timer_B
	Timer_B Introduction
	Similarities and Differences From Timer_A

	Timer_B Operation
	16-Bit Timer Counter
	TBR Length
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TBCL0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Value of Period Register TBCL0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode
	Compare Latch TBCLx
	Grouping Compare Latches

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example - Timer in Up/Down Mode

	Timer_B Interrupts
	TBCCR0 Interrupt Vector
	TBIV, Interrupt Vector Generator
	TBIV, Interrupt Handler Examples

	Timer_B Registers
	Timer_B Registers
	TBR, Timer_B Register
	TBCCTLx, Capture/Compare Control Register
	TBIV, Timer_B Interrupt Vector Register

	Universal Serial Interface
	USI Introduction
	USI Operation
	USI Initialization
	USI Clock Generation
	SPI Mode
	SPI Master Mode
	SPI Slave Mode
	USISR Operation
	SPI Interrupts

	I2C Mode
	I2C Master Mode
	I2C Slave Mode
	I2C Transmitter
	I2C Receiver
	START Condition
	STOP Condition
	Releasing SCL
	Arbitration
	I2C Interrupts

	USI Registers
	USICTL0, USI Control Register 0
	USICTL1, USI Control Register 1
	USICTL1, USI Control Register 1
	USICNT, USI Bit Counter Register
	USISRL, USI Low Byte Shift Register
	USISRH, USI High Byte Shift Register

	Universal Serial Communication Interface, UART Mode
	USCI Overview
	USCI Introduction: UART Mode
	USCI Operation: UART Mode
	USCI Initialization and Reset
	Character Format
	Asynchronous Communication Formats
	Idle-Line Multiprocessor Format
	Transmitting an Idle Frame
	Address-Bit Multiprocessor Format
	Break Reception and Generation

	Automatic Baud Rate Detection
	Transmitting a Break/Synch Field

	IrDA Encoding and Decoding
	IrDA Encoding
	IrDA Decoding

	Automatic Error Detection
	USCI Receive Enable
	Receive Data Glitch Suppression

	USCI Transmit Enable
	UART Baud Rate Generation
	Low-Frequency Baud Rate Generation
	Oversampling Baud Rate Generation

	Setting a Baud Rate
	Low–Frequency Baud Rate Mode Setting
	Oversampling Baud Rate Mode Setting

	Transmit Bit Timing
	Low–Frequency Baud Rate Mode Bit Timing
	Oversampling Baud Rate Mode Bit Timing

	Receive Bit Timing
	Typical Baud Rates and Errors
	Using the USCI Module in UART Mode with Low Power Modes
	USCI Interrupts
	USCI Transmit Interrupt Operation
	USCI Receive Interrupt Operation
	USCI Interrupt Usage
	Shared Interrupt Vectors Software Example

	USCI Registers: UART Mode
	UCAxCTL0, USCI_Ax Control Register 0
	UCAxCTL1, USCI_Ax Control Register 1
	UCAxBR0, USCI_Ax Baud Rate Control Register 0
	UCAxBR1, USCI_Ax Baud Rate Control Register 1
	UCAxMCTL, USCI_Ax Modulation Control Register
	UCAxSTAT, USCI_Ax Status Register
	UCAxRXBUF, USCI_Ax Receive Buffer Register
	UCAxTXBUF, USCI_Ax Transmit Buffer Register
	UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register
	UCAxIRRCTL, USCI_Ax IrDA Receive Control Register
	UCAxABCTL, USCI_Ax Auto Baud Rate Control Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_A1 Interrupt Enable Register
	UC1IFG, USCI_A1 Interrupt Flag Register

	Universal Serial Communication Interface, SPI Mode
	USCI Overview
	USCI Introduction: SPI Mode
	USCI Operation: SPI Mode
	USCI Initialization and Reset
	Character Format
	Master Mode
	Four-Pin SPI Master Mode

	Slave Mode
	Four-Pin SPI Slave Mode

	SPI Enable
	Transmit Enable
	Receive Enable

	Serial Clock Control
	Serial Clock Polarity and Phase

	Using the SPI Mode with Low Power Modes
	SPI Interrupts
	SPI Transmit Interrupt Operation
	SPI Receive Interrupt Operation
	USCI Interrupt Usage
	Shared Interrupt Vectors Software Example

	USCI Registers: SPI Mode
	UCAxCTL0, USCI_Ax Control Register 0 UCBxCTL0, USCI_Bx Control Register 0
	UCAxCTL1, USCI_Ax Control Register 1 UCBxCTL1, USCI_Bx Control Register 1
	UCAxBR0, USCI_Ax Bit Rate Control Register 0 UCBxBR1, USCI_Bx Bit Rate Control Register 0
	UCAxBR1, USCI_Ax Bit Rate Control Register 1 UCBxBR1, USCI_Bx Bit Rate Control Register 1
	UCAxSTAT, USCI_Ax Status Register UCBxSTAT, USCI_Bx Status Register
	UCAxRXBUF, USCI_Ax Receive Buffer Register UCBxRXBUF, USCI_Bx Receive Buffer Register
	UCAxTXBUF, USCI_Ax Transmit Buffer Register UCBxTXBUF, USCI_Bx Transmit Buffer Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register
	UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

	Universal Serial Communication Interface, I2C Mode
	USCI Overview
	USCI Introduction: I2C Mode
	USCI Operation: I2C Mode
	USCI Initialization and Reset
	I2C Serial Data
	I2C Addressing Modes
	7-Bit Addressing
	10-Bit Addressing
	Repeated Start Conditions

	I2C Module Operating Modes
	Slave Mode
	I2C Slave Transmitter Mode
	I2C Slave Receiver Mode
	I2C Slave 10-bit Addressing Mode

	Master Mode
	I2C Master Transmitter Mode
	I2C Master Receiver Mode
	I2C Master 10-bit Addressing Mode
	Arbitration

	I2C Clock Generation and Synchronization
	Using the USCI Module in I2C Mode with Low Power Modes
	USCI Interrupts in I2C Mode
	I2C Transmit Interrupt Operation
	I2C Receive Interrupt Operation
	I2C State Change Interrupt Operation.
	Interrupt Vector Assignment
	Shared Interrupt Vectors Software Example

	USCI Registers: I2C Mode
	UCBxCTL0, USCI_Bx Control Register 0
	UCBxCTL1, USCI_Bx Control Register 1
	UCBxBR0, USCI_Bx Baud Rate Control Register 0
	UCBxBR1, USCI_Bx Baud Rate Control Register 1
	UCBxSTAT, USCI_Bx Status Register
	UCBxRXBUF, USCI_Bx Receive Buffer Register
	UCBxTXBUF, USCI_Bx Transmit Buffer Register
	UCBxI2COA, USCIBx I2C Own Address Register
	UCBxI2CSA, USCI_Bx I2C Slave Address Register
	UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register
	IE2, Interrupt Enable Register 2
	IFG2, Interrupt Flag Register 2
	UC1IE, USCI_B1 Interrupt Enable Register
	UC1IFG, USCI_B1 Interrupt Flag Register

	OA
	OA Introduction
	OA Operation
	OA Amplifier
	OA Input
	OA Output and Feedback Routing
	OA Configurations
	General Purpose Opamp Mode
	Unity Gain Mode for Differential Amplifier
	Unity Gain Mode
	Comparator Mode
	Non-Inverting PGA Mode
	Cascaded Non-Inverting PGA Mode
	Inverting PGA Mode
	Differential Amplifier Mode

	OA Registers
	OAxCTL0, Opamp Control Register 0
	OAxCTL1, Opamp Control Register 1

	Comparator_A+
	Comparator_A+ Introduction
	Comparator_A+ Operation
	Comparator
	Input Analog Switches
	Input Short Switch
	Output Filter
	Voltage Reference Generator
	Comparator_A+, Port Disable Register CAPD
	Comparator_A+ Interrupts
	Comparator_A+ Used to Measure Resistive Elements

	Comparator_A+ Registers
	CACTL1, Comparator_A+ Control Register 1
	CACTL2, Comparator_A+, Control Register
	CAPD, Comparator_A+, Port Disable Register

	ADC10
	ADC10 Introduction
	ADC10 Operation
	10-Bit ADC Core
	Conversion Clock Selection

	ADC10 Inputs and Multiplexer
	Analog Port Selection

	Voltage Reference Generator
	Internal Reference Low-Power Features

	Auto Power-Down
	Sample and Conversion Timing
	Sample Timing Considerations

	Conversion Modes
	Single-Channel Single-Conversion Mode
	Sequence-of-Channels Mode
	Repeat-Single-Channel Mode
	Repeat-Sequence-of-Channels Mode
	Using the MSC Bit
	Stopping Conversions

	ADC10 Data Transfer Controller
	One-Block Transfer Mode
	Two-Block Transfer Mode
	Continuous Transfer
	DTC Transfer Cycle Time

	Using the Integrated Temperature Sensor
	ADC10 Grounding and Noise Considerations
	ADC10 Interrupts

	ADC10 Registers
	ADC10CTL0, ADC10 Control Register 0
	ADC10CTL1, ADC10 Control Register 1
	ADC10AE0, Analog (Input) Enable Control Register 0
	ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430x22x4 only)
	ADC10MEM, Conversion-Memory Register, Binary Format
	ADC10MEM, Conversion-Memory Register, 2’s Complement Format
	ADC10DTC0, Data Transfer Control Register 0
	ADC10DTC1, Data Transfer Control Register 1
	ADC10SA, Start Address Register for Data Transfer

	SD16_A
	SD16_A Introduction
	SD16_A Operation
	ADC Core
	Analog Input Range and PGA
	Voltage Reference Generator
	Auto Power-Down
	Channel Selection
	Analog Input Setup

	Input Characteristics
	Digital Filter
	Digital Filter Output

	Conversion Memory Register: SD16MEM0
	Output Data Format

	Conversion Modes
	Single Conversion
	Continuous Conversion

	Using the Integrated Temperature Sensor
	Interrupt Handling
	SD16IV, Interrupt Vector Generator
	Interrupt Delay Operation

	SD16_A Registers
	SD16CTL, SD16_A Control Register
	SD16CCTL0, SD16_A Control Register 0
	SD16INCTL0, SD16_A Input Control Register
	SD16MEM0, SD16_A Conversion Memory Register
	SD16AE, SD16_A Analog Input Enable Register
	SD16IV, SD16_A Interrupt Vector Register

