Tl Information—Selective Disclosure

I3 TEXAS

INSTRUMENTS

MSP430® Peripheral Driver Library

USER’S GUIDE

Copyright © 2012 Texas Instruments Incorporated.

Copyright

Copyright © 2012 Texas Instruments Incorporated. All rights reserved. MSP430 and 430ware are registered trademarks of Texas Instruments. Other
names and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 1.20.01.00 of this document, last updated on 2012-06-29,6 : 06 : 00_0500.

2 2012-06-29:6 : 06 : 000500
Tl Information—Selective Disclosure

Table of Contents

Table of Contents

Copyright L e 2
Revision Information e e e e e e e e e e e s 2
1 IntrodUcCtion L e 5
2 How to create a new project thatuses Driverlib e e 7
3 10-Bit Analog-to-Digital Converter (ADC10) o i i e e e e e e e e e e e e e e e e e e 9
3.1 Introduction . . . L L e e 9
3.2 APIFUNCLIONS e e 9
3.3 Programming Example e e 10
4 10-Bit Analog-to-Digital Converter (ADC10B) i i it e e e e e e e e e e e e e e 11
4.1 Introduction L e e e 11
4.2 APIFUNCHONS o e e e 11
4.3 Programming Example e e 12
5 12-Bit Analog-to-Digital Converter (ADC12) i it ot e e e e e e e e e e e e e e e 15
5.1 Introduction L e e 15
5.2 APIFUNCLONS e e e e 15
5.3 Programming Example e 16
6 12-Bit Analog-to-Digital Converter (ADC12B) i i it e 19
6.1 Introduction e e e 19
6.2 APIFUNCLIONS e 20
6.3 Programming Example L e 21
7 Advanced Encryption Standard (AES) e e e e e e e s 23
7.1 Introduction . . . L L L e e e 23
7.2 APIFUNCLIONS e e 23
7.3 Programming Exampleo 24
8 Comparator (COMPB) i i i it et e e e e et e e e e e e e e e e e e 25
8.1 Introduction L L e e e 25
8.2 APIFUNCLIONS e e e 25
8.3 Programming Example e e 26
9 Comparator (COMPD) i i it et e e e e e e e e e e e e e e e e e e e 27
9.1 Introduction L e e e 27
9.2 APIFUNCLIONS e e 27
9.3 Programming Example e 28
10 Clock System (CS) o v ittt i e 29
10.1 Introduction L L L e 29
10.2 APIFUNCONS o e 30
10.3 Programming Example L e e 31
11 CloCK System (CSA) o ittt e 33
11.1 Introduction L L L e e 33
11.2 APILFUNCLONS o e 34
11.3 Programming Example 35
12 Cyclical Redundancy Check (CRC) i i i it i i it s s i ittt s s e ittt s i e 37
12.1 Introduction L e 37
12.2 APLFUNCLONS o e 37
12.3 Programming Example e 37
13 12-bit Digital-to-Analog Converter (DACT2) o o i i i e e e e e e e e e e e e e e e e e e e 39
13.1 Introduction L L e 39
13.2 APILFUNCHONS o e 39
13.3 Programming Example L 40
14 Direct Memory Access (DMA) i i it et e 41
14.1 IntrodUuCtion L . e e e e 41
14.2 APILFUNCLONS o e e 41
14.3 Programming Example L e 42
15 EUSCI Inter-Integrated Circuit (I2C) o o i i i it e 43
15.1 Introduction L L e 43
15.2 APILFUNCLONS o e 45
15.3 Programming Example L e 46
16 EUSCI Synchronous Peripheral Interface (SPI) 0 o i i i i e e e e e e e e e 47
16.1 Introduction L e 47
16.2 APIFUNCLONS o 47
16.3 Programming Example L 48
2012-06-29:6 : 06 : 00_0500 3

TI Information—Selective Disclosure

Table of Contents

17 EUSCIUART i e 51
17.1 Introduction L e e e e 51
17.2 APLFUNCHONS o e e e e 51
17.3 Programming Example L e 52
18 FlashMemory Controller o i i i e e e e e e e e e e e e e e e 55
18.1 Introduction L . e 55
18.2 APIFUNCHONS o e e 55
18.3 Programming Example L e 56
19 FRAM Controller o e 57
19.1 Introduction L L e e e e 57
19.2 APILFUNCHONS o e e e 57
19.3 Programming Example L L e 58
20 FRGPIO e 59
20.1 Introduction L . e e e 59
20.2 APIFUNCLIONS o e e e e e 60
20.3 Programming Example L L e e 60
21 Power Management Module (FRPMM) 0t e e e e e e e e e e e e e e e e 63
21.1 Introduction L L e e e 63
21.2 APLFUNCLIONS e e e e 63
21.3 Programming Example L e 64
7 € 1 [e 67
22.1 Introduction L e e 67
22.2 APIFUNCLIONS e e e e 68
22.3 Programming Example L e e 68
23 Inter-Integrated Circuit (I2C) o o i i i e 71
23.1 Introduction L e e e 71
23.2 APIFUNCLIONS e e 73
23.3 Programming Example L e 74
24 LDO-PWR. . . . e 75
24.1 Introduction L L e e 75
24.2 APIFUNCLIONS e 75
24.3 Programming Example L L e e 76
25 Memory Protection Unit (MPU) o o i e 79
25.1 Introduction L L e 79
25.2 APIFUNCIONS e e 79
25.3 Programming Example e 80
26 32-Bit Hardware Multiplier (MPY32) o o et e e e e e e e e e e e e e e e e e e 81
26.1 Introduction L L e e 81
26.2 APIFUNCIONS e e 81
26.3 Programming Example e 82
27 Power Management Module (PMM) o o 0 e 83
27.1 Introduction L L e 83
27.2 APLFUNCIONS e e 84
27.3 Programming Example e 86
28 PortMapping Controller i e e e e e e e e e e e e 87
28.1 Introduction L L e e 87
28.2 APIFUNCLIONS e e 87
28.3 Programming Example e 87
29 RAM Controller e 89
29.1 Introduction L L e e e e 89
29.2 APIFUNCLIONS e e e 89
29.3 Programming Example L e e 89
30 Internal Reference (REF) o i i i i e e et e e e e e e e e e e e e e e e e e e 91
30.1 Introduction e e e 91
30.2 APIFUNCLIONS e 91
30.3 Programming Example e 92
31 Internal Reference (REFA) o o i i i e e e e e e e e e e e e e e 95
31.1 Introduction L L e e e 95
31.2 APIFUNCLIONS e e 95
31.3 Programming Example 96
32 Real-Time Clock (RTC) i i i it e 99
32.1 Introduction L L e 99
32.2 APIFUNCLIONS e e 99
4 2012-06-29:6 : 06 : 000500

TI Information—Selective Disclosure

Table of Contents

32.3 Programming Example e e 100
33 SFR-SYS MOAUIES ottt e 103
33.1 Introduction L L 103
33.2 APIFUNCLIONS L o e 103
33.3 Programming Example e e 104
34 Synchronous Peripheral Interface (SPI) i i i i e e e e e e e e e e e 105
34.1 Introduction L L e e 105
34.2 APIFUNCLIONS o o e 105
34.3 Programming Example e e e 106
BT T 1 11T e 109
35.1 Introduction L 109
35.2 APIFUNCLIONS o o e 110
35.3 Programming Example 110
36 TIMEIA e 113
36.1 Introduction L L 113
36.2 APLFUNCLIONS L . e 114
36.3 Programming Example 114
R A {111 T=T o = e 117
37.1 Introduction L L L 117
37.2 APLFUNCLIONS o o e 118
37.3 Programming Example 119
38 timerD . . . L e 121
38.1 Introduction L L 121
38.2 APIFUNCLIONS o e 122
38.3 Programming Example 124
39 TaglengthValue i e 125
39.1 Introduction L . e e e e e e 125
39.2 APIFUNCLIONS o o 125
39.3 Programming Example 125
T U 7Y 127
40.1 Introduction L L e 127
40.2 APIFUNCHONS L 127
40.3 Programming Example L 128
41 Unified Clock System (UCS) o i i ittt e i e e e e e e e e e e e e e e e e e e e 131
411 Introduction L e 131
41.2 APIFUNCONS 132
41.3 Programming Example L 133
42 WatchDog Timer (WDT) o o it e e e e e e et e e e s e et e e et 135
42,1 Introduction L L 135
42.2 APIFUNCHIONS o 135
42.3 Programming Example L 135
IMPORTANT NOTICE i it it ittt e et e e e e et e e e s m e et e e e e et et et e et e e s 138
2012-06-29,6 : 06 : 00-0500 5

TI Information—Selective Disclosure

Table of Contents

6 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Introduction

1 Introduction

The Texas Instruments® MSP430® Peripheral Driver Library is a set of drivers for accessing the peripherals found on the
MSP430 family of microcontrollers. While they are not drivers in the pure operating system sense (that is, they do not have
a common interface and do not connect into a global device driver infrastructure), they do provide a mechanism that makes
it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

They are written entirely in C except where absolutely not possible.

They demonstrate how to use the peripheral in its common mode of operation.

They are easy to understand.

They are reasonably efficient in terms of memory and processor usage.

They are as self-contained as possible.

Where possible, computations that can be performed at compile time are done there instead of at run time.

They can be built with more than one tool chain.
Some consequences of these design goals are:

B The drivers are not necessarily as efficient as they could be (from a code size and/or execution speed point of view).
While the most efficient piece of code for operating a peripheral would be written in assembly and custom tailored to
the specific requirements of the application, further size optimizations of the drivers would make them more difficult
to understand.

B The drivers do not support the full capabilities of the hardware. Some of the peripherals provide complex capabilities
which cannot be utilized by the drivers in this library, though the existing code can be used as a reference upon which
to add support for the additional capabilities.

B The APIs have a means of removing all error checking code. Because the error checking is usually only useful during
initial program development, it can be removed to improve code size and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be enhanced or rewritten in
order to meet the functionality, memory, or processing requirements of the application. If so, the existing driver can be used
as a reference on how to operate the peripheral.

Each MSP430ware driverlib API takes in the base address of the corresponding peripheral as the first parameter. This base
address is obtained from the msp430 device specific header files (or from the device datasheet). The example code for
the various peripherals show how base address is used. When using CCS, the eclipse shortcut "Ctrl + Space" helps. Type
__MSP430 and "Ctrl + Space", and the list of base addresses from the included device specific header files is listed.

The following tool chains are supported:

B |AR Embedded Workbench®
B Texas Instruments Code Composer Studio™

2012-06-29:6 : 06 : 00_0500 7
TI Information—Selective Disclosure

Introduction

8 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

How to create a new project that uses Driverlib

2 How to create a nhew project that uses
Driverlib

To ~create a driverlb project from scratch An emptyProject has been created for the con-
venience of the wuser so that he can create a project that wuses driverlib. This is avail-
able in "C:\ti\msp430\MSP430ware_x_xx_xx_xx\examples\driverlib\5xx_6xx\00_emptyProject\IAR"
"C:\ti\msp430\MSP430ware_x_xx_xx_xx\examples\driverlib\5xx_6xx\00_emptyProject\CCS" or the correspond-
ing relative path where MSP430ware is installed. The features of the emptyProject are

B Includes driverlib library file by default
B Includes a main.c by default that has the following statements

"#include "inc/hw_memmap.h"
void main (void) { } "

B Project is build by default for MSP430F5438A and has a large data model since driverlib is built by defualt for large
data model.

B The project include path has the following added "C:\ti\msp430\MSP430ware_x_xx_xx_xx" or the corresponding
path where MSP430ware is installed.

2012-06-29:6 : 06 : 00_0500
TI Information—Selective Disclosure

How to create a new project that uses Driverlib

10 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10)

3

3.1

3.2

10-Bit Analog-to-Digital Converter (ADC10)

INrOAUCH ON . e 9
AP FUNCHIONS .ttt e et e 9
Programming EXamIpIe 10

Introduction

The 10-Bit Analog-to-Digital (ADC10) API provides a set of functions for using the MSP430Ware ADC10 modules. Functions
are provided to initializae the ADC10 modules, setup signal sources and reference voltages, and manage interrupts for the
ADC10 modules.

The ADC10 module provides the ability to convert analog signals into a digital value in respect to given reference voltages.
The ADC10 can generate digital values from 0 to Vcc with an 8- or 10-bit resolution. It operates in 2 different sampling
modes, and 4 different conversion modes. The smapling modes are extended sampling and pulse sampling, in extended
sampling the sample/hold signal must stay high for the duration of sampling, while in pulse mode a sampling timer is setup to
start on a rising edge of the sample/hold signal and sample for a specified amount of clock cycles. The 4 conversion modes
are single-channel single conversion, sequence of channels single-conversion, repeated single channel conversions, and
repeated sequence of channels conversions.

The ADC10 module can generate multiple interrupts. An interrupt can be asserted when a conversion is complete, when
a conversion is about to overwrite the converted data in the memory buffer before it has been read out, and/or when a
conversion is about to start before the last conversion is complete. The ADC10 also has a window comparator feature which
asserts interrupts when the input signal is above a high threshold, below a low threshold, or between the two at any given
moment.

This driver is contained in driverlib/5xx_6xx/adcl0.c, With driverlib/5xx_6xx/adcl0.h containing the API
definitions for use by applications.

API Functions

The ADC10 APl is broken into three groups of functions: those that deal with initialization and conversions, those that handle
interrupts, and those that handle auxillary features of the ADC10.

The ADC10 initialization and conversion functions are

ADC10_init
ADC10_memoryConfigure
ADC10_setupSamplingTimer
ADC10_disableSamplingTimer
ADC10_setWindowComp
ADC10_startConversion
ADC10_disableConversions
ADC10_getResults
ADC10_isBusy

The ADC10 interrupts are handled by

B ADC10_enablelnterrupt
B ADC10_disablelnterrupt
B ADC10_clearInterrupt

B ADC10_getinterruptStatus

Auxilary features of the ADC10 are handled by

B ADC10_setResolution

2012-06-29:16 : 06 : 00—0500 1

TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10)

ADC10_setSampleHoldSignallnversion
ADC10_setDataReadBackFormat
ADC10_enableReferenceBurst
ADC10_disableReferenceBurst
ADC10_setReferenceBufferSamplingRate
ADC10_getMemoryAddressForDMA
ADC10_enable

ADC10_disable

3.3 Programming Example

The following example shows how to initialize and use the ADC10 API to start a single channel, single conversion.

// Initialize ADC10 with ADC10’s built-in oscillator

ADC10_init (__MSP430_BASEADDRESS_ADC10__,
ADC10_SAMPLEHOLDSOURCE_SC,
ADC10_CLOCKSOURCE_ADC100SC,
ADC10_CLOCKDIVIDEBY_1);

//Switch ON ADC10
ADC10_enable (_ _MSP430_BASEADDRESS_ADC10__) ;

// Setup sampling timer to sample-and-hold for 16 clock cycles

ADC10_setupSamplingTimer (__MSP430_BASEADDRESS_ADC10__,
ADC10_CYCLEHOLD_16_CYCLES,
FALSE) ;

// Configure the Input to the Memory Buffer with the specified Reference Voltages
ADC10_memoryConfigure (__MSP430_BASEADDRESS_ADC10__,
ADC10_INPUT_AOQ,
ADC10_VREF_AVCC, // Vref+ = AVcc
ADC10_VREF_AVSS // Vref- = AVss
)i

while (1)
{
// Start a single conversion, no repeating or sequences.
ADC10_startConversion (__MSP430_BASEADDRESS_ADC10__,
ADC10_SINGLECHANNEL) ;

// Wait for the Interrupt Flag to assert
while (! (ADC10_getInterruptStatus (___MSP430_BASEADDRESS_ADC10__,ADC10IFGO)));

// Clear the Interrupt Flag and start another conversion
ADC10_clearInterrupt (_ MSP430_BASEADDRESS_ADC10__,ADCI10IFGO);

12 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10B)

4

4.1

4.2

10-Bit Analog-to-Digital Converter
(ADC10B)

I OAUCH ON ... e s 11
AP FUNCHONS .ottt e e e e e e e e e e e s 11
Programming EXample e 12
Introduction

The 10-Bit Analog-to-Digital (ADC10B) API provides a set of functions for using the MSP430Ware
ADC10B modules. Functions are provided to initializae the ADC10B modules, setup signal sources
and reference voltages, and manage interrupts for the ADC10B modules.

The ADC10B module supports fast 10-bit analog-to-digital conversions. The module implements a
10-bit SAR core together, sample select control and a window comparator.

ADC10B features include:

m Greater than 200-ksps maximum conversion rate

m Monotonic 10-bit converter with no missing codes

m Sample-and-hold with programmable sampling periods controlled by software or timers

m Conversion initiation by software or different timers

m Software-selectable on chip reference using the REF module or external reference

m Twelve individually configurable external input channels

m Conversion channel for temperature sensor of the REF module

m Selectable conversion clock source

m Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
m Window comparator for low-power monitoring of input signals

m Interrupt vector register for fast decoding of six ADC interrupts (ADC10IFG0, ADC10TOVIFG,
ADC100VIFG, ADC10LOIFG, ADC10INIFG, ADC10HIIFG)

This driver is contained in driverlib/5xx_6xx/adcl0b.c, with
driverlib/5xx_6xx/adcl0b.h containing the APl definitions for use by applications.

API Functions

The ADC10B API is broken into three groups of functions: those that deal with initialization and
conversions, those that handle interrupts, and those that handle auxillary features of the ADC10.

The ADC10B initialization and conversion functions are

m ADC10B_init
m ADC10B_memoryConfigure

2012-06-29:16 : 06 : 00—0500 13

TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10B)

4.3

m ADC10B_setupSamplingTimer
m ADC10B_disableSamplingTimer
m ADC10B_setWindowComp

m ADC10B_startConversion

m ADC10B_disableConversions

m ADC10B_getResults

m ADC10B_isBusy

The ADC10B interrupts are handled by

m ADC10B_enablelnterrupt

m ADC10B_disablelnterrupt

m ADC10B_clearinterrupt

m ADC10B_getinterruptStatus

Aucxilary features of the ADC10B are handled by

m ADC10B_setResolution

m ADC10B_setSampleHoldSignallnversion

m ADC10B_setDataReadBackFormat

m ADC10B_enableReferenceBurst

m ADC10B_disableReferenceBurst

m ADC10B_setReferenceBufferSamplingRate
m ADC10B_getMemoryAddressForDMA

m ADC10B_enable

m ADC10B_disable

Programming Example

The following example shows how to initialize and use the ADC10B API to start a single channel,
single conversion.

// Initialize ADC10B with ADC10B’s built-in oscillator

ADC10B_init (__MSP430_BASEADDRESS_ADC10_B__,
ADC10B_SAMPLEHOLDSOURCE_SC,
ADC10B_CLOCKSOURCE_ADC100SC,
ADC10B_CLOCKDIVIDEBY_1);

//Switch ON ADC10B
ADC10B_enable (_ _MSP430_BASEADDRESS_ADCI10_B_);

// Setup sampling timer to sample-and-hold for 16 clock cycles
ADC10B_setupSamplingTimer (__MSP430_BASEADDRESS_ADC10_B__,

ADC10B_CYCLEHOLD_16_CYCLES,
FALSE) ;

// Configure the Input to the Memory Buffer with the specified Reference Voltages
ADC10B_memoryConfigure (__MSP430_BASEADDRESS_ADCI10_B__,
ADC10B_INPUT_AO,

14

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10B)

ADC10B_VREFPOS_AVCC, // Vref+ = AVcc
ADC10B_VREFNEG_AVSS // Vref- = AVss
)i

while (1)
{
// Start a single conversion, no repeating or sequences.
ADC10B_startConversion (__MSP430_BASEADDRESS_ADC10_B__,
ADC10B_SINGLECHANNEL) ;

// Wait for the Interrupt Flag to assert
while(! (ADC10B_getInterruptStatus (___MSP430_BASEADDRESS_ADC10_B__,ADC10IFGO)));

// Clear the Interrupt Flag and start another conversion
ADC10B_clearInterrupt (__MSP430_BASEADDRESS_ADC10_B ADC10IFGO) ;

S—

2012-06-29:6 : 06 : 00_0500 15
TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC10B)

16

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

12-Bit Analog-to-Digital Converter (ADC12)

5

5.1

5.2

12-Bit Analog-to-Digital Converter (ADC12)

I OAUCH ON ... e e e e e e e s 15
AP FUNCHIONS .. e e e e 15
Programming EXamIPIe ... e 16
Introduction

The 12-Bit Analog-to-Digital (ADC12) API provides a set of functions for using the MSP430Ware
ADC12 modules. Functions are provided to initializae the ADC12 modules, setup signal sources
and reference voltages for each memory buffer, and manage interrupts for the ADC12 modules.

The ADC12 module provides the ability to convert analog signals into a digital value in respect to
given reference voltages. The ADC12 can generate digital values from 0 to Vcc with an 8-, 10-
or 12-bit resolution, with 16 different memory buffers to store conversion results. It operates in 2
different sampling modes, and 4 different conversion modes. The sampling modes are extended
sampling and pulse sampling, in extended sampling the sample/hold signal must stay high for the
duration of sampling, while in pulse mode a sampling timer is setup to start on a rising edge of the
sample/hold signal and sample for a specified amount of clock cycles. The 4 conversion modes are
single-channel single conversion, sequence of channels single-conversion, repeated single channel
conversions, and repeated sequence of channels conversions.

The ADC12 module can generate multiple interrupts. An interrupt can be asserted for each memory
buffer when a conversion is complete, or when a conversion is about to overwrite the converted data
in any of the memory buffers before it has been read out, and/or when a conversion is about to start
before the last conversion is complete.

This driver is contained in driverlib/5xx_6xx/adcl2.c, with
driverlib/5xx_6xx/adcl2.h containing the API definitions for use by applications.

API Functions

The ADC12 API is broken into three groups of functions: those that deal with initialization and
conversions, those that handle interrupts, and those that handle auxillary features of the ADC12.

The ADC12 initialization and conversion functions are

m ADC12_init

m ADC12_memoryConfigure

m ADC12_setupSamplingTimer
m ADC12_disableSamplingTimer
m ADC12_startConversion

m ADC12_disableConversions

m ADC12_readResults

m ADC12_isBusy

The ADC12 interrupts are handled by

2012-06-29:16 : 06 : 00—0500 17

TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12)

5.3

m ADC12_enablelnterrupt

m ADC12_disablelnterrupt

m ADC12_clearlnterrupt

m ADC12_getinterruptStatus

Aucxilary features of the ADC12 are handled by

m ADC12_setResolution

m ADC12_setSampleHoldSignallnversion

m ADC12_setDataReadBackFormat

m ADC12_enableReferenceBurst

m ADC12_disableReferenceBurst

m ADC12_setReferenceBufferSamplingRate
m ADC12_getMemoryAddressForDMA

m ADC12_enable

m ADC12_disable

Programming Example

The following example shows how to initialize and use the ADC12 API to start a single channel,
single conversion.

// Initialize ADC12 with ADC12’s built-in oscillator

ADC12_init (__MSP430_BASEADDRESS_ADC12_ ,
ADC12_SAMPLEHOLDSOURCE_SC,
ADC12_CLOCKSOURCE_ADC120SC,
ADC12_CLOCKDIVIDEBY_1);

//Switch ON ADC12
ADC12_enable (__MSP430_BASEADDRESS_ADC12_);

// Setup sampling timer to sample-and-hold for 16 clock cycles

ADC1l2_setupSamplingTimer (__MSP430_BASEADDRESS_ADCl2__,
ADC12_CYCLEHOLD_64_CYCLES,
ADC12_CYCLEHOLD_4_CYCLES,
FALSE) ;

// Configure the Input to the Memory Buffer with the specified Reference Voltages
ADC12_memoryConfigure (__MSP430_BASEADDRESS_ADC12
ADC12_MEMORY_QO,

’

ADC12_INPUT_AO,

ADC12_VREF_AVCC, // Vref+ AVcc
ADC12_VREF_AVSS, // Vref- = AVss
FALSE

)i

while (1)

// Start a single conversion, no repeating or sequences.
ADC12_startConversion (__ MSP430_BASEADDRESS_ADC12_ ,
ADC12_MEMORY_O,
ADC12_SINGLECHANNEL) ;

// Wait for the Interrupt Flag to assert
while (! (ADCl2_getInterruptStatus (___MSP430_BASEADDRESS_ADC12__ ,ADC12IFGO))

18

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12)

// Clear the Interrupt Flag and start another conversion
ADC12_clearInterrupt (_ _MSP430_BASEADDRESS_ADC12__ ,ADC12IFGO);

2012-06-29:6 : 06 : 00_0500 19
TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12)

20

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

12-Bit Analog-to-Digital Converter (ADC12B)

6

6.1

12-Bit Analog-to-Digital Converter
(ADC12B)

I OAUCH ON ... e s 19
AP FUNCHONS .ottt e e e e e e e e e e e s 20
Programming EXample e 21
Introduction

The 12-Bit Analog-to-Digital (ADC12B) API provides a set of functions for using the MSP430Ware
ADC12B modules. Functions are provided to initializae the ADC12B modules, setup signal sources
and reference voltages for each memory buffer, and manage interrupts for the ADC12B modules.

The ADC12B module provides the ability to convert analog signals into a digital value in respect to
given reference voltages. The module implements a 12-bit SAR core, sample select control, and
up to 32 independent conversion-and-control buffers. The conversion-and-control buffer allows up
to 32 independent analog-to-digital converter (ADC) samples to be converted and stored without
any CPU intervention. The ADC12B can also generate digital values from 0 to Vcc with an 8-, 10-
or 12-bit resolution and it can operate in 2 different sampling modes, and 4 different conversion
modes. The sampling modes are extended sampling and pulse sampling, in extended sampling
the sample/hold signal must stay high for the duration of sampling, while in pulse mode a sampling
timer is setup to start on a rising edge of the sample/hold signal and sample for a specified amount
of clock cycles. The 4 conversion modes are single-channel single conversion, sequence of chan-
nels single-conversion, repeated single channel conversions, and repeated sequence of channels
conversions.

The ADC12B module can generate multiple interrupts. An interrupt can be asserted for each mem-
ory buffer when a conversion is complete, or when a conversion is about to overwrite the converted
data in any of the memory buffers before it has been read out, and/or when a conversion is about
to start before the last conversion is complete.

ADC12_B features include:

m 200 ksps maximum conversion rate at maximum resolution of 12-bits

m Monotonic 12-bit converter with no missing codes

m Sample-and-hold with programmable sampling periods controlled by software or timers.
m Conversion initiation by software or timers.

m Software-selectable on-chip reference voltage generation (1.2 'V, 2.0 V, or 2.5 V) with option to
make available externally

m Software-selectable internal or external reference

m Up to 32 individually configurable external input channels, single-ended or differential input
selection available

m Internal conversion channels for internal temperature sensor and 2/3 x AVCC and four more
internal channels available on select devices see device data sheet for availability as well as
function

m Independent channel-selectable reference sources for both positive and negative references
m Selectable conversion clock source

2012-06-29:16 : 06 : 00—0500 21

TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12B)

6.2

m Single-channel, repeat-single-channel, sequence (autoscan), and repeat-sequence (repeated
autoscan) conversion modes

m Interrupt vector register for fast decoding of 38 ADC interrupts
m 32 conversion-result storage registers
m Window comparator for low power monitoring of input signals of conversion-result registers

This driver is contained in driverlib/5xx_6xx/ADC12B.c, with
driverlib/5xx_6xx/ADC12B.h containing the APl definitions for use by applications.

API Functions

The ADC12B API is broken into three groups of functions: those that deal with initialization and
conversions, those that handle interrupts, and those that handle auxillary features of the ADC12B.

The ADC12B initialization and conversion functions are

m ADC12B_init

m ADC12B_memoryConfigure

m ADC12B_setupSamplingTimer
m ADC12B_disableSamplingTimer
m ADC12B_startConversion

m ADC12B_disableConversions

m ADC12B_getResults

m ADC12B_isBusy

The ADC12B interrupts are handled by

m ADC12B_enablelnterrupt

m ADC12B_disablelnterrupt

m ADC12B_clearinterrupt

m ADC12B_getinterruptStatus

Auxilary features of the ADC12B are handled by

m ADC12B_setResolution

m ADC12B_setSampleHoldSignallnversion
m ADC12B_setDataReadBackFormat

m ADC12B_enableReferenceBurst

m ADC12B_disableReferenceBurst

m ADC12B_setAdcPowerMode

m ADC12B_getMemoryAddressForDMA

m ADC12B_enable

m ADC12B_disable

22

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12B)

6.3 Programming Example

The following example shows how to initialize and use the ADC12B API to start a single channel
with single conversion using an external positive reference for the ADC12B.

//Initialize the ADC12 Module
/
Base address of ADC12 Module
Use internal ADC12 bit as sample/hold signal to start conversion
USE MODOSC 5MHZ Digital Oscillator as clock source
Use default clock divider/pre-divider of 1
Map to internal channel 0
*/

ADC12B_init (__MSP430_BASEADDRESS_ADCI12_B_ ,
ADC12B_SAMPLEHOLDSOURCE_SC,
ADC12B_CLOCKSOURCE_ADC120SC,
ADC12B_CLOCKDIVIDER_1,
ADC12B_CLOCKPREDIVIDER_ 1,
ADC12B_MAPINTCHO) ;

//Enable the ADCI12B module
ADC12B_enable (__ _MSP430_BASEADDRESS_ADC12_B_);

/%
Base address of ADC12 Module
For memory buffers 0-7 sample/hold for 16 clock cycles
For memory buffers 8-15 sample/hold for 4 clock cycles (default)
Disable Multiple Sampling
*/
ADC12B_setupSamplingTimer (__ MSP430_BASEADDRESS_ADC12_B__,
ADC12B_CYCLEHOLD_16_CYCLES,
ADC12B_CYCLEHOLD_4_CYCLES,
ADC12B_MULTIPLESAMPLESDISABLE) ;

//Configure Memory Buffer

/ *
Base address of the ADC1l2 Module
Configure memory buffer 0
Map input A0 to memory buffer 0
Vref+ = AVcc

Vref- = EXT Positive
Memory buffer 0 is not the end of a sequence
*/

ADC12B_memoryConfigure (__MSP430_BASEADDRESS_ADC12_B__,
ADC12B_MEMORY_O,
ADC12B_INPUT_AO,
ADC12B_VREFPOS_EXTPOS_VREFNEG_VSS,
ADC12B_NOTENDOFSEQUENCE) ;

while (1)
{
//Enable/Start first sampling and conversion cycle
/
Base address of ADC12 Module
Start the conversion into memory buffer 0
Use the single-channel, single-conversion mode
*/
ADC12B_startConversion(_ MSP430_BASEADDRESS_ADC12_B_ ,
ADC12B_MEMORY_O,
ADC12B_SINGLECHANNEL) ;

//Poll for interrupt on memory buffer 0
while (!ADC12B_getInterruptStatus(___MSP430_BASEADDRESS_ADCl12_B_ ,
Ol

2012-06-29:6 : 06 : 00_0500 23
TI Information—Selective Disclosure

12-Bit Analog-to-Digital Converter (ADC12B)

ADC12B_IFGO));

__no_operation();

}

// SET BREAKPOINT HERE

24

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES)

INtrOAUCH ON .. e 23
AP FUNCHIONS .. e e 23
Programming EXamIPIe ... e 24
7.1 Introduction
The AES accelerator module performs encryption and decryption of 128-bit data with 128-bit keys
according to the advanced encryption standard (AES) (FIPS PUB 197) in hardware. The AES
accelerator features are:
m Encryption and decryption according to AES FIPS PUB 197 with 128-bit key
m On-the-fly key expansion for encryption and decryption
m Off-line key generation for decryption
= Byte and word access to key, input, and output data
m AES ready interrupt flag The AES256 accelerator module performs encryption and decryption
of 128-bit data with 128-/192-/256-bit keys according to the advanced encryption standard
(AES) (FIPS PUB 197) in hardware. The AES accelerator features are: AES encryption U 128
bit - 168 cycles U 192 bit - 204 cycles U 256 bit - 234 cycles AES decryption U 128 bit - 168
cycles U 192 bit - 206 cycles U 256 bit - 234 cycles
m On-the-fly key expansion for encryption and decryption
m Offline key generation for decryption
m Shadow register storing the initial key for all key lengths
m Byte and word access to key, input data, and output data
m AES ready interrupt flag
This driver is contained in driverlib/5xx_6xx/aes.c, With driverlib/5xx_6xx/aes.h
containing the API definitions for use by applications.
7.2 APl Functions
The AES module APIs are
m AES_setCipherKey(),
m AES256_setCipherKey(),
m AES_encryptData(),
m AES_decryptDataUsingEncryptionKey(),
m AES_generateFirstRoundKey(),
m AES_decryptData(),
m AES reset(),
m AES_startEncryptData(),
2012-06-29:6 : 06 : 00_0500 25

TI Information—Selective Disclosure

Advanced Encryption Standard (AES)

7.3

m AES_startDecryptDataUsingEncryptionKey(),
m AES_startDecryptData(),

m AES_startGenerateFirstRoundKey(),

m AES getDataOut()

The AES interrupt handler functions

m AES_enablelnterrupt(),
m AES_disablelnterrupt(),
m AES_clearinterruptFlag(),

Programming Example

The following example shows some AES operations using the APls

unsigned char Data[l6] = { 0x30, 0x31, 0x32, 0x33,
0x34, 0x35,
0x38, 0x39,
0x0C, 0xO0D,
unsigned char CipherKey[l6] = { 0xAA, 0xBB, 0x02, 0x03,
0x04, 0x05,
0x08, 0x09,
0x0C, 0xO0D,
unsigned char DataAES[16]; // Encrypted data
unsigned char DataunAES[16]; // Decrypted data

// Load a cipher key to module

AES_setCipherKey (__MSP430_BASEADDRESS_AES__, CipherKey);

// Encrypt data with preloaded cipher key
AES_encryptData (__MSP430_BASEADDRESS_AES__, Data,

DataAES) ;

// Decrypt data with keys that were generated during encryption - takes 214 MCLK
// This function will generate all round keys needed for decryption first and then

// the encryption process starts

AES_decryptDataUsingEncryptionKey (___MSP430_BASEADDRESS_AES__, DataAES, DataunAES);

26

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

0x36,
0x0Aa,
0x0E,

0x06,
0x0A,
0x0E,

0x37,
0x08B,
0xO0F

0x07,
0x0B,
0x0F

Comparator (COMPB)

8.1

8.2

Comparator (COMPB)

I OAUCH ON ... e e e e e e e s 25
AP FUNCHIONS .. e e e e 25
Programming EXamIPIe ... e 26
Introduction

The Comparator B (COMPB) API provides a set of functions for using the MSP430Ware COMPB
modules. Functions are provided to initialize the COMPB modules, setup reference voltages for
input, and manage interrupts for the COMPB modules.

The COMPB module provides the ability to compare two analog signals and use the output in
software and on an output pin. The output represents whether the signal on the positive terminal is
higher than the signal on the negative terminal. The COMPB may be used to generate a hysteresis.
There are 16 different inputs that can be used, as well as the ability to short 2 input together. The
COMPB module also has control over the REF module to generate a reference voltage as an input.

The COMPB module can generate multiple interrupts. An interrupt may be asserted for the output,
with seperate interrupts on whether the output rises, or falls.

This driver is contained in driverlib/5xx_6xx/compb.c, with
driverlib/5xx_6xx/compb.h containing the API definitions for use by applications.

API Functions

The COMPB API is broken into three groups of functions: those that deal with initialization and
output, those that handle interrupts, and those that handle auxillary features of the COMPB.

The COMPRB initialization and output functions are

m COMPB_init

m COMPB_setReferenceVoltage
= COMPB_enable

m COMPB_disable

= COMPB_outputValue

The COMPB interrupts are handled by

m COMPB_enablelnterrupt

= COMPB_disablelnterrupt

m COMPB_clearinterrupt

m COMPB_getInterruptStatus

m COMPB_interruptSetEdgeDirection

m COMPB_interruptToggleEdgeDirection

Auxilary features of the COMPB are handled by

2012-06-29:16 : 06 : 00—0500 27

TI Information—Selective Disclosure

Comparator (COMPB)

8.3

COMPB_enableShortOflnputs
COMPB_disableShortOfInputs
COMPB_disablelnputBuffer
COMPB_enablelnputBuffer
COMPB_IOSwap

Programming Example

// Initialize the Comparator B module
/* Base Address of Comparator B,
Pin CBO to Positive(+) Terminal,
Reference Voltage to Negative(-) Terminal,
Normal Power Mode,
Output Filter On with minimal delay,
Non-Inverted Output Polarity
*/
COMPB_init (__MSP430_BASEADDRESS_COMPB__,
COMPB_INPUTO,
COMPB_VREF,
COMPB_POWERMODE_NORMALMODE,
COMPB_FILTEROUTPUT_DLYLVLI1,
COMPB_NORMALOUTPUTPOLARITY
)i

// Set the reference voltage that is being supplied to the (-)
/* Base Address of Comparator B,
Reference Voltage of 2.0 V,

Upper Limit of 2.0%(32/32) = 2.0V,
Lower Limit of 2.0x(32/32) = 2.0V
*/

COMPB_setReferenceVoltage (__MSP430_BASEADDRESS_COMPB__,
COMPB_VREFBASE2_5V,
32,
32
)i

// Allow power to Comparator module
COMPB_enable (___MSP430_BASEADDRESS_COMPB__) ;

// delay for the reference to settle
__delay_cycles (75);

The following example shows how to initialize and use the COMPB API to turn on an LED when the
input to the positive terminal is highed than the input to the negative terminal.

terminal

28

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Comparator (COMPD)

9.1

9.2

Comparator (COMPD)

I OAUCH ON ... e e e e e e e s 27
AP FUNCHIONS .. e e e e 27
Programming EXamIPIe ... e 28
Introduction

The Comparator D (COMPD) API provides a set of functions for using the MSP430Ware COMPD
modules. Functions are provided to initialize the COMPD modules, setup reference voltages for
input, and manage interrupts for the COMPD modules.

The COMPD module provides the ability to compare two analog signals and use the output in
software and on an output pin. The output represents whether the signal on the positive terminal is
higher than the signal on the negative terminal. The COMPD may be used to generate a hysteresis.
There are 16 different inputs that can be used, as well as the ability to short 2 input together. The
COMPD module also has control over the REF module to generate a reference voltage as an input.

The COMPD module can generate multiple interrupts. An interrupt may be asserted for the output,
with seperate interrupts on whether the output rises, or falls.

This driver is contained in driverlib/5xx_6xx/compd.c, with
driverlib/5xx_6xx/compd.h containing the API definitions for use by applications.

API Functions

The COMPD API is broken into three groups of functions: those that deal with initialization and
output, those that handle interrupts, and those that handle auxillary features of the COMPD.

The COMPD initialization and output functions are

m COMPD _init

m COMPD_setReferenceVoltage
m COMPD_enable

m COMPD_disable

m COMPD_outputValue

The COMPD interrupts are handled by

m COMPD_enablelnterrupt

m COMPD_disablelnterrupt

m COMPD_clearInterrupt

m COMPD_getinterruptStatus

m COMPD _interruptSetEdgeDirection

m COMPD _interruptToggleEdgeDirection

Auxilary features of the COMPD are handled by

2012-06-29:16 : 06 : 00—0500 29

TI Information—Selective Disclosure

Comparator (COMPD)

COMPD_enableShortOfinputs
COMPD_disableShortOfInputs
COMPD_disablelnputBuffer
COMPD_enablelnputBuffer
COMPD_IOSwap

9.3 Programming Example

The following example shows how to initialize and use the COMPD API to turn on an LED when
the input to the positive terminal is highed than the input to the negative terminal.

// Initialize the Comparator D module
/* Base Address of Comparator D,
Pin CD2 to Positive(+) Terminal,
Reference Voltage to Negative(-) Terminal,
Normal Power Mode,
Output Filter On with minimal delay,
Non-Inverted Output Polarity
*/
COMPD_init (__MSP430_BASEADDRESS_COMPD__,
COMPD__INPUTZ2,
COMPD_VREF,
COMPD_FILTEROUTPUT_OFF,
COMPD_NORMALOUTPUTPOLARITY
) i

// Set the reference voltage that is being supplied to the (-) terminal
/* Base Address of Comparator D,
Reference Voltage of 2.0 V,

Upper Limit of 2.0%(32/32) = 2.0V,
Lower Limit of 2.0%(32/32) = 2.0V
*/

COMPD_setReferenceVoltage (__MSP430_BASEADDRESS_COMPD__,
COMPD_VREFBASE2_0V,
32,
32
)i

//Disable Input Buffer on P1.2/CD2
/* Base Address of Comparator D,
Input Buffer port
Selecting the CDx input pin to the comparator
multiplexer with the CDx bits automatically
disables output driver and input buffer for
that pin, regardless of the state of the
associated CDPD.x bit
*/
COMPD_disableInputBuffer (__ MSP430_BASEADDRESS_COMPD__ ,
COMPD_INPUT2) ;
// Allow power to Comparator module
COMPD_enable (___MSP430_BASEADDRESS_COMPD__) ;

__delay_cycles (400); // delay for the reference to settle

30 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Clock System (CS)

10 Clock System (CS)

INtrOAUCH ON .. e 29
AP FUNCHIONS .. e e 30
Programming EXamIPIe ... e 31

10.1 Introduction

The clock system module supports low system cost and low power consumption. Using three inter-
nal clock signals, the user can select the best balance of performance and low power consumption.
The clock module can be configured to operate without any external components, with one or two
external crystals,or with resonators, under full software control.

The clock system module includes up to five clock sources:

m XT1CLK - Low-frequency/high-frequency oscillator that can be used either with low-frequency
32768-Hz watch crystals, standard crystals, resonators, or external clock sources in the 4 MHz
to 24 MHz range. When optional XT2 is present, the XT1 high-frequency mode may or may
not be available, depending on the device configuration. See the device-specific data sheet
for supported functions.

m VLOCLK - Internal very-low-power low-frequency oscillator with 10-kHz typical frequency
m DCOCLK - Internal digitally controlled oscillator (DCO) with three selectable fixed frequencies

m XT2CLK - Optional high-frequency oscillator that can be used with standard crystals, res-
onators, or external clock sources in the 4 MHz to 24 MHz range. See device-specific data
sheet for availability.

Four system clock signals are available from the clock module:

m ACLK - Auxiliary clock. The ACLK is software selectable as XT1CLK, VLOCLK, DCOCLK,
and when available, XT2CLK. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK is software
selectable by individual peripheral modules.

m MCLK - Master clock. MCLK is software selectable as XT1CLK, VLOCLK, DCOCLK, and
when available, XT2CLK. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the
CPU and system.

m SMCLK - Subsystem master clock. SMCLK is software selectable as XT1CLK, VLOCLK,
DCOCLK, and when available, XT2CLK. SMCLK is software selectable by individual peripheral
modules.

m MODCLK - Module clock. MODCLK is used by various peripheral modules and is sourced by
MODOSC.

Fail-Safe logic The crystal oscillator faults are set if the corresponding crystal oscillator is turned on
and not operating properly. Once set, the fault bits remain set until reset in software, regardless if
the fault condition no longer exists. If the user clears the fault bits and the fault condition still exists,
the fault bits are automatically set, otherwise they remain cleared.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault is
detected. When OFIFG is set and OFIE is set, the OFIFG requests a user NMI. When the interrupt
is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no longer
required to reset the OFIE. NMI entry/exit circuitry removes this requirement. The OFIFG flag must

2012-06-29:6 : 06 : 00_0500 31
TI Information—Selective Disclosure

Clock System (CS)

10.2

be cleared by software. The source of the fault can be identified by checking the individual fault
bits.

If XT1 in LF mode is sourcing any system clock (ACLK, MCLK, or SMCLK), and a fault is detected,
the system clock is automatically switched to the VLO for its clock source (VLOCLK). Similarly, if
XT1 in HF mode is sourcing any system clock and a fault is detected, the system clock is automat-
ically switched to MODOSC for its clock source (MODCLK).

When XT2 (if available) is sourcing any system clock and a fault is detected, the system clock is
automatically switched to MODOSC for its clock source (MODCLK).

The fail-safe logic does not change the respective SELA, SELM, and SELS bit settings. The fail-safe
mechanism behaves the same in normal and bypass modes.

This driver is contained in driverlib/5xx_6xx/cs.c, With driverlib/5xx_6xx/cs.h con-
taining the API definitions for use by applications.

API Functions

The CS APl is broken into four groups of functions: an API that initializes the clock module, those
that deal with clock configuration and control, and external crystal and bypass specific configuration
and initialization, and those that handle interrupts.

General CS configuration and initialization are handled by the following API

m CS_clockSignallnit

m CS_enableClockRequest
m CS_disableClockRequest
m CS_getACLK

m CS_getSMCLK

m CS_getMCLK

m CS_setDCOFreq

The following external crystal and bypass specific configuration and initialization functions are avail-
able for FR57xx devices:

m CS_XT1Start

m CS_bypassXT1

m CS_bypassXT1WithTimeout
m CS_XT1StartWithTimeout

m CS_XT10ff

m CS_XT2Start

m CS_bypassXT2

m CS_XT2StartWithTimeout
m CS_bypassXT2WithTimeout
m CS_XT20ff

The CS interrupts are handled by

32

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Clock System (CS)

10.3

m CS_enableClockRequest

m CS_disableClockRequest

m CS_faultFlagStatus

m CS_clearFaultFlag

m CS_clearAllOscFlagsWithTimeout

CS_setExternalClockSource must be called if an external crystal XT1 or XT2 is used and the user
intends to call CS_getMCLK, CS_getSMCLK or CS_getACLK APIs and XT1Start, XT1ByPass,
XT1StartWithTimeout, XT1ByPassWithTimeout. If not any of the previous API are going to be
called, it is not necessary to invoke this API.

Programming Example

The following example shows the configuration of the CS module that sets
ACLK=SMCLK=MCLK=DCOCLK

//Set DCO Frequency to 8MHz
CS_setDCOFreq (___MSP430_BASEADDRESS_CS__,CS_DCORSEL_0,CS_DCOFSEL_3);

//configure MCLK, SMCLK and ACLK to be source by DCOCLK

CS_clockSignalInit (__MSP430_BASEADDRESS_CS__,CS_ACLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit (__MSP430_BASEADDRESS_CS__,CS_SMCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit (__MSP430_BASEADDRESS_CS__,CS_MCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);

2012-06-29:16 : 06 : 00—0500 33

TI Information—Selective Disclosure

Clock System (CS)

34

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Clock System (CSA)

11

11.1

Clock System (CSA)

I OAUCH ON ... e e e e e e e s 33
AP FUNCHIONS .. e e e e 34
Programming EXamIPIe ... e 35
Introduction

The clock system module supports low system cost and low power consumption. Using three inter-
nal clock signals, the user can select the best balance of performance and low power consumption.
The clock module can be configured to operate without any external components, with one or two
external crystals,or with resonators, under full software control.

The clock system module includes the following clock sources:

m | FXTCLK - Low-frequency oscillator that can be used either with low-frequency 32768-Hz
watch crystals, standard crystals, resonators, or external clock sources in the 50 kHz or below
range. When in bypass mode, LFXTCLK can be driven with an external square wave signal.

m VLOCLK - Internal very-low-power low-frequency oscillator with 10-kHz typical frequency
m DCOCLK - Internal digitally controlled oscillator (DCO) with selectable frequencies

m MODCLK - Internal low-power oscillator with 5-MHz typical frequency. LFMODCLK is MOD-
CLK divided by 128.

m HFXTCLK - High-frequency oscillator that can be used with standard crystals or resonators in
the 4-MHz to 24-MHz range. When in bypass mode, HFXTCLK can be driven with an external
square wave signal.

Four system clock signals are available from the clock module:

m ACLK - Auxiliary clock. The ACLK is software selectable as LFXTCLK, VLOCLK, or LFMOD-
CLK. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK is software selectable by individual
peripheral modules.

m MCLK - Master clock. MCLK is software selectable as LFXTCLK, VLOCLK, LFMODCLK,
DCOCLK, MODCLK, or HFXTCLK. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is
used by the CPU and system.

m SMCLK - Sub-system master clock. SMCLK is software selectable as LFXTCLK, VLOCLK,
LFMODCLK, DCOCLK, MODCLK, or HFXTCLK. SMCLK is software selectable by individual
peripheral modules.

m MODCLK - Module clock. MODCLK may also be used by various peripheral modules and is
sourced by MODOSC.

m VLOCLK - VLO clock. VLOCLK may also be used directly by various peripheral modules and
is sourced by VLO.

Fail-Safe logic The crystal oscillator faults are set if the corresponding crystal oscillator is turned on
and not operating properly. Once set, the fault bits remain set until reset in software, regardless if
the fault condition no longer exists. If the user clears the fault bits and the fault condition still exists,
the fault bits are automatically set, otherwise they remain cleared.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault is
detected. When OFIFG is set and OFIE is set, the OFIFG requests a user NMI. When the interrupt

2012-06-29:16 : 06 : 00—0500 35

TI Information—Selective Disclosure

Clock System (CSA)

11.2

is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no longer
required to reset the OFIE. NMI entry/exit circuitry removes this requirement. The OFIFG flag must
be cleared by software. The source of the fault can be identified by checking the individual fault
bits.

If LEXT is sourcing any system clock (ACLK, MCLK, or SMCLK) and a fault is detected, the system
clock is automatically switched to LFMODCLK for its clock source. The LFXT fault logic works in all
power modes, including LPM3.5.

If HFXT is sourcing MCLK or SMCLK, and a fault is detected, the system clock is automatically
switched to MODCLK for its clock source. By default, the HFXT fault logic works in all power modes,
except LPM3.5 or LPM4.5, because high-frequency operation in these modes is not supported.

The fail-safe logic does not change the respective SELA, SELM, and SELS bit settings. The fail-safe
mechanism behaves the same in normal and bypass modes.

This driver is contained in driverlib/5xx_6xx/cs_a.c, With driverlib/5xx_6xx/cs_a.h
containing the API definitions for use by applications.

API Functions

The CSA APl is broken into four groups of functions: an API that initializes the clock module, those
that deal with clock configuration and control, and external crystal and bypass specific configuration
and initialization, and those that handle interrupts.

General CSA configuration and initialization are handled by the following API

m CSA_clockSignallnit

m CSA_enableClockRequest
m CSA_disableClockRequest
m CSA getACLK

m CSA_getSMCLK

m CSA_getMCLK

m CSA_setDCOFreq

The following external crystal and bypass specific configuration and initialization functions are avail-
able

m CSA LFXTStart

m CSA_bypassLFXT

m CSA_bypassLFXTWithTimeout
m CSA LFXTStartWithTimeout

m CSA_LFXTOff

m CSA HFXTStart

m CSA_bypassHFXT

m CSA HFXTStartWithTimeout
m CSA_bypassHFXTWithTimeout
m CSA_HFXTOff

36

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Clock System (CSA)

m CSA_VLOoff
The CSA interrupts are handled by

m CSA_enableClockRequest

m CSA_disableClockRequest

m CSA_faultFlagStatus

m CSA_clearFaultFlag

m CSA_clearAllOscFlagsWithTimeout
CSA_setExternalClockSource must be called if an external crystal LFXT or HFXT is used and
the user intends to call CSA_getMCLK, CSA_getSMCLK or CSA_getACLK APIs and HFXTStart,

HFXTByPass, HFXTStartWithTimeout, HFXTByPassWithTimeout. If not any of the previous API
are going to be called, it is not necessary to invoke this API.

11.3 Programming Example

The following example shows the configuration of the CS module that sets SMCLK = MCLK = 8MHz

//Set DCO Frequency to 8MHz
CSA_setDCOFreqg(___MSP430_BASEADDRESS_CS_A__,CSA_DCORSEL_0,CSA_DCOFSEL_6) ;

//configure MCLK, SMCLK to be source by DCOCLK
CSA_clockSignalInit (__MSP430_BASEADDRESS_CS_A__,CSA_SMCLK, CSA_DCOCLK_SELECT,CSA_CLOCK_DIVIDER_1) ;
CSA_clockSignalInit (_ MSP430_BASEADDRESS_CS_A__,CSA_MCLK,CSA_DCOCLK_SELECT,CSA_CLOCK_DIVIDER_1);

2012-06-29:6 : 06 : 00_0500 37
TI Information—Selective Disclosure

Clock System (CSA)

38

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Cyclical Redundancy Check (CRC)

12

12.1

12.2

12.3

Cyclical Redundancy Check (CRC)

I OAUCH ON ... e e e e e e e s 37
AP FUNCHIONS .. e e e e 37
Programming EXamIPIe ... e 37
Introduction

The Cyclic Redundancy Check (CRC) API provides a set of functions for using the MSP430Ware
CRC module. Functions are provided to initialize the CRC and create a CRC signature to check
the validity of data. This is mostly useful in the communication of data, or as a startup procedure to
as a more complex and accurate check of data.

The CRC module offers no interrupts and is used only to generate CRC signatures to verify against
pre-made CRC signatures (Checksums).

This driver is contained in driverlib/5xx_6xx/crc.c, With driverlib/5xx_6xx/crc.h
containing the API definitions for use by applications.

API Functions

The CRC APl is one group that controls the CRC module.

m CRC_setSeed

m CRC_setData

m CRC_setSignatureByteReversed
m CRC_getSignature

m CRC_getResult

m CRC_getResultBitReversed

Programming Example

The following example shows how to initialize and use the CRC API to generate a CRC signature
on an array of data that can be included in a UART message with the data to check for validity.

unsigned int crcSeed = 0xXBEEF;

unsigned int data[] = {0x0123,
0x4567,
0x8910,
0x1112,
0x1314};

unsigned int crcResult;

int i;

// Stop WDT
WDT_hold(__MSP430_BASEADDRESS_WDT_A_) ;

2012-06-29:16 : 06 : 00—0500 39

TI Information—Selective Disclosure

Cyclical Redundancy Check (CRC)

// Set P1.0 as an output
GPIO_setAsOutputPin (__ MSP430_BASEADDRESS_PORTI1_R__,
GPIO_PORT_P1,
GPIO_PINO);

// Set the CRC seed
CRC_setSeed (__MSP430_BASEADDRESS_CRC__,
crcSeed) ;

for (i=0; i<5; i++)
{
// Add all of the values into the CRC signature
CRC_setData (__MSP430_BASEADDRESS_CRC__,
datal[il]);
}

// Save the current CRC signature checksum to be compared for later
crcResult = CRC_getResult (__MSP430_BASEADDRESS_CRC__);

40 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

12-bit Digital-to-Analog Converter (DAC12)

13 12-bit Digital-to-Analog Converter (DAC12)

INtrOAUCH ON .. e 39
AP FUNCHIONS .. e e 39
Programming EXamIPIe ... e 40

13.1 Introduction

The 12-Bit Digital-to-Analog (DAC12) API provides a set of functions for using the MSP430Ware
DAC12 modules. Functions are [rpvided to initialize setup the DAC12 modules, calibrate the output
signal, and manage the interrupts for the DAC12 modules.

The DAC12 module provides the ability to convert digital values into an analog signal for output to
a pin. The DAC12 can generate signals from 0 to Vcc from an 8- or 12-bit value. There can be
one or two DAC12 modules in a device, and if there are two they can be grouped together to create
two analog signals in simultaneously. There are 3 ways to latch data in to the DAC module, and
those are by software with the startConversion API function call, as well as by the Timer A output
of CCR1 or Timer B output of CCR2.

The calibration API will unlock and start calibration, then wait for the calibration to end before locking
it back up, all in one API. There are also functions to read out the calibration data, as well as be
able to set it manually.

The DAC12 module can generate one interrupt for each DAC module. It will generate the interrupt
when the data has been latched into the DAC module to be output into an analog signal.

This driver is contained in driverlib/5xx_6xx/dacl2.c, with
driverlib/5xx_6xx/dacl2.h containing the API definitions for use by applications.

13.2 API Functions

The DAC12 API is broken into three groups of functions: those that deal with initialization and
conversions, those that deal with calibration of the output, and those that handle interrupts.

The DAC12 initialization and conversion functions are

m DAC12_init

m DAC12_setAmplifierSetting
m DAC12_disable
DAC12_enableGrouping
DAC12_disableGrouping
DAC12_enableConversions
DAC12_setData
DAC12_disableConversions
DAC12_setResolution

m DAC12_setinputDataFormat
m DAC12_getDataBufferMemoryAddressForDMA

2012-06-29:6 : 06 : 00_0500 41
TI Information—Selective Disclosure

12-bit Digital-to-Analog Converter (DAC12)

Calibration features of the DAC12 are handled by

m DAC12_calibrateQutput
m DAC12_getCalibrationData
m DAC12_setCalibrationOffset

The DAC12 interrupts are handled by

m DAC12_enablelnterrupt
DAC12_disablelnterrupt
DAC12_getInterruptStatus
DAC12_clearInterrupt

13.3 Programming Example

The following example shows how to initialize and use the DAC12 API to output a 1.5V analog

signal.
DAC12_init (__ MSP430_BASEADDRESS_DAC12_2_ ,

DAC12_SUBMODULE_QO, // Initialize DAC12_0
DAC12_OUTPUT_1, // Choose P6.6 as output
DAC12_VREF_AVCC, // Use AVcc as Vref+
DAC12_VREFx1, // Multiply Vout by 1
DAC12_AMP_MEDIN_MEDOUT, // Use medium settling speed/current
DAC12_TRIGGER_ENCBYPASS // Auto trigger as soon as data 1is set

)i

// Calibrate output buffer for DAC12_0
DAC12_calibrateOutput (__MSP430_BASEADDRESS_DAC12_2
DAC12_SUBMODULE_QO) ;

’

DAC12_setData (__MSP430_BASEADDRESS_DAC12_2_ ,
DAC12_SUBMODULE_QO, // Set OxT7FF (~1.5V)
Ox7FF // into data buffer for DAC12_0
)i

42 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Direct Memory Access (DMA)

14 Direct Memory Access (DMA)

INtrOAUCH ON .. e 41
AP FUNCHIONS .. e e 41
Programming EXamIPIe ... e 42

14.1 Introduction

The Direct Memory Access (DMA) API provides a set of functions for using the MSP430Ware DMA
modules. Functions are provided to initialize and setup each DMA channel with the source and
destination addresses, manage the interrupts for each channel, and set bits that affect all DMA
channels.

The DMA module provides the ability to move data from one address in the device to another, and
that includes other peripheral addresses to RAM or vice-versa, all without the actual use of the
CPU. Please be advised, that the DMA module does halt the CPU for 2 cycles while transfering,
but does not have to edit any registers or anything. The DMA can transfer by bytes or words at a
time, and will automatically increment or decrement the source or destination address if desired.
There are also 6 different modes to transfer by, including single-transfer, block-transfer, and burst-
block-transfer, as well as repeated versions of those three different kinds which allows transfers to
be repeated without having re-enable transfers.

The DMA settings that affect all DMA channels include prioritization, from a fixed priority to dynamic
round-robin priority. Another setting that can be changed is when transfers occur, the CPU may be
in a read-modify-write operation which can be disasterous to time sensitive material, so this can be
disabled. And Non-Maskable-Interrupts can indeed be maskable to the DMA module if not enabled.

The DMA module can generate one interrupt per channel. The interrupt is only asserted when the
specified amount of transfers has been completed. With single-transfer, this occurs when that many
single transfers have occured, while with block or burst-block transfers, once the block is completely
transfered the interrupt is asserted.

14.2 API Functions

The DMA APl is broken into three groups of functions: those that deal with initialization and trans-
fers, those that handle interrupts, and those that affect all DMA channels.

The DMA initialization and transfer functions are: DMA _init DMA_setSrcAddress
DMA setDstAddress DMA_enableTransfers DMA _disableTransfers DMA _startTransfer
DMA setTransferSize

The DMA interrupts are handled by: DMA_enablelnterrupt DMA_disablelnterrupt
DMA_getinterruptStatus DMA_clearInterrupt DMA_NMIAbortStatus DMA_clearNMIAbort

Features of the DMA that affect all channels are handled by:
DMA_disableTransferDuringReadModifyWrite DMA_enableTransferDuringReadModifyWrite
DMA_enableRoundRobinPriority DMA_disableRoundRobinPriority DMA_enableNMIAbort
DMA_disableNMIAbort

2012-06-29:6 : 06 : 00_0500 43
TI Information—Selective Disclosure

Direct Memory Access (DMA)

14.3 Programming Example

The following example shows how to initialize and use the DMA API to transfer words from one spot
in RAM to another.

// Initialize and Setup DMA Channel 0
/
Base Address of the DMA Module
Configure DMA channel 0
Configure channel for repeated block transfers
DMA interrupt flag will be set after every 16 transfers
Use DMA_startTransfer () function to trigger transfers
Transfer Word-to-Word
Trigger upon Rising Edge of Trigger Source Signal
*/

DMA_init (__MSP430_BASEADDRESS_DMAX_3__,
DMA_CHANNEL_O,
DMA_TRANSFER_REPEATED_BLOCK,

16,
DMA_TRIGGERSOURCE_O,
DMA_SIZE_SRCWORD_DSTWORD,
DMA_TRIGGER_RISINGEDGE) ;
/ *
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1CO00 as source
Increment source address after every transfer
*/
DMA_setSrcAddress (_ _MSP430_BASEADDRESS_DMAX_3_ ,
DMA_CHANNEL_O,
0x1C00,
DMA_DIRECTION_INCREMENT) ;
/%
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1C20 as destination
Increment destination address after every transfer
*/
DMA_setDstAddress (__MSP430_BASEADDRESS_DMAX_3_ ,
DMA_CHANNEL_O,
0x1C20,
DMA_DIRECTION_INCREMENT) ;

// Enable transfers on DMA channel 0
DMA_enableTransfers (__MSP430_BASEADDRESS_DMAX_3_ ,
DMA_CHANNEL_O) ;

while (1)
{
// Start block tranfer on DMA channel 0
DMA_startTransfer (_ MSP430_BASEADDRESS_DMAX_3_ ,
DMA_CHANNEL_O) ;

44 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

15

15.1

EUSCI Inter-Integrated Circuit (12C)

I OAUCH ON ... e e e e e e e s 43
AP FUNCHIONS .. e e e e 45
Programming EXamIPIe ... e 46
Introduction

In 12C mode, the eUSCI_B module provides an interface between the device and 12C-compatible
devices connected by the two-wire 12C serial bus. External components attached to the 12C bus
serially transmit and/or receive serial data to/from the eUSCI_B module through the 2-wire 12C in-
terface. The Inter-Integrated Circuit (12C) API provides a set of functions for using the MSP430Ware
I2C modules. Functions are provided to initialize the 12C modules, to send and receive data, obtain
status, and to manage interrupts for the 12C modules.

The 12C module provide the ability to communicate to other IC devices over an 12C bus. The 12C
bus is specified to support devices that can both transmit and receive (write and read) data. Also,
devices on the 12C bus can be designated as either a master or a slave. The MSP430Ware 12C
modules support both sending and receiving data as either a master or a slave, and also support
the simultaneous operation as both a master and a slave.

I2C module can generate interrupts. The 12C module configured as a master will generate interrupts
when a transmit or receive operation is completed (or aborted due to an error). The 12C module
configured as a slave will generate interrupts when data has been sent or requested by a master.

15.1.1 Master Operations
To drive the master module, the APIs need to be invoked in the following order
= el2C_masterlnit
m el2C_setSlaveAddress
m el2C_setMode
m el2C_enable
m el2C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs for
transmit or receive as required
The user must first initialize the 12C module and configure it as a master with a call to
el2C_masterlnit(). That function will set the clock and data rates. This is followed by a call to set
the slave address with which the master intends to communicate with using el2C_setSlaveAddress.
Then the mode of operation (transmit or receieve) is chosen using el2C_setMode. The 12C module
may now be enabled using el2C_enable. It is recommneded to enable the el2C module before
enabling the interrupts. Any transmission or reception of data may be initiated at this point after
interrupts are enabled (if any).
The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.
Master Single Byte Trasnmission
2012-06-29:6 : 06 : 00_0500 45

TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

m el2C_masterSendSingleByte
Master Mulitple Byte Transmission

m el2C_masterMultiByteSendStart
m el2C_masterMultiByteSendNext
m el2C_masterMultiByteSendStop

Master Single Byte Reception

m el2C_masterReceiveStart
m el2C_masterSingleReceive

Master Multiple Byte Reception

m el2C_masterMultiByteReceiveStart
m el2C_masterMultiByteReceiveNext
m el2C_masterMultiByteReceiveFinish
m el2C_masterMultiByteReceiveStop

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

15.1.2 Slave Operations
To drive the slave module, the APIs need to be invoked in the following order
m el2C_slavelnit
m el2C_setMode
m el2C_enable
m el2C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs for
transmit or receive as required
The user must first call the el2C_slavelnit to initialize the slave module in 12C mode and set the
slave address. This is followed by a call to set the mode of operation (transmit or receive).The
I12C module may now be enabled using el2C_enable. It is recommneded to enable the 12C module
before enabling the interrupts. Any transmission or reception of data may be initiated at this point
after interrupts are enabled (if any).
The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.
Slave Transmission API
m el2C_slaveDataPut
Slave Reception API
m el2C_slaveDataGet
46 2012-06-29:6 : 06 : 00_0500

TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

This driver is contained in driverlib/5xx_6xx/ei2c.c, With driverlib/5xx_6xx/ei2c.h
containing the API definitions for use by applications.

15.2 API Functions

The eUSCI 12C API is broken into three groups of functions: those that deal with interrupts, those

that handle status and initialization, and those that deal with sending and receiving data.

The

I2C master and slave interrupts are handled by

el2C_enablelnterrupt
el2C_disablelnterrupt
el2C_clearlnterruptFlag
el2C_getinterruptStatus

Status and initialization functions for the 12C modules are

Sending and receiving data from the 12C slave module is handled by

Sending and receiving data from the 12C slave module is handled by

el2C_masterlnit
el2C_enable
el2C_disable
el2C_isBusBusy
el2C_isBusy
el2C_slavelnit
el2C_interruptStatus
el2C_setSlaveAddress
el2C_setMode
el2C_masterlsSTOPSent
el2C_selectMasterEnvironmentSelect

el2C_slaveDataPut
el2C_slaveDataGet

el2C_masterSendSingleByte
el2C_masterSendStart
el2C_masterMultiByteSendStart
el2C_masterMultiByteSendNext
el2C_masterMultiByteSendFinish
el2C_masterMultiByteSendStop
el2C_masterMultiByteReceiveNext

2012-06-29:6 : 06

: 00-0500
TI Information—Selective Disclosure

47

EUSCI Inter-Integrated Circuit (12C)

el2C_masterMultiByteReceiveFinish

el2C_masterMultiByteReceiveStop

el2C_masterReceiveStart

el2C_masterSingleReceive
el2C_getReceiveBufferAddressForDMA
el2C_getTransmitBufferAddressForDMA

DMA related

m el2C_getReceiveBufferAddressForDMA
m el2C_getTransmitBufferAddressForDMA

15.3 Programming Example

The following example shows how to use the 12C API to send data as a master.

//Initialize Master
eI2C_masterInit (__MSP430_BASEADDRESS_EUSCI_BO__ ,
eI2C_CLOCKSOURCE_SMCLK,
//UCS_getSMCLK (__MSP430_BASEADDRESS_UCS__),
1000000,
eI2C_SET_DATA_RATE_400KBPS,
1,
eI2C_NO_AUTO_STOP
)i

//Specify slave address
eI2C_setSlaveAddress (_ MSP430_BASEADDRESS_EUSCI_BO_ ,
SLAVE_ADDRESS
)i

//Set in transmit mode

el2C_setMode (__MSP430_BRASEADDRESS_EUSCI_BO
eI2C_TRANSMIT_MODE
) i

’

//Enable I2C Module to start operations
eI2C_enable (___MSP430_BASEADDRESS_EUSCI_BO_);

while (1)
{
//Send single byte data.
eI2C_masterSendSingleByte (__MSP430_BASEADDRESS_EUSCI_BO__,
transmitData
)i

//Delay until transmission completes
while (eI2C_isBusBusy (___MSP430_BASEADDRESS_EUSCI_BO__)) ;

//Delay between each transaction
__delay_cycles (50);

//Increment transmit data counter
transmitData++;

48 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

16

16.1

16.2

EUSCI Synchronous Peripheral Interface
(SPI)

I OAUCH ON ... e s 47
AP FUNCHONS .ottt e e e e e e e e e e e s 47
Programming EXample e 48
Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame.

This library provides the API for handling a SPI communication using EUSCI.
The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmabile bit rate clock divider and prescaler to generate the
output serial clock derived from the module’s input clock.

This driver is contained in driverlib/5xx_6xx/espi.c, With driverlib/5xx_6xx/espi.h
containing the API definitions for use by applications.

API Functions

To use the module as a master, the user must call eSPI_masterlnit() to configure the SPI Mas-
ter. This is followed by enabling the SPI module using eSPI_enable(). The interrupts are then
enabled (if needed). It is recommended to enable the SPI module before enabling the interrupts.
A data transmit is then initiated using eSPI_transmitData() and then when the receive flag is set,
the received data is read using eSPI_receiveData() and this indicates that an RX/TX operation is
complete.

To use the module as a slave, initialization is done using eSPI_slavelnit() and this is followed by
enabling the module using eSPI_enable(). Following this, the interrupts may be enabled as needed.
When the receive flag is set, data is first transmitted using eSPI_transmitData() and this is followed
by a data reception by eSPI_receiveData()

The SPI APl is broken into 3 groups of functions: those that deal with status and initialization, those
that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

eSPI_masterlnit

eSPI_slavelnit
eSPI_disable

eSPI_enable
eSPI_masterChangeClock

eSPI_isBusy

2012-06-29:16 : 06 : 00—0500 49

TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

m eSPI_select4PinFunctionality
m eSPI_changeClockPhasePolarity

Data handling is done by

m eSPI_transmitData
m eSPI_receiveData

Interrupts from the SPI module are managed using

m eSP|_disablelnterrupt
m eSPI_enablelnterrupt
m eSPI_getinterruptStatus
m eSPI_clearlnterruptFlag

DMA related

m eSPI_getReceiveBufferAddressForDMA
m eSPI_getTransmitBufferAddressForDMA

16.3 Programming Example

The following example shows how to use the SPI API to configure the SPI module as a master
device, and how to do a simple send of data.

//Initialize Master
returnValue = eSPI_masterInit (__MSP430_BASEADDRESS_EUSCI_AO_ ,
eSPI_CLOCKSOURCE_ACLK,
UCS_getSMCLK (__MSP430_BASEADDRESS_UCS__),
500000,
eSPI_MSB_FIRST,
eSPI_PHASE_DATA_ CHANGED_ONFIRST_CAPTURED_ON_NEXT,
eSPI_CLOCKPOLARITY_INACTIVITY_HIGH,
eSPI_3PIN
)i

if (STATUS_FAIL == returnValue) {
return;

}

//Enable SPI module
eSPI_enable (__MSP430_BASEADDRESS_EUSCI_AO_);

// Enable USCI_AO RX interrupt
eSPI_enablelInterrupt (__MSP430_BASEADDRESS_EUSCI_AO_ ,
eSPI_RECEIVE_INTERRUPT) ;

//Wait for slave to initialize
__delay_cycles (100);

TXData = 0x1; // Holds TX data
//USCI_AQ TX buffer ready?

while (!eSPI_getInterruptStatus (___MSP430_BASEADDRESS_EUSCI_AO_ ,
eSPI_TRANSMIT_INTERRUPT)) ;

50 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

//Transmit Data to slave
eSPI_transmitData (__MSP430_BASEADDRESS_EUSCI_AO__, TXData);

__bis_SR_register (LPMO_bits + GIE); // CPU off, enable interrupts

__no_operation();

// Remain in LPMO

#pragma vector=USCI_AO_VECTOR
__interrupt void USCI_AO_ISR (void)

{

switch (__even_in_range (UCAQOIV,4)) {
//Vector 2 - RXIFG

case 2:

break;
default: break;

//USCI_AQ0 TX buffer ready?
while (!eSPI_getInterruptStatus(___MSP430_BASEADDRESS_EUSCI_AO__,
eSPI_TRANSMIT_INTERRUPT)) ;

RXData = eSPI_receiveData (_ MSP430_BASEADDRESS_EUSCI_AOQ0_);

//Increment data
TXData++;

//Send next value
eSPI_transmitData (_ MSP430_BASEADDRESS_EUSCI_AO_ ,
TXData
)i

//Delay between transmissions for slave to process information
__delay_cycles (40);

2012-06-29:16 : 06 : 00—0500

51
TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

52
TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

EUSCI UART

17 EUSCI UART

INtrOAUCH ON .. e 51
AP FUNCHIONS .. e e 51
Programming EXamIPIe ... e 52

17.1 Introduction

The MSP430Ware library for UART mode features include:

m Odd, even, or non-parity

Independent transmit and receive shift registers

Separate transmit and receive buffer registers
LSB-first or MSB-first data transmit and receive
Built-in idle-line and address-bit communication protocols for multiprocessor systems

Receiver start-edge detection for auto wake up from LPMx modes

Status flags for error detection and suppression
m Status flags for address detection
m Independent interrupt capability for receive and transmit
In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another

device. Timing for each character is based on the selected baud rate of the USCI. The transmit and
receive functions use the same baud-rate frequency.

This driver is contained in driverlib/5xx_6xx/euart.c, with
driverlib/5xx_6xx/euart .h containing the API definitions for use by applications.

17.2 API Functions

The UART API provides the set of functions required to implement an interrupt driven UART driver.
The UART initialization with the various modes and features is done by the eUART _init(). At the
end of this fucntion UART is initialized and stays disabled. eUART_enable() enables the UART
and the module is now ready for transmit and receive. It is recommended to iniailize the UART via
eUART_linit(), enable the required interrupts and then enable UART via eUART_enable().

The UART APl is broken into three groups of functions: those that deal with configuration and con-
trol of the UART modules, those used to send and receive data, and those that deal with interrupt
handling and those dealing with DMA.

Configuration and control of the UART are handled by the

m eUART _init()

m eUART _initAdvance()
m eUART_enable()

m eUART_disable()

2012-06-29:6 : 06 : 00_0500 53
TI Information—Selective Disclosure

EUSCI UART

17.3

m eUART_setDormant()
m eUART_resetDormant()
m eUART_selectDeglitchTime()

Sending and receiving data via the UART is handled by the

m eUART_transmitData()

m eUART_receiveData()

m eUART_transmitAddress()
m eUART_transmitBreak()

Managing the UART interrupts and status are handled by the

m eUART_enablelnterrupt()
m eUART_disablelnterrupt()
m eUART_getinterruptStatus()
m eUART_clearInterruptFlag()
m eUART_queryStatusFlags()

DMA related

m eUART_getReceiveBufferAddressForDMA()
m eUART_getTransmitBufferAddressForDMA()

Programming Example

The following example shows how to use the UART API to initialize the UART, transmit characters,

and receive characters.

// Configure UART

if (STATUS_FAIL == eUART_init (_ MSP430_BASEADDRESS_EUSCI_AQ0___

eUART_CLOCKSOURCE_ACLK,

32768,

//eUCS_getACLK (__MSP430_BASEADDRESS_UCS__),

9600,

eUART_NO_PARITY,

eUART_LSB_FIRST,

eUART_ONE_STOP_BIT,

eUART_MODE,

eUART_LOW_FREQUENCY_BAUDRATE_GENERATION)) {
return;

}
eUART_enable (__MSP430_BASEADDRESS_EUSCI_AO0_) ;

// Enable USCI_AO RX interrupt
eUART_enablelInterrupt (_ _MSP430_BASEADDRESS_EUSCI_AO_ ,
eUART_RECEIVE_INTERRUPT) ;

__enable_interrupt();
while (1)
{
TXData = TXData+l; // Increment TX data

’

// Enable interrupt

54

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

EUSCI UART

// Load data onto buffer

eUART_transmitData (__MSP430_BASEADDRESS_EUSCI_AO_ ,
TXData) ;

while (check != 1);

check = 0;

}

//**

//

//This is the USCI_AO0 interrupt vector service routine.

//

//**
#pragma vector=USCI_A(O_VECTOR

__interrupt void USCI_AO_ISR(void)

{

switch(__even_in_range (UCAQOIV,USCI_UART_UCTXCPTIFG))

{
case USCI_UART_UCRXIFG:
RXData = eUART_receiveData (_ MSP430_BASEADDRESS_EUSCI_AO_);

if (! (RXData == TXData)) // Check value
{
while (1) ;

}
check =1;
break;

2012-06-29:6 : 06 : 00_0500
TI Information—Selective Disclosure

55

EUSCI UART

56

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Flash Memory Controller

18 Flash Memory Controller

INtrOAUCH ON .. e 55
AP FUNCHIONS .. e e 55
Programming EXamIPIe ... e 56

18.1 Introduction

The flash memory is byte, word, and long-word addressable and programmable. The flash memory
module has an integrated controller that controls programming and erase operations. The flash
main memory is partitioned into 512-byte segments. Single bits, bytes, or words can be written
to flash memory, but a segment is the smallest size of the flash memory that can be erased. The
flash memory is partitioned into main and information memory sections. There is no difference
in the operation of the main and information memory sections. Code and data can be located in
either section. The difference between the sections is the segment size. There are four information
memory segments, A through D. Each information memory segment contains 128 bytes and can
be erased individually. The bootstrap loader (BSL) memory consists of four segments, A through D.
Each BSL memory segment contains 512 bytes and can be erased individually. The main memory
segment size is 512 byte. See the device-specific data sheet for the start and end addresses of
each bank, when available, and for the complete memory map of a device. This library provides
the API for flash segment erase, flash writes and flash operation status check.

This driver is contained in driverlib/5xx_6xx/flash.c, with
driverlib/5xx_6xx/flash.h containing the API definitions for use by applications.

18.2 API Functions

Flash_segmentErase helps erase a single segment of the flash memory. A pointer to the flash
segment being erased is passed on to this function.

Flash_eraseCheck helps check if a specific number of bytes in flash are currently erased. A pointer
to the starting location of the erase check and the number of bytes to be checked is passed into
this function.

Depending on the kind of writes being performed to the flash, this library provides APIs for flash
writes.

Flash_write8 facilitates writing into the flash memory in byte format. Flash_write16 facilitates writing
into the flash memory in word format. Flash_write32 facilitates writing into the flash memory in long
format, pass by reference. Flash_memoryFill32 facilitates writing into the flash memory in long
format, pass by value. Flash_status checks if the flash is currently busy erasing or programming.

The Flash APl is broken into 3 groups of functions: those that deal with flash erase, those that write
into flash, and those that give status of flash.

The flash erase operations are managed by
m Flash_segmentErase

m Flash_eraseCheck
m Flash bankErase

2012-06-29:6 : 06 : 00_0500 57
TI Information—Selective Disclosure

Flash Memory Controller

18.3

Flash writes are managed by

m Flash write8

m Flash_write16
m Flash_write32
m Flash_memoryFill32

The status is given by

m Flash_status

m Flash_eraseCheck

Programming Example

The following example shows some flash operations using the APls

do{

Flash_segmentErase (_ _MSP430_BASEADDRESS_FLASH
(unsigned char) INFOD_START
) i
status = Flash_eraseCheck (_ _MSP430_BASEADDRESS_FLASH_ ,
(unsigned char) INFOD_START,
128
)i
}while (status == STATUS_FAIL);

4

//Flash write

Flash_write32 (__MSP430_BASEADDRESS_FLASH_ ,
calibration_data,
(unsigned long *) (INFOD_START),1);

58

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

FRAM Controller

19 FRAM Controller

INtrOAUCH ON .. e 57
AP FUNCHIONS .. e e 57
Programming EXamIPIe ... e 58

19.1 Introduction

FRAM memory is a non-volatile memory that reads and writes like standard SRAM. The MSP430
FRAM memory features include:

m Byte or word write access

m Automatic and programmable wait state control with independent wait state settings for access
and cycle times

m Error Correction Code with bit error correction, extended bit error detection and flag indicators
m Cache for fast read
m Power control for disabling FRAM on non-usage

This driver is contained in driverlib/5xx_6xx/fram.c, With driverlib/5xx_6xx/fram.h
containing the API definitions for use by applications.

19.2 API Functions

FRAM_enablelnterrupt enables selected FRAM interrupt sources.
FRAM_getinterruptStatus returns the status of the selected FRAM interrupt flags.
FRAM_disablelnterrupt disables selected FRAM interrupt sources.

Depending on the kind of writes being performed to the FRAM, this library provides APIs for FRAM
writes.

FRAM_write8 facilitates writing into the FRAM memory in byte format. FRAM_write16 facilitates
writing into the FRAM memory in word format. FRAM_write32 facilitates writing into the FRAM
memory in long format, pass by reference. FRAM_memoryFill32 facilitates writing into the FRAM
memory in long format, pass by value. FRAM_status checks if the FRAM is currently busy pro-
gramming.

The FRAM API is broken into 3 groups of functions: those that write into FRAM, those that handle
interrupts, and those that give status of FRAM.

FRAM writes are managed by

FRAM_write8
FRAM_write16
FRAM_write32
FRAM_memoryFill32

The FRAM interrupts are handled by

2012-06-29:6 : 06 : 00_0500 59
TI Information—Selective Disclosure

FRAM Controller

m FRAM_enablelnterrupt
m FRAM_getinterruptStatus
m FRAM_disablelnterrupt

The status is given by

m FRAM_status

19.3 Programming Example

The following example shows some FRAM operations using the APIs

//Writes the value of "data", 128 times to FRAM
FRAM_memoryFil132 (___MSP430_BASEADDRESS_FRAM FR5XX__,data,

(unsigned long *)FRAM_TEST_START,128);

60

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

FRGPIO

20

20.1

FRGPIO

I OAUCH ON ... e e e e e e e s 59
AP FUNCHIONS .. e e e e 60
Programming EXamIPIe ... e 60
Introduction

The Digital 1/0 (FRGPIO) API provides a set of functions for using the MSP430Ware FRGPIO
modules. Functions are provided to setup and enable use of input/output pins, setting them up with
or without interrupts and those that access the pin value.

The digital I/0O features include:

Independently programmable individual I/Os

Any combination of input or output

Individually configurable P1 and P2 interrupts. Some devices may include additional port
interrupts.

Independent input and output data registers

Individually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ).
Most ports contain eight I/O lines; however, some ports may contain less (see the device-specific
data sheet for ports available). Each I/O line is individually configurable for input or output direction,
and each can be individually read or written. Each I/O line is individually configurable for pullup or
pulldown resistors. PJ contains only four 1/O lines.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 1/O lines can
be individually enabled and configured to provide an interrupt on a rising or falling edge of an
input signal. All P1 I/O lines source a single interrupt vector P11V, and all P2 1/O lines source a
different, single interrupt vector P2IV. On some devices, additional ports with interrupt capability
may be available (see the device-specific data sheet for details) and contain their own respective
interrupt vectors. Individual ports can be accessed as byte-wide ports or can be combined into
word-wide ports and accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are
associated with the names PA, PB, PC, PD, etc., respectively. All port registers are handled in this
manner with this naming convention except for the interrupt vector registers, P11V and P21V; that
is, PAIV does not exist. When writing to port PA with word operations, all 16 bits are written to the
port. When writing to the lower byte of the PA port using byte operations, the upper byte remains
unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the
lower byte unchanged. When writing to a port that contains less than the maximum number of bits
possible, the unused bits are a "don’t care". Ports PB, PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte
operations causes only the lower or upper byte to be transferred to the destination, respectively.
Reading of the PA port and storing to a general-purpose register using byte operations causes the
byte transferred to be written to the least significant byte of the register. The upper significant byte
of the destination register is cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly.
When reading from ports that contain less than the maximum bits possible, unused bits are read
as zeros (similarly for port PJ).

2012-06-29:16 : 06 : 00—0500 61

TI Information—Selective Disclosure

FRGPIO

20.2

20.3

The FRGPIO pin may be configured as an /O pin with FRGPIO_setAsOutputPin(),
FRGPIO_setAsInputPin(), FRGPIO_setAsInputPinWithPullDownresistor() or FRG-
PIO_setAsInputPinWithPullUpresistor(). The FRGPIO pin may instead be con-
figured to operate in the Peripheral Module assigned function by configuring
the FRGPIO using FRGPIO_setAsPeripheralModuleFunctionOutputPin() or FRG-
PIO_setAsPeripheralModuleFunctionlnputPin().

This driver is contained in driverlib/5xx_6xx/frgpio.c, with
driverlib/5xx_6xx/frgpio.h containing the APl definitions for use by applications.

API Functions

The FRGPIO API is broken into three groups of functions: those that deal with configuring the
FRGPIO pins, those that deal with interrupts, and those that access the pin value.

The FRGPIO pins are configured with

m FRGPIO_setAsOutputPin()

m FRGPIO_setAslInputPin()

m FRGPIO_setAsInputPinWithPullDownresistor()

m FRGPIO_setAslnputPinWithPullUpresistor()

m FRGPIO_setAsPeripheralModuleFunctionOutputPin()
m FRGPIO_setAsPeripheralModuleFunctionInputPin()

The FRGPIO interrupts are handled with

m FRGPIO_enablelnterrupt()

m FRGPIO_disblelnterrupt()

m FRGPIO_clearInterruptFlag()
m FRGPIO_getinterruptStatus()
m FRGPIO_interruptEdgeSelect()

The FRGPIO pin state is accessed with

m FRGPIO_setOutputHighOnPin()
m FRGPIO_setOutputLowOnPin()
m FRGPIO_toggleOutputOnPin()

m FRGPIO_getinputPinValue()

Programming Example

The following example shows how to use the FRGPIO API. A trigger is generated on a hi "TO" low
transition on P1.4 (pulled-up input pin), which will generate P1_ISR. In the ISR, we toggle P1.0
(output pin).

62

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

FRGPIO

//Set P1.0 to output direction
FRGPIO_setAsOutputPin (___MSP430_BASEADDRESS_PORT1_R__ ,

FRGPIO_PORT_P1,

FRGPIO_PINO

)i

//Enable P1.4 internal resistance as pull-Up resistance
FRGPIO_setAsInputPinWithPullUpresistor (

_ MSP430_BASEADDRESS_PORT1_R__ ,

FRGPIO_PORT_P1,

FRGPIO_PIN4

)i

//P1l.4 interrupt enabled
FRGPIO_enableInterrupt (
_ MSP430_BASEADDRESS_PORT1_R__ ,
FRGPIO_PORT_P1,
FRGPIO_PIN4
) i

//P1l.4 Hi/Lo edge
FRGPIO_interruptEdgeSelect (
_ MSP430_BASEADDRESS_PORT1_R__ ,
FRGPIO_PORT_P1,
FRGPIO_PIN4,
FRGPIO_HIGH_TO_LOW_TRANSITION
)i

//P1l.4 IFG cleared
FRGPIO_clearInterruptFlag(
__MSP430_BASEADDRESS_PORT1_R__,
FRGPIO_PORT_P1,
FRGPIO_PIN4
)i

//Enter LPM4 w/interrupt
__bis_SR_register (LPM4_bits + GIE);

//For debugger
__no_operation();

//********‘k‘k**********‘k‘k‘k************‘k‘k************‘k***********‘k‘k*************‘k*
//
//This is the PORT1_VECTOR interrupt vector service routine
//
//*****~k~k************************~k~k***********~k~k~k~k******************************
#pragma vector=PORT1_VECTOR
__interrupt void Port_1 (void)
{
//P1.0 = toggle
FRGPIO_toggleOutputOnPin (
__MSP430_BASEADDRESS_PORT1_R
FRGPIO_PORT_P1,
FRGPIO_PINO
)i

’

//P1l.4 IFG cleared
FRGPIO_clearInterruptFlag(
__ _MSP430_BASEADDRESS_PORT1_R__,
FRGPIO_PORT_P1,
FRGPIO_PIN4

2012-06-29:6 : 06 : 00_0500 63
TI Information—Selective Disclosure

FRGPIO

64

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Power Management Module (FRPMM)

21

21.1

21.2

Power Management Module (FRPMM)

I OAUCH ON ... e e e e e e e s 63
AP FUNCHIONS .. e e e e 63
Programming EXamIPIe ... e 64
Introduction

The PMM manages all functions related to the power supply and its supervision for the device.
Its primary functions are first to generate a supply voltage for the core logic, and second, provide
several mechanisms for the supervision of the voltage applied to the device (DVCC).

The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core
voltage (VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies
the CPU, memories, and the digital modules, while DVCC supplies the 1/0Os and analog modules.
The VCORE output is maintained using a dedicated voltage reference. The input or primary side
of the regulator is referred to as its high side. The output or secondary side is referred to as its low
side.

API Functions

FRPMM_enableLowPowerReset() / FRPMM_disableLowPowerReset() If enabled, SVSH does
not reset device but triggers a system NMI. If disabled, SVSH resets device. Note: not available on
FR57xx devices.

FRPMM_enableSVSH() / FRPMM_disableSVSH() If disabled on FR58xx/FR59xx, High-side SVS
(SVSH) is disabled in LPM2, LPM3, LPM4, LPM3.5 and LPM4.5. SVSH is always enabled in active
mode, LPMO, and LPM1. If disabled on FR57xx, High-side SVS (SVSH) is disabled in LPM4.5.
SVSH is always enabled in active mode and LPM0/1/2/3/4 and LPM3.5. If enabled, SVSH is always
enabled. Note: this API has different functionality depending on the part.

FRPMM_enableSVSL() / FRPMM_disableSVSL() If disabled, Low-side SVS (SVSL) is disabled in
low power modes. SVSL is always enabled in active mode and LPMO. If enabled, SVSL is enabled
in LPMO0/1/2. SVSL is always enabled in AM and always disabled in LPM3/4 and LPM3.5/4.5. Note:
not available on FR58xx/59xx devices.

FRPMM_regOff() / FRPMM_regOn() If off, Regulator is turned off when going to LPM3/4. System
enters LPM3.5 or LPM4.5, respectively. If on, Regulator remains on when going into LPM3/4

FRPMM_clearInterrupt() Clear selected or all interrupt flags for the FRPMM
FRPMM_getinterruptStatus() Returns interrupt status of the selected flag in the FRPMM module

FRPMM_lockLPM5() / FRPMM_unlockLPM5() If unlocked, LPMx.5 configuration is not locked
and defaults to its reset condition. if locked, LPMx.5 configuration remains locked. Pin state is held
during LPMx.5 entry and exit.

This driver is contained in driverlib/5xx_6xx/frpmm.c, with
driverlib/5xx_6xx/frpmm.h containing the API definitions for use by applications.

2012-06-29:16 : 06 : 00—0500 65

TI Information—Selective Disclosure

Power Management Module (FRPMM)

21.3 Programming Example

The following example shows some pmm operations using the APIs

//Unlock the GPIO pins.
/ *
Base Address of Comparator D,
By default, the pins are unlocked unless waking
up from an LPMx.5 state in which case all GPIO
are previously locked.

*/
FRPMM_unlockLPM5 (__ MSP430_BASEADDRESS_PMM_FR5xx__) ;

//Get Interrupt Status from the PMMIFG register.
/+ Base Address of Comparator D,
mask:
FRPMM_PMMBORIFG
FRPMM_PMMRSTIFG,
FRPMM_PMMPORIFG,
FRPMM_SVSLIFG,
FRPMM_SVSHIFG
FRPMM_PMMLPM5SIFG,
return STATUS_SUCCESS (0x01) or STATUS_FAIL (0x00)
*/

if (FRPMM_getInterruptStatus (__MSP430_BASEADDRESS_PMM FR5xx__,

{
//Clear Interrupt Flag from the PMMIFG register.
/* Base Address of Comparator D,
mask:

FRPMM_PMMBORIFG

FRPMM_PMMRSTIFG,

FRPMM_PMMPORIFG,

FRPMM_SVSLIFG,

FRPMM_SVSHIFG

FRPMM_PMMLPM5IFG,

FRPMM_ALL

*/

FRPMM_clearInterrupt (_ _MSP430_BASEADDRESS_PMM_FR5xx__,

if (FRPMM_getInterruptStatus (___MSP430_BASEADDRESS_PMM_FR5xx_
{
FRPMM_clearInterrupt (__MSP430_BASEADDRESS_PMM FR5xx__,

__delay_cycles (1000000) ;
//Lock GPIO output states (before triggering a BOR)
/ *
Base Address of Comparator D,
Forces all GPIO to retain their output
states during a reset.
*/
FRPMM_lockLPM5 (___MSP430_BASEADDRESS_PMM_FRO5xx__);
//Trigger a software Brown Out Reset (BOR)
/ *
Base Address of Comparator D,
Forces the devices to perform a BOR.
*/
FRPMM_trigBOR(__MSP430_BASEADDRESS_PMM_FR5xx_) ;

if (FRPMM_getInterruptStatus (___MSP430_BASEADDRESS_PMM FR5xx__,
{
FRPMM_clearInterrupt (__MSP430_BASEADDRESS_PMM_ FR5xx__,

FRPMM_PMMLPM5IFG))

FRPMM_PMMLPM5IFG) ;

FRPMM_PMMRSTIFG))

FRPMM_PMMRSTIFG) ;

FRPMM_PMMBORIFG))

FRPMM_PMMBORIFG) ;

66

2012-06-29:16 : 06 : 00—0500

TI Information—Selective Disclosure

// Was t

// Was t

// Was t

Power Management Module (FRPMM)

__delay_cycles (1000000);
FRPMM_lockLPM5 (___MSP430_BASEADDRESS_PMM_FR5xx__) ;

//Disable SVSH
/ *
Base Address of Comparator D,
High-side SVS (SVSH) is disabled in LPM4.5. SVSH 1is
always enabled in active mode and LPM0/1/2/3/4 and LPM3.5.
*/
FRPMM_disableSVSH(___MSP430_BASEADDRESS_PMM_FR5xx_) ;
//Disable SVSL
/ *
Base Address of Comparator D,
Low-side SVS (SVSL) is disabled in low power modes.
SVSL is always enabled in active mode and LPMO.
*/
FRPMM_disableSVSL (___MSP430_BASEADDRESS_PMM_FR5xx_) ;
//Disable Regulator
/ *
Base Address of Comparator D,
Regulator is turned off when going to LPM3/4.
System enters LPM3.5 or LPM4.5, respectively.
*/
FRPMM_regOff (__MSP430_BASEADDRESS_PMM_FR5xx__);
__bis_SR _register (LPM4_bits); // Enter LPM4.5, This automatically locks
// (1f not locked already) all GPIO pir
// and will set the LPM5 flag and set
// in the PM5CTLO register upon wake

[/
while (1)
{
__no_operation(); // Don’t sleep
}
2012-06-29:6 : 06 : 00_0500 67

TI Information—Selective Disclosure

Power Management Module (FRPMM)

68

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

GPIO

22

22.1

GPIO

I OAUCH ON ... e e e e e e e s 67
AP FUNCHIONS .. e e e e 68
Programming EXamIPIe ... e 68
Introduction

The digital I/O features include:

Independently programmable individual I/Os

Any combination of input or output

Individually configurable P1 and P2 interrupts. Some devices may include additional port
interrupts.

Independent input and output data registers

Individually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital /O ports implemented (P1 to P11 and PJ).
Most ports contain eight 1/O lines; however, some ports may contain less (see the device-specific
data sheet for ports available). Each /O line is individually configurable for input or output direction,
and each can be individually read or written. Each I/O line is individually configurable for pullup or
pulldown resistors, as well as, configurable drive strength, full or reduced. PJ contains only four I1/0
lines.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 1/O lines can
be individually enabled and configured to provide an interrupt on a rising or falling edge of an
input signal. All P1 I/O lines source a single interrupt vector P11V, and all P2 1/O lines source a
different, single interrupt vector P2IV. On some devices, additional ports with interrupt capability
may be available (see the device-specific data sheet for details) and contain their own respective
interrupt vectors. Individual ports can be accessed as byte-wide ports or can be combined into
word-wide ports and accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are
associated with the names PA, PB, PC, PD, etc., respectively. All port registers are handled in this
manner with this naming convention except for the interrupt vector registers, P11V and P21V; that
is, PAIV does not exist. When writing to port PA with word operations, all 16 bits are written to the
port. When writing to the lower byte of the PA port using byte operations, the upper byte remains
unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the
lower byte unchanged. When writing to a port that contains less than the maximum number of bits
possible, the unused bits are a "don’t care". Ports PB, PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte
operations causes only the lower or upper byte to be transferred to the destination, respectively.
Reading of the PA port and storing to a general-purpose register using byte operations causes the
byte transferred to be written to the least significant byte of the register. The upper significant byte
of the destination register is cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly.
When reading from ports that contain less than the maximum bits possible, unused bits are read
as zeros (similarly for port PJ).

The GPIO pin may be configured as an 1/O pin with GPIO_setAsOutputPin(),
GPIO_setAsInputPin(), GPIO_setAsInputPinWithPullDownresistor() or

2012-06-29:16 : 06 : 00—0500 69

TI Information—Selective Disclosure

GPIO

22.2

22.3

GPIO_setAsInputPinWithPullUpresistor(). The GPIO pin may instead be con-
figured to operate in the Peripheral Module assigned function by config-
uring the GPIO using GPIO_setAsPeripheralModuleFunctionOutputPin() or
GPIO_setAsPeripheralModuleFunctionlnputPin().

This driver is contained in driverlib/5xx_6xx/gpio.c, With driverlib/5xx_6xx/gpio.h
containing the API definitions for use by applications.

API Functions

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO
pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with

m GPIO_setAsOutputPin()

m GPIO_setAsInputPin()

m GPIO_setAsInputPinWithPullDownresistor()

m GPIO_setAsInputPinWithPullUpresistor()

m GPIO_setDriveStrength()

m GPIO_setAsPeripheralModuleFunctionOutputPin()
m GPIO_setAsPeripheralModuleFunctionlnputPin()

The GPIO interrupts are handled with

m GPIO_enablelnterrupt()

m GPIO_disblelnterrupt()

m GPIO_clearInterruptFlag()
m GPIO_getinterruptStatus()
m GPIO_interruptEdgeSelect()

The GPIO pin state is accessed with

m GPIO_setOutputHighOnPin()
m GPIO_setOutputLowOnPin()
m GPIO_toggleOutputOnPin()

m GPIO_getinputPinValue()

Programming Example

The following example shows how to use the GPIO API.

// Set P1.0 to output direction
GPIO_setAsOutputPin (_ MSP430_BASEADDRESS_PORTI1_R__,
GPIO_PORT_P1,
GPIO_PINO
)i

70

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

GPIO

// Set Pl.4 to input direction

GPIO_setAsInputPin (__ _MSP430_BASEADDRESS_PORT1_R_ ,
GPIO_PORT_PI1,
GPIO_PIN4
)i

while (1)
{
// Test P1l.4
if (GPIO_INPUT_PIN_HIGH == GPIO_getInputPinValue (
__MSP430_BASEADDRESS_PORT1_R__,
GPIO_PORT_P1,
GPIO_PIN4
))

// if P1.4 set, set P1.0
GPIO_setOutputHighOnPin (
__ MSP430_BASEADDRESS_PORT1_R_ ,
GPIO_PORT_P1,
GPIO_PINO
)i
}
else
{
// else reset
GPIO_setOutputLowOnPin (
_ MSP430_BASEADDRESS_PORTI1_R__,
GPIO_PORT_P1,
GPIO_PINO
)i

2012-06-29:6 : 06 : 00_0500 71
TI Information—Selective Disclosure

GPIO

72

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Inter-Integrated Circuit (12C)

23

23.1

Inter-Integrated Circuit (12C)

I OAUCH ON ... e e e e e e e s 71
AP FUNCHIONS .. e e e e 73
Programming EXamIPIe ... e 74
Introduction

The Inter-Integrated Circuit (I12C) API provides a set of functions for using the MSP430Ware 12C
modules. Functions are provided to initialize the 12C modules, to send and receive data, obtain
status, and to manage interrupts for the 12C modules.

The 12C module provide the ability to communicate to other IC devices over an 12C bus. The 12C
bus is specified to support devices that can both transmit and receive (write and read) data. Also,
devices on the 12C bus can be designated as either a master or a slave. The MSP430Ware 12C
modules support both sending and receiving data as either a master or a slave, and also support
the simultaneous operation as both a master and a slave. Finally, the MSP430Ware 12C modules
can operate at two speeds: Standard (100 kb/s) and Fast (400 kb/s).

I12C module can generate interrupts. The 12C module configured as a master will generate interrupts
when a transmit or receive operation is completed (or aborted due to an error). The 12C module
configured as a slave will generate interrupts when data has been sent or requested by a master.

23.1.1 Master Operations

To drive the master module, the APIs need to be invoked in the following order

= [2C_masterlnit

m 12C_setSlaveAddress

m 12C_setMode

m 12C_enable

m 12C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs for

transmit or receive as required

The user must first initialize the 12C module and configure it as a master with a call to
12C_masterlnit(). That function will set the clock and data rates. This is followed by a call to set
the slave address with which the master intends to communicate with using 12C_setSlaveAddress.
Then the mode of operation (transmit or receieve) is chosen using 12C_setMode. The 12C mod-
ule may now be enabled using 12C_enable. It is recommneded to enable the 12C module before
enabling the interrupts. Any transmission or reception of data may be initiated at this point after
interrupts are enabled (if any).
The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.
Master Single Byte Trasnmission

m [2C_masterSendSingleByte
Master Mulitple Byte Trasnmission

2012-06-29:6 : 06 : 00_0500 73

TI Information—Selective Disclosure

Inter-Integrated Circuit (12C)

[12C_masterMultiByteSendStart
12C_masterMultiByteSendNext
[12C_masterMultiByteSendFinish
12C_masterMultiByteSendStop

Master Single Byte Reception

m [2C_masterSingleReceiveStart
m [2C_masterSingleReceive

Master Multiple Byte Reception

I2C_masterMultiByteReceiveStart
12C_masterMultiByteReceiveNext
I2C_masterMultiByteReceiveFinish
12C_masterMultiByteReceiveStop

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

23.1.2 Slave Operations

To drive the slave module, the APIs need to be invoked in the following order

m 12C_slavelnit
m [2C_setMode
m [12C_enable

m [12C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs for
transmit or receive as required

The user must first call the 12C_slavelnit to initialize the slave module in 12C mode and set the
slave address. This is followed by a call to set the mode of operation (transmit or receive).The
I2C module may now be enabled using I2C_enable. It is recommneded to enable the 12C module
before enabling the interrupts. Any transmission or reception of data may be initiated at this point
after interrupts are enabled (if any).

The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.

Slave Transmission API
m 12C_slaveDataPut
Slave Reception API
m 12C_slaveDataGet

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

This driver is contained in driverlib/5xx_6xx/i2c.c, With driverlib/5xx_6xx/i2c.h
containing the API definitions for use by applications.

74 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Inter-Integrated Circuit (12C)

23.2

API Functions

The 12C API is broken into three groups of functions: those that deal with interrupts, those that

handle status and initialization, and those that deal with sending and receiving data.

The 12C master and slave interrupts are handled by

m [2C_enableinterrupt

m [2C_disablelnterrupt

m UART_clearlnterruptFlag
m [2C_getinterruptStatus

Status and initialization functions for the 12C modules are

12C_masterlnit
I2C_enable
12C_disable
12C_isBusBusy
12C_isBusy
12C_slavelnit
[12C_interruptStatus
12C_setSlaveAddress
12C_setMode

Sending and receiving data from the 12C slave module is handled by

m [12C _slaveDataPut
m [12C_slaveDataGet

Sending and receiving data from the 12C slave module is handled by

I2C_masterSendSingleByte
[2C_masterMultiByteSendStart
[12C_masterMultiByteSendNext
[12C_masterMultiByteSendFinish
[2C_masterMultiByteSendStop
12C_masterMultiByteReceiveStart
12C_masterMultiByteReceiveNext
12C_masterMultiByteReceiveFinish
[2C_masterMultiByteReceiveStop
I2C_masterSingleReceiveStart
I2C_masterSingleReceive
12C_getReceiveBufferAddressForDMA
12C_getTransmitBufferAddressForDMA

DMA related

m |2C_getReceiveBufferAddressForDMA
m |2C_getTransmitBufferAddressForDMA

2012-06-29:16 : 06 : 00—0500

TI Information—Selective Disclosure

75

Inter-Integrated Circuit (12C)

23.3 Programming Example

The following example shows how to use the 12C API to send data as a master.

// Initialize Master
I2C_masterInit (USCI_BO_BASE, SMCLK, CLK_getSMClk (), I2C_SET_DATA_RATE_400KBPS);

// Specify slave address
I2C_setSlaveAddress (USCI_BO_BASE, SLAVE_ADDRESS) ;

// Set in transmit mode
I12C_setMode (USCI_BO_BASE, I2C_TRANSMIT_MODE) ;

//Enable I2C Module to start operations
I2C_enable (USCI_BO_BASE) ;

while (1)
{
// Send single byte data.
I2C_masterSendSingleByte (USCI_BO_BASE, transmitData);

// Delay until transmission completes
while (I2C_busBusy (USCI_BO_BASE)) ;

// Increment transmit data counter
transmitData++;

76 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

LDO-PWR

24

241

24.2

LDO-PWR

I OAUCH ON ... e e e e e e e s 75
AP FUNCHIONS .. e e e e 75
Programming EXamIPIe ... e 76
Introduction

The features of the LDO-PWR module include:

= Integrated 3.3-V LDO regulator with sufficient output to power the entire MSP430Z microcon-
troller and system circuitry from 5-V external supply

m Current-limiting capability on 3.3-V LDO output with detection flag and interrupt generation
m LDO input voltage detection flag and interrupt generation

The LDO-PWR power system incorporates an integrated 3.3-V LDO regulator that allows the entire
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available from the
system. Alternatively, the power system can supply power only to other components within the
system, or it can be unused altogether.

This driver is contained in driverlib/5xx_6xx/1doPwr.c, with
driverlib/5xx_6xx/1doPwr.h containing the API| definitions for use by applications.

API Functions

The IdoPwr configuration is handled by

m | DOPWR_unLockConfiguration()

m L DOPWR_lockConfiguration()

m LDOPWR_enablePort_U_inputs()

m LDOPWR_disablePort_U_inputs()

m LDOPWR_enablePort_U_outputs()

m LDOPWR_disablePort_U_outputs()
m LDOPWR_enable()

= LDOPWR_disable()

m LDOPWR_enableOverloadAutoOff()
m L DOPWR_disableOverloadAutoOff()

Handling the read/write of output data is handled by

m LDOPWR_getPort_U1_inputData()
m LDOPWR_getPort_UO_inputData()
m LDOPWR_getPort_U1_outputData()

2012-06-29:16 : 06 : 00—0500 77

TI Information—Selective Disclosure

LDO-PWR

LDOPWR_getPort_UO_outputData()
LDOPWR_getOverloadAutoOffStatus()
LDOPWR_setPort_UO0_outputData()
LDOPWR_togglePort_U1_outputData()
LDOPWR_togglePort_UQ_outputData()
m LDOPWR_setPort_U1_outputData()

The interrupt and status operations are handled by

m LDOPWR_enablelnterrupt()
LDOPWR_disablelnterrupt()
LDOPWR_getinterruptStatus()
LDOPWR_clearInterruptStatus()
LDOPWR_isLDOlInputValid()
LDOPWR_getOverloadAutoOffStatus()

24.3 Programming Example

The following example shows how to use the LDO-PWR API.

{
// Enable access to config registers
LDOPWR_unLockConfiguration (___MSP430_BASEADDRESS_PU__);

// Configure PU.0 as output pins
LDOPWR_enablePort_U_outputs (___MSP430_BASEADDRESS_PU__);

//Set PU.1 = high
LDOPWR_setPort_Ul_outputData (__MSP430_BASEADDRESS_PU__,
LDOPWR_PORTU_PIN_HIGH

//Set PU.0 = low

LDOPWR_setPort_UO_outputData (__MSP430_BASEADDRESS_PU__,
LDOPWR_PORTU_PIN_LOW
)i

// Enable LDO overload indication interrupt

LDOPWR_enableInterrupt (_ MSP430_BASEADDRESS_PU__,
LDOPWR_LDO_OVERLOAD_INDICATION_INTERRUPT
)i

// Disbale access to config registers
LDOPWR_lockConfiguration (__MSP430_BASEADDRESS_PU__);

// continuous loop
while (1)
{

// Delay

for (1=50000;1i>0;i--);

// Enable access to config registers
LDOPWR_unLockConfiguration (___MSP430_BASEADDRESS_PU__);

// XOR PU.0/1

78 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

LDO-PWR

LDOPWR_togglePort_Ul_outputData (___MSP430_BASEADDRESS_PU__) ;
LDOPWR_togglePort_UO_outputData (__MSP430_BASEADDRESS_PU__);

// Disbale access to config registers
LDOPWR_lockConfiguration (___MSP430_BASEADDRESS_PU__);

//**
//

// This is the LDO_PWR_VECTOR interrupt vector service routine.

//

//**
interrupt void LDOInterruptHandler (void)

{
if (LDOPWR_getInterruptStatus (__MSP430_BASEADDRESS_PU__,
LDOPWR_LDO_OVERLOAD_INDICATION_INTERRUPT

))

// Enable access to config registers
LDOPWR_unLockConfiguration (___MSP430_BASEADDRESS_PU__);

// Software clear IFG
LDOPWR_clearInterruptStatus (___MSP430_BASEADDRESS_PU__,
LDOPWR_LDO_OVERLOAD_INDICATION_INTERRUPT

)

// Disable access to config registers
LDOPWR_lockConfiguration(__ MSP430_BASEADDRESS_PU__);

// Over load indication; take necessary steps in application firmware
while (1) ;

2012-06-29:6 : 06 : 00_0500 79
TI Information—Selective Disclosure

LDO-PWR

80

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Memory Protection Unit (MPU)

25

25.1

25.2

Memory Protection Unit (MPU)

I OAUCH ON ... e e e e e e e s 79
AP FUNCHIONS .. e e e e 79
Programming EXamIPIe ... e 80
Introduction

The MPU protects against accidental writes to designated read-only memory segments or execu-
tion of code from a constant memory segment memory. Clearing the MPUENA bit disables the
MPU, making the complete memory accessible for read, write, and execute operations. After a
BOR, the complete memory is accessible without restrictions for read, write, and execute opera-
tions.

MPU features include:

m Main memory can be configured up to three segments of variable size
m Access rights for each segment can be set independently

m Information memory can have its access rights set independently

m All MPU registers are protected from access by password

This driver is contained in driverlib/5xx_6xx/mpu.c, With driverlib/5xx_6xx/mpu.h
containing the API definitions for use by applications.

API Functions

The MPU APl is broken into three group of functions: those that handle initialization, those that deal
with memory segmentation and access rights definition, and those that handle interrupts.

The MPU initialization function is
m MPU_start
The MPU memory segmentation and access right definition functions are

m MPU_createTwoSegments
m MPU_createThreeSegments

The MPU interrupt handler functions

= MPU_enablePUCOnViolation
MPU_getinterruptStatus

MPU_clearInterruptFlag
MPU_clearAllinterruptFlags

2012-06-29:16 : 06 : 00—0500 81

TI Information—Selective Disclosure

Memory Protection Unit (MPU)

25.3 Programming Example

The following example shows some MPU operations using the APls

//Define memory segment boundaries and set access right for each memory segment

MPU_createThreeSegments (__MSP430_BASEADDRESS_MPU__, 0x04, 0x08,
MPU_READ |MPU_WRITE |[MPU_EXEC,

MPU_READ,
MPU_READ | MPU_WRITE |MPU_EXEC) ;

// Configures MPU to generate a PUC on access violation on the second segment
MPU_enablePUCOnViolation (___MSP430_BASEADDRESS_MPU__ ,MPU_SECOND_SEG) ;

//Enables the MPU module
MPU_start (_ _MSP430_BASEADDRESS_MPU_) ;

82 2012-06-29:16 : 06 : 00—0500

TI Information—Selective Disclosure

32-Bit Hardware Multiplier (MPY32)

26

26.1

26.2

32-Bit Hardware Multiplier (MPY32)

I OAUCH ON ... e e e e e e e s 81
AP FUNCHIONS .. e e e e 81
Programming EXamIPIe ... e 82
Introduction

The 32-Bit Hardware Multiplier (MPY32) API provides a set of functions for using the MSP430Ware
MPY32 modules. Functions are provided to setup the MPY32 modules, set the operand registers,
and obtain the results.

The MPY32 Modules does not generate any interrupts.

This driver is contained in driverlib/5xx_6xx/mpy32.c, with
driverlib/5xx_6xx/mpy32.h containing the API definitions for use by applications.

API Functions

The MPY32 API is broken into three groups of functions: those that control the settings, those that
set the operand registers, and those that return the results, sum extension, and carry bit value.

The settings are handled by

MPY32_setWriteDelay
MPY32_setSaturationMode
MPY32_resetSaturationMode
MPY32_setFractionMode
MPY32_resetFractionMode

The operand registers are set by

m MPY32_setOperandOne8Bit

MPY32_setOperandOne16Bit
MPY32_setOperandOne24Bit
MPY32_setOperandOne32Bit
MPY32_setOperandTwo8Bit

MPY32_setOperandTwo16Bit
MPY32_setOperandTwo24Bit
MPY32_setOperandTwo32Bit

The results can be returned by

m MPY32_getResult8Bit
m MPY32_getResult16Bit
m MPY32_getResult24Bit

2012-06-29:16 : 06 : 00—0500 83

TI Information—Selective Disclosure

32-Bit Hardware Multiplier (MPY32)

MPY32_getResult32Bit
MPY32_getResult64Bit
MPY32_getSumExtension
MPY32_getCarryBitValue

26.3 Programming Example

The following example shows how to initialize and use the MPY32 API to calculate a 16-bit by 16-bit
unsigned multiplication operation.

WDT_hold(___MSP430_BASEADDRESS_WDT_A__) ; // Stop WDT

// Set a 16-bit Operand into the specific Operand 1 register to specify
// unsigned multiplication
MPY32_setOperandOnel6Bit (__MSP430_BASEADDRESS_MPY32__,
MPY32_MULTIPLY_UNSIGNED,
0x1234);
// Set Operand 2 to begin the multiplication operation
MPY32_setOperandIwol6Bit (_ MSP430_BASEADDRESS_MPY32__,
0x5678) ;

__bis SR register (LPM4_bits); // Enter LPM4
__no_operation(); // BREAKPOINT HERE to verify the
// correct result in the registers

84

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Power Management Module (PMM)

27

271

Power Management Module (PMM)

I OAUCH ON ... e e e e e e e s 83
AP FUNCHIONS .. e e e e 84
Programming EXamIPIe ... e 86
Introduction

The PMM manages the following internal circuitry:

m An integrated low-dropout voltage regulator (LDO) that produces a secondary core voltage
(VCORE) from the primary voltage that is applied to the device (DVCC)

m Supply voltage supervisors (SVS) and supply voltage monitors (SVM) for the primary volt-
age (DVCC) and the secondary voltage (VCORE). The SVS and SVM include programmable
threshold levels and power-fail indicators. Therefore, the PMM plays a crucial role in defining
the maximum performance, valid voltage conditions, and current consumption for an appli-
cation running on an MSP430x5xx or MSP430x6xx device. The secondary voltage that is
generated by the integrated LDO, VCORE, is programmable to one of four core voltage levels,
shown as 0, 1, 2, and 3. Each increase in VCORE allows the CPU to operate at a higher
maximum frequency. The values of these frequencies are specified in the device-specific data
sheet. This feature allows the user the flexibility to trade power consumption in active and low-
power modes for different degrees of maximum performance and minimum supply voltage.

NOTE: To align with the nomenclature in the MSP430x5xx/MSP430x6xx Family UserSs Guide,
the primary voltage domain (DVCC) is referred to as the high-side voltage (SvsH/SVMH) and the
secondary voltage domain (VCORE) is referred to as the low-side voltage (SvsL/SvmL).

Moving between the different VCORE voltages requires a specific sequence of events and can be
done only one level at a time; for example, to change from level 0 to level 3, the application code
must step through level 1 and level 2.

VCORE increase: 1. SvmL monitor level is incremented. 2. VCORE level is incremented. 3.
The SvmL Level Reached Interrupt Flag (SVSMLVLRIFG) in the PMMIFG register is polled. When
asserted, SVSMLVLRIFG indicates that the VCORE voltage has reached its next level. 4. SvsL
is increased. SvsL is changed last, because if SVSL were incremented prior to VCORE, it would
potentially cause a reset.

VCORE decrease: 5. Decrement SvmL and SVSL levels. 6. Decrement VCORE. The
PMM_setVCore() function appropriately handles an increase or decrease of the core voltage.
NOTE: The procedure recommended above provides a workaround for the erratum FLASH37. See
the device-specific erratasheet to determine if a device is affected by FLASH37. The workaround
is also highlighted in the source code for the PMM library

Recommended SVS and SVM Settings The SVS and SVM on both the high side and the low side
are enabled in normal performance mode following a brown-out reset condition. The device is
held in reset until the SVS and SVM verify that the external and core voltages meet the minimum
requirements of the default core voltage, which is level zero. The SVS and SVM remain enabled
unless disabled by the firmware. The low-side SVS and SVM are useful for verifying the startup
conditions and for verifying any modification to the core voltage. However, in their default mode,
they prevent the CPU from executing code on wake-up from low-power modes 2, 3, and 4 for a
full 150 pus, not 5 us. This is because, in their default states, the SVSL and SvmL are powered
down in the low-power mode of the PMM and need time for their comparators to wake and stabilize

2012-06-29:16 : 06 : 00—0500 85

TI Information—Selective Disclosure

Power Management Module (PMM)

27.2

before they can verify the voltage condition and release the CPU for execution. Note that the high-
side SVS and SVM do not influence the wake time from low-power modes. If the wake-up from
low-power modes needs to be shortened to 5 us, the SVSL and SvmL should be disabled after
the initialization of the core voltage at the beginning of the application. Disabling SVSL and SvmL
prevents them from gating the CPU on wake-up from LPM2, LPM3, and LPM4. The application is
still protected on the high side with SvsH and SVMH. The PMM_setVCore() function automatically
enables and disables the SVS and SVM as necessary if a non-zero core voltage level is required.
If the application does not require a change in the core voltage (that is, when the target MCLK
is less than 8 MHz), the PMM_disableSVSLSvmL() and PMM_enableSvsHReset() macros can be
used to disable the low-side SVS and SVM circuitry and enable only the high-side SVS POR reset,
respectively.

Setting SVS/SVM Threshold Levels The voltage thresholds for the SVS and SVM modules are
programmable. On the high side, there are two bit fields that control these threshold levels U the
SvsHRVL and SVSMHRRL. The SvsHRVL field defines the voltage threshold at which the SvsH
triggers a reset (also known as the SvsH ON voltage level). The SVSMHRRL field defines the
voltage threshold at which the SvsH releases the device from a reset (also known as SvsH OFF
voltage level). The MSP430x5xx/MSP430x6xx Family UserSs Guide (SLAU208) [1] recommends
the settings shown in Table 1 when setting these bits. The PMM_setVCore() function follows these
recommendations and ensures that the SVS levels match the core voltage levels that are used.

Advanced SVS Controls and Trade-offs In addition to the default SVS settings that are provided
with the PMM_setVCore() function, the SVS/SVM modules can be optimized for wake-up speed,
response time (propagation delay), and current consumption, as needed. The following controls
can be optimized for the SVS/SVM modules:

m Protection in low power modes - LPM2, LPM3, and LPM4
m Wake-up time from LPM2, LPM3, and LPM4

m Response time to react to an SVS event Selecting the LPM option, wake-up time, and re-
sponse time that is best suited for the application is left to the user. A few typical examples
illustrate the trade-offs: Case A: The most robust protection that stays on in LPMs and has the
fastest response and wake-up time consumes the most power. Case B: With SVS high side
active only in AM, no protection in LPMs, slow wake-up, and slow response time has SVS pro-
tection with the least current consumption. Case C: An optimized case is described - turn off
the low-side monitor and supervisor, thereby saving power while keeping response time fast on
the high side to help with timing critical applications. The user can call the PMM_setVCore()
function, which configures SVS/SVM high side and low side with the recommended or de-
fault configurations, or can call the APIs provided to control the parameters as the application
demands.

Any writes to the SVSMLCTL and SVSMHCTL registers require a delay time for these registers to
settle before the new settings take effect. This delay time is dependent on whether the SVS and
SVM modules are configured for normal or full performance. See device-specific data sheet for
exact delay times.

API Functions

PMM_enableSvsL() / PMM_disableSvsL() Enables or disables the low-side SVS circuitry
PMM_enableSvmL() / PMM_disableSvmL() Enables or disables the low-side SVM circuitry
PMM_enableSvsH() / PMM_disableSvsH() Enables or disables the high-side SVS circuitry

86

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Power Management Module (PMM)

PMM_enableSVMH() / PMM_disableSVMH() Enables or disables the high-side SVM circuitry

PMM_enableSvsLSvmL() / PMM_disableSvsLSvmL() Enables or disables the low-side SVS and
SVM circuitry

PMM_enableSvsHSvmH() / PMM_disableSvsHSvmH() Enables or disables the high-side SVS
and SVM circuitry

PMM_enableSvsLReset() / PMM_disableSvsLReset() Enables or disables the POR signal gen-
eration when a low-voltage event is registered by the low-side SVS

PMM_enableSvmLInterrupt() / PMM_disableSvmLInterrupt() Enables or disables the interrupt
generation when a low-voltage event is registered by the low-side SVM

PMM_enableSvsHReset() / PMM_disableSvsHReset() Enables or disables the POR signal gen-
eration when a low-voltage event is registered by the high-side SVS

PMM_enableSVMHInterrupt() / PMM_disableSVMHInterrupt() Enables or disables the interrupt
generation when a low-voltage event is registered by the high-side SVM

PMM_clearPMMIFGS() Clear all interrupt flags for the PMM

PMM_SvsLEnabledinLPMFastWake() Enables supervisor low side in LPM with twake-up-fast
from LPM2, LPM3, and LPM4

PMM_SvsLEnabledInLPMSlowWake() Enables supervisor low side in LPM with twake-up-slow
from LPM2, LPMS3, and LPM4

PMM_SvsLDisabledInLPMFastWake() Disables supervisor low side in LPM with twake-up-fast
from LPM2, LPM3, and LPM4

PMM_SvsLDisabledInLPMSlowWake() Disables supervisor low side in LPM with twake-up-slow
from LPM2, LPM3, and LPM4

PMM_SvsHEnabledinLPMNormPerf() Enables supervisor high side in LPM with tpd = 20 us(1)
PMM_SvsHEnabledinLPMFullPerf() Enables supervisor high side in LPM with tpd = 2.5 us(1)
PMM_SvsHDisabledinLPMNormPerf() Disables supervisor high side in LPM with tpd = 20 us(1)
PMM_SvsHDisabledInLPMFullPerf() Disables supervisor high side in LPM with tpd = 2.5 us(1)

PMM_SvsLOptimizedInLPMFastWake() Optimized to provide twake-up-fast from LPM2, LPM3,
and LPM4 with least power

PMM_SvsHOptimizedinLPMFullPerf() Optimized to provide tpd = 2.5 us(1) in LPM with least
power

PMM_getinterruptStatus() Returns interrupt status of the PMM module

PMM_setVCore() Sets the appropriate VCORE level. Calls the PMM_setVCoreUp() or
PMM_setVCoreDown() function the required number of times depending on the current VCORE
level, because the levels must be stepped through individually. A status indicator equal to STA-
TUS_SUCCESS or STATUS_FAIL that indicates a valid or invalid VCORE transition, respectively.
An invalid VCORE transition exists if DVCC is less than the minimum required voltage for the target
VCORE voltage.

This driver is contained in driverlib/5xx_6xx/pmm.c, With driverlib/5xx_6xx/pmm.h
containing the API definitions for use by applications.

2012-06-29:6 : 06 : 00_0500 87
TI Information—Selective Disclosure

Power Management Module (PMM)

27.3 Programming Example

The following example shows some pmm operations using the APIs

//Use the line below to bring the level back to 0
status = PMM_setVCore (_ MSP430_BASEADDRESS_PMM__,
PMMCOREV_0
) i

//Set P1.0 to output direction
GPIO_setAsOutputPin (___ MSP430_BASEADDRESS_PORTI1_R__,
GPIO_PORT_P1,
GPIO_PINO
)i

//continuous loop
while (1)
{
//Toggle P1.0
GPIO_toggleOutputOnPin (
__MSP430_BASEADDRESS_PORT1_R__,
GPIO_PORT_P1,
GPIO_PINO
)i
//Delay
__delay_cycles (20000);

88

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Port Mapping Controller

28

28.1

28.2

28.3

Port Mapping Controller

I OAUCH ON ... e e e e e e e s 87
AP FUNCHIONS .. e e e e 87
Programming EXamIPIe ... e 87
Introduction

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to
port pins. The port mapping controller features are:

m Configuration protected by write access key.

m Default mapping provided for each port pin (device-dependent, the device pinout in the device-
specific data sheet).

m Mapping can be reconfigured during runtime.
m Each output signal can be mapped to several output pins.

This driver is contained in driverlib/5xx_6xx/pmap.c, With driverlib/5xx_6xx/pmap.h
containing the API definitions for use by applications.

API Functions

The MSP430ware API that configures Port Mapping is PMAP_configurePorts()

It needs the following data to configure port mapping. portMapping - pointer to init Data PxXMAPy
- pointer start of first Port Mapper to initialize numberOfPorts - number of Ports to initialize
portMapReconfigure - to enable/disable reconfiguration

Programming Example

The following example shows some Port Mapping Controller operations using the APIs

const unsigned char port_mapping[] = {
//Port P4:
PM_TBOCCROA,
PM_TBOCCRIA,
PM_TBOCCR2A,
PM_TBOCCR3A,
PM_TBOCCR4A,
PM_TBOCCR5A,
PM_TBOCCRG6A,
PM_NONE

}i

//CONFIGURE PORTS- pass the port_mapping array, start @ P4MAPO1l, initialize
//a single port, do not allow run-time reconfiguration of port mapping

PMAP_configurePorts (__MSP430_BASEADDRESS_PORT_MAPPING__,

2012-06-29:16 : 06 : 00—0500 89

TI Information—Selective Disclosure

Port Mapping Controller

(const unsigned char «)port_mapping,
(unsigned char «*)&P4MAPO1,
1,
PMAP_DISABLE_RECONFIGURATION
) .

’

2012-06-29:16 : 06 : 00—0500

90
TI Information—Selective Disclosure

RAM Controller

29

29.1

29.2

29.3

RAM Controller

I OAUCH ON ... e e e e e e e s 89
AP FUNCHIONS .. e e e e 89
Programming EXamIPIe ... e 89
Introduction

The RAMCTL provides access to the different power modes of the RAM. The RAMCTL allows the
ability to reduce the leakage current while the CPU is off. The RAM can also be switched off. In
retention mode, the RAM content is saved while the RAM content is lost in off mode. The RAM is
partitioned in sectors, typically of 4KB (sector) size. See the device-specific data sheet for actual
block allocation and size. Each sector is controlled by the RAM controller RAM Sector Off control
bit (RCRSyOFF) of the RAMCTL Control 0 register (RCCTLO). The RCCTLO register is protected
with a key. Only if the correct key is written during a word write, the RCCTLO register content can
be modified. Byte write accesses or write accesses with a wrong key are ignored.

This driver is contained in driverlib/5xx_6xx/ramcontroller.c, with
driverlib/5xx_6xx/ramcontroller.h containing the API definitions for use by appli-
cations.

API Functions

The MSP430ware API that configure the RAM controller are:

ramController_setSectorOff() - Set specified RAM sector off ramController_getSectorState() - Get
RAM sector ON/OFF status

Programming Example

The following example shows some RAM Controller operations using the APls

//Start timer

Timer_startUpMode (_ MSP430_BASEADDRESS_TOB7__,
TIMER_CLOCKSOURCE_ACLK,
TIMER_CLOCKSOURCE_DIVIDER_1,
25000,
TIMER_TAIE_INTERRUPT_DISABLE,
TIMER_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_DO_CLEAR
)i

//RAM controller sector off
ramController_setSectorOff (_ MSP430_BASEADDRESS_RC__,
RAMCONTROL_SECTOR2
) i

//Enter LPM0O, enable interrupts
__bis_SR_register (LPM3_bits + GIE);

2012-06-29:16 : 06 : 00—0500 91

TI Information—Selective Disclosure

RAM Controller

//For debugger
__no_operation();

//‘k*‘k******‘k‘k**‘k***~k~k~k**‘kk***‘k‘k‘k******‘k‘k**‘k***~k~k~k**‘kk***‘k‘k‘k*****‘k‘kk**‘k‘k‘k******‘k‘k
//
//This is the Timer BO interrupt vector service routine.
//
//**
#pragma vector=TIMERBO_VECTOR
__interrupt void TIMERBO_ISR (void)
{
returnValue = ramController_getSectorState (___MSP430_BASEADDRESS_RC__,

RAMCONTROL_SECTORO +

RAMCONTROL_SECTOR1 +

RAMCONTROL_SECTOR2 +

RAMCONTROL_SECTOR3) ;

92 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Internal Reference (REF)

30

30.1

30.2

Internal Reference (REF)

I OAUCH ON ... e e e e e e e s 91
AP FUNCHIONS .. e e e e 91
Programming EXamIPIe ... e 92
Introduction

The Internal Reference (REF) API provides a set of functions for using the MSP430Ware REF
modules. Functions are provided to setup and enable use of the Reference voltage, enable or
disable the internal temperature sensor, and view the status of the inner workings of the REF
module.

The reference module (REF) is responsible for generation of all critical reference voltages that can
be used by various analog peripherals in a given device. These include, but are not necessarily
limited to, the ADC10_A, ADC12_A, DAC12_A, LCD_B, and COMP_B modules dependent upon
the particular device. The heart of the reference system is the bandgap from which all other refer-
ences are derived by unity or non-inverting gain stages. The REFGEN sub-system consists of the
bandgap, the bandgap bias, and the non-inverting buffer stage which generates the three primary
voltage reference available in the system, namely 1.5V, 2.0 V, and 2.5 V. In addition, when enabled,
a buffered bandgap voltage is also available.

This driver is contained in driverlib/5xx_6xx/ref.c, With driverlib/5xx_6xx/ref.h
containing the API definitions for use by applications.

API Functions

The DMA APl is broken into three groups of functions: those that deal with the reference voltage,
those that handle the internal temperature sensor, and those that return the status of the REF
module.

The reference voltage of the REF module is handled by

REF_setReferenceVoltage
REF_enableReferenceVoltageOutput
REF_disableReferenceVoltageOutput
REF_enableReferenceVoltage
REF_disableReferenceVoltage

The internal temperature sensor is handled by

m REF_disableTempSensor
m REF_enableTempSensor

The status of the REF module is handled by

m REF_getBandgapMode
m REF_isBandgapActive

2012-06-29:16 : 06 : 00—0500 93

TI Information—Selective Disclosure

Internal Reference (REF)

m REF_isRefGenBusy
m REF isRefGen

30.3 Programming Example

The following example shows how to initialize and use the REF API with the ADC12 module to use
as a positive reference to the analog signal input.

// By default, REFMSTR=1 => REFCTL is used to configure the internal reference

// 1f ref generator busy, WAIT

while (REF_refGenBusyStatus (__MSP430_BASEADDRESS_REF_));

// Select internal ref = 2.5V

REF_setReferenceVoltage (_ _MSP430_BASEADDRESS_REF__,
REF_VREF2_5V) ;

// Internal Reference ON

REF_enableReferenceVoltage (__MSP430_BASEADDRESS_REF__);

__delay_cycles (75); // Delay (~75us) for Ref to settle

// Initialize the ADC12 Module
/
Base address of ADC12 Module
Use internal ADC12 bit as sample/hold signal to start conversion
USE MODOSC 5MHZ Digital Oscillator as clock source
Use default clock divider of 1
*/

ADC12_init (__MSP430_BASEADDRESS_ADC12_PLUS__,
ADC12_SAMPLEHOLDSOURCE_SC,
ADC12_CLOCKSOURCE_ADC120SC,
ADC12_CLOCKDIVIDEBY_1);

/%

Base address of ADC12 Module

For memory buffers 0-7 sample/hold for 64 clock cycles

For memory buffers 8-15 sample/hold for 4 clock cycles (default)

Disable Multiple Sampling

*/

ADC12_setupSamplingTimer (__MSP430_BASEADDRESS_ADC12_PLUS__,
ADC12_CYCLEHOLD_64_CYCLES,
ADC12_CYCLEHOLD_4_CYCLES,
ADC12_MULTIPLESAMPLESENABLE) ;

// Configure Memory Buffer
/ *
Base address of the ADC1l2 Module
Configure memory buffer 0
Map input A0 to memory buffer 0
Vref+ = Vref+ (INT)
Vref- = AVss
*/
ADC12_memoryConfigure (__MSP430_BASEADDRESS_ADC12_PLUS__,
ADC12_MEMORY_O,
ADC1l2_INPUT_AO,
ADC12_VREFPOS_INT,
ADC12_VREFNEG_AVSS,
ADC12_NOTENDOFSEQUENCE) ;

while (1)
{

// Enable/Start sampling and conversion

/

94 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Internal Reference (REF)

Base address of ADC12 Module
Start the conversion into memory buffer 0
Use the single-channel, single-conversion mode
x/
ADC12_startConversion (_ _MSP430_BASEADDRESS_ADC12_PLUS_ ,
ADC12_MEMORY_O,
ADC12_SINGLECHANNEL) ;

// Poll for interrupt on memory buffer 0

while (!ADC12_interruptStatus (__MSP430_BASEADDRESS_ADC12_PLUS__, ADC12IFGO));
__no_operation(); // SET BREAKPOINT HERE
}
2012-06-29:6 : 06 : 00_0500 95

TI Information—Selective Disclosure

Internal Reference (REF)

96

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Internal Reference (REFA)

31

31.1

31.2

Internal Reference (REFA)

I OAUCH ON ... e e e e e e e s 95
AP FUNCHIONS .. e e e e 95
Programming EXamIPIe ... e 96
Introduction

The Internal Reference (REFA) API provides a set of functions for using the MSP430Ware REFA
modules. Functions are provided to setup and enable use of the Reference voltage, enable or
disable the internal temperature sensor, and view the status of the inner workings of the REFA
module.

The reference module (REF) is responsible for generation of all critical reference voltages that can
be used by various analog peripherals in a given device. The heart of the reference system is
the bandgap from which all other references are derived by unity or non-inverting gain stages. The
REFGEN sub-system consists of the bandgap, the bandgap bias, and the non-inverting buffer stage
which generates the three primary voltage reference available in the system, namely 1.2V, 2.0V,
and 2.5 V. In addition, when enabled, a buffered bandgap voltage is available.

This driver is contained in driverlib/5xx_6xx/refa.c, With driverlib/5xx_6xx/refa.h
containing the API definitions for use by applications.

API Functions

The DMA APl is broken into three groups of functions: those that deal with the refaerence voltage,
those that handle the internal temperature sensor, and those that return the status of the REFA
module.

The refaerence voltage of the REFA module is handled by

m REFA_setReferenceVoltage()
REFA_enableReferenceVoltageOutput()
REFA_disableReferenceVoltageOutput()
REFA_enableReferenceVoltage()

m REFA_disableReferenceVoltage()

The internal temperature sensor is handled by

m REFA_disableTempSensor()
m REFA_enableTempSensor()

The status of the REFA module is handled by

m REFA_getBandgapMode()
m REFA_isBandgapActive()
m REFA_isRefGenBusy()

2012-06-29:16 : 06 : 00—0500 97

TI Information—Selective Disclosure

Internal Reference (REFA)

REFA_isRefGenActive()
REFA_getBufferedBandgapVoltageStatus()
REFA_getVariableReferenceVoltageStatus()
REFA_setReferenceVoltageOneTimeTrigger()
REFA_setBufBandgapVoltageOneTimeTrigger()

31.3 Programming Example

The following example shows how to initialize and use the REFA API with the ADC12 module to
use the internal 2.5V reference and perform a single converson on channel A0. The conversion
results are stored in ADC12BMEMO. Test by applying a voltage to channel AO, then setting and
running to a break point at the "__no_operation()" instruction. To view the conversion results, open
an ADC12B register window in debugger and view the contents of ADC12BMEMO.

//Set P1.0 as Ternary Module Function Output.
/ *
Base Address for Port 1
Select Port 1
Set Pin 0 to output Ternary Module Function, (A0, C0, VREFA-, VeREFA-).
*/
FRGPIO_setAsPeripheralModuleFunctionOutputPin (___MSP430_BASEADDRESS_PORTI1_R__,
FRGPIO_PORT_P1,
FRGPIO_PINO,
FRGPIO_TERNARY_MODULE_FUNCTION

)i

//1f ref generator busy, WAIT

while (REFA_isRefGenBusy (___MSP430_BASEADDRESS_REF_A__)) ;

//Select internal ref = 2.5V

REFA_setReferenceVoltage (__MSP430_BASEADDRESS_REF_A__ ,
REFA_VREFA2_5V) ;

//Internal Reference ON

REFA_enableReferenceVoltage (__MSP430_BASEADDRESS_REF_A__);

//Delay (~75us) for Ref to settle
__delay_cycles (75);

//Initialize the ADC12 Module
/ *
Base address of ADC12 Module
Use internal ADC12 bit as sample/hold signal to start conversion
USE MODOSC 5MHZ Digital Oscillator as clock source
Use default clock divider/pre-divider of 1
Map to internal channel 0

*/

ADC12B_init (__MSP430_BASEADDRESS_ADC12_B__ ,
ADC12B_SAMPLEHOLDSOURCE_SC,
ADC12B_CLOCKSOURCE_ADC120SC,
ADC12B_CLOCKDIVIDER_1,
ADC12B_CLOCKPREDIVIDER_ 1,
ADC12B_MAPINTCHO) ;

//Enable the ADCI12B module
ADC12B_enable (_ _MSP430_BASEADDRESS_ADC12_B_);

/ *
Base address of ADC12B Module
For memory buffers 0-7 sample/hold for 64 clock cycles

98 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Internal Reference (REFA)

For memory buffers 8-15 sample/hold for 4 clock cycles (default)
Disable Multiple Sampling
*/
ADC12B_setupSamplingTimer (__ MSP430_BASEADDRESS_ADC12_B__,
ADC12B_CYCLEHOLD_64_CYCLES,
ADC12B_CYCLEHOLD_4_CYCLES,
ADC12B_MULTIPLESAMPLESDISABLE) ;

//Configure Memory Buffer
/
Base address of the ADC12B Module
Configure memory buffer 0
Map input AO to memory buffer 0
Vref+ = Vref+ (INT)
Vref- = AVss
*/
ADC12B_memoryConfigure (__MSP430_BASEADDRESS_ADC12_B__,
ADC12B_MEMORY_O,
ADC12B_INPUT_AOQ,
ADC12B_VREFAPOS_INTBUF_VREFANEG_VSS,
ADC12B_NOTENDOFSEQUENCE) ;

while (1)
{
//Enable/Start sampling and conversion
/ *
Base address of ADC12B Module
Start the conversion into memory buffer 0
Use the single-channel, single-conversion mode
*/
ADC12B_startConversion(_ _MSP430_BASEADDRESS_ADC12_B_ ,
ADC12B_MEMORY_O,
ADC12B_SINGLECHANNEL) ;

//Poll for interrupt on memory buffer 0

while (!ADC12B_getInterruptStatus(___MSP430_BASEADDRESS_ADCl12_B_ ,
Or
ADC12IFGO));

//SET BREAKPOINT HERE
__no_operation();

2012-06-29:6 : 06 : 00_0500 99
TI Information—Selective Disclosure

Internal Reference (REFA)

100 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Real-Time Clock (RTC)

32 Real-Time Clock (RTC)

INtrOAUCH ON .. e 99
AP FUNCHIONS .. e e 99
Programming EXamIPIe e 100

32.1 Introduction

The Real Time Clock (RTC) API provides a set of functions for using the MSP430Ware RTC mod-
ules. Functions are provided to calibrate the clock, initialize the RTC modules in Calendar mode,
and setup conditions for, and enable, interrupts for the RTC modules. If an RTC_A module is used,
then Counter mode may also be intialized, as well as prescale counters.

The RTC module provides the ability to keep track of the current time and date in calendar mode,
or can be setup as a 32-bit counter (RTC_A Only).

The RTC module generates multiple interrupts. There are 2 interrupts that can be defined in cal-
endar mode, and 1 interrupt in counter mode for counter overflow, as well as an interrupt for each
prescaler.

This driver is contained in driverlib/5xx_6xx/rtc.c, With driverlib/5xx_6xx/rtc.h
containing the API definitions for use by applications.

32.2 API Functions

The RTC API is broken into 4 groups of functions: clock settings, calender mode, counter mode,
and interrupt condition setup and enable functions.

The RTC clock settings are handled by

m RTC_startClock

m RTC_holdClock

m RTC_setCalibrationFrequency
m RTC_setCalibrationData

The RTC Calender Mode is initialized and setup by

m RTC_calenderlnit

m RTC_getCalenderTime
m RTC_getPrescaleValue
m RTC_setPrescaleValue

The RTC Counter Mode is initialized and setup by (Available in RTC_A Only)

m RTC_counterlnit
m RTC_getCounterValue
m RTC_setCounterValue

2012-06-29:6 : 06 : 00_0500 101
TI Information—Selective Disclosure

Real-Time Clock (RTC)

RTC_counterPrescalelnit

RTC_counterPrescaleHold

RTC_counterPrescaleStart

RTC_getPrescaleValue

RTC_setPrescaleValue

The RTC interrupts are handled by

RTC_setCalenderAlarm
RTC_setCalenderEvent
RTC_definePrescaleEvent

RTC_enablelnterrupt
RTC_disablelnterrupt
RTC_getinterruptStatus

RTC_clearlnterrupt
The following API are available in RTC_B Only

m RTC_convertBCDToBinary
m RTC_convertBinaryToBCD

32.3 Programming Example

The following example shows how to initialize and use the RTC API to setup Calender Mode with
the current time and various interrupts.

//Initialize Calendar Mode of RTC
/%
Base Address of the RTC_A
Pass 1in current time, intialized above
Use BCD as Calendar Register Format
*/
RTC_calendarInit (__ MSP430_BASEADDRESS_RTC__,
currentTime,
RTC_FORMAT_BCD) ;

//Setup Calendar Alarm for 5:00pm on the 5th day of the week.
//Note: Does not specify day of the week.
RTC_setCalendarAlarm(_ MSP430_BASEADDRESS_RTC__ ,

0x00,

0x17,

RTC_ALARMCONDITION_OFF,

0x05) ;

//Specify an interrupt to assert every minute
RTC_setCalendarEvent (_ MSP430_BASEADDRESS_RTC_ ,
RTC_CALENDAREVENT_MINUTECHANGE) ;

//Enable interrupt for RTC Ready Status, which asserts when the RTC
//Calendar registers are ready to read.
//Also, enable interrupts for the Calendar alarm and Calendar event.
RTC_enableInterrupt (__MSP430_BASEADDRESS_RTC__,

RTCRDYIE + RTCTEVIE + RTCAIE);

102 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Real-Time Clock (RTC)

//Start RTC Clock
RTC_startClock (_ _MSP430_BASEADDRESS_RTC_) ;

//Enter LPM3 mode with interrupts enabled
__bis_SR_register (LPM3_bits + GIE);
__no_operation();

2012-06-29:6 : 06 : 00_0500 103
TI Information—Selective Disclosure

Real-Time Clock (RTC)

104 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

SFR-SYS Modules

33

33.1

33.2

SFR-SYS Modules

I OAUCH ON e 103
AP FUNCHONS ..o e et e e e e 103
Programming EXamIPIe e 104
Introduction

The Special Function Registers & System Control (SFR_SYS) API provides a set of functions
for using the MSP430Ware SFR and SYS modules. Functions are provided to enable interrupts,
control the ~RST/NMI pin, control various SYS controls, setup the BSL, and control the JTAG
Mailbox.

The SFR_SYS module can enable interrupts to be generated from other peripherals of the device.

This driver is contained in driverlib/5xx_6xx/sfr_sys.c, with
driverlib/5xx_6xx/sfr_sys.h containing the API definitions for use by applications.

API Functions

The SFR_SYS APl is broken into 5 groups: the SFR interrupts, the SFR ~RST/NMI pin control, the
various SYS controls, the BSL controls, and the JTAG mailbox controls.

The SFR interrupts are handled by

m SFR_enablelnterrupt

m SFR_disablelnterrupt

m SFR_getinterruptStatus
m SFR_clearinterrupt

The SFR ~RST/NMI pin is controlled by

m SFR_setResetPinPullResistor
m SFR_setNMIEdge
m SFR_setResetNMIPinFunction

The various SYS controls are handled by

m SYS_enableDedicatedJTAGPins

m SYS_getBSLEntrylndication

m SYS_enablePMMAccessProtect

m SYS_enableRAMBasedInterruptVectors
m SYS_disableRAMBasedInterruptVectors

The BSL controls are handled by

2012-06-29:16 : 06 : 00—0500 105

TI Information—Selective Disclosure

SFR-SYS Modules

m SYS_enableBSLProtect

m SYS disableBSLProtect

m SYS_disableBSLMemory

m SYS_enableBSLMemory

m SYS_setRAMAssignedToBSL
m SYS setBSLSize

The JTAG Mailbox controls are handled by

m SYS_JTAGMailboxInit

m SYS_getJTAGMailboxFlagStatus

m SYS_getJTAGInboxMessage16Bit

m SYS_getJTAGInboxMessage32Bit

m SYS_setJTAGOutgoingMessage16Bit
m SYS_setJTAGOutgoingMessage32Bit
m SYS_clearJTAGMailboxFlagStatus

33.3 Programming Example

The following example shows how to initialize and use the SFR API

do
{
// Clear XT2,XT1,DCO fault flags
UCS_clearFaultFlag (__MSP430_BASEADDRESS_UCS_ ,
UCS_XT20FFG + UCS_XT1HFOFFG +
UCS_XTI1LFOFFG + UCS_DCOFFG
)

// Clear SFR Fault Flag
SFR_clearInterrupt (_ _MSP430_BASEADDRESS_SFR__,
OFIFG);

// Test oscillator fault flag

}while (SFR_getInterruptStatus(__MSP430_BASEADDRESS_SFR__,OFIFG));

106 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Synchronous Peripheral Interface (SPI)

34

34.1

34.2

Synchronous Peripheral Interface (SPI)

I OAUCH ON e 105
AP FUNCHONS ..o e et e e e e 105
Programming EXamIPIe e 106
Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame.

This library provides the API for handling a 3-wire SPI communication
The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module’s input clock.

This driver is contained in driverlib/5xx_6xx/spi.c, With driverlib/5xx_6xx/spi.h
containing the API definitions for use by applications.

API Functions

To use the module as a master, the user must call SPI_masterlnit() to configure the SPI Master.
This is followed by enabling the SPI module using SPI_enable(). The interrupts are then enabled (if
needed). It is recommended to enable the SPI module before enabling the interrupts. A data trans-
mit is then initiated using SPI_transmitData() and tehn when the receive flag is set, the received
data is read using SPI_receiveData() and this indicates that an RX/TX operation is complete.

To use the module as a slave, initialization is done using SPI_slavelnit() and this is followed by
enabling the module using SPI_enable(). Following this, the interrupts may be enabled as needed.
When the receive flag is set, data is first transmitted using SPI_transmitData() and this is followed
by a data reception by SPI_receiveData()

The SPI APl is broken into 3 groups of functions: those that deal with status and initialization, those
that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

m SPI_masterlnit

m SPI_slavelnit

m SPI_disable

m SPI_enable

m SPI_masterChangeClock
m SPI_isBusy

Data handling is done by

m SPI_transmitData

2012-06-29:16 : 06 : 00—0500 107

TI Information—Selective Disclosure

Synchronous Peripheral Interface (SPI)

m SPI_receiveData
Interrupts from the SPI module are managed using

m SPI_disablelnterrupt
m SPI_enablelnterrupt
m SPI_getInterruptStatus
m SPI_clearInterruptFlag

DMA related

m SPI_getReceiveBufferAddressForDMA
m SPI_getTransmitBufferAddressForDMA

34.3 Programming Example

The following example shows how to use the SPI API to configure the SPI module as a master
device, and how to do a simple send of data.

//Initialize Master
returnValue = SPI_masterInit (USCI_AO_BASE, SMCLK, CLK_getSMClk(),
SPICLK, MSB_FIRST,
CLOCK_POLARITY_INACTIVITYHIGH
)i

1f (STATUS_FAIL == returnValue)
{

return;

}

//Enable SPI module
SPI_enable (USCI_AO_BASE);

//Enable Receive interrupt
SPI_enablelInterrupt (USCI_AO_BASE, UCRXIE);

//Configure port pins to reset slave

// Wait for slave to initialize
__delay_cycles (100);

// Initialize data values
transmitData = 0x00;

// USCI_AO TX buffer ready?
while (!SPI_interruptStatus (USCI_AO_BASE, UCTXIFG)) ;

//Transmit Data to slave
SPI_transmitData (USCI_AO_BASE, transmitData);

// CPU off, enable interrupts
__bis_SR_register (LPMO_bits + GIE);
}

//**

//

// This is the USCI_BO interrupt vector service routine.

//

108 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Synchronous Peripheral Interface (SPI)

//**
#pragma vector=USCI_AO_VECTOR
__interrupt void USCI_AO_ISR(void)
{
switch(__even_in_range (UCAQIV,4))
{
// Vector 2 — RXIFG
case 2:
// USCI_AO TX buffer ready?
while (!SPI_interruptStatus (USCI_AO_BASE, UCTXIFG)) ;

receiveData = SPI_receiveData (USCI_AO_BASE);

// Increment data
transmitData++;

// Send next value
SPI_transmitData (USCI_AO_BASE, transmitData);

//Delay between transmissions for slave to process information
__delay_cycles (40);

break;
default: break;

2012-06-29:6 : 06 : 00_0500 109
TI Information—Selective Disclosure

Synchronous Peripheral Interface (SPI)

110 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Timer

35

35.1

Timer

I OAUCH ON e 109
AP FUNCHONS ..o e et e e e e 110
Programming EXamIPIe e 110
Introduction

Timer is a 16-bit timer/counter with multiple capture/compare registers. Timer can support multiple
capture/compares, PWM outputs, and interval timing. Timer also has extensive interrupt capabil-
ities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

This peripheral AP| handles Timer A and Timer B handware peripheral.

Timer features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m Interrupt vector register for fast decoding of all Timer interrupts

Timer can operate in 3 modes

m Continuous Mode
m Up Mode
® Down Mode

Timer Interrupts may be generated on counter overflow conditions and during capture compare
events.

The timer may also be used to generate PWM outputs. PWM outputs can be generated by ini-
tializing the compare mode with Timer_initCompare() and the necessary parameters. The PWM
may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle, out-
put mode, timer period etc. The library also provides a simpler way to generate PWM using
Timer_generatePWM() API. However the level of customization and the kinds of PWM generated
are limited in this API. Depending on how complex the PWM is and what level of customization
is required, the user can use Timer_generatePWM() or a combination of Timer_initCompare() and
timer start APIs

The timer API provides a set of functions for dealing with the timer module. Functions are pro-
vided to configure and control the timer, along with functions to modify timer/counter values, and to
manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in driverlib/5xx_6xx/timer.c, with
driverlib/5xx_6xx/timer.h containing the API definitions for use by applications.

2012-06-29:16 : 06 : 00—0500 111

TI Information—Selective Disclosure

Timer

35.2 API Functions

The timer APl is broken into three groups of functions: those that deal with timer configuration and
control, those that deal with timer contents, and those that deal with interrupt handling.

Timer configuration and initialization is handled by

m Timer_startContinousMode(),
m Timer_startUpMode(),

m Timer_startUpDownMode(),
m Timer_initCapture(),

m Timer_initCompare(),

m Timer_clear(),

m Timer_stop()

Timer outputs are handled by

m Timer_getSynchronizedCaptureComparelnput(),
m Timer_getOutputForOutputModeOutBitValue(),
m Timer_setOutputForOutputModeOQutBitValue(),
m Timer_generatePWM()

m Timer_getCaptureCompareCount()

m Timer_setCompareValue()

The interrupt handler for the Timer interrupt is managed with

m Timer_enablelnterrupt(),

m Timer_disablelnterrupt(),

m Timer_getinterruptStatus(),

m Timer_enableCaptureCompareinterrupt(),

m Timer_disableCaptureComparelnterrupt(),

m Timer_getCaptureComparelnterruptStatus(),
m Timer_clearCaptureComparelnterruptFlag()
m Timer_clearTimerinterruptFlag()

35.3 Programming Example

The following example shows some timer operations using the APls

{

//Set P1.0 to output direction
GPIO_setAsOutputPin (___MSP430_BASEADDRESS_PORTI_R__,

GPIO_PORT_P1,

GPIO_PINO

)i

112
TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Timer

//Start timer in continuous mode sourced by SMCLK
Timer_startContinousMode (__ MSP430_BASEADDRESS_TI1A3_ ,
TIMER_CLOCKSOURCE_SMCLK,
TIMER_CLOCKSOURCE_DIVIDER_1,
TIMER_TAIE_INTERRUPT_DISABLE,
TIMER_DO_CLEAR
)i

//Initiaze compare mode

Timer_initCompare (__MSP430_BASEADDRESS_T1A3_ ,
TIMER_CAPTURECOMPARE_REGISTER_O,
TIMER_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_OUTPUTMODE_OUTBITVALUE,
COMPARE_VALUE
)i

//Enter LPM0O, enable interrupts
__bis_SR_register (LPMO_bits + GIE);

//For debugger
__no_operation();

//**
//
//This is the Timer AQ interrupt vector service routine.
//
//**
#pragma vector=TIMER1_AO_VECTOR
__interrupt void TIMER1_AO_ISR (void)
{
//Toggle P1.0
GPIO_toggleOutputOnPin (
__ _MSP430_BASEADDRESS_PORT1_R__,
GPIO_PORT_PI1,
GPIO_PINO
)i

//Add Offset to CCRO
Timer_setCompareValue (__ MSP430_BASEADDRESS_T1A3__ ,
TIMER_CAPTURECOMPARE_REGISTER_O,
COMPARE_VALUE

) i

2012-06-29:6 : 06 : 00_0500
TI Information—Selective Disclosure

113

Timer

114

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

TimerA

36

36.1

TimerA

I OAUCH ON e 113
AP FUNCHONS ..o e et e e e e 114
Programming EXamIPIe e 114
Introduction

TimerA is a 16-bit timer/counter with multiple capture/compare registers. TimerA can support mul-
tiple capture/compares, PWM outputs, and interval timing. TimerA also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

This peripheral API handles Timer A hardware peripheral.

TimerA features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m |nterrupt vector register for fast decoding of all Timer interrupts

TimerA can operate in 3 modes

m Continuous Mode
m Up Mode
= Down Mode

TimerA Interrupts may be generated on counter overflow conditions and during capture compare
events.

The timerA may also be used to generate PWM outputs. PWM outputs can be generated by
initializing the compare mode with TimerA_initCompare() and the necessary parameters. The
PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cy-
cle, output mode, timer period etc. The library also provides a simpler way to generate PWM using
TimerA_generatePWM() API. However the level of customization and the kinds of PWM generated
are limited in this API. Depending on how complex the PWM is and what level of customization is
required, the user can use TimerA_generatePWM() or a combination of Timer_initCompare() and
timer start APIs

The timerA API provides a set of functions for dealing with the timerA module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values, and
to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in driverlib/5xx_6xx/timera.c, with
driverlib/5xx_6xx/timera.h containing the API definitions for use by applications.

2012-06-29:16 : 06 : 00—0500 115

TI Information—Selective Disclosure

TimerA

36.2 API Functions

The timerA API is broken into three groups of functions: those that deal with timer configuration
and control, those that deal with timer contents, and those that deal with interrupt handling.

TimerA configuration and initialization is handled by

m TimerA_startCounter(),

m TimerA_configureContinuousMode(),
m TimerA_configureUpMode(),

m TimerA_configureUpDownMode(),
m TimerA_startContinuousMode(),
m TimerA_startUpMode(),

m TimerA_startUpDownMode(),

m TimerA_initCapture(),

m TimerA_initCompare(),

m TimerA_clear(),

m TimerA_stop()

TimerA outputs are handled by

m TimerA_getSynchronizedCaptureComparelnput(),
m TimerA_getOutputForOutputModeOutBitValue(),
m TimerA_setOutputForOutputModeOutBitValue(),
m TimerA_generatePWM()

m TimerA_getCaptureCompareCount()

m TimerA_setCompareValue()

The interrupt handler for the TimerA interrupt is managed with

m TimerA_enablelnterrupt(),

m TimerA_disablelnterrupt(),

m TimerA_getinterruptStatus(),

m TimerA_enableCaptureCompareinterrupt(),

m TimerA_disableCaptureComparelnterrupt(),

m TimerA_getCaptureComparelnterruptStatus(),
m TimerA_clearCaptureComparelnterruptFlag()
m TimerA_clearTimerinterruptFlag()

36.3 Programming Example

The following example shows some timerA operations using the APls

116
TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

TimerA

{ //Start TimerA
TimerA_configureUpDownMode (__ MSP430_BASEADDRESS_T1A3_ ,

TIMERA_CLOCKSOURCE_SMCLK,
TIMERA_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMERA_TAIE_INTERRUPT_DISABLE,
TIMERA_CCIE_CCRO_INTERRUPT_DISARLE,
TIMERA_DO_CLEAR
)i

TimerA_startCounter (_ MSP430_BASEADDRESS_TI1A3_ ,
TIMERA_UPDOWN_MODE
)i

//Initialze compare registers to generate PWM1
TimerA_initCompare (___MSP430_BASEADDRESS_TI1A3_ ,
TIMERA_CAPTURECOMPARE_REGISTER_1,
TIMERA_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMERA_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLE1
)i
//Initialze compare registers to generate PWM2
TimerA_initCompare (___MSP430_BASEADDRESS_TI1A3_ ,
TIMERA_CAPTURECOMPARE_REGISTER_2,
TIMERA_CAPTURECOMPARE_INTERRUPT_DISABLE,
TIMERA_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLEZ2
)i

//Enter LPMO
__bis_SR_register (LPMO_bits);

//For debugger
__no_operation();

2012-06-29:6 : 06 : 00_0500 117
TI Information—Selective Disclosure

TimerA

118

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

timerB

37 timerB

INtrOAUCH 0N . i 117
AP FUNCHONS . et e e e 118
Programming EXamIPIe e 119

37.1 Introduction

timerB is a 16-bit timer/counter with multiple capture/compare registers. timerB can support multiple
capture/compares, PWM outputs, and interval timing. timerB also has extensive interrupt capabil-
ities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.

This peripheral API handles Timer B harware peripheral.

TimerB features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m Interrupt vector register for fast decoding of all Timer_B interrupts

Differences From Timer_A Timer_B is identical to Timer_A with the following exceptions:

m The length of Timer_B is programmable to be 8, 10, 12, or 16 bits

m Timer_B TBxCCRn registers are double-buffered and can be grouped
m All Timer_B outputs can be put into a high-impedance state

m The SCCI bit function is not implemented in Timer_B

TimerB can operate in 3 modes

m Continuous Mode
= Up Mode
® Down Mode

TimerB Interrupts may be generated on counter overflow conditions and during capture compare
events.

The timerB may also be used to generate PWM outputs. PWM outputs can be generated by ini-
tializing the compare mode with timerB_initCompare() and the necessary parameters. The PWM
may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle, out-
put mode, timer period etc. The library also provides a simpler way to generate PWM using
timerB_generatePWM() API. However the level of customization and the kinds of PWM generated
are limited in this API. Depending on how complex the PWM is and what level of customization is
required, the user can use timerB_generatePWM() or a combination of Timer_initCompare() and
timer start APIs

2012-06-29:6 : 06 : 00_0500 119
TI Information—Selective Disclosure

timerB

37.2

The timerB API provides a set of functions for dealing with the timerB module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values, and
to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in driverlib/5xx_6xx/timerB.c, with
driverlib/5xx_6xx/timerB.h containing the API definitions for use by applications.

API Functions

The timerB API is broken into three groups of functions: those that deal with timer configuration
and control, those that deal with timer contents, and those that deal with interrupt handling.

TimerB configuration and initialization is handled by

m TimerB_startCounter(),

m TimerB_configureContinuousMode(),
m TimerB_configureUpMode(),

m TimerB_configureUpDownMode(),

m TimerB_startContinuousMode(),

m TimerB_startUpMode(),

m TimerB_startUpDownMode(),

m TimerB_initCapture(),

m TimerB_initCompare(),

m TimerB_clear(),

m TimerB_stop()

m TimerB_initCompareLatchLoadEvent(),
m TimerB_selectLatchingGroup(),

m TimerB_selectCounterLength(),

TimerB outputs are handled by

m TimerB_getSynchronizedCaptureComparelnput(),
m TimerB_getOutputForOutputModeOutBitValue(),
m TimerB_setOutputForOutputModeOutBitValue(),
m TimerB_generatePWM()

m TimerB_getCaptureCompareCount()

m TimerB_setCompareValue()

The interrupt handler for the TimerB interrupt is managed with

m TimerB_enablelnterrupt(),
m TimerB_disablelnterrupt(),

120

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

timerB

TimerB_getinterruptStatus(),

TimerB_enableCaptureComparelnterrupt(),

TimerB_disableCaptureComparelnterrupt(),

TimerB_getCaptureComparelnterruptStatus(),

TimerB_clearCaptureComparelnterruptFlag()
TimerB_clearTimerInterruptFlag()

37.3 Programming Example

The following example shows some timerB operations using the APls

{ //Start timerB
TimerB_configureUpMode (_ MSP430_BASEADDRESS_TOB7__,
TIMERB_CLOCKSOURCE_SMCLK,
TIMERB_CLOCKSOURCE_DIVIDER_1,
511,
TIMERB_TBIE_INTERRUPT_DISABLE,
TIMERB_CCIE_CCRO_INTERRUPT_DISARLE,
TIMERB_DO_CLEAR
)i

TimerB_startCounter (_ MSP430_BASEADDRESS_TOB7__,
TIMERB_UP_MODE

)i

//Initialize compare mode to generate PWM1
TimerB_initCompare (__MSP430_BASEADDRESS_TOB7__,
TIMERB_CAPTURECOMPARE_REGISTER_1,
TIMERB_CAPTURECOMPARE_INTERRUPT_DISABLE,
TIMERB_OUTPUTMODE_RESET_SET,
383
)i

//Initialize compare mode to generate PWM2
TimerB_initCompare (___MSP430_BASEADDRESS_TOB7__,
TIMERB_CAPTURECOMPARE_REGISTER_2,
TIMERB_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMERB_OUTPUTMODE_RESET_SET,
128
)i

2012-06-29:6 : 06 : 00_0500 121
TI Information—Selective Disclosure

timerB

122 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

timerD

38 timerD

INtrOAUCH 0N . i 121
AP FUNCHONS . et e e e 122
Programming EXamIPIe e 124

38.1 Introduction

Timer_D is a 16-bit timer/counter with multiple capture/compare registers. Timer_D can support
multiple capture/compares, interval timing, and PWM outputs both in general and high resolution
modes. Timer_D also has extensive interrupt capabilities. Interrupts may be generated from the
counter on overflow conditions, from each of the capture/compare registers.

This peripheral API handles Timer D handware peripheral.

timerD features include:

m Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
m Selectable and configurable clock source
m Configurable capture/compare registers

m Controlling rising and falling PWM edges by combining two neighbor TDCCR registers in one
compare channel output

Configurable outputs with PWM capability

High-resolution mode with a fine clock frequency up to 16 times the timer input clock frequency
Double-buffered compare registers with synchronized loading

Interrupt vector register for fast decoding of all Timer_D interrupts

Differences From Timer_B Timer_D is identical to Timer_B with the following exceptions:

m Timer_D supports high-resolution mode.

m Timer_D supports the combination of two adjacent TDCCRXx registers in one capture/compare
channel.

m Timer_D supports the dual capture event mode.

m Timer_D supports external fault input, external clear input, and signal. See the TEC chapter
for detailed information.

m Timer_D can synchronize with a second timer instance when available. See the TEC chapter
for detailed information.
timerD can operate in 3 modes

m Continuous Mode
= Up Mode
® Down Mode

timerD Interrupts may be generated on counter overflow conditions and during capture compare
events.

The timerD may also be used to generate PWM outputs. PWM outputs can be generated by
initializing the compare mode with TimerD_initCompare() and the necessary parameters. The

2012-06-29:6 : 06 : 00_0500 123
TI Information—Selective Disclosure

timerD

38.2

PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cy-
cle, output mode, timer period etc. The library also provides a simpler way to generate PWM using
TimerD_generatePWM() API. However the level of customization and the kinds of PWM generated
are limited in this APIl. Depending on how complex the PWM is and what level of customization is
required, the user can use TimerD_generatePWM() or a combination of TimerD_initCompare() and
timer start APls

The TimerD API provides a set of functions for dealing with the TimerD module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values, and
to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in driverlib/5xx_6xx/timerd.c, with
driverlib/5xx_6xx/timerd.h containing the APl definitions for use by applications.

API Functions

The TimerD API is broken into three groups of functions: those that deal with timer configuration
and control, those that deal with timer contents, and those that deal with interrupt handling.

TimerD configuration and initialization is handled by

m TimerD_startCounter(),

m TimerD_configureContinuousMode(),

m TimerD_configureUpMode(),

m TimerD_configureUpDownMode(),

m TimerD_startContinuousMode(),

m TimerD_startUpMode(),

m TimerD_startUpDownMode(),

m TimerD_initCapture(),

m TimerD_initCompare(),

m TimerD_clear(),

m TimerD_stop(),

m TimerD_configureHighResGeneratorinFreeRunningMode(),
m TimerD_configureHighResGeneratorinRegulatedMode(),
m TimerD_combineTDCCRToGeneratePWM(),

m TimerB_selectLatchingGroup(),

m TimerD_selectCounterLength(),

m TimerD_initCompareLatchLoadEvent(),

m TimerD_disableHighResFastWakeup(),

m TimerD_enableHighResFastWakeup(),

m TimerD_disableHighResClockEnhancedAccuracy(),
m TimerD_enableHighResClockEnhancedAccuracy(),

124

2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

timerD

m TimerD_DisableHighResGeneratorForceON(),
m TimerD_EnableHighResGeneratorForceON(),
m TimerD_selectHighResCoarseClockRange(),

m TimerD_selectHighResClockRange()

TimerD outputs are handled by

m TimerD_getSynchronizedCaptureComparelnput(),
m TimerD_getOutputForOutputModeOQutBitValue(),
m TimerD_setOutputForOutputModeOutBitValue(),
m TimerD_generatePWM(),

m TimerD_getCaptureCompareCounty(),

m TimerD_setCompareValue(),

m TimerD_getCaptureCompareLatchCount(),

m TimerD_getCaptureComparelnputSignal()

The interrupt handler for the TimerD interrupt is managed with

m TimerD_enableTimerinterrupt(),

m TimerD_disableTimerInterrupt(),

m TimerD_getTimerlnterruptStatus(),

m TimerD_enableCaptureComparelnterrupt(),
m TimerD_disableCaptureComparelnterrupt(),
m TimerD_getCaptureComparelnterruptStatus(),
m TimerD_clearCaptureComparelnterruptFlag()
m TimerD_clearTimerInterruptFlag(),

m TimerD_enableHighReslInterrupt(),

m TimerD_disableTimerInterrupt(),

m TimerD_getHighReslInterruptStatus(),

m TimerD_clearHighResInterruptStatus()

Timer_D High Resolution handling APls

m TimerD_getHighReslInterruptStatus(),

m TimerD_clearHighResInterruptStatus(),

m TimerD_disableHighResFastWakeup(),

m TimerD_enableHighResFastWakeup(),

m TimerD_disableHighResClockEnhancedAccuracy(),

m TimerD_enableHighResClockEnhancedAccuracy(),

m TimerD_DisableHighResGeneratorForceON(),

m TimerD_EnableHighResGeneratorForceON(),

m TimerD_selectHighResCoarseClockRange(),

m TimerD_selectHighResClockRange(),

m TimerD_configureHighResGeneratorinFreeRunningMode(),
m TimerD_configureHighResGeneratorinRegulatedMode()

2012-06-29:6 : 06 : 00_0500 125
TI Information—Selective Disclosure

timerD

38.3 Programming Example

The following example shows some TimerD operations using the APls

{ //Start TimerD
TimerD_configureUpDownMode (_ MSP430_BASEADDRESS_TI1A3__,

TimerD_CLOCKSOURCE_SMCLK,
TimerD_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TimerD_TAIE_INTERRUPT_DISABLE,
TimerD_CCIE_CCRO_INTERRUPT_DISABLE,
TimerD_DO_CLEAR
)i

TimerD_startCounter (_ _MSP430_BASEADDRESS_TI1A3_ ,
TimerD_UPDOWN_MODE
)i

//Initialze compare registers to generate PWM1
TimerD_initCompare (__MSP430_BASEADDRESS_T1A3_ ,
TimerD_CAPTURECOMPARE_REGISTER_1,
TimerD_CAPTURECOMPARE_INTERRUPT_ENABLE,
TimerD_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLE1
)i
//Initialze compare registers to generate PWM2
TimerD_initCompare (__MSP430_BASEADDRESS_T1A3_ ,
TimerD_CAPTURECOMPARE_REGISTER_2,
TimerD_CAPTURECOMPARE_INTERRUPT_DISABLE,
TimerD_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLEZ2
)i

//Enter LPMO
__bis_SR_register (LPMO_bits);

//For debugger
__no_operation();

126 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Tag Length Value

39

39.1

39.2

39.3

Tag Length Value

I OAUCH ON .. e 125
AP FUNCHONS ..ot e e e e e e e 125
Programming EXamIpIe e 125
Introduction

The TLV structure is a table stored in flash memory that contains device-specific information.
This table is read-only and is write-protected. It contains important information for using and
calibrating the device. A list of the contents of the TLV is available in the device-specific data
sheet (in the Device Descriptors section), and an explanation on its functionality is available in the
MSP430x5xx/MSP430x6xx Family UserSs Guide

This driver is contained in driverlib/5xx_6xx/tlv.c, With driverlib/5xx_6xx/tlv.h
containing the API definitions for use by applications.

API Functions

The APIs that help in querying the information in the TLV structure are listed

m TLV_getinfo() This function retrieves the value of a tag and the length of the tag.
m TLV_getDeviceType() This function retrieves the unique device ID from the TLV structure.
m TLV_getMemory() The returned value is zero if the end of the memory list is reached.

m TLV_getPeripheral() The returned value is zero if the specified tag value (peripheral) is not
available in the device.

m TLV_getinterrupt() The returned value is zero is the specified interrupt vector is not defined.

Programming Example

The following example shows some tlv operations using the APIs

struct s_TLV_Die_Record * pDIEREC;
unsigned char bDieRecord_bytes;

TLV_getInfo (TLV_TAG_DIERECORD,
O 14
&pbDieRecord_bytes,
(unsigned int xx) &pDIEREC
)i

2012-06-29:16 : 06 : 00—0500 127

TI Information—Selective Disclosure

Tag Length Value

128 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

UART

40

40.1

40.2

UART

I OAUCH ON .. e 127
AP FUNCHONS ..ot e e e e e e e 127
Programming EXamIpIe e 128
Introduction

The MSP430Ware library for UART mode features include:

m Odd, even, or non-parity

Independent transmit and receive shift registers

Separate transmit and receive buffer registers

LSB-first or MSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for multiprocessor systems
Receiver start-edge detection for auto wake up from LPMx modes

Status flags for error detection and suppression

m Status flags for address detection

m |Independent interrupt capability for receive and transmit

The modes of operations supported by the UART and the library include

m UART mode

m |dle-line multiprocessor mode

m Address-bit multiprocessor mode

m UART mode with automatic baud-rate detection

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another
device. Timing for each character is based on the selected baud rate of the USCI. The transmit and
receive functions use the same baud-rate frequency.

This driver is contained in driverlib/5xx_6xx/uart.c, With driverlib/5xx_6xx/uart.h
containing the API definitions for use by applications.

API Functions

The UART API provides the set of functions required to implement an interrupt driven UART driver.
The UART initialization with the various modes and features is done by the UART_init(). At the
end of this fucntion UART is initialized and stays disabled. UART_enable() enables the UART and
the module is now ready for transmit and receive. It is recommended to iniailize the UART via
UART _init(), enable the required interrupts and then enable UART via UART_enable().

The UART API is broken into three groups of functions: those that deal with configuration and con-
trol of the UART modules, those used to send and receive data, and those that deal with interrupt
handling and those dealing with DMA.

Configuration and control of the UART are handled by the

2012-06-29:16 : 06 : 00—0500 129

TI Information—Selective Disclosure

UART

UART_init()
UART_initAdvance()
UART_enable()
UART_disable()
UART_setDormant()
UART _resetDormant()

Sending and receiving data via the UART is handled by the

UART_transmitData()
UART_receiveData()
UART_transmitAddress()
UART _transmitBreak()

Managing the UART interrupts and status are handled by the

m UART_enablelnterrupt()
UART_disablelnterrupt()
UART_getinterruptStatus()
UART_clearInterruptFlag()
m UART_queryStatusFlags()

DMA related

m UART_getReceiveBufferAddressForDMA()
m UART_getTransmitBufferAddressForDMA()

40.3 Programming Example

The following example shows how to use the UART API to initialize the UART, transmit characters,
and receive characters.

if (STATUS_FAIL == UART_init (__MSP430_BASEADDRESS_USCI_AO_ ,
UART_CLOCKSOURCE_SMCLK,
UCS_getSMCLK (__MSP430_BASEADDRESS_UCS__),
BAUD_RATE,
UART_NO_PARITY,
UART_LSB_FIRST,
UART_ONE_STOP_BIT,
UART_MODE,
UART_OVERSAMPLING_BAUDRATE_GENERATION))
{
return;

}

//Enable UART module for operation
UART_enable (__MSP430_BASEADDRESS_USCI_AO_);

//Enable Receive Interrupt
UART_enablelInterrupt (__MSP430_BASEADDRESS_USCI_AO__,
UCRXIE) ;

130 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

UART

//Transmit data
UART_transmitData (_ MSP430_BASEADDRESS_USCI_AO_ ,
transmitData++

)

// Enter LPM3, interrupts enabled
__bis_SR_register (LPM3_bits + GIE);
__no_operation();

//**
//
// This is the USCI_AOQO interrupt vector service routine.

//

//**
#pragma vector=USCI_AO_VECTOR
__interrupt void USCI_AO_ISR(void)
{
switch(__even_in_range (UCAQIV, 4))
{
// Vector 2 - RXIFG
case 2:
// Echo back RXed character, confirm TX buffer is ready first

// USCI_AQ TX buffer ready?
while (!UART_interruptStatus (___MSP430_BASEADDRESS_USCI_AO__,
UCTXIFG)

)i

//Receive echoed data
receivedData = UART_receiveData (__MSP430_BASEADDRESS_USCI_AO__);

//Transmit next data
UART_transmitData (_ _MSP430_BASEADDRESS_USCI_AO_ ,
transmitData++

)i

break;
default: break;

2012-06-29:6 : 06 : 00_0500 131
TI Information—Selective Disclosure

UART

132 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

Unified Clock System (UCS)

41

41.1

Unified Clock System (UCS)

I OAUCH ON e 131
AP FUNCHONS ..o e et e e e e 132
Programming EXamIPIe e 133
Introduction

The UCS is based on five available clock sources (VLO, REFO, XT1, XT2, and DCO) providing
signals to three system clocks (MCLK, SMCLK, ACLK). Different low power modes are achieved by
turning off the MCLK, SMCLK, ACLK, and integrated LDO.

m VLO - Internal very-low-power low-frequency oscillator. 10 kHz ($0.5/fC, $4/V)
m REFO - Reference oscillator. 32 kHz (1%, $3% over full temp range)

m XT1 (LFXT1, HFXT1) - Ultra-low-power oscillator, compatible with low-frequency 32768-Hz
watch crystals and with standard XT1 (LFXT1, HFXT1) crystals, resonators, or external clock
sources in the 4-MHz to 32-MHz range, including digital inputs. Most commonly used as
32-kHz watch crystal oscillator.

m XT2 - Optional high-frequency oscillator that can be used with standard crystals, resonators,
or external clock sources in the 4-MHz to 32-MHz range, including digital inputs.

m DCO - Internal digitally-controlled oscillator (DCO) that can be stabilized by a frequency lock
loop (FLL) that sets the DCO to a specified multiple of a reference frequency.

System Clocks and Functionality on the MSP430 MCLK Master Clock Services the CPU. Com-
monly sourced by DCO. Is avaiable in Active mode only SMCLK Subsystem Master Clock Services
fast’ system peripherals. Commonly sourced by DCO. Is available in Active mode, LPMO0 and
LPM1 ACLK Auxiliary Clock Services ‘slow’ system peripherals. Commonly used for 32-kHz sig-
nal.ls available in Active mode, LPMO to LPM3

System clocks of the MSP430x5xx generation are automatically enabled, regardless of the LPM
mode of operation, if they are required for the proper operation of the peripheral module that they
source. This additional flexibility of the UCS, along with improved fail-safe logic, provides a robust
clocking scheme for all applications.

Fail-Safe logic The UCS fail-safe logic plays an important part in providing a robust clocking scheme
for MSP430x5xx and MSP430x6xx applications. This feature hinges on the ability to detect an
oscillator fault for the XT1 in both low- and high-frequency modes (XT1LFOFFG and XT1HFOFFG
respectively), the high-frequency XT2 (XT20FFG), and the DCO (DCOFFG). These flags are set
and latched when the respective oscillator is enabled but not operating properly; therefore, they
must be explicitly cleared in software

The oscillator fault flags on previous MSP430 generations are not latched and are asserted only
as long as the failing condition exists. Therefore, an important difference between the families is
that the fail-safe behavior in a 5xx-based MSP430 remains active until both the OFIFG and the
respective fault flag are cleared in software.

This fail-safe behavior is implemented at the oscillator level, at the system clock level and, conse-
quently, at the module level. Some notable highlights of this behavior are described below. For
the full description of fail-safe behavior and conditions, see the MSP430x5xx/MSP430x6xx Family
UserSs Guide (SLAU208).

2012-06-29:16 : 06 : 00—0500 133

TI Information—Selective Disclosure

Unified Clock System (UCS)

41.2

m | ow-frequency crystal oscillator 1 (LFXT1) The low-frequency (32768 Hz) crystal oscillator is
the default reference clock to the FLL. An asserted XT1LFOFFG switches the FLL reference
from the failing LFXT1 to the internal 32-kHz REFO. This can influence the DCO accuracy,
because the FLL crystal ppm specification is typically tighter than the REFO accuracy over

temperature and voltage of $3%.

m System Clocks (ACLK, SMCLK, MCLK) A fault on the oscillator that is sourcing a system clock
switches the source from the failing oscillator to the DCO oscillator (DCOCLKDIV). This is true
for all clock sources except the LFXT1. As previously described, a fault on the LFXT1 switches
the source to the REFO. Since ACLK is the active clock in LPM3 there is a notable difference
in the LPM3 current consumption when the REFO is the clock source (~3 pA active) versus

the LFXT1 (~300 nA active).

m Modules (WDT_A) In watchdog mode, when SMCLK or ACLK fails, the clock source defaults

to the VLOCLK.

This driver is contained in driverlib/5xx_6xx/ucs.c, With driverlib/5xx_6xx/ucs.h
containing the API definitions for use by applications.

API Functions

The UCS APl is broken into three groups of functions: those that deal with clock configuration and
control

General UCS configuration and initialization is handled by

UCS_clockSignalinit(),
UCS_initFLLSettle(),
UCS_enableClockRequest(),
UCS_disableClockRequesty(),
UCS_SMCLKOff(),
UCS_SMCLKON()

External crystal specific configuration and initialization is handled by

UCS_setExternalClockSource(),
UCS_LFXT1Start(),
UCS_HFXT1Start(),
UCS_bypassXT1(),
UCS_LFXT1StartWithTimeout(),
UCS_HFXT1StartWithTimeout(),
UCS_bypassXT1WithTimeout(),
UCS_XT10ff(),
UCS_XT2Start(),
UCS_XT20ff(),
UCS_bypassXT2(),
UCS_XT2StartWithTimeout(),

134

TI Information—Selective Disclosure

2012-06-29:16 : 06 : 00—0500

Unified Clock System (UCS)

m UCS_bypassXT2WithTimeout()
m UCS_clearAllOscFlagsWithTimeout()
UCS_setExternalClockSource must be called if an external crystal XT1 or XT2 is used and the user

intends to call UCS_getMCLK, UCS_getSMCLK or UCS_getACLK APIs. If not, it is not necessary
to invoke this API.

Failure to invoke UCS_clockSignallnit() sets the clock signals to the default modes ACLK default
mode - UCS_XT1CLK_SELECT SMCLK default mode - UCS_DCOCLKDIV_SELECT MCLK de-
fault mode - UCS_DCOCLKDIV_SELECT

Also fail-safe mode behavior takes effect when a slected mode fails.

The status and configuration query are done by

UCS_faultFlagStatus(),
UCS_clearFaultFlag(),
UCS_getACLK(),
UCS_getSMCLK(),
UCS_getMCLK()

41.3 Programming Example

The following example shows some UCS operations using the APIs

// Set DCO FLL reference = REFO
UCS_clockSignalInit (
__MSP430_BASEADDRESS_UCS
UCS_FLLREF,
UCS_REFOCLK_SELECT,
UCS_CLOCK_DIVIDER_1
)i

’

// Set ACLK = REFO
UCS_clockSignalInit (
__MSP430_BASEADDRESS_UCS
UCS_ACLK,
UCS_REFOCLK_SELECT,
UCS_CLOCK_DIVIDER_1
)i

’

// Set Ratio and Desired MCLK Frequency and initialize DCO
UCS_initFLLSettle (
__MSP430_BASEADDRESS_UCS__,
UCS_MCLK_DESIRED_FREQUENCY_IN_KHZ,
UCS_MCLK_FLLREF_RATIO
)i

//Verify if the Clock settings are as expected
clockValue = UCS_getSMCLK (__MSP430_BASEADDRESS_UCS_) ;

while (1) ;

2012-06-29:6 : 06 : 00_0500 135
TI Information—Selective Disclosure

Unified Clock System (UCS)

136 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

WatchDog Timer (WDT)

42

42.1

42.2

42.3

WatchDog Timer (WDT)

I OAUCH ON e 135
AP FUNCHONS ..o e et e e e e 135
Programming EXamIPIe e 135
Introduction

The Watchdog Timer (WDT) API provides a set of functions for using the MSP430Ware WDT mod-
ules. Functions are provided to initialize the Watchdog in either timer interval mode, or watchdog
mode, with selectable clock sources and dividers to define the timer interval.

The WDT module can generate only 1 kind of interrupt in timer interval mode. If in watchdog mode,
then the WDT module will assert a reset once the timer has finished.

This driver is contained in driverlib/5xx_6xx/wdt.c, With driverlib/5xx_6xx/wdt.h
containing the API definitions for use by applications.

API Functions

The WDT APl is one group that controls the WDT module.

= WDT_hold

m WDT _start

m WDT clearCounter

m WDT_watchdogTimerlnit
m WDT _intervalTimerlnit

Programming Example

The following example shows how to initialize and use the WDT API to interrupt about every 32 ms,
toggling the LED in the ISR.

//Initialize WDT module in timer interval mode,
//with SMCLK as source at an interval of 32 ms.
WDT_intervalTimerInit (_ _MSP430_BASEADDRESS_WDT_A__ ,

WDT_CLOCKSOURCE_SMCLK,
WDT_CLOCKDIVIDER_32K) ;

//Enable Watchdog Interupt
SFR_enablelInterrupt (_ _MSP430_BASEADDRESS_SFR__,
WDTIE) ;

//Set P1.0 to output direction

GPIO_setAsOutputPin (___MSP430_BASEADDRESS_PORTI1_R__,
GPIO_PORT_P1,
GPIO_PINO
)i

2012-06-29:16 : 06 : 00—0500 137

TI Information—Selective Disclosure

WatchDog Timer (WDT)

//Enter LPM0O, enable interrupts
__bis_SR_register (LPMO_bits + GIE);
//For debugger

__no_operation();

138 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

2012-06-29:6 : 06 : 00_0500 139
TI Information—Selective Disclosure

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications " ’
Amplifiers amplifier.ti.com Audio Wmoﬂve
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁg_ro_?dlban? |
DSP dspi.com Digital Control www.ti.com/digitalcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

140 2012-06-29:6 : 06 : 000500
TI Information—Selective Disclosure

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 How to create a new project that uses Driverlib
	3 10-Bit Analog-to-Digital Converter (ADC10)
	3.1 Introduction
	3.2 API Functions
	3.3 Programming Example

	4 10-Bit Analog-to-Digital Converter (ADC10B)
	4.1 Introduction
	4.2 API Functions
	4.3 Programming Example

	5 12-Bit Analog-to-Digital Converter (ADC12)
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 12-Bit Analog-to-Digital Converter (ADC12B)
	6.1 Introduction
	6.2 API Functions
	6.3 Programming Example

	7 Advanced Encryption Standard (AES)
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 Comparator (COMPB)
	8.1 Introduction
	8.2 API Functions
	8.3 Programming Example

	9 Comparator (COMPD)
	9.1 Introduction
	9.2 API Functions
	9.3 Programming Example

	10 Clock System (CS)
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 Clock System (CSA)
	11.1 Introduction
	11.2 API Functions
	11.3 Programming Example

	12 Cyclical Redundancy Check (CRC)
	12.1 Introduction
	12.2 API Functions
	12.3 Programming Example

	13 12-bit Digital-to-Analog Converter (DAC12)
	13.1 Introduction
	13.2 API Functions
	13.3 Programming Example

	14 Direct Memory Access (DMA)
	14.1 Introduction
	14.2 API Functions
	14.3 Programming Example

	15 EUSCI Inter-Integrated Circuit (I2C)
	15.1 Introduction
	15.2 API Functions
	15.3 Programming Example

	16 EUSCI Synchronous Peripheral Interface (SPI)
	16.1 Introduction
	16.2 API Functions
	16.3 Programming Example

	17 EUSCI UART
	17.1 Introduction
	17.2 API Functions
	17.3 Programming Example

	18 Flash Memory Controller
	18.1 Introduction
	18.2 API Functions
	18.3 Programming Example

	19 FRAM Controller
	19.1 Introduction
	19.2 API Functions
	19.3 Programming Example

	20 FRGPIO
	20.1 Introduction
	20.2 API Functions
	20.3 Programming Example

	21 Power Management Module (FRPMM)
	21.1 Introduction
	21.2 API Functions
	21.3 Programming Example

	22 GPIO
	22.1 Introduction
	22.2 API Functions
	22.3 Programming Example

	23 Inter-Integrated Circuit (I2C)
	23.1 Introduction
	23.2 API Functions
	23.3 Programming Example

	24 LDO-PWR
	24.1 Introduction
	24.2 API Functions
	24.3 Programming Example

	25 Memory Protection Unit (MPU)
	25.1 Introduction
	25.2 API Functions
	25.3 Programming Example

	26 32-Bit Hardware Multiplier (MPY32)
	26.1 Introduction
	26.2 API Functions
	26.3 Programming Example

	27 Power Management Module (PMM)
	27.1 Introduction
	27.2 API Functions
	27.3 Programming Example

	28 Port Mapping Controller
	28.1 Introduction
	28.2 API Functions
	28.3 Programming Example

	29 RAM Controller
	29.1 Introduction
	29.2 API Functions
	29.3 Programming Example

	30 Internal Reference (REF)
	30.1 Introduction
	30.2 API Functions
	30.3 Programming Example

	31 Internal Reference (REFA)
	31.1 Introduction
	31.2 API Functions
	31.3 Programming Example

	32 Real-Time Clock (RTC)
	32.1 Introduction
	32.2 API Functions
	32.3 Programming Example

	33 SFR-SYS Modules
	33.1 Introduction
	33.2 API Functions
	33.3 Programming Example

	34 Synchronous Peripheral Interface (SPI)
	34.1 Introduction
	34.2 API Functions
	34.3 Programming Example

	35 Timer
	35.1 Introduction
	35.2 API Functions
	35.3 Programming Example

	36 TimerA
	36.1 Introduction
	36.2 API Functions
	36.3 Programming Example

	37 timerB
	37.1 Introduction
	37.2 API Functions
	37.3 Programming Example

	38 timerD
	38.1 Introduction
	38.2 API Functions
	38.3 Programming Example

	39 Tag Length Value
	39.1 Introduction
	39.2 API Functions
	39.3 Programming Example

	40 UART
	40.1 Introduction
	40.2 API Functions
	40.3 Programming Example

	41 Unified Clock System (UCS)
	41.1 Introduction
	41.2 API Functions
	41.3 Programming Example

	42 WatchDog Timer (WDT)
	42.1 Introduction
	42.2 API Functions
	42.3 Programming Example

	IMPORTANT NOTICE

