
1

MSP430FR57xx Family
MSP430 with Embedded FRAM

Presenter
Presentation Notes
Hello everyone and welcome to the learning session on MSP430’s first FRAM based MCU family – the MSP430FR57xx series. This workshop walks through an introduction to FRAM followed by a hands-on experience with the MSP430FR57xx device. The discussion will cover topics such as Architecture and core modules, differences between the FR57xx and F5xx families, peripheral modifications and enhancements and highlight the key application areas where FRAM serves to differentiate. The session will also include two hand-on labs that walk through power measurements and clock configuration on the FR57xx devices as well as the memory protection unit a key system block in this family.

4

FRAM – Technology Attributes

• Non-Volatile – retains data without power

• Fast Write / Update – RAM like performance. Up
to ~ 50ns/byte access times today (> 1000x faster
than Flash/EEPROM)

• Low Power - Needs 1.5V to write compared to >
10-14V for Flash/EEPROM  no charge pump

• Superior Data Reliability - ‘Write Guarantee’ in
case of power loss and > 100 Trillion read/write
cycles

Automotive F-RAM Memory

Photo: forums.wow-europe.com

Presenter
Presentation Notes
What is FRAM? FRAM stands for Ferroelectric Random Access Memory. (Note there are other acronyms for FRAM used
by other companies such as F-RAM or FeRAM.)
As the "RAM" part of the name already suggests, FRAM behaves similarly to DRAM. It allows random
access to each individual bit for both read and write. Unlike EEPROM or Flash memory technology, FRAM
does not require a special sequence to write data nor does it require a higher programming voltage. But
FRAM is non-volatile; that is, it does not "lose" its content when power is removed.
So why is FRAM non-volatile? This is because of the special dielectric material used in the storage
capacitor: a ceramic that allows making use of the so-called ferroelectric effect.
The term "ferroelectric" does not mean that the memory contains iron (the chemical element Fe) nor does
it imply that the memory can be influenced by magnetic fields. In fact it is immune to magnetic fields.
The term results from the hysteresis loop (shown in Figure 1) being similar to the magnetic hysteresis loop
of iron (Fe). In contrast to the magnetic hysteresis loop, the one in FRAM results from the electrical dipole
formed by zirconium (Zr) and oxygen (O) atoms in the ceramic lead-zirkonate-titanate crystal (PZT) used
to implement FRAM

5

Understanding FRAM Technology
WRITE: Apply voltage to
plate line (write ‘0’) or bit
line (write ‘1’)

Bit line

Plate line

Large Induced
Charge (Q)

Programming Data to FRAM

Bit line

Plate line

No dipole flip
Small Induced

Charge (Q)

Reading Data from FRAM

Dipole
Flip

Ferroelectric
Capacitor

READ: Apply a voltage to the
plate line, sense the induced
charge on the bit line

Sm Q = “0” bit Lg Q = “1” bit

Presenter
Presentation Notes
What does an FRAM cell look like? A single FRAM cell is can be considered a dipole capacitor that consists of a film of ferroelectric material (ferroelectric crystal) between two electrode plates. Storing a ‘1’ or ‘0’ (writing to FRAM) simply requires polarizing the crystal in a specific direction using an electric field. This makes FRAM very fast, easy to write to and capable of meeting high endurance requirements. Reading from FRAM requires applying an electric field across the capacitor similar to a write. Depending on the state of the crystal, it may get re-polarized thereby emitting a large induced charge. This charge is then compared to a known reference to estimate the state of the crystal. The stored data bit ‘1’ or ‘0’ is inferred from the induced charge. In the process of reading the data, the crystal that is polarized in the direction of the applied field loses its current state. Hence every read needs to be accompanied by a write-back to restore the state of the memory location. In the MSP430FR57xx family this is inherent to the nature of the FRAM memory and is completely transparent to the end user.

6

• Data logging, remote sensor applications (High Write
endurance, Fast writes)

• Digital rights management (High Write Endurance – need
>10M write cycles)

• Battery powered consumer/mobile Electronics (low power)

• Energy harvesting, especially Wireless (Low Power & Fast
Memory Access, especially Writes)

• Battery Backed SRAM Replacement (Non- Volatility, High
Write Endurance, Low power, Fast Writes)

Target Applications

Presenter
Presentation Notes
Where is FRAM Useful? Here are a few applications that highlight specific application where FRAM can be useful.

In many cases , using FRAM is seen not just as as an advantage but the ONLY technology that will suit an application’s requirements. For example: data logging today obviously uses Flash or some form of EEPROM and this works reliably. Here FRAM brings added value because it can do the same things but with lesser power, faster and the cost is comparable if not cheaper. However from an endurance aspect FRAM allows a very high number of read/write cycles in comparison to flash removing the need for redundant data storage segments.

Another example is in energy harvesting applications where FRAM is seen as a _requirement_ especially if any kind of memory writes are needed – the usage of a charge pump and high peak currents make flash technology less effcient for low energy profile applications. Today there is no non-volatile memory technology that is as low power and as fast as FRAM.

7

All-in-one: FRAM MCU delivers max benefits
FRAM SRAM EEPROM Flash

Non-volatile
Retains data without
power

Write speeds

Average active
Power [µA/MHz]

Write endurance

Dynamic
Bit-wise programmable

Unified memory
Flexible code and data
partitioning

Yes

Yes

Yes

No

10ms 2secs <10ms 1 sec

50mA+ <60 110 230

10,000 100,000 Unlimited 100
Trillion+

Yes Yes No No

Yes No No No

Data is representative of embedded memory performance within device

Presenter
Presentation Notes
How does FRAM stack up to existing memory technologies?
Here is a comparison of FRAM, Static RAM, EEPROM and Flash. Three of these technologies are non-volatile, SRAM is not.
The second row compares write speeds when writing to an arbitrary memory block 13kB in length. FRAM outpaces both non-volatile technologies easily. Note that the flash write speed accounts for the time taken to erase a segment of flash before writing to it. Pre-erase is not a requirement for fRAM.

When it comes to active power the comparison is being made across devices rather than simply memory technologies. The MSP430F5438 device, the lowest active power MSP430 flash device is about twice the power of the MSP430FR57xx device. At 100-110uA/MHz the fR57xx leads the 16-bit MCU world in terms of lowest active power.

With regards to endurance FRAM provides a number, >100 trillion, that is orders of magnitudes higher than what flash or EEPROM can provide.

When it comes to bit-wise programmability – FRAM is very similar to static RAM, meaning it can be programmed, read or erased through bit-wise accesses. In comparison flash erases are usually segment-wise while the writes are typically bytes or words in length.

A new dimension that FRAM adds is the ability to configure Unified memory. This means that a single block of FRAM can serve as either code, data or constant memory depending on how it is configured. Flash was not the preferred choice for variable memory due to the erase time requirements while SRAM was not preferred for code storage due to its volatile nature. FRAM has the best of both worlds in that it can be used easily for code or data due to it’s non-volatile nature while supporting fast writes.

8

First ULP, Embedded FRAM MCU – FR5739

• Performance
– Up to 24MHz (FRAM access @

8MHz)

• Power Numbers
– Active Mode: 110 µA/MHz avg.@

8MHz
– RTC mode (LPM3.5): ~1.5 µA
– Standby Mode (LPM3): <7 µA
– Shutdown Mode (LPM4.5): ~0.3 µA

• Flexible Unified Memory
– 16/8/4 KB FRAM versions with

program code / data memory
partitioning

• Package
– 24/40-Pin QFN, 28, 38-Pin TSSOP
– Temp Range -40ºC to 85ºC

Power & Clocking

MSP430FR57xx Microcontroller

Memory
16KB / 8KB / 4KB FRAM

(with segment protections
for code/data)

Debug
 Real-time JTAG

Boot Strap Loader
Embedded Emulation

• Power on Reset
• Brownout Reset
• Low Power

Vreg(1.5V)
• XT1, VLO
• DCO
• Real Time Clock

DMA (3ch)

32 x 32 Multiplier

Serial Interface

ADC10 (up to 12ch)

Analog

Timers

TimerA0 (3)
TimerA1 (3)

 Watch Dog Timer

Ports
Up to 3 [1x8] + 1 [1x2] I/O
Ports w/ interrupt/ wake-up

CRC16

eUSCI
Universal Serial Comm. Interfaces

TimerB0 (3)

Comparator / REF

16-bit RISC

MCU

Up to 24 MHz

TimerB1 (3)
TimerB2 (3)

Peripherals

Presenter
Presentation Notes
Here is an overview of the MSP430’s first FRAM MCU – The MSP430R5739. This device has a maximum CPU Speed of up to 24MHz while all FRAM accesses are limited to 8MHz.
The active mode power is the lowest we’ve seen @ 100-110uA/MHz.
The standby power numbers are around 6-7uA and are useful when applications have a low active duty cycle, allowing the device to remain in standby and consume very low power for a majority of the time.
The device is also available in two packages the QFN and the TSSOP and in 24 and 40 pin configurations

9

MSP430FR5739 Block Diagram

Presenter
Presentation Notes
This is the block diagram view for the MSP430FR57xx family. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The MSP430FR572x and MSP430FR573x devices are microcontroller configurations with up to five 16-bit timers, comparator, universal serial communication interfaces (eUSCI) supporting UART, SPI, and I2C, hardware multiplier, DMA, real-time clock module with alarm capabilities, up to 33 I/O pins, and an optional high-performance 10-bit analog-to-digital converter (ADC).
The modules highlighted in red such as the FRAM controller and the memory protection unit (MPU) are either new modules or ones which have been enhanced since the flash F5xx series.

10

FR57xx Architecture & Core
Peripherals

12/13/2011 11

MSP430xv2 Orthogonal CPU
•No changes from the F5xx CPU!

•C-compiler friendly

•Memory address access up to 1MB

•CPU registers 20-bit wide

•Address-word instructions

•Direct 20-bit CPU register access

•Atomic (memory-to-memory)
instructions

•Instruction compatible w/previous
CPU

•Cycle count optimization for certain
instructions

Presenter
Presentation Notes
The MSP430X CPU incorporates features specifically designed for modern programming techniques, such
as calculated branching, table processing, and the use of high-level languages such as C. The MSP430X
CPU can address a 1-MB address range without paging. The MSP430X CPU is completely backward
compatible with the MSP430 CPU.
The MSP430X RISC CPU includes features such as:

• An Orthogonal architecture
• Full register access including program counter (PC), status register (SR), and stack pointer (SP)
• Single-cycle register operations
• Large register file reduces fetches to memory.
• A 20-bit address bus allows direct access and branching throughout the entire memory range without
paging.
• A 16-bit data bus allows direct manipulation of word-wide arguments.
• A Constant generator provides the six most often used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding
• And Byte, word, and 20-bit address-word addressing

12/13/2011 12

Operating Modes
• Active Mode – 110 µA/MHz!

– CPU active
– Fast Peripherals Enabled
– 32 kHz Peripherals Enabled - RTC

• LPM0 – 170 µA
– CPU disabled, Fast Peripherals Enabled
– Fast Wake up
– 32 kHz Peripherals Enabled – RTC

• LPM3 – 6.4 µA
– CPU disabled, Fast Peripherals Disabled
– Slow wake up
– 32 kHz Peripherals Enabled

• RTC, Watchdog & SVS protection
• LPM4 – 5.9 µA

– All clocks disabled
– Wake on interrupt

• LPM3.5 – 1.5 µA
– Regulator & all clocks disabled
– Complete FRAM retention
– BOR on nRST/NMI or Port I/O or RTC

• LPM4.5 – 0.32 µA

Presenter
Presentation Notes
This slide illustrates the system reset sources that include a brownout reset (BOR), a power on reset
(POR), and a power up clear (PUC). Different events trigger these reset signals and different initial
conditions exist depending on which source triggered the reset.

Similar to the F5xx Flash family, the FR57xx features seven operating modes for standby operation ranging from LPM0 to LPM4.5.
The modes are selected based on the need for clock frequency, power requirements and the type of peripheral that needs to be enabled while in standby.
The slide shows power numbers modes LPM0, LPM3,4, LPM3.5 and LPM4.5.

LPM0 is an ideal choice for applications using a high frequency timer to trigger an interrupt allowing the CPU to be turned off while still providing for a fast wakeup.
LPM3 is the preferred mode for the real time clock and allows the operation of the RTC crystal while consuming less than 7uA.
In LPM4 all the system clocks are turned off and a device wakeup is possible only from an external interrupt such as switch triggering a port pin.

LPM3.5 and LPM4.5 are more specialized modes that allow the digital core to be turned off while retaining minimal functionality allowing the device to hibernate. This mode is also known as deep-shelf mode, an example application where this mode is used – is to store battery powered products that are stored in warehouses before shipping to an end-user, the products are required to consume extremely low power while maintaining for example the time or the ability to wake up from a switch interrupt.

12/13/2011 13

LPM & Wakeup Time Comparison
Parameter F2xx F5xx FR57xx

LPM0-LPM4 Yes Yes Yes

LPMx.5 No Yes Yes

tWAKEUP-LPM0 1µs 6µs 1µs

tWAKEUP-LPM1,2 1µs 6µs 11µs

tWAKEUP-LPM3,4 1µs 6µs/ 150µs 100µs

tWAKEUP-LPMX.5 N/A 2000µs 700µs

Presenter
Presentation Notes
This slide provides a quick overview comparison of wakeup times from various low power modes across different families.

Wake up time from LPMx.5 is similar to waking up from a brown out reset. The low power modes 0-4 exhibit faster wakeup because the digital core is kept powered. For more information on accurate wake up times please refer to the device datasheet.

12/13/2011 “TI Proprietary Information - Strictly Private” or similar placed here if applicable 14 14

PMM & Core Voltage
• What is VCORE?

– Integrated LDO provides a regulated voltage
– VCORE powers digital core (CPU, memory, digital modules)

• Is this any different from the F5xx family?
– Yes, FR57xx has only one core level [1.5V]

• Any recommendations?
– DO put a 470nF cap on the VCORE pin
– DO NOT load the VCORE pin externally
– DO NOT connect the VCORE pin to any other pins on the device

 DVCC VCORE
REGULATOR

2 – 3.6V 1.5V

Presenter
Presentation Notes
The power management module or PMM manages all functions related to the power supply and its supervision for the device.

Its primary functions are first to generate a supply voltage for the core logic, and second, to provide a mechanism for the supervision of both the voltage applied to the device at the DVCC pin and the voltage generated for the core known as VCORE.

The PMM uses an integrated low-dropout voltage regulator to produce VCORE from DVCC. In general, VCORE supplies the CPU, memories (flash/RAM), and the digital modules, while DVCC supplies the I/Os and all analog modules (including the oscillators).

In the FR57xx device, the core voltage is fixed at a single level, which makes it different from the programmable flash 5xx PMM.

A few guidelines that are important to follow with respect to the PMM are:
Always use a 470nF capacitor on the Vcore pin. Remember the ratio of capacitance from DVcc to Vcore must be atleast 10 based on the recommended operating conditions for the device.
The Vcore pin is meant only to provide a pin to place the core capacitor. Do not load it externally or power any circuitry from this pin.
Also, the Vcore pin must not be tied to any other pin on the MSP430 device

15

Supply Voltage Supervision (SVS)

• Supply voltage supervision highly simplified
compared to F5xx family

• Individually enabled for high (supply)/ low
(core) sides

• Hard-coded threshold levels

• Device reset tracks with SVSH

• SVSH
– Enabled in all modes, cannot be disabled
– Disabled in LPM4.5

• SVSL
– Enabled in active, LPM0, cannot be disabled
– Can be disabled in LPM1,2 (default enabled)
– Disabled in LPM3,4,x.5

PMM Action at Device Power-up

Presenter
Presentation Notes
As mentioned in the previous slide the PMM module provides a means for DVCC and VCORE to be supervised. Both of these
functions detect when a voltage falls under a specific threshold. When the device is powering up, both the SVS on the high/DVcc side also known as SVSH and SVS on the low/core side also known as SVSL are enabled by default.

The SVS High side remains enabled in all power modes including the x,5 modes by default. It can only be disabled in LPM4.5 to save power. The SVS low side is automatically disabled in LPM3, LPM4, LPM3.5 and LPM4.5. It can optionally eb disabled in LPM1 and LPM2.

16 16

• Five independent clock sources
– Low Freq

• LFXT1 32768 Hz crystal
• VLO 10 kHz

– High Freq
• XT1 4 – 24 MHz crystal
• XT2 4 – 24 MHz crystal
• DCO Specific CAL range

• Default DCO = 8MHz
– MCLK = DCO/8 = 1MHz

• ACLK / SMCLK / MCLK tree is fully
orthogonal

• MODOSC provided to modules
– ADC10

• Failsafe
– XT1LF: VLO
– XT1HF or XT2: MODOSC

Clock System (CS)

ACLK

MCLK

SMCLK

VLOCLK

Presenter
Presentation Notes
This slide presents an overview of the FR57xx family clock system. The main advantage of the orthogonal clock system is its ability to branch any clock source to any system clock.
There are five available clock sources for this family:

Low frequency crystal on XT1 typically 32768Hz for the RTC
Very low power, low frequency internal oscillator that operates at approximately 10kHz
High frequency crystal on XT1 and XT2 with a frequency limit between 4 and 24 MHz
The internal high frequency digitally controlled oscillator or the DCO that can be programmed with 6 different calibrated frequencies.

These clocks can be used to source the CPU clock, main clock or MCLK, the high speed peripheral clock, sub-main clock or SMCLK and the auxilliary clock or ACLK.

An internal 5MHz oscillator provides timing for the ADC10 module and is not directly accessible by other peripherals.

Note that that system starts up at 1MHz MCLK with the clock source DCO set to 8MHz and the clock divider set to 8. This can be changed in the user application code.

Also on failure of the low frequency crystal, LFXT1 defaults to the VLO clock and on failure of the HFXT2, it defaults to MODOSC.

17

CS: Digitally Controlled Oscillator

• Six frequency settings

• Not programmable (add comment)

• Factory Calibrated
+2% accuracy from 0-50C
+3.5% accuracy from -40 to 85C

DCO Frequency Selection

+Higher frequency ranges for FR573x family only

+

Presenter
Presentation Notes
The table shown on this slide provides a listing of 6 different programmable calibrated DCO frequency settings.

They are 5.33MHz, 6.67MHz, 8MHz, 16MHz, 20MHz and 24MHz and can be divided down to any even multiple using the large number of clock dividers provided by both the clock system and individual modules.

While it is important to check the datasheet directly for accurace information, the DCO is approximately + or - 2% accurate across the popular temp range 0 – 50C.

For the wide operating range of -40 to + 85C the tolerance of the DCO is closer to + or – 3.5%.

Note that though the DCO can work all the ay up to 24MHz, this feature is provided only in the FR56”3”x family of devices.
In the FR57”2”x families the high range RSEL bit is disabled and the maximum allowable system clock is 8MHz.

18

FRAM Controller (FRCTL)

Functions of FRCTL:

• FRAM reads and writes like standard
RAM (but)

• Read/Write frequency < 8MHz

• For MCLK > 8MHz, wait states
activated

– Manual or automatic

• Seamless and transparent
integration of cache

• Error checking and correction (ECC)
built into FRAM read/write cycle

Presenter
Presentation Notes
The FRAM controller can be considered as an interface between the FRAM Array and the CPU.
It’s main functionality is to control the access speeds to FRAM and to ensure that it does not exceed 8MHz independent of the system frequency.

FRAM read and writes are similar to SRAM and needs no special requirements..

The main difference with FRAM is that an FRAM read always requires a write back to the same memory location.

On the FR57xx device this write back is implemented within the FRAM IP and takes place automatically, in the backgroung requiring no user interaction
Hence these write backs are different from the normal write access from application code.

The FRAM module also has built-in Error Correction Code (ECC) logic that is capable of detecting and correcting bit errors

There are three options for programming an MSP430 FRAM device.
• Programming via JTAG or the Spy-Bi-Wire interface using the MSPFET430 UIF
• Programming via the ROM BSL
• Programming via a custom solution

19

FRAM and the Cache

• Built-in 2 way 4-word cache; transparent to the user, always enabled

• Cache helps:
– Lower power by executing from SRAM
– Increase throughput overcoming the 8MHz limit set for FRAM accesses
– Increase endurance specifically for frequently accessed FRAM locations e.g. short

loops (JMP$)
Active Power Vs MCLK

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8 16 20 24
MCLK (MHz)

A
ct

iv
e

Po
w

er
 (u

A
) RAM / 100% Cache Hit

75% Cache Hit

Typical/ 66% Cache Hit

50% Cache Hit

0% Cache Hit

Presenter
Presentation Notes
To understand how the FRAM controller works in conjunction with the CPU here an overview of the system cache.

The FRAM controller contains a cache with two cache sets. Each of these cache sets contents lines which are pre-loaded with 4 words (64 bits) during one access cycle. An intelligent logic selects one of the cache lines to pre-load FRAM data and preserves recently accessed data in the other cache. If one of the 4 words stored in a cache lines is requested (also known as a cache hit), the FRAM is not accessed and the word is retreived from the cache. However if none of the words available in the cache are requested (also known as a cache miss), the built-in wait state mechanism ensures that the FRAM is accessed at speeds no higher than 8MHz.

Access to the cache is completely transparent to the user and the usage of the cache is always enabled.
Since the cache is a set of registers, accessing it can take place at frequencies up to 24MHz thereby increasing the overall throughput of the system. A further advantage of using the cache is that it can lower the average power of the system by minimizing the accesses to FRAM.

The graph shown in the slide above shows that average active power reduces as the cache hit rate increases. In a typical application the cache hit ratio is about 66% and at an 8MHz clock speed, the average power is about 900uA. In comparison at 0% cache hit rate, the average power increases to about 2.2mA.

Therefore we should keep an mind that the application should be written to use the cache as efficient as possible.
For example writing short efficient loops can ensure optimal usage of the cache thereby maximising system throughput and lowering average system power.

20

So far we’ve covered…

• FRAM Technology Attributes

• Introduction to the MSP430FR57xx Family

• FR57xx CPU, Operating Modes & Wake up times

• Core Module Overview
– PMM
– SVS
– CS, DCO
– FRCTL
– Impact of Cache in the system

Now we are ready for a lab!

Presenter
Presentation Notes
In this section we discussed the MSP430FR57xx CPU, the operating modes used in this family and the related wake up times.

We also reviewed key system peripherals such as the power management module, supply voltage supervisor, clock system, FRAM controller and the cache.

Please stay tuned for our next session which focuses on the MSP-EXP430FR5739 FRAM Experimenter’s Board and the out of the box experience that comes with the board.

21

Lab 1A

Goals:

1) Unboxing the FRAM Experimenter’s Board

2) FRAM EXP feature overview

3) FRAM EXP Graphical User Interface and User Experience

Presenter
Presentation Notes
In our first lab we will learn to use the MSP-EXP430FR5739 FRAM Experimenter’s Board.

The out of box experience and the graphical user interface available with the hardware are also discussed.

If you plan to execute the lab please make sure you have an FRAM Experimenter’s board and a digital multimeter.

Obtaining Lab Software

• Software for this lab can be obtained from the MSP430 FRAM Training
Wiki

• The link is:
http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

• Download the zip file
– The folder ‘FR-EXP User Experience’ contains the FRAM EXP User

Experience Code and the Graphical User Interface used in Lab1
– The folder ‘LabWorkspace’ contains the CCS workspace location and the

source files for executing the labs 2 & 3

• By default the board is programmed with the User Experience code

22

http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

23

USB Connection Debugging and
Programming Interface

Accelerometer

NTC Thermistor

LED0 – LED8

MSP430FR5739
device

User Input Switches
S1,S2

Reset switch

Connection to EXP-
MSP430F5438

Connection to CCxx
daughter cards

SBW and MSP430
Application UART

MSP-EXP430FR5739 Experimenter’s Board

Presenter
Presentation Notes
The MSP-EXP430FR5739 FRAM Experimenter’s Board is an evaluation module for MSP430’s first FRAM MCU.

The development kit is equipped with on-board emulation, accessible pin headers, connections for RF daughter cards and on-board analog sensors such as a 3 channel accelerometer. User input is obtained via two switches S1 and S2 and a variety of results can be dispalyed using different combinations of the eight available LEDs.

This board is available today for 29$ from the TI estore and we will be using it for all the FRAM labs that follow.

24

EXP Board: Out-of-the-box Experience

• Four Demo Modes:
– High Speed FRAM write mode
– Flash Emulation mode
– Accelerometer sample and store mode
– Temperature sensor sample and store mode

• Use S1 to select a mode and S2 to enter

• When inside a mode, toggle S2 to turn display/ UART on/off

• To exit and return to menu press S1

• Demo package comes with a graphical user interface
– …OBE\ FRAM_GUI\FRAM_GUI.exe

Presenter
Presentation Notes
The FRAM Experimenters board is equipped with a user experience code that demostrates the key features of FRAM as a technology and the FR5739 device specifically.

The User Experience code consists of four modes. Each of these modes are selected by pressing switch S1. Entry to the modes occurs on pressing switch S2. To return back to the menu, S1 is pressed once again.

The Experimenters board interfaces with the PC through the back channel UART to display the output when in any of the four modes. The output is also displayed using the 8 LEDs that are on-board. However during a power measurement it is important to turn off the LEDs and the UART data stream so that the result display does not impact the power numbers. This is done by toggling S2 when inside a mode.

The four modes are:
High Speed FRAM write mode
Flash emulation mode
Accelerometer sample and store mode
Temperature sensor sample and store mode

In the high speed FRAM write mode the application writes to MSP430 FRAM at the rate of ~2Mbps. The write function fills up the memory in 100K blocks after each of which an LED is turned on.

In the flash emulation mode, the speed of flash erase and write was derived from an MSP430 F2274 device. This speed was then used to emulate a Flash erase and write event on the FR57xx device. As in the first case, the LEDs are cycled sequentially for every 100K bytes written to FRAM. We can easily see from the demo that FRAM write speeds at approximately 2MBps is 100 times faster than flash write speeds at 13KBps.

The third and fourth modes use the on-board analog to collect accelerometer and temperature samples that are then stored on-the-fly in non-volatile memory. This was previously not possible without RAM buffering in Flash based devices since the speed of Flash write/erase was significantly slower than the ADC sample frequency.

25

EXP Board: Out-of-the-box Experience

FRAM Write speed Emulated flash Write
speed LED Tracking

PC Debug data
MCUTTTFRAM \ FRAM_GUI\FRAM_GUI.exe

Presenter
Presentation Notes
This slide shows a screen shot of the Graphical User Interface that is available with the FRAM Experimenter’s Board.
The display shows FRAM write speed on the left in mode 1 and flash write speed on the right in Mode 2.

The screen also shows the remaining endurance of an FRAM segment while executing continuously from within a mode.

The frames per second data that is displayed on the top right corner indicates the speed at which the PC interacts with the User interface – if this is a very small number then the UI will most likely not track with real time changes on the board.

Remember that the UI requires the latest version of java to be installed in the PC and this is available for download from www.java.com

26

Step 1: Double click to open FRAM_GUI.exe

Step 2: Plug in EXP Board to computer

Step 3: Select Mode 1 on EXP board. Observe FRAM speed in kB/s

Step 4: Select Mode 2. Observe emulated flash speed in kB/s

Step 5: Select Mode3. Place the board on a level surface to calibrate the
board before entering Mode 3.

Step 6: Observe the GUI track with the tilt of the board as the FR5739
records sample data on-the-fly

Step 7: Select Mode 4. Observe LED sequence based on increasing/
decreasing temperature

EXP Board: Out-of-the-box Experience

Presenter
Presentation Notes
Now we can take some time to play with the modes, selecting between various modes with the switches S1 and S2 and observing the output.

This concludes the first lab in the FRAM training workshop.

27

Lab 1B

Goals:

1) Setting up a CCS Project

2) Measure active power for different system frequencies

3) Understand the impact of cache on active power

Presenter
Presentation Notes
Hello, welcome to the second lab in the FRAM training session

To execute this lab we need
Code Composer Studio V4.3.2 or later
EXP-MSP430FR5730 FRAM Experimenters Board
Digital Multimeter

Obtaining Lab Software

• Software for this lab can be obtained from the MSP430 FRAM Training
Wiki

• The link is:
http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

• Download the zip file
– The folder ‘FR-EXP User Experience’ contains the FRAM EXP User

Experience Code and the Graphical User Interface used in Lab1
– The folder ‘LabWorkspace’ contains the CCS workspace location and the

source files for executing the labs 2 & 3

• By default the board is programmed with the User Experience code

• If this needs to be re-installed after the labs use the batch file in the
folder ‘User Experience Programmer’

28

http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

29

Setting up a Project using CCS

• Open Code Composer Studio (V4.3.2 or later)

• Select MSP430\FR57x\LabWorkspace as the workspace location

MSP430\FR57x\LabWorkspace

Presenter
Presentation Notes
First we setup a project using Code Composer Studio

30

Setting up a Project using CCS

• Import two projects using Project  Import existing…

• Select the folder ‘LabWorkspace’ as the root dir for the projects

• Ensure Lab1 is marked as [Active-Debug]

• If not, right click on Lab1 and use ‘Set as Active Project’

31

Using while(1)/ JMP$ to Measure Power

Lab Notes:

• Lab1.c is setup to initialize the board, execute the LED startup
sequence

• Ensure that while(1); loop in main() is included

• Build and download active project [Target  Debug Active Project]

• Execute the code [Target  Run]

• Terminate Debug Session [Target  Terminate All]

32

And the power number is…

Lab Notes:

• Measure power across VCC jumper of the eZFet

• MCLK = DCO = 8MHz; Meter reads <600µA or ~75µA/MHz

Observations:

• Single word opcode (JMP$)  Code execution is completely within the
cache (SRAM)

• Hence the low active power!

Connect meter across Vcc

Use USB for Power

33

A More Realistic Scenario

• Function Active_mode_test() = combination of RAM, FRAM access +
different addressing modes

• Closer to typical application use-case

• Use this function to measure ‘real world’ active power

• Comment out the while(1); loop

• Include ACTIVE_MODE_TEST() function call

• Rebuild Project

• Download & execute the code, terminate debug session

Note: Remember to reconnect the jumper to program the target or leave
the meter ON

34

Source Code Snapshot

Ensure that this function call is included

35

And now we measure…

Lab Notes

• MCLK = DCO = 8MHz

• Meter reads <750µA or <<100µA/MHz

Observations:

• As # of cache misses increase, active power increases

• Cache hit/miss ratio is completely application dependent

• Tighter, shorter loops = fewer cache misses

Presenter
Presentation Notes
From this lab we can deduce that active_mode_test() is closer to a real world application than when using a JMP$ or while(1) loop.

Since the while(1) loop executes from within SRAM the average active power is significantly lower than when using active_mode_test().
The active_mode_test() function uses a case where reads and writes to FRAM are alternated with multiple addressing modes to make it a more realistic example.

In conclusion:

1) As # of cache misses increase, active power increases
2) Cache hit/miss ratio is completely application dependent
3) Tighter, shorter loops = fewer cache misses and hence lower power

In the next lab we will learn to reconfigure system clock settings and compare changes in active power with respect to frequency

36

fSYSTEM vs. Active Power

LAB1C

• Measure Power with different system clock frequencies

• Use MCLK = 16MHz and/or MCLK = 24MHz

• Set CSCTL1 registers  DCORSEL, DCOFSELx bits according to
table below

• Follow previously provided instructions for code download

Presenter
Presentation Notes
The goal of this lab is to measure active power at various sytem operating points

The system main clock or MCLK is sourced from the internal digitally controlled oscillator (DCO).
The DCO is capable of 6 operating points between 5 and 24 MHz.

For this lab we will be using 16 and 24MHz respectively.

The DCO has three frequency settings determined by the DCOFSEL bits. Each frequency is trimmed at the factory and at each frequency setting two frequencies low and high range can be configured.

To configure the MCLK to 16MHz, the first DCO setting is selected as shown in the table.

Once the changes are made to the highlighted portion in the code file, save the example and load it to the device.

Repeat the steps while setting MCLK to 24mHz.

This time the LED entry sequence will run at a faster rate when compared to the previous lab indicating that the system frequency has increased.

Terminate the debug session and measure power as before and note down your readings.

37

fSYSTEM vs. Active Power

Lab Notes

• Verify increased system clock by speed of startup sequence

• Active Power @ 16MHz <1.3mA

• Active Power @ 24MHz < 2mA

Checklist:

Measure active power @ 8MHz

Setup DCO for 16MHz and 24MHz

Compare active power numbers for 8,16, 24MHz

Presenter
Presentation Notes
The power measurements recorded should match fairly closely with the numbers shown in this slide.

38

FR57xx Peripheral Additions &
Enhancements

Presenter
Presentation Notes
This section details MSP430FR57xx Family Peripheral Additions and Enhancements
Some of the peripherals discuseed are:

eUSCI
ADC10_B
RTC_B
Comp_D
JTAG and BSL

39

eUSCI_A: UART

• Architecture is maintained mostly compatible with USCI_A

• Register mapping from USCI to eUSCI available in migration document

• New features include
– UCTXCPTIE interrupt similar to TXEPT flag in USART
– Enhanced baud rate calculator: Increased flexibility with modulation pattern

settings
– UCSTTIE interrupt for start bit detection
– Increased flexibility with deglitch filter

Presenter
Presentation Notes
The enhanced universal serial communication supports multiple serial communication modes with one hardware module.

The eUSCIA specifically supports UART and SPI communication interfaces.

UART mode features include:
• 7- or 8-bit data with odd, even, or non-parity
• Independent transmit and receive shift registers
• LSB-first or MSB-first data transmit and receive
• Built-in idle-line and address-bit communication protocols for multiprocessor systems
• Receiver start-edge detection for auto wake up from LPMx modes
• Programmable baud rate with modulation for fractional baud-rate support
• Status flags for error detection and suppression
• Status flags for address detection
• Independent interrupt capability for receive, transmit, start bit received and transmit complete

This section mainly highlights the differences between the eUSCI and the well-known USCI module available in previous MSP430 families.

For a more detailed description on the module itself refer to the FR57xx family User’s Guide available online at www.msp430.com

With regards to the eUSCIA the main enhancements to the UART module include an improvide baud rate generator and two new interrupts for detecting the emptying of the TX buffer and the start edge.

If migrating from an USCI to the eUSCI it is recommended to refer to the application report titled: Migrating from the F2xx to the FR57xx Family

40

eUSCI_A: SPI

• Architecture is maintained mostly compatible with USCI_A

• Register mapping from USCI to eUSCI available in migration document

• Supports higher baud rates
– Up to 9MHz @ 3.0V
– Up to 6MHz @ 2.0V

• Modified 4-pin SPI mode
– Can now be used as a ‘true’ chip select in master mode

Presenter
Presentation Notes
In terms of SPI, the EUSCI A and B are capable of SPI com in both three and four wire modes

Some of the other features of the SPI module include:

SPI mode features include:
• 7-bit or 8-bit data length
• LSB-first or MSB-first data transmit and receive
• Independent transmit and receive shift registers
• Continuous transmit and receive operation
• Selectable clock polarity and phase control
• Programmable clock frequency in master mode
• Independent interrupt capability for receive and transmit and
• Slave operation in LPM4

41

eUSCI_B: I2C

Many new features have been added:

• Multiple slave addresses

• Clock low timeout for SMBus compatibility

• Byte counter

• Automatic stop assertion

• Preload for master/slave transmitter

• Address bit masking

• Selectable deglitch timing

• ACK/NACK selectable in software

Presenter
Presentation Notes
In I2C mode, the eUSCI_B module provides an interface between the device and I2C-compatible devices
connected by the two-wire I2C serial bus.

The eUSCI_B I2C mode features include:
• 7-bit and 10-bit device addressing modes
• General call
• Multi-master transmitter/receiver mode
• Standard mode up to 100 kbps and fast mode up to 400 kbps support
• Programmable clocK frequency in master mode
• Up to 4 hardware slave addresses with own interrupt and DMA trigger
Clock low timeout interrupt to avoid bus stalls
8 bit byte counter with interrupt capability and automatic STOP assertion
• Mask register for slave address and address received interrupt
• selectable deglitvh timing
• Slave receiver START detection for auto wake up from LPMx modes

42

eUSCI_B: I2C

Multiple Slave Addresses
• Support for four slaves in hardware

• 4 unique slave address registers:
UCBxI2COAx

• Each slave address has a
corresponding UCOAEN

• Independent interrupt vector pairs for
TX and RX flags

• Shared status flags

• Dedicated DMA channels

• Example application: EEPROM +
sensor

UCB0I2COA0 = 0x48; // EEPROM
UCB0I2COA1 = 0x40; // ADC
#pragma vector = USCI_B0_VECTOR
__interrupt void USCI_B0_ISR(void)
{
 switch()
 {
 case 0: break;
 case 2: break;
 …….
 case 20: // UTXIFG0 EEPROM TX
 case 22: // URXIFG0 EEPROM RX
 case 24: // UTXIFG1 ADC TX
 case 26: // URXIFG1 RX
 ……..
 default: break;
 }
}

Presenter
Presentation Notes
The eUSCI_B module supports two different ways of implementing multiple slave addresses at the same
time:
• Hardware support for up to 4 different slave addresses, each with its own interrupt flag and DMA
trigger
• Software support for up to 2 to the power 10 different slave addresses all sharing one interrupt

The registers UCBxI2COA0, UCBxI2COA1, UCBxI2COA2, and UCBxI2COA3 contain four slave
addresses. Up to four address registers are compared against a received 7- or 10-bit address. Each slave
address must be activated by setting the enable bit in the corresponding address register.
Register OA3 has the highest priority if the address received on the bus matches more than one
of the slave address registers. The priority decreases with the index number of the address register, so
that OA0 in combination with the address mask has the lowest priority.
When one of the slave registers matches the 7- or 10-bit address seen on the bus, the address is
acknowledged. Following this the corresponding receive- or transmit-interrupt flag (UCTXIFGx or
UCRXIFGx) that matches the received address is updated. The state change interrupt flags are independent of the
address comparison result. They are updated according to the bus condition.

The example shown in this slide consists of a single MSP430 I2C slave that can function either as an EEPROM or as a sensor depending on the I2C address used.

43

eUSCI_B: I2C
Clock Low Timeout
• SCL being held low for a time>

timeout interval causes flag to be set

• Interval timer based on MODOSC

• 3 selectable intervals ~25, 30, 35ms

• Interrupt: UCCLTOIE

• In LPMs high power LDO is
automatically requested

• Available for both master and slave

• User is required to determine post-
timeout activity such as reset

• Allows for SMBus compatibility
without using a timer resource

• Can be leveraged for hot-plug issues

UCB0CTLW1 |= UCCLTO_2; // 25ms
UCB0IE |= UCCLTOIE;
#pragma vector = USCI_B0_VECTOR
__interrupt void USCI_B0_ISR(void)
{
 switch()
 {
 case 0: break;
 case 2: break;
 …….
 case 28: // clock low timeout
 UCB0CTL0 |= UCSWRST;
 UCB0CTL0 &= ~UCSWRST;
 break;
 }
}

Presenter
Presentation Notes
The clock low timeout feature allows the eUSCI module to be easily made compatible with protocols such as Pmbus and Smbus. The module provides an interrupt that allows the software to react if the clock is low longer than a defined time. Three possible timeout intervals that can be preselected are 28, 30 and 34ms.
This saves on using a unique timer resource and can be used to detect long periods of inactivity on the I2C line in both master and slave modes.

44

eUSCI_B: I2C

Byte Counter & Auto Stop
• RX and TX bytes are counted in

hardware

• The counter increments for every
byte that is on the bus

• Available in master (active) and
slave (passive) mode

• In master mode when used with auto
stop – eliminates the need for
software counters.

• Master sends Stop condition when
BCNT threshold is hit

// Master TX Mode
UCB0CTLW1 |= UCASTP_2; //
UCB0TBCNT |= 0x05; // 5 bytes
#pragma vector = USCI_B0_VECTOR
__interrupt void USCI_B0_ISR(void)
{
 switch()
 {
 case 0: break;
 …….
 case 20: // UTXIFG0
 UCB0TXBUF = *Data_ptr;
 Data_ptr++;
 break;
 }
}

Presenter
Presentation Notes
Two features that help make the process of transmitting and receiving bytes more automated are the “i2c byte counter” and “auto stop assertion”.
The byte counter automatically counts transmitted or received bytes on the I2C bus.

In master mode it can be used in combination with the automatic stop assertion feature to send out an I2C stop condition upon reaching a pre-set byte limit.

In slave mode this feature is more passive and simply maintains a count of the bytes received or transmitted.

45

eUSCI_B: I2C

Early Transmit Interrupt
• USCI module clock stretches in TX

mode if TX ISR is not serviced
immediately

• eUSCI offers a preload feature

• TXBUF is loaded on detection of
start edge prior to address compare

• Software must take care of the
unloading in case of an address
mismatch.

// Master TX Mode
UCB0CTLW1 |= UCETXINT; //
#pragma vector = USCI_B0_VECTOR
__interrupt void USCI_B0_ISR(void)
{
 switch()
 {
 case 0: break;
 …….
 case 20: // UTXIFG0
 UCB0TXBUF = *Data_ptr;
 Data_ptr++;
 break;
 }
}

Presenter
Presentation Notes
In the case where the MSP430 is configured as a slave transmitted often times the slave clock stretches on the acknowledge cycle of the address receive.

This is because the slave transmitter is not ready to load the transmit buffer until the I2C state machine has determined that there is an address match and acknowledged the address.

In some cases I2C hosts are known to be intolerant of clock stretching, for such instances the early transmit interrupt feature is useful because it allows the slave to load the transmit buffer prior to the address match and immediately on detection of the start edge.

In the case where the Transmit buffer was preloaded and the slave adddress was later found to be a mismatch, software is required to handle this by using the byte counter to detect if a byte was sent on the bus.

46

eUSCI_B: I2C Migration Considerations

• HW clear of interrupt flags no longer available
 USCI_B has 4 sets of flags with associated clearing events
 Customers who have previously used the USCI will be assume this is still

available ( Migration document)
 TXIFG cleared by NACK
 In master mode NACKIFG can be used to clear last TXIFG
 In slave mode STPIFG can be used. TXIFG could likely be already serviced and

user needs to ensure data pointers are re-adjusted
 STPIFG STTIFG
 Needs to be included by user in S/W

 NACKIFG cleared by STP
 master mode only
 NACKIE needs to be enabled if clearing is needed (no STPIFG in master mode)

Presenter
Presentation Notes
When migrating from the USCI module in previous MSP430 generations to the eUSCI module it is important to understand certain considerations.

Please review the registers carefully when porting code.

Also the eUSCI module does not support hardware clear of I2C flags based on events on the I2C bus.
Instead the I2C flags are expected to be handled in software.

47

ADC10_B

Feature Enhancements
• Significant power savings

– 150µA Vs 1.2mA on F2xx

• Up to 200ksps

• REF – unique module
– 1.5V, 2V and 2.5V

• DTC replaced by DMA

• Up to 12 external input channels

• Window Comparator
– Hi, low and middle interrupts

// Configure Thresholds
ADC10HI = High_Threshold;
ADC10LO = Low_Threshold;
#pragma vector = ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
 switch()
 {
 …….
 case 6: // ADC10MEM > ADC10HI?
 //…
 break;
 case 8: // ADC10MEM < ADC10LO?
 //…
 break;
 case 10:
 // ADC10HI <ADC10MEM < ADC10LO?
 //…
 break;
}}

Presenter
Presentation Notes
The ADC10_B module in the FR5739 device offers significant improvements in terms of power consumption.
The new ADC is about 8 times lower power than the ADC10 module in the F2xx family.

Also the reference module is now separate from the ADC itself and is shared across multiple peripherals on applicable devices.

The Data transfer controller feature that was unique to the ADC10 has been replaced by the ubiquitous DMA.

The ADC also supports 12 external channels and two internal to measure temperature and Vcc.

A newly introduced feature in the ADC10B is the window comparator.

This allows the user to set thresholds for conversion results allowing hardware to check if the sample is above, below or in-between the set thresholds..
Unique interrupts are triggered for each of these events resulting in code efficiency – because the application is no longer required to perform this check in software.

48

RTC_B and Comp_D

RTC_B
• Calendar mode only

• LFXT1 32768Hz required

• Advanced interrupt capability –
alarms, OF fault, RTCREADY and
RTCEV

• Selectable BCD format

• Calibration

• Multiple Alarms

• Operation in LPM3.5

COMP_D
• Interrupt driven for low power

• Uses the REF module like ADC10_B

• Up to 15 external input channels

• Software selectable RC filter

• Selectable reference voltage
generator

• Voltage Hysteresis generator

Presenter
Presentation Notes

The real time clock module in the FR57xx family, the RTC_B has a number of improvements. The RTC module is now functional in LPM3.5 when the core LDO is turned off allowing for extremly low power numbers while maintaining the RTC count. Wakeup from this mode can be in the form of event interrupts or alarms. On wakeup from LPM3.5 the device undergoes a reset similar to a Brownout reset and the RTC registers such as the interrupts need to be reenabled on startup.

The comparator D module has a number of useful features including interrupt driven operation and hysteresis generator that allows the generation of hyseteresis without any external components.

49

JTAG and BSL

JTAG
• Security can be achieved by:

• Fuse is in software

1) JTAG lock and unlock
- Access granted only if tool chain

supplies correct password

2) JTAG fuse blow
- Access only via BSL if password is

know
- JTAG can be re-enabled via BSL

3) JTAG fuse blow + BSL disable
- No further access to device is

possible

BSL
• Similar to F5xx BSL but

• Code in Boot ROM – cannot be
modified

• Peripheral Interface: HW UART

• BSL Entry and signature same as
F5xx

Presenter
Presentation Notes
Connectivity to the device is available in the form of 4 wire JTAG and 2 wire SBW protocols.
Debugging the device is possible using any of these protocols.

The device firmware can also be updated via the Boot strap loader but in this case no debugging is possible.

Securing the device from unintentional access can be done in any of the following ways:

JTAG lock/unlock feature allows the user to set a password for opening up the device. This password is provided via the tool chain without which no communication is possible. The device can also be accessed via the BSL if the password is known.
The JTAG fuse which is in software can also be used to disable the JTAG completely in which case the only access to the device is via the BSL. The BSL can be used to gain access to the device and reset the software JTAG fuse.
Alternatively both the JTAG and BSL can be disabled allowing no further accesses to the device.

50

Using FRAM on the FR57xx

Presenter
Presentation Notes
In this section we will learn about using FRAM on the FR57xx device. Key FRAM features and configuration details on the memory protection unit are discussed.
This lab that follows this section lets you configure the MPU and test it in an application.

51

Unified Memory

One device supporting multiple
options “slide the bar as needed” Multiple device variants may be required

• Easier, simpler inventory
management

• Lower cost of issuance /
ownership

• Faster time to market for
memory modifications

Before FRAM With FRAM

To get more SRAM you may have
to buy more FLASH ROM

1kB
EEPROM

Often an
additional

chip
is needed

14kB Flash
2kB

SRAM

16kB Flash
(Program)

2kB
SRAM

24kB Flash
 5kB

SRAM

16kB Universal FRAM

Data vs. program memory
 partitioned as needed

Presenter
Presentation Notes
A truly unique feature of FRAM is its ability to dynamically morph into code or data memory based on the user’s requirements.
When using Flash-based MCUs the user is typically required to pre-select the amount of RAM and Flash that is required for the application.
In the case of FRAM it can be used to transition between static code, variable data and constant data easily and dynamically.
This means that as you application grows you can reconfigure the boundaries of code and data as per your needs without having to change the device.
This is what makes FRAM boundariless or unified.

52

Setting Up Code and Data Memory

• Let’s analyze the linker command file for this device in CCS

• Open lnk_msp430fr5739.cmd from the project Lab1

• Study lab1.map from the project (located in the Debug folder) for RAM/FRAM
usage

Presenter
Presentation Notes
As an exercise let’s open up the linker command file lnk_msp430fr5739,cmd from our CCS project that we set up in the previous lab.
This file is automatically linked to the project when the MSP430FR5739 is selected as the device.

What do you see when you open this file?

If you scroll down to the section where the memory ranges are defined; you can see the default segmentation that CCS provides.

For example Code and constant data are setup to be stored in the FRAM range whereas global and static variables and the software stack are set to be stored in static RAM.
This is a very typical use case.

However the user has completely flexibiility in reconfiguring these segments using the linker command file.
FRAM is as easy to write to as RAM with no preparation of charge pump or unlocking of registers as in flash, this means the variables can just as easily be placed in FRAM making them non volatile.
Remember though that FRAM accesses are limited to 8MHz in comparison to accessing SRAM on the device which can take place at speeds up to 24MHz.

How you configure the segmentation is completely application dependent, the next slide discusses a few configuration options

53

Setting Up Code and Data Memory

• Case 1: all global variables are assigned to FRAM
– Advantage: All variables are non-volatile, no special handling required for

backing up specific data
– Disadvantage: Uses up code space, increased power, decreased

throughput if MCLK > 8MHz

• Case 2: all global variables are assigned to SRAM
– Advantage: Some variables may need to be volatile e.g. state machine,

frequently used variables do not cause a throughput, power impact
– Disadvantage: User has to explicitly define segments to place variables in

FRAM

• Achieving an optimized user experience is a work in progress…

Presenter
Presentation Notes
One way to setup the FRAM meory segments would be to place everything in FRAM: this include code, constant data, global and static variables and the stack.

This has the following advantage: All of the information is now non-volatile, there is no need tobackup and in the case of a power fail attempt the state of the global variables are preserved

The disadvantages to this method are: higher power consumption due to increased access of FRAM which while being lower power than Flash is definitely higher power than SRAM, system speed is capped at 8MHz for any FRAM access, some variables may require to be volatile for example system flags and status bits. This means that the user will have to be more careful about initializing data at startup.

The second method is basically using the default, in this case if any specific variable needs to be in FRAM it has to be specified explicitly either by using pointers or by defining a segment in the linker command file.

54

Memory Protection Unit (MPU)

• FRAM is so easy to write to…

• Both code and non-volatile data need protection

• MPU protects against accidental writes [read, write and execute
only permissions]

• Features include:
– Configuration of main memory in three variable sized segments
– Independent access rights for each segment
– MPU registers are password protected

Presenter
Presentation Notes
FRAM is very easy to use and modify on the flip side this means that it is equally easy for application code to perform an illegal access and result in unintentional writes.
For this reason It is recommended to plan and setup memory segments as read, write or executable in the application code at startup.
The Memory Protetcion Unit does this for you as its main function is to protect against accidental writes to designated read-only memory segments or execution of code from a constant memory segment memory.

Remember that after a brownout reset the entire memory is not protected making it very important to setup the MPU configuration at startup.

Using the MPU:
• Main memory can be configured up to three segments of variable size
• Access rights for each segment can be set independently
• Information memory can have its access rights set independently
• All MPU registers are protected from access by password

55

Calculating Segment Boundaries

• Size of segment determined by setting the MPUSB register (Segment
Borders)

• Total # of bits = 5

• For 16K device
– Segment Granularity =16*1024 / 32 = 512 bytes

Presenter
Presentation Notes
In the previous slide it was mentioned that the FRAM can be split into three segments.

The reason for this number is because in most applications the boundaries are typically between code, variable data and constant data.
When diving into three blocks, the smallest a block can be is 512 bytes for a 16K FRAM device.

The smallest block size is determined by the total available FRAM on the device, for example a device with 8K of fRAM can have each individual block as small as 256 bytes.
The formula for calculating the granularity is shown in this slide.

56

Creating Segments in 4 Easy Steps

Segment 1 = 0xC200 to 0xCDFF

Segment 2 = 0xCE00 to 0xD7FF

Segment 3 = 0xD800 to 0xFFFF

Step 1: Decide segment boundaries

Step 2: Look up User’s Guide Table for MPUSBx values

MPUSBx[4:0] Page_start Address

0x01 0xC200
….. 0xCxxx

0x07 0xCE00
… 0xCxxx

0x0C 0xD800

B1

B2

Presenter
Presentation Notes
Now we will learn to configure the memory protection unit based on our application’s needs.

The first step is to decide where we want the boundaries to be located.
As an example the memory segment boundaries are arbitarily fixed at 0xCE00 and 0xD800.

Next we will need to figure out the bit settings that need to go into the MPU segment boundary register to configure these boundaries.
This is done by referring to the MSP430FR57xx Family User’s Guide available on www.msp430.com.
The MPU chapter has a section titled Segment Border Settings with a table that indicates the settings required for each boundary value.
In this case we pick out the values for 0xCE00 and 0xD800

57

Creating Segments in 4 Easy Steps

Step 3: Write to table values to MPUSEG register 0x0C

Step 4: Assign rights and violation responses for each segment

Presenter
Presentation Notes
The third step is to write these values to the MPUSEG register

Then we assign rights and violation responses for each protected block.
For example the first two blocks can be read, execute with write disabled. This is suitable for code memory.
The last block can be read, write with execute disabled for constant data.

58

Lab 2

Goals:

1) Study MPU registers

2) Assign Segment Boundaries using the User’s Guide Table

3)Assign segment rights and violation response as indicated

Presenter
Presentation Notes
Now that we have walked through the steps we are ready for the lab.
Make sure you have the MSP-EXP430FR5739 FRAM Experimenter’s board setup and ready to use.

Obtaining Lab Software

• Software for this lab can be obtained from the MSP430 FRAM Training
Wiki

• The link is:
http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

• Download the zip file
– The folder ‘FR-EXP User Experience’ contains the FRAM EXP User

Experience Code and the Graphical User Interface used in Lab1
– The folder ‘LabWorkspace’ contains the CCS workspace location and the

source files for executing the labs 2 & 3

• By default the board is programmed with the User Experience code

• If this needs to be re-installed after the labs use the batch file in the
folder ‘User Experience Programmer’

59

Presenter
Presentation Notes
Here is how to obtain software for this lab in case you haven’t done it already.
Remember to setup a CCS project and import the two projects from the ‘Workspace’ folder into your CCS environment before starting this lab.

http://processors.wiki.ti.com/index.php/MSP430_FR57xx_3_HR_Lab

60

Configuring the MPU

LAB2

1. Set Lab 2 as active project

2. Fill in the blank spaces in lab2.c to match the following criteria
• Enable access to MPU register
• Setup segment boundaries at 0xC800 and 0xD000
• Disable write access for the Segment 2
• Enable reset on violation for Segment 2

3. Once complete, build project Lab2

4. Download and run the code example

5. LED5 should toggle on correct execution

Presenter
Presentation Notes
Once the workspace with two loaded projects is ready, ensure that lab 2 is selected as the active project by right clicking on the project name and selecting ‘Set as Active project’.

The source code file lab2.c is incomplete. You are required to fill in the blanks based on what we learned in the previous section about configuring the MPU.

Once you have filled in the blanks, build and download your new project and observe the LED toggle on correct execution of code.

61

Source Code Snapshot

1. Write password

2. Write segment
boundaries

3. Protect segment 2
from write access

4. Configure reset on
violation

5. Create a violation

Presenter
Presentation Notes
So how do we fill in the blanks?

The first step is to un-protect the MPU registers by supplying a password.
This is followed by filling in the bit settings that we picked out from the User’s Guide to set up boundaries at CE00 and D800.

The third step is to protect segment 2 from write accesses and to configure the MPU such that it provides a device reset if segment 2 is accessed to perform a write.
The other two segments can be set up with read, write and execute access.

Now we must test if this configuration protects the device as expected.
So we create a violation by writing to an address located in the write-protected segment 2. In the case of this example I perform a write to address C802 which is in segment 2.

On executing this line of code the MPU resets the device resulting in the LED toggling, this process is continued with the an access violation followed by the device reset causing the LED to toggle continuously until the write is removed from the code.

62

Configuring the MPU

LAB2 Observations:

• MPU is essential to protect code vs. data memory

• MPU can be programmed to reset the device in case of an access
violation

Checklist:

 Learn about the MPU registers

 Configure Segment Boundaries

 Create individual access rights for each segment

 Assign violation response per segment

Presenter
Presentation Notes
What have we learnt from this lab?

It is important to protect code memory against inadvertant writes by using the MPU.

We learnt to select boundaries for protection, how to select bit settings that reflect the select boundaries and how to assign access rights and violation responses to each segment.

Our knowledge was tested by executing a code example that sets up the MPU and creates an access violation which is indicated by a device reset.

Now you are all set to provide safe and secure access to FRAM in your application!

63

Maximizing FRAM Write Speed

• FRAM Write Speeds are mainly limited by communication protocol or
data handling overhead etc

• For in-system writes FRAM can be written to as fast as 16MBps!

• The write speed is directly dependent on:
– The use of DMA
– System speed and
– Block size

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

M
eg

aB
yt

es
/s

ec
on

d

2 32 64 128 256 512 1024 4096 8192
No. of bytes in one block DMA transfer

Write Speed Vs CPU Clock

8MHz
16MHz
24MHz

Refer to Application Report
titled Maximizing FRAM
Write Speed on the
MSP430FR573x

Presenter
Presentation Notes
We have heard a lot about how fast FRAM writes can be…but can you put an exact number on the maximum speed?
The answer is: it depends on the application.

The key to understanding the speed of FRAM accesses is knowing the system level limitations. Typically it is not the access speed of the FRAM that is limiting but rather the data processing overhead or the protocol overhead when using communication peripherals whether wired or wireless to write to FRAM.

In order to eliminate the impact of process over head we tested on the bench various use cases for FRAM writes tweaking three common factors:

The use of DMA: reducing CPU intervention and transferring data to FRAM via DMA can signficantly reduce the impact of code execution overhead. We can see that the higher the DMA block size, the less the time spent in setting up the transfer. This overhead is also spread over a large block of data allowing increased average write speed.
System speed: The clock frequency of the CPU directly impact FRAM write speeds. While FRAM accesses are limited to 8MHz, remember that code execution can take place at speeds upto 24MHz because of the cache. This means that three cycles can be squeezed into the time of one FRAM access. The higher the CPU speed, the less the impact of data handling overhead.
Block size: This is true for any write process, we can see that for an 8K block to be moved from point A to B on the chip, speeds upto 16MBps can be aceived.
While this block size is impractival given that we have a 16K device, it is intended to show a benchmark for exactly how fast FRAM writes can be.

To reiterate - it is usually system level constraints that limit the write speed of FRAM and not the memory itself.
The Application report ‘Maximizing Write Speed on the MSP430FR573x family’ talks to how these factors can be tweaked to provide the highest optimal write speed based on the application. This is available on www.msp430.com.

64

Differentiating with the FR57xx

Presenter
Presentation Notes
For many flash-based MCU applications, we have learnt to live with the challenges imposed by Flash technology.
These include high average and peak power during flash writes, size constraints due to the need for a charge pump, endurance limitations, write speed limitations and the time bottleneck due to erase.

All of these limitations are addressed by FRAM and the following slides show how FRAM meets and exceeds expectations in various applications.

65

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Both devices use System clock = 8MHz

• Maximum Speed FRAM = 1.4Mbps [100x faster]

• Maximum Speed Flash = 13kBps

FRAM = Ultra-fast Writes

1,400kBps

13kBps

Max. Throughput:

Presenter
Presentation Notes
The best comparison for FRAM Vs Flash write speed can be seen when comparing two MCUs writing to non volatile memory at equal clock speed.
In this case the flash based MSP430F2274 device is pitted against the fram based Fr5739 device.
Both devices are running at a CPU speed of 8MHz and executing real world application code that does pointer updates, data handling etc using similar routines.

The FRAM device outperforms the flash device by a factor of 100. Flash writes are capped at 13kBps and this includes the erase time per segment write, whereas an average use-case FRAM write can go upto 1.4MBps!

One example application where such high speeds are game changing is when doing over the air updates or reimaging the firmware on a target device.
Writing 16k of data is no longer confined by the bottleneck due to slow writes or erases of non-volatile memory and the device firmware can be changed 10s of thousands of time with a frequency that is only limited by the communicating protocol.

66

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Both devices write to NV memory @ 13kBps

• FRAM remains in standby for 99% of the time

• Power savings: >200x of flash

FRAM = Low active write duty cycle

Consumption @ 13kBps:

9μA

2,200μA

Presenter
Presentation Notes
Not may applications will be required to harness the super high speeds of FRAM writes.
What is your application was only required to write 1kB every second? How does FRAM help here?

In this case FRAM brings differentiation by dramatically reducing the active duty cycle.
At an arbitary write speed of 13kBps, the flash controller remains active 100% of the time in writing and erasing flash.
The fRAM controller can complete this task in less than 1% of the time allowing the device to remain in standby for 99% of the time
OR
Freeing the CPU to complete other actions before going to standby.

This not only brings power gains that can be seen in the chart shown here…but also provides flexibility by freeing up system resources for other high priority tasks.

67

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• Average power FRAM = 720µA @ 1.5Mbps

• Average power Flash = 2200µA @ 12kBps

• 100 times faster in half the power

• Enables more unique energy sources

• FRAM = Non-blocking writes

• CPU is not held

• Interrupts allowed

FRAM = Ultra-low Power

Presenter
Presentation Notes
Now we pit Flash and FRAM devices against each other, both executing at the same clock speed but each writing to non volatile memory at the maximum possible speed.

The fr5739 Fram device is writing at a speed of 1.4mbps while the f2274 flash device is writing at its maximum speed of 13 kbps.
A comparison of the active power on both devices shows that the FRAM device is less than half the power of the flash device while writing at a speed that is 100 times faster.

In the case where both devices are writing at the same speed the FRAM device is 250 times lower power than the flash device.

Clearly FRAM is not only orders of magnitude faster, but can accomplish the task with much lower power than flash – a double advantage for applications that require quick response time, lower average power and limited peak power such as energy harvesters.

68

• Use Case Example: EEPROM Vs MSP430FR5739

• Many systems require a backup procedure on power fail

• FRAM IP has built-in circuitry to complete the current 4 word write
• Supported by internal FRAM LDO & cap

• In-system backup is an order of magnitude faster with FRAM

+ Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett

Write comparison during power fail events+

FRAM = Increased flexibility

Presenter
Presentation Notes
Where else can we find use for high speed writes, that are also significantly low in power…?

How about in system backup in the event of a power fail?

Many handheld bettery powered meters are required to backup data in the event of a depleting battery resource.

Flash writes are not only power hungry in terms of average power in the mA but can also drain a depleted source quickly due to the high peak current requirements of a charge pump.

FRAM writes use the same power as reads and there are no spikes in peak current because of the lack of a charge pump.

To put things in perspective, consider a battery source depleting by 0.2V every 0.01 second. In the most ideal case with no erases and discounting the peak current hit about 8K flash bytes can be written in that time, in comparison the FRAM equivalent is 80000 bytes allowing the user complete flexibility to plan and execute a full fledged backup subroutine w/o having to worry about the impending power loss.

69

• Use Case Example: MSP430F2274 Vs MSP430FR5739

• FRAM Endurance >= 100 Trillion [10^14]

• Flash Endurance < 100,000 [10^5]

• Comparison: write to a 512 byte memory block @ a speed of 12kBps

• Flash = 6 minutes

• FRAM = 100+ years!

FRAM = High Endurance

114,000
years

6.6min
[min] We need a log scale to compare!

Presenter
Presentation Notes
Another niche that FRAM fits very well, is applications requiring high endurance or a high number of write/erase cycles.

One example is RFID tags that are increasingly popular as displays in dept shelves, name badges and even in industrial automation floors where they serve to mark and identify products passing through a conveyor belt.

In such applications, a memory location may be written at the rate of 100 times is a day over many years.

The endurance of a single byte of flash is 10,000 write erase cycles in comparison an FRAM byte can be written to 10 ^ 15 times or 100 billion times more than flash.
This is virtually unlimited endurance – removing the need for redundant memory segments and increasing the lifetime of a device by many years.

The list of applications where FRAM not only provides differentiation but may also be the only viable option is as diverse as is vast.
FRAM can lower system cost, increase system efficiency and reduce complexity while being significantly lower power than Flash. If your existing Flash-based MCU application has energy, write speed, endurance or power fail backup constraints it may be time to make the switch to FRAM.

70

FRAM and Reliability

71

FRAM: Proven, Reliable

• Endurance
– Proven data retention

to 10 years @ 85°C

• Radiation Resistance
– Terrestrial Soft Error Rate (SER)

is below detection limits

• Immune to Magnetic Fields
– FRAM does not contain iron!

www.ti.com/fram
For more info on

TI’s FRAM technology

Presenter
Presentation Notes
FRAM is well established as a stand alone memory technology and has been a part of the memory indstry for over adecade.
The technology is proven and reliable and testing for data retention shows no fails for up to 10 years @ 85C

FRAM is also inherently radiation resistent with soft error rates that are below the detectable limites.

Despite the term ‘ferro’ in the name FRAM does not contain any iron and is immune to magnetic fields.

The next slides describe Texas Instruments Quality and reliability guidelines for FRAM.

http://www.ti.com/fram

72

• FRAM cells are tested for the following:
– Thermal Depolarization is a reduction of the spontaneous

polarization as the sample temperature increases

– Imprint is the stabilization of polarization in a preferred state

• “Same-State” (SS) retention may strengthen
• “Opposite-State” (OS) retention may weaken

Data Retention Definitions

Presenter
Presentation Notes
There are two types of thermal wear with regards to FRAM.

Thermal depolarization and imprint

Thermal Depolarization: The ability of an FRAM cell to retain polarity is dependednt on the margin of electrical signal between the 2 polar states. If the amount of stored energy decreases it becomes more difficult to distinguish between a stored ‘1’ and a stored ‘0’. As the temperature increases the energy stored in an FRAM cell decreases, this effect is known as thermal depolarization. The effect of thermal depole on the FRAM cell is temporary and lasts only as long as elevated temp conditions exist.
Imprint: Imprint is the stabilization of polarization in a particular state. Same-state data is imprinted due to continuous memory writes making it difficult to switch the data to its opposite state.

Both these effects are studied and tested while compiling quality and rel information for FRAM.

73

Start /
Continue

Same-State
Data Write

Same-State
Data Read

High Temperature
Bake

Opposite-State
Data Read

Opposite-State
Data Write

Thermal
Depolarization

Bake

• High Temp bake accelerates imprint related signal reduction
• Thermal Depolarization: 15-30 minutes at operating Temp

Data Retention Test Procedure

Presenter
Presentation Notes
Like all non-volatile memories, high temps are used to test the failure mechanism in FRAM. A generalized data retention test flow for FRAM is shown in this slide.

The procedure begins by baking an initial data state, referred to as the “same-state,” or SS, at a high temperature for a specified amount of time.
This is followed by a data read out to verify the integrity of the data.

Imprint testing then switches the state of the data and after a further bake, the state of the data is re-tested/

After reading the SS, the complement data state, referred to as the “opposite-state,” or OS, is written and stressed with a thermal depolarization (TD) bake. The OS depolarization bake is performed at the maximum operating temperature rating for the application (e.g., 85°C for an industrial temperature rating).

74

Summary of Retention and Imprint Tests

• Mechanism is temperature dependent with activation energy
~1.4eV

• 100 hours bake @150°C ~ 1,000 hours @125°C ~ 10 years
@85°C

• Test sequence designed to demonstrate data retention with no
fails through 10 years at 85°C

• Bits are long term baked in Same-State to maximize amount of
imprint
 –125°C Same-State bake to 1,000 cumulative hours
 –85°C Opposite-State bake at each read point to verify retention at

operating condition

Presenter
Presentation Notes
Based on the data retention tests it can be summarized that FRAM shows no fails post a 100hour bake at 150C.

This data is extrapolated as a ten year lifetime at 85C.

The bits are also long term baked in the same state data to maximize the amount of imprint. Here no fail was seen upto the maximum operating temperature of the device at 85C.

75

What about Reflow?
• TI factory programming is not available for the MSP430FR57xx devices

• Customer and CMs MUST program post reflow or other soldering is

activity

• Hand soldering is not recommended. However it can be achieved by

following the guidelines

Be mindful of temperature: FRAM can be effected above 260 deg C for

long periods of time

Using a socket to connect to evaluation board during prototyping is also a

best practice

Presenter
Presentation Notes
While the temperatures at which thermal depole occue do not imact the user application as it is well above the device operating conditions, it is improtant to note that hand soldering of a device is not recommended for the sanme reason.

The reflow temperature is restricted to 260C for 5 minuts and customers are recommended to program the device post reflow/

76

Tools & Resources

77

Getting Started with MSP430FR5739

• MSP430FR5739 Target Board

• Development board with 40-pin RHA
socket (MSP-TS430RHA40A)

• All pins brought out to pin headers for
easy access

• Programming via JTAG, Spy-bi-wire or
BSL

• $99

78

Getting Started with MSP430FR5739

• MSP-EXP430FR5739 FRAM
Experimenter’s Board

• $29

• On Board Emulation

• Features
– 3 axis accelerometer
– NTC Thermister
– 8 Display LED’s
– Footprint for additional through-hole LDR sensor
– 2 User input Switches

• User Experience
– Preloaded with out-of-box demo code
– 4 Modes to test FRAM features:

• Mode 1 - Max FRAM write speed
• Mode 2 - Flash write speed emulation
• Mode 3 – FRAM writes using sampled

accelerometer data
• Mode 4 – FRAM writes using sampled

Thermistor data

Presenter
Presentation Notes
Get started with FRAM today using the MSP-EXPFR5739 Experimenter Board!��This kit features the MSP430FR5739 microcontroller with FRAM and includes three switches, 8 LEDs, accelerometer, temperature sensor, headers for RF modules and more!

80

Getting Started with MSP430FR5739

• www.ti.com/fram

• Product Page from www.msp430.com

• Upcoming Collateral:
– Maximizing FRAM Write Speed
– FR57xx Migration Guide
– FR-EXP Tool User’s Guide
– FRAM Reliability Application Report
– Code Examples
– Embedded Developers Guide to FRAM
– FRAM for Dummies by V.C. Kumar

http://www.ti.com/fram
http://www.msp430.com/

81

To Summarize

FRAM is real! The world’s first ultra-low power catalog FRAM
microcontroller is here.

• Top 3 FRAM sellers are:
– Ultra-fast writes
– Ultra-low power
– Super high endurance

• FR5739: Great general purpose MCU enhanced by FRAM

• FR5739: Targets niche applications where only FRAM makes sense

• Check out our Demos!

	Slide Number 1
	FRAM – Technology Attributes
	Understanding FRAM Technology
	Slide Number 6
	All-in-one: FRAM MCU delivers max benefits
	First ULP, Embedded FRAM MCU – FR5739
	MSP430FR5739 Block Diagram
	FR57xx Architecture & Core Peripherals
	MSP430xv2 Orthogonal CPU
	Operating Modes
	LPM & Wakeup Time Comparison
	PMM & Core Voltage
	Supply Voltage Supervision (SVS)
	Clock System (CS)
	CS: Digitally Controlled Oscillator
	FRAM Controller (FRCTL)
	FRAM and the Cache
	So far we’ve covered…
	Lab 1A
	Obtaining Lab Software
	MSP-EXP430FR5739 Experimenter’s Board
	EXP Board: Out-of-the-box Experience
	EXP Board: Out-of-the-box Experience
	EXP Board: Out-of-the-box Experience
	Lab 1B
	Obtaining Lab Software
	Setting up a Project using CCS
	Setting up a Project using CCS
	Using while(1)/ JMP$ to Measure Power
	And the power number is…
	A More Realistic Scenario
	Source Code Snapshot
	And now we measure…
	fSYSTEM vs. Active Power
	fSYSTEM vs. Active Power
	FR57xx Peripheral Additions & Enhancements
	eUSCI_A: UART
	eUSCI_A: SPI
	eUSCI_B: I2C
	eUSCI_B: I2C
	eUSCI_B: I2C
	eUSCI_B: I2C
	eUSCI_B: I2C
	eUSCI_B: I2C Migration Considerations
	ADC10_B
	RTC_B and Comp_D
	JTAG and BSL
	Using FRAM on the FR57xx
	Unified Memory
	Setting Up Code and Data Memory
	Setting Up Code and Data Memory
	Memory Protection Unit (MPU)
	Calculating Segment Boundaries
	Creating Segments in 4 Easy Steps
	Creating Segments in 4 Easy Steps
	Lab 2
	Obtaining Lab Software
	Configuring the MPU
	Source Code Snapshot
	Configuring the MPU
	Maximizing FRAM Write Speed
	Differentiating with the FR57xx
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	FRAM and Reliability
	FRAM: Proven, Reliable
	Data Retention Definitions
	Data Retention Test Procedure
	Summary of Retention and Imprint Tests
	What about Reflow?
	Tools & Resources
	Getting Started with MSP430FR5739
	Getting Started with MSP430FR5739
	Getting Started with MSP430FR5739
	To Summarize

