
IAR Embedded Workbench Version 3+
for MSP430™

User's Guide

Literature Number: SLAU138X

June 2004–Revised November 2011

2 SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Contents

Preface ... 7

1 Get Started Now! ... 9
1.1 Software Installation ... 10
1.2 Flashing the LED .. 10
1.3 Important MSP430 Documents on the CD-ROM and Web .. 11

2 Development Flow ... 13
2.1 Overview .. 14
2.2 Using KickStart .. 14

2.2.1 Project Settings ... 15
2.2.2 Additional Project Settings for MSP430L092 / MSP430C092 .. 16
2.2.3 Creating a Project From Scratch ... 18
2.2.4 Additional Project Settings for LPMx.5 Debugging ... 19
2.2.5 Password Protection for MSP430 Devices .. 20
2.2.6 Using an Existing IAR V1.x/V2.x/V3.x Project .. 21
2.2.7 Stack Management and .xcl Files .. 21
2.2.8 How to Generate Texas Instruments .TXT (and Other Format) Files 21
2.2.9 Overview of Example Programs .. 21

2.3 Using C-SPY ... 21
2.3.1 Breakpoint Types ... 21
2.3.2 Using Breakpoints .. 23
2.3.3 Using Single Step .. 24
2.3.4 Using Watch Windows ... 24

A Frequently Asked Questions ... 27
A.1 Hardware ... 28
A.2 Program Development (Assembler, C-Compiler, Linker) .. 28
A.3 Debugging (C-SPY) ... 30

B FET-Specific Menus ... 35
B.1 Menus ... 36

B.1.1 Emulator → Device Information .. 36
B.1.2 Emulator → Release JTAG on Go ... 36
B.1.3 Emulator → Resynchronize JTAG ... 36
B.1.4 Emulator → Init New Device .. 36
B.1.5 Emulator → Secure - Blow JTAG Fuse ... 36
B.1.6 Emulator → Breakpoint Usage ... 36
B.1.7 Emulator → Advanced → Clock Control .. 36
B.1.8 Emulator → Advanced → Emulation Mode ... 36
B.1.9 Emulator → Advanced → Memory Dump ... 36
B.1.10 Emulator → Advanced → Breakpoint Combiner .. 37
B.1.11 Emulator → State Storage Control ... 37
B.1.12 Emulator → State Storage Window ... 37
B.1.13 Emulator → Sequencer Control ... 37
B.1.14 Emulator → "Power on" Reset .. 37
B.1.15 Emulator → GIE on/off ... 37
B.1.16 Emulator → Leave Target Running ... 37

3SLAU138X–June 2004–Revised November 2011 Contents
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com

B.1.17 Emulator → Force Single Stepping ... 37

Document Revision History ... 39

4 Contents SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com

List of Figures

1-1. Activate Project .. 10

1-2. Activate Project in Workspace Overview ... 11

2-1. L092 Mode ... 16

2-2. C092 Emulation Mode .. 17

2-3. C092 Password .. 17

2-4. Enable LPMx.5... 19

2-5. LPMx.5 Notifications .. 20

2-6. JTAG Password ... 20

List of Tables

2-1. Device Architecture, Breakpoints and Other Emulation Features... 22

5SLAU138X–June 2004–Revised November 2011 List of Figures
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

6 List of Tables SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Preface
SLAU138X–June 2004–Revised November 2011

Read This First

About This Manual

This manual describes the use of IAR Embedded Workbench (EW430) with the MSP430™
ultra-low-power microcontrollers.

How to Use This Manual

Read and follow the instructions in Chapter 1, Get Started Now!. This chapter provides instructions on
installing the software, and describes how to run the demonstration programs. After you see how quick
and easy it is to use the development tools, TI recommends that you read all of this manual.

This manual describes only the setup and basic operation of the software development environment, but it
does not fully describe the MSP430 microcontrollers or the complete development software and hardware
systems. For details of these items, see the appropriate TI and IAR™ documents listed in Related
Documentation From Texas Instruments, Important MSP430 Documents on the CD-ROM and Web.

This manual applies to the use with Texas Instruments' MSP-FET430UIF, MSP-FET430PIF, and eZ430
development tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest
materials (data sheets, user's guides, software, application information, etc.), visit the TI MSP430 web site
at www.ti.com/msp430, or contact your local TI sales office.

Information About Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your
software or equipment.

WARNING
This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.

7SLAU138X–June 2004–Revised November 2011 Read This First
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Related Documentation From Texas Instruments www.ti.com

Related Documentation From Texas Instruments

MSP430 development tools documentation

MSP430 Hardware Tools User's Guide, literature number SLAU278

eZ430-F2013 Development Tool User's Guide, literature number SLAU176

eZ430-RF2480 User's Guide, literature number SWRA176

eZ430-RF2500 Development Tool User's Guide, literature number SLAU227

eZ430-RF2500-SEH Development Tool User's Guide, literature number SLAU273

eZ430-Chronos Development Tool User's Guide, literature number SLAU292

MSP430 device data sheets

MSP430x1xx Family User's Guide, literature number SLAU049

MSP430x2xx Family User's Guide, literature number SLAU144

MSP430x3xx Family User's Guide, literature number SLAU012

MSP430x4xx Family User's Guide, literature number SLAU056

MSP430x5xx/MSP430x6xx Family User's Guide, literature number SLAU208

CC430 device data sheets

CC430 Family User's Guide, literature number SLAU259

If You Need Assistance

Support for the MSP430 devices and the FET development tools is provided by the Texas Instruments
Product Information Center (PIC). Contact information for the PIC can be found on the TI web site at
www.ti.com/support. The Texas Instruments E2E Community support forums for the MSP430 is available
to provide open interaction with peer engineers, TI engineers, and other experts. Additional device-specific
information can be found on the MSP430 web site.

NOTE: KickStart™ is supported by Texas Instruments.

Although KickStart is a product of IAR, Texas Instruments provides the support for it.
Therefore, please do not request support for KickStart from IAR. Consult the extensive
documentation provided with KickStart before requesting assistance.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio-frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case, the user is required to take whatever
measures may be required to correct this interference at his own expense.

8 Read This First SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/pdf/SLAU176
http://www.ti.com/lit/pdf/SWRA176
http://www.ti.com/lit/pdf/SLAU227
http://www.ti.com/lit/pdf/SLAU273
http://www.ti.com/lit/pdf/SLAU292
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU012
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU259
http://www.ti.com/support
https://community.ti.com
http://community.ti.com/forums/138.aspx
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Chapter 1
SLAU138X–June 2004–Revised November 2011

Get Started Now!

This chapter provides instruction on installing the software, and shows how to run the demonstration
programs.

Topic ... Page

1.1 Software Installation .. 10
1.2 Flashing the LED ... 10
1.3 Important MSP430 Documents on the CD-ROM and Web 11

9SLAU138X–June 2004–Revised November 2011 Get Started Now!
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Software Installation www.ti.com

1.1 Software Installation

Follow the instructions on the supplied READ ME FIRST document to install the IAR Embedded
Workbench™ KickStart. Read the file <Installation Root>\Embedded Workbench x.x\430\doc\readme.htm
from IAR for the latest information about the Workbench. The term KickStart refers to the function-limited
version of Embedded Workbench (including C-SPY™ debugger). KickStart is supplied on the CD-ROM
included with each FET, and the latest version is available from the MSP430 web site.

The documents mentioned in the previous paragraph (and this document) can be accessed using: Start →
Programs → IAR Systems → IAR Embedded Workbench KickStart for MSP430 V3.

KickStart is compatible with Windows 2000 (SP4), Windows XP (32 bit and 64 bit), Windows Vista (32 bit
and 64 bit), and Windows 7 (32 bit and 64 bit). However, the USB FET interface works with only Windows
XP (32 bit and 64 bit), Windows Vista (32 bit and 64 bit), and Windows 7 (32 bit and 64 bit).

1.2 Flashing the LED

This section demonstrates on the FET the equivalent of the C-language "Hello World!" introductory
program. An application that flashes the LED is developed and downloaded to the FET, and then run.

1. Start the Workbench (Start → Programs → IAR Systems → IAR Embedded Workbench KickStart for
MSP430 V3 → IAR Embedded Workbench).

2. Click File → Open Workspace to open the file at: <Installation Root>\Embedded Workbench x.x\
430\FET_examples\Flashing the LED.eww. The workspace window opens.

3. Click on the tab at the bottom of the workspace window that corresponds to the MSP430 device
(MSP430xxxx) and desired language (assembler or C) to set a project active (see Figure 1-1).

Figure 1-1. Activate Project

10 Get Started Now! SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Important MSP430 Documents on the CD-ROM and Web

Alternatively, right click to activate a project in the Workspace Overview tab (see Figure 1-2).

Figure 1-2. Activate Project in Workspace Overview

4. Click Project → Options → FET Debugger → Setup → Connection to select the appropriate port:
Texas Instruments LPT-IF for the parallel FET Interface (MSP-FET430PIF) or Texas Instruments
USB-IF for the USB Interface (MSP-FET430UIF) or for the eZ430.

5. Click Project → Rebuild All to build and link the source code. You can view the source code by
double-clicking on the project, and then double-clicking on the displayed source file.

6. Click Project → Debug to start the C-SPY debugger. C-SPY erases the device flash and then
downloads the application object file to the device flash.

See FAQ Debugging #1 if C-SPY is unable to communicate with the device.

7. Click Debug → Go to start the application. The LED should flash.

8. Click Debug → Stop Debugging to stop debugging, to exit C-SPY, and to return to the Workbench.

9. Click File → Exit to exit the Workbench.

Congratulations, you have just built and tested an MSP430 application!

1.3 Important MSP430 Documents on the CD-ROM and Web

The primary sources of MSP430 information are the device-specific data sheet and user's guide. The most
up-to-date versions of these documents that are available at the time of production are provided on the
CD-ROM included with this tool. The MSP430 web site (www.ti.com/msp430) contains the most recent
version of these documents.

PDF documents describing the IAR tools (Workbench/C-SPY, the assembler, the C compiler, the linker,
and the librarian) are in the common\doc and 430\doc folders. Supplements to the documents (that is, the
latest information) are available in HTML format in the same directories. 430\doc\readme_start.htm
provides a convenient starting point for navigating the IAR documentation.

11SLAU138X–June 2004–Revised November 2011 Get Started Now!
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

12 Get Started Now! SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Chapter 2
SLAU138X–June 2004–Revised November 2011

Development Flow

This chapter describes how to use KickStart to develop application software and how to use C-SPY to
debug it.

Topic ... Page

2.1 Overview .. 14
2.2 Using KickStart ... 14
2.3 Using C-SPY ... 21

13SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Overview www.ti.com

2.1 Overview

Applications are developed in assembler and/or C using the Workbench, and they are debugged using
C-SPY. C-SPY is seamlessly integrated into the Workbench. However, it is more convenient to make the
distinction between the code development environment (Workbench) and the debugger (C-SPY). C-SPY
can be configured to operate with the FET (that is, an actual MSP430 device) or with a software simulator
of the device. KickStart refers to the Workbench and C-SPY collectively. The KickStart software tools are
a product of IAR.

Documentation for the MSP430 family and KickStart is extensive. The CD-ROM supplied with this tool
contains a large amount of documentation describing the MSP430. The MSP430 home page
(www.ti.com/msp430) is another source of MSP430 information. The components of KickStart
(workbench/debugger, assembler, compiler, linker) are fully documented in <Installation Root>\Embedded
Workbench x.x\common\doc and <Installation Root>\Embedded Workbench\430\doc. .htm files located
throughout the KickStart directory tree contain the most up-to-date information and supplement the PDF
files. In addition, KickStart documentation is available online via Help.

Read Me First files from IAR and TI and this document can be accessed using Start → Programs → IAR
Systems → IAR Embedded Workbench KickStart for MSP430 V3.

Tool User's Guide Most Up-To-Date Information

Workbench/C-SPY EW430_UsersGuide.pdf readme.htm, ew430.htm, cs430.htm, cs430f.htm

Assembler EW430_AssemblerReference.pdf a430.htm, a430_msg.htm

Compiler EW430_CompilerReference.pdf icc430.htm, icc430_msg.htm

C library CLibrary.htm

Linker and Librarian xlink.pdf xlink.htm, xman.htm, xar.htm

2.2 Using KickStart

The KickStart edition is a special starter-kit/evaluation version of IAR Embedded Workbench with
limitations both in code size and in the service and support that is provided. Limitations:

• The C compiler does not generate an assembly code list file.

• The code size limit of the MSP430 IAR KickStart C/C++ Compiler is set to 4 Kbytes for traditional
MSP430 devices and 8 Kbytes for MSP430X devices (see Table 2-1 for detailed information about
which MSP430 device is based on which architecture).

• The IAR Assembler delivered is the full version without any restrictions.

• The IAR XLINK Linker will link a maximum of 4 Kbytes originating from C source code for traditional
MSP430 devices and 8 Kbytes for MSP430X devices (see Table 2-1 for detailed information about
which MSP430 device is based on which architecture), but an unlimited amount of code originating
from assembly code.

• The IAR KickStart C-SPY Simulator will read a maximum of 4 Kbytes originating from C code for
traditional MSP430 devices and 8 Kbytes for MSP430X devices but is unlimited in the amount of
assembly code read (see Table 2-1 for detailed information about which MSP430 device is based on
which architecture).

• MISRA C is not available.

• The runtime library source code is not included.

A full (that is, unrestricted) version of the software tools can be purchased from IAR. A mid-featured tool
set – called Baseline, with a 12K-byte C-code size limitation and basic floating-point operations – is also
available from IAR. See the IAR web site (www.iar.se) for more information.

14 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/msp430
http://www.iar.se
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using KickStart

2.2.1 Project Settings

The settings required to configure the Workbench and C-SPY are numerous and detailed. Read and
thoroughly understand the documentation supplied by IAR when dealing with project settings. Review the
project settings of the supplied assembler and C examples (the project settings are accessed using
Project → Options with the project name selected). Use these project settings as templates when
developing your own projects. Note that if the project name is not selected when settings are made, the
settings are applied to the selected file (not to the project).

The following project settings are recommended/required:

• Specify the target device (General Options → Target → Device).

• Enable an assembler project or a C/assembler project (General Options → Target → Assembler-only
project).

• Enable the generation of an executable output file (General Options → Output → Output file →
Executable).

• To most easily debug a C project, disable optimization [C/C++ Compiler → Optimizations → Size →
None (Best debug support)].

• Enable the generation of debug information in the compiler output (C/C++ Compiler → Output →
Generate debug information).

• Specify the search path for the C preprocessor (C/C++ Compiler → Preprocessor → Include Paths).

• Enable the generation of debug information in the assembler output (Assembler → Output → Generate
Debug Info).

• Specify the search path for the assembler preprocessor (Assembler → Preprocessor → Include
Paths).

• To debug the project using C-SPY, specify a compatible format [Linker → Output → Format → Debug
information for C-SPY (With runtime control modules/With I/O emulation modules)].

• Specify the search path for any used libraries (Linker → Config → Search paths).

• Specify the C-SPY driver. Select Project → Options → Debugger → Setup → Driver → FET Debugger
to debug on the FET (that is, MSP430 device). Select Simulator to debug on the simulator. If FET
Debugger is selected, use Project → Options → FET Debugger → Setup → Connection to select the
appropriate port: Texas Instruments LPT-IF for the parallel FET Interface (MSP-FET430PIF) or Texas
Instruments USB-IF for the USB Interface (MSP-FET430UIF) or for the eZ430.

• Enable the Device Description file. This file makes C-SPY "aware" of the specifics of the device it is
debugging. This file corresponds to the specified target device (Debugger → Setup → Device
description file → Override default).

• Enable the erasure of the Main and Information memories before object code download (FET
Debugger → Download → Erase main and Information memory).

• To maximize system performance during debug, disable Virtual Breakpoints (FET Debugger →
Breakpoints → Use virtual breakpoints) and disable all System Breakpoints (FET Debugger →
Breakpoints → System breakpoints on).

NOTE: Use Factory Settings to quickly configure a project.

Use the Factory Settings button to quickly configure a project to a usable state.

The following steps can be used to quickly configure a project. Note that the General Options tab does not
have a Factory Settings button.

1. Specify the target device (General Options → Target → Device).

2. Enable an assembler project or a C/assembler project (General Options → Target → Assembler-only
project).

3. Enable the generation of an executable output file (General Options → Output → Output file →
Executable).

4. Accept the factory settings for the compiler (C/C++ Compiler → Factory Settings).

5. Accept the factory settings for the assembler (Assembler → Factory Settings).

15SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Using KickStart www.ti.com

6. Accept the factory settings for the linker (Linker → Factory Settings).

7. Accept the factory settings for C-SPY (Debugger → Factory Settings).

8. Debug on the hardware (Debugger → Setup → Driver → FET Debugger).

9. Specify the active parallel port used to interface to the FET if not LPT1 (FET Debugger → Setup →
Connection → Texas Instruments LPT-IF) or specify the USB port (FET Debugger → Setup →
Connection → Texas Instruments USB-IF).

NOTE: Avoid the use of absolute path names when referencing files.

Instead, use the relative pathname keywords $TOOLKIT_DIR$ and $PROJ_DIR$. See the
IAR documentation for a description of these keywords. The use of relative path names
permits projects to be moved easily, and projects do not require modification when IAR
systems are upgraded (for example, from KickStart or Baseline to Full).

2.2.2 Additional Project Settings for MSP430L092 / MSP430C092

The MSP430L092 can operate in two different modes: L092 mode and C092 emulation mode. The
purpose of the C092 emulation mode is to behave like a C092 with up to 1920Bytes of code at its final
destination for mask generation.

The operation mode is determined by EW430 before starting the debugger. Two radio buttons are
available for the mode selection. By default the L092 mode is selected (see Figure 2-1 and Figure 2-2).

Figure 2-1. L092 Mode

16 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using KickStart

Figure 2-2. C092 Emulation Mode

2.2.2.1 MSP430L092 Loader Code

The Loader Code in the MSP430L092 is a ROM-code from TI that provides a series of services. It enables
customers to build autonomous applications without needing to develop a ROM mask. Such an application
consists of an MSP430 device containing the loader (for example, MSP430L092) and an SPI memory
device (for example, '95512 or '25AA40); these and similar devices are available from various
manufacturers.

The majority of use cases for an application with a loader device and external SPI memory for native
0.9-V supply voltage are late development, prototyping, and small series production.

Figure 2-1 shows the selection for loading the application into the external SPI memory.

2.2.2.2 Password Protection of MSP430C092

The MSP430C092 is a customer-specific ROM device that is protected by a password. To start a debug
session, the password must be provided to EW430. Figure 2-3 shows how to provide a HEX password in
EW430.

Figure 2-3. C092 Password

17SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Using KickStart www.ti.com

2.2.3 Creating a Project From Scratch

This section presents step-by-step instructions to create an assembler or C project from scratch, and to
download and run the application on the MSP430 (see also Section 2.2.1, Project Settings). The MSP430
IAR Embedded Workbench IDE User's Guide presents a more comprehensive overview of the process.

1. Start the Workbench (Start → Programs → IAR Systems → IAR Embedded Workbench KickStart for
MSP430 V3 → IAR Embedded Workbench).

2. Create a new text file (File → New → File).

3. Enter the program text into the file.

NOTE: Use .h files to simplify your code development.

KickStart is supplied with files that define the device registers and the bit names for each
device. These files can greatly simplify the task of developing your program. The files are
located in <Installation Root>\Embedded Workbench x.x\430\inc. Include the .h file
corresponding to your target device in your text file (#include "msp430xyyy.h"). Additionally,
files io430xxxx.h are provided and are optimized to be included by C source files.

4. Save the program text file (File → Save).

It is recommended that assembler text files be saved with a file-type suffix of ".s43" and that C text files
be saved with a file-type suffix of ".c".

5. Create a new workspace (File → New → Workspace).

6. Create a new project (Project → Create New Project). Select Tool chain: MSP430, Project Templates:
Empty project and click OK. Specify a project name and click Save.

7. Add the program text file to the project (Project → Add Files). Select the program text file and click
Open. Alternatively, double-click on the file to add it to the project.

NOTE: How to add assembler source files to your project

The default file type presented in the Add Files window is "C/C++ Files". To view assembler
files (.s43), select "Assembler Files" in the "Files of type" drop-down menu.

8. Save the workspace (File → Save Workspace). Specify a workspace name and click Save.

9. Configure the project options (Project → Options). For each of the subcategories (General Options,
C/C++ Compiler, Assembler, Linker, Debugger), accept the default Factory Settings with the following
exceptions:

• Specify the target device (General Options → Target → Device).

• Enable an assembler project or a C/assembler project (General Options → Target →
Assembler-only project).

• Enable the generation of an executable output file (General Options → Output → Output file →
Executable).

• To debug on the FET (that is, the MSP430), click Debugger → Setup → Driver → FET Debugger.

• Specify the active port used to interface to the FET (FET Debugger → Setup → Connection).

10. Build the project (Project → Rebuild All).

11. Debug the application using C-SPY (Project → Debug). This starts C-SPY, and C-SPY takes control of
the target, erases the target memory, programs the target memory with the application, and resets the
target.

See FAQ Debugging #1 if C-SPY is unable to communicate with the device.

12. Click Debug → Go to start the application.

13. Click Debug → Stop Debugging to stop the application, to exit C-SPY, and to return to the Workbench.

14. Click File → Exit to exit the Workbench.

18 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using KickStart

2.2.4 Additional Project Settings for LPMx.5 Debugging

2.2.4.1 What is LPMx.5

LPMx.5 is a low-power mode in which the entry and exit is handled differently than the other low-power
modes.

LPMx.5, when used properly, gives the lowest power consumption available on a device. To achieve this,
entry to LPMx.5 disables the LDO of the PMM module, removing the supply voltage from the core and the
JTAG module of the device. Because the supply voltage is removed from the core, all register contents
and SRAM contents are lost. Exit from LPMx.5 causes a BOR event, which forces a complete reset of the
system.

2.2.4.2 Debug LPMx.5

To enable the LPMx.5 debug feature the “Debug LPMx.5” checkbox must be enabled by clicking FET
Debugger → Setup → Debug LPMx.5 (see Figure 2-4).

Figure 2-4. Enable LPMx.5

If the LPMx.5 debug mode is enabled a notification is displayed in the Debugger log every time the target
device enters and leaves LPMx.5 mode (see Figure 2-5).

19SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Using KickStart www.ti.com

Figure 2-5. LPMx.5 Notifications

Press the Halt or Reset button in EW430 to wake up the target device from LPMx.5 and stop it at code
start. All breakpoints that were active before LPMx.5 are restored and reactivated automatically.

2.2.4.3 LPMx.5 Debug Limitations

If the target device is in LPMx.5 mode, it is not possible to set or remove advanced conditional or software
breakpoints. It is possible to set hardware breakpoints. In addition, only hardware breakpoints that were
set during LPMx.5 can be removed in LPMx.5 mode. Attach to running target is not possible in
combination with LPMx.5 mode debugging, as this results in device reset.

2.2.5 Password Protection for MSP430 Devices

When debugging an MSP430 device that supports protection by a user password, the hexadecimal JTAG
password must be provided to start a debug session.

Set JTAG password by clicking FET Debugger → Download → JTAG password (see Figure 2-6).

Figure 2-6. JTAG Password

20 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using C-SPY

2.2.6 Using an Existing IAR V1.x/V2.x/V3.x Project

It is possible to use an existing project from an IAR V1.x/V2.x/V3.x system with the new IAR V4.x system;
see the IAR document Step by Step Migration for EW430 x.xx. This document is in
<Installation Root>\Embedded Workbench x.x\430\doc\migration.htm.

2.2.7 Stack Management and .xcl Files

The reserved stack size can be configured through either the project options dialog (General Options →
Stack/Heap) or through direct modification of the .xcl linker control files. These files are input to the linker
and contain statements that control the allocation of device memory (RAM, flash). See the IAR XLINK
documentation for a complete description of these files. The .xcl files provided with the FET (<Installation
Root>\Embedded Workbench x.x\430\config\lnk430xxxx.xcl) define a relocatable segment (RSEG) called
CSTACK. CSTACK is used to define the region of RAM that is used for the system stack within C
programs. CSTACK can also be used in assembler programs (MOV.W #SFE(CSTACK),

SP). CSTACK is defined to extend from the last location of RAM for 50 bytes (that is, the stack
extends downward through RAM for 50 bytes).

Other statements in the .xcl file define other relocatable regions that are allocated from the first location of
RAM to the bottom of the stack. It is critical to note that:

• The supplied .xcl files reserve 50 bytes of RAM for the stack, whether or not this amount of
stack is actually required (or if it is sufficient).

• There is no runtime checking of the stack. The stack can overflow the 50 reserved bytes and
possibly overwrite the other segments. No error is output.

The supplied .xcl files can be modified to tune the size of the stack to the needs of the application; edit
-D_STACK_SIZE=xx to allocate xx bytes for the stack. Note that the .xcl file also reserves 50 byes for the
heap if required (for example, by malloc()).

2.2.8 How to Generate Texas Instruments .TXT (and Other Format) Files

The KickStart linker can be configured to output objects in TI .TXT format for use with the GANG430 and
PRGS430 programmers. Click Project → Options → Linker → Output → Format → Other → msp430-txt.
Intel™ and Motorola™ formats also can be selected.

For more information, see FAQ Program Development #6 in Appendix A.

2.2.9 Overview of Example Programs

Example programs for MSP430 devices are provided in <Installation Root>\Embedded Workbench
x.x\430\FET_examples. Each tool folder contains folders that contain the assembler and C sources.

<Installation Root>\Embedded Workbench\x.x\430\FET_examples\Flashing the LED.eww conveniently
organizes the FET_1 demonstration code into a workspace. The workspace contains assembler and C
projects of the code for each of the MSP430 device families. Debug and Release versions are provided for
each of the projects.

<Installation Root>\Embedded Workbench x.x\430\FET_examples\contents.htm conveniently organizes
and documents the examples.

Additional code examples can be found on the MSP430 home page under Code Examples. Note that
some example programs require a 32-kHz crystal on LFXT1, and not all FETs are supplied with a 32-kHz
crystal.

2.3 Using C-SPY

See Appendix B for a description of FET-specific menus within C-SPY.

2.3.1 Breakpoint Types

The C-SPY breakpoint mechanism uses a limited number of on-chip debugging resources (specifically, N
breakpoint registers, see Table 2-1). When N or fewer breakpoints are set, the application runs at full

21SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/msp430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Using C-SPY www.ti.com

device speed (or realtime). When greater than N breakpoints are set and Use Virtual Breakpoints is
enabled (FET Debugger → Breakpoints → Use virtual breakpoints), the application runs under the control
of the host PC; the system operates at a much slower speed but offers unlimited software breakpoints (or
non-realtime). During non-realtime mode, the PC, in effect, repeatedly single steps the device and
interrogates the device after each operation to determine if a breakpoint has been hit.

Both (code) address and data (value) breakpoints are supported. Data breakpoints and range breakpoints
each require two MSP430 hardware breakpoints.

Table 2-1. Device Architecture, Breakpoints and Other Emulation Features

Break- RangeMSP430 4-Wire 2-Wire Clock State TraceDevice points Break-Architecture JTAG JTAG (1) Control Sequencer Buffer(N) points

MSP430AFE2xx MSP430 X X 2 X

CC430F512x MSP430Xv2 X X 2 X X

CC430F513x MSP430Xv2 X X 2 X X

CC430F514x MSP430Xv2 X X 2 X X

CC430F612x MSP430Xv2 X X 2 X X

CC430F613x MSP430Xv2 X X 2 X X

CC430F614x MSP430Xv2 X X 2 X X

MSP430BT5190 MSP430Xv2 X X 8 X X X X

MSP430F11x1 MSP430 X 2

MSP430F11x2 MSP430 X 2

MSP430F12x MSP430 X 2

MSP430F12x2 MSP430 X 2

MSP430F13x MSP430 X 3 X

MSP430F14x MSP430 X 3 X

MSP430F15x MSP430 X 8 X X X X

MSP430F16x MSP430 X 8 X X X X

MSP430F161x MSP430 X 8 X X X X

MSP430F20xx MSP430 X X 2 X

MSP430F21x1 MSP430 X 2 X

MSP430F21x2 MSP430 X X 2 X

MSP430F22x2 MSP430 X X 2 X

MSP430F22x4 MSP430 X X 2 X

MSP430F23x MSP430 X 3 X X

MSP430F23x0 MSP430 X 2 X

MSP430F24x MSP430 X 3 X X

MSP430F241x MSP430X X 8 X X X X

MSP430F2410 MSP430 X 3 X X

MSP430F261x MSP430X X 8 X X X X

MSP430G2xxx MSP430 X X 2 X

MSP430G22xx MSP430 X 2 X

MSP430F41x MSP430 X 2 X

MSP430F41x2 MSP430 X X 2 X

MSP430F42x MSP430 X 2 X

MSP430FE42x MSP430 X 2 X

MSP430FE42x2 MSP430 X 2 X

MSP430FW42x MSP430 X 2 X

MSP430F42x0 MSP430 X 2 X

(1) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. Note that this interface is supported only by
the USB emulators (eZ430-xxxx and MSP-FET430UIF USB JTAG emulator) and the MSP-GANG430 production programming
tool. The MSP-FET430PIF parallel port JTAG emulator does not support communication in 2-wire JTAG mode.

22 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using C-SPY

Table 2-1. Device Architecture, Breakpoints and Other Emulation Features (continued)

Break- RangeMSP430 4-Wire 2-Wire Clock State TraceDevice points Break-Architecture JTAG JTAG (1) Control Sequencer Buffer(N) points

MSP430FG42x0 MSP430 X 2 X

MSP430F43x MSP430 X 8 X X X X

MSP430FG43x MSP430 X 2 X

MSP430F43x1 MSP430 X 2 X

MSP430F44x MSP430 X 8 X X X X

MSP430F44x1 MSP430 X 8 X X X X

MSP430F461x MSP430X X 8 X X X X

MSP430FG461x MSP430X X 8 X X X X

MSP430F461x1 MSP430X X 8 X X X X

MSP430F47x MSP430 X 2 X

MSP430FG47x MSP430 X 2 X

MSP430F47x3 MSP430 X 2 X

MSP430F47x4 MSP430 X 2 X

MSP430F471xx MSP430X X 8 X X X X

MSP430F51x1 MSP430Xv2 X X 3 X X

MSP430F51x2 MSP430Xv2 X X 3 X X

MSP430F521x MSP430Xv2 X X 8 X X X X

MSP430F522x MSP430Xv2 X X 8 X X X X

MSP430F530x MSP430Xv2 X X 3 X X

MSP430F5310 MSP430Xv2 X X 3 X X

MSP430F532x MSP430Xv2 X X 8 X X X X

MSP430F534x MSP430Xv2 X X 8 X X X X

MSP430F54xx MSP430Xv2 X X 8 X X X X

MSP430F54xxA MSP430Xv2 X X 8 X X X X

MSP430F543x MSP430Xv2 X X 8 X X X X

MSP430F550x MSP430Xv2 X X 3 X X

MSP430F5510 MSP430Xv2 X X 3 X X

MSP430F552x MSP430Xv2 X X 8 X X X X

MSP430F563x MSP430Xv2 X X 8 X X X X

MSP430FR57xx MSP430Xv2 X X 3 X X

MSP430F643x MSP430Xv2 X X 8 X X X X

MSP430F663x MSP430Xv2 X X 8 X X X X

MSP430F67xx MSP430Xv2 X X 3 X X

MSP430L092 MSP430Xv2 X 2 X

2.3.2 Using Breakpoints

If C-SPY is started with greater than N breakpoints set and virtual breakpoints are disabled, a message is
output to inform the user that only N (realtime) breakpoints are enabled (and one or more breakpoints are
disabled). Note that the workbench permits any number of breakpoints to be set, regardless of the Use
Virtual Breakpoints setting of C-SPY. If virtual breakpoints are disabled, a maximum of N breakpoints can
be set within C-SPY.

Resetting a program temporarily requires a breakpoint if Project → Options → Debugger → Setup →
Run To is enabled (see FAQ Debugging #32).

The Run To Cursor operation temporarily requires a breakpoint. Consequently, only N – 1 breakpoints can
be active when Run To Cursor is used if virtual breakpoints are disabled (see FAQ Debugging #33).

23SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Using C-SPY www.ti.com

If, while processing a breakpoint, an interrupt becomes active, C-SPY stops at the first instruction of the
interrupt service routine (see FAQ Debugging #26).

2.3.3 Using Single Step

When debugging an assembler file, Step Over, Step Out, and Next Statement operate like Step Into; that
is, the current instruction is executed at full speed.

When debugging an assembler file, a step operation of a CALL instruction stops at the first instruction of
the called function.

When debugging an assembler file, a (true) Step Over a CALL instruction that executes the called function
at full device speed can be synthesized by placing a breakpoint after the CALL and using GO (to the
breakpoint in realtime mode).

When debugging a C file, a single step (Step) operation executes the next C statement. Thus, it is
possible to step over a function reference. If possible, a hardware breakpoint is placed after the function
reference, and a GO is implicitly executed. This causes the function to be executed at full speed. If no
hardware breakpoints are available, the function is executed in non-realtime mode. Step Into is supported.
Step Out is supported.

Within Disassembly mode (View → Disassembly), a step operation of a non-CALL instruction executes the
instruction at full device speed.

Within Disassembly mode (View → Disassembly), a step operation of a CALL instruction places, if
possible, a hardware breakpoint after the CALL instruction, and then executes Go. The called function
executes at full device speed. If no hardware breakpoint is available prior to the Go, the called function is
executed in non-realtime mode. In either case, execution stops at the instruction following the CALL.

It is possible to single step only when source statements are present. Breakpoints must be used when
running code for which there is no source code (that is, place the breakpoint after the CALL to the function
for which there is no source, and then Go to the breakpoint in realtime mode).

If, during a single step operation, an interrupt becomes active, the current instruction is completed and
C-SPY stops at the first instruction of the interrupt service routine (see FAQ Debugging #26).

2.3.4 Using Watch Windows

The C-SPY Watch Window mechanism permits C variables to be monitored during the debugging session.
Although not originally designed to do so, the Watch Window mechanism can be extended to monitor
assembler variables.

Assume that the variables to watch are defined in RAM, for example:
RSEG DATA16_I varword ds 2 ; two bytes per word varchar ds 1 ; one byte per character

In C-SPY:

1. Open the Watch Window (View → Watch).

2. Click Debug → Quick Watch.

3. To watch varword, enter in the Expression box:
(__data16 unsigned int *) varword

4. To watch varchar, enter in the Expression box:
(__data16 unsigned char *) varchar

5. Click the Add Watch button.

6. Close the Quick Watch window.

7. For the created entry in the Watch Window, click on the + symbol to display the contents (or value) of
the watched variable.

To change the format of the displayed variable (default, binary, octal, decimal, hex, char), select the type,
click the right mouse button, and then select the desired format. The value of the displayed variable can
be changed by selecting it, and then entering the new value.

In C, variables can be watched by selecting them and then dragging and dropping them into the Watch
Window.

24 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Using C-SPY

Because the MSP430 peripherals are memory mapped, it is possible to extend the concept of watching
variables to watching peripherals. Be aware that there may be side effects when peripherals are read and
written by C-SPY (see FAQ Debugging #24).

CPU core registers can be specified for watching by preceding their name with '#' (that is, #PC, #SR, #SP,
#R5, etc.).

Variables watched within the Watch Window are updated only when C-SPY gets control of the device (for
example, following a breakpoint hit, a single step, or a stop/escape).

Although registers can be monitored in the Watch Window, View → Register is the preferred method.

25SLAU138X–June 2004–Revised November 2011 Development Flow
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

26 Development Flow SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Appendix A
SLAU138X–June 2004–Revised November 2011

Frequently Asked Questions

This appendix presents solutions to frequently asked questions regarding program hardware development
and debugging tools.

Topic ... Page

A.1 Hardware .. 28
A.2 Program Development (Assembler, C-Compiler, Linker) .. 28
A.3 Debugging (C-SPY) .. 30

27SLAU138X–June 2004–Revised November 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Hardware www.ti.com

A.1 Hardware

For a complete list of hardware-related FAQs, see the MSP430 Hardware Tools User's Guide (SLAU278).

A.2 Program Development (Assembler, C-Compiler, Linker)
1. The files supplied in the 430\tutor folder work only with the simulator. Do not use the files with

the FET (see FAQ Program Development #11).

2. A common MSP430 "mistake" is to fail to disable the Watchdog mechanism; the Watchdog is
enabled by default, and it resets the device if not disabled or properly handled by the application (see
FAQ Program Development #14).

3. When adding source files to a project, do not add files that are included by source files that
have already been added to the project (for example, an .h file within a .c or .s43 file). These files
are added to the project file hierarchy automatically.

4. In assembler, enclosing a string in double quotes ("string") automatically appends a zero byte to
the string (as an end-of-string marker). Enclosing a string in single-quotes ('string') does not.

5. When using the compiler or the assembler, if the last character of a source line is backslash (\),
the subsequent carriage return/line feed is ignored (that is, it is as if the current line and the next
line are a single line). When used in this way, the backslash character is a "line continuation"
character.

6. The linker output format must be "Debug information for C-SPY" (.d43) for use with C-SPY.
C-SPY does not start otherwise, and an error message is output. C-SPY cannot input a .TXT file.

7. Position-independent code can be generated using Project → Options → General Options →
Target → Position-Independent Code.

8. Within the C libraries, GIE (Global Interrupt Enable) is disabled before (and restored after) the
hardware multiplier is used. To disable this behavior, contact TI for the source code for these
libraries.

9. It is possible to mix assembler and C programs within the Workbench. See the Assembler
Language Interface chapter of the C/C++ Compiler Reference Guide from IAR.

10. The Workbench can produce an object file in TI .TXT format. C-SPY cannot input an object file in TI
.TXT format. An error message is output in this case.

11. The example programs given in the KickStart documentation (that is, Demo, Tutor, etc.) are
not correct. The programs work only in the simulator. The programs do not function correctly on an
actual device, because the Watchdog mechanism is active. The programs need to be modified to
disable the Watchdog mechanism. Disable the Watchdog mechanism with this C-statement:
WDTCTL = WDTPW + WDTHOLD;
or with this assembler statement:
mov.w # WDTPW+WDTHOLD,&WDTCTL

12. Access to MPY using an 8-bit operation is flagged as an error. Within the .h files, 16-bit registers
are defined in such a way that 8-bit operations upon them are flagged as an error. This feature is
normally beneficial and can catch register access violations. However, in the case of MPY, it is also
valid to access this register using 8-bit operators. If 8-bit operators are used to access MPY, the
access violation check mechanism can be defeated by using "MPY_" to reference the register.
Similarly, 16-bit operations on 8-bit registers are flagged.

13. Constant definitions (#define) used within the .h files are effectively reserved and include, for
example, C, Z, N, and V. Do not create program variables with these names.

28 Frequently Asked Questions SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU278
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Program Development (Assembler, C-Compiler, Linker)

14. The CSTARTUP that is implicitly linked with all C applications does not disable the Watchdog
timer. Use WDTCL = WDTPW + WDTHOLD; to explicitly disable the Watchdog. This statement is best
placed in the __low_level_init() function that gets executed before main().

If the Watchdog timer is not disabled, and the Watchdog triggers and resets the device during
CSTARTUP, the source screen goes blank, as C-SPY is not able to locate the source code for
CSTARTUP. Be aware that CSTARTUP can take a significant amount of time to execute if a large
number of initialized global variables are used.

int __low_level_init(void)
{

/* Insert your low-level initializations here */

WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog timer

/*==================================*/
/* Choose if segment initialization */
/* should be done or not. */
/* Return: 0 to omit seg_init */
/* 1 to run seg_init */
/*==================================*/
return (1);

}

15. Compiler optimization can remove unused variables and/or statements that have no effect and
can effect debugging. Optimization: NONE is supported within Project → Options → C/C++ Compiler
→ Code → Optimizations. Alternatively, variables can be declared volatile.

16. The IAR tutorial assumes a Full or Baseline version of the Workbench. Within a KickStart
system, it is not possible to configure the C compiler to output assembler mnemonics.

17. Existing projects from an IAR 1.x system can be used within the new IAR 2.x/3.x system; see the
IAR document migration guide for EW430 x.x. This document is located in <Installation
Root>\Embedded Workbench x.x\430\doc\migration.htm

18. Assembler projects must reference the code segment (RSEG CODE) to use the Linker →
Processing → Fill Unused Code Memory mechanism. No special steps are required to use Linker →
Processing → Fill Unused Code Memory with C projects.

19. Ensure that the proper C runtime library is selected for C-only and mixed C/assembly
language projects (Project → General Options → Library Configuration → Library). For assembly-only
projects, the runtime library must not get linked in, otherwise the build fails and a linker error is output
(for example, that the RESET vector is allocated twice).

20. Numerous C and C++ runtime libraries are provided with the Workbench:

cl430d: C, 64-bit doubles

cl430dp: C, 64-bit doubles, position independent

cl430f: C, 32-bit doubles

cl430fp: C, 32-bit doubles, position independent

dl430d: C++, 64-bit doubles

dl430dp: C++, 64-bit doubles, position independent

dl430f: C++, 32-bit doubles

dl430fp: C++, 32-bit doubles, position independent

See the IAR MSP430 C/C++ compiler reference guide for more information on which library to use.

29SLAU138X–June 2004–Revised November 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Debugging (C-SPY) www.ti.com

A.3 Debugging (C-SPY)
1. Debugging with C-SPY does not seem to affect an externally connected MSP430 device. Should

this be the case, check whether the main debugger menu bar contains a menu item called Simulator. If
so, an actual C-SPY MSP430 core simulator session is running, and no actual communication with the
target device is established. Solution: Ensure that the C-SPY driver is set to FET Debugger
(Project → Options → Debugger → Setup → Driver).

2. C-SPY reports that it cannot communicate with the device. Possible solutions to this problem
include:

• Ensure that the correct debug interface is selected; use Project → Options → FET Debugger →
Connection.

• Ensure that the correct parallel port (LPT1, 2, or 3) is being specified in the C-SPY configuration in
the case a parallel port MSP-FET430PIF interface is used; use Project → Options → FET
Debugger → Connection → Parallel Port → LPT1 (default) or LPT2 or LPT3. Check the PC BIOS
for the parallel port address (0x378, 0x278, 0x3bc), and the parallel port configuration (ECP,
Compatible, Bidirectional, or Normal) (see FAQ Debugging #8). For users of IBM ThinkPad™
computers, try port specifications LPT2 and LPT3, even if the operating system reports the parallel
port is located at LPT1.

• Ensure that the jumper settings are configured correctly on the target hardware.

• Ensure that no other software application has reserved/taken control of the COM/parallel port (for
example, printer drivers, ZIP drive drivers, etc.) if a parallel port MSP-FET430PIF interface is used.
Such software can prevent the C-SPY/FET driver from accessing the parallel port and, hence,
communicating with the device.

• Open the Device Manager and determine if the driver for the FET tool has been correctly installed
and if the COM/parallel port is successfully recognized by the Windows OS.

• It may be necessary to reboot the computer to complete the installation of the required port drivers.

• Ensure that the MSP430 device is securely seated in the socket (so that the "fingers" of the socket
completely engage the pins of the device), and that its pin 1 (indicated with a circular indentation
on the top surface) aligns with the "1" mark on the PCB.

CAUTION

Possible Damage to Device

Always handle MSP430 devices using a vacuum pick-up tool only; do not
use your fingers, as they can easily bend the device pins and render the
device useless. Also, always observe and follow proper ESD precautions.

3. C-SPY reports that the device JTAG security fuse is blown. With current MSP-FET430PIF and
MSP430-FET430UIF JTAG interface tools there is a weakness when adapting target boards that are
powered externally. This leads to an accidental fuse check in the MSP430 and results in the JTAG
security fuse being recognized as blown although it is not. This is valid for MSP-FET430PIF and
MSP-FET430UIF but is mainly seen on MSP-FET430UIF.
Workarounds:

• Connect the device RST/NMI pin to JTAG header (pin 11), MSP-FET430PIF/MSP-FET430UIF
interface tools are able to pull the RST line, this also resets the device internal fuse logic.

• Do NOT connect both VCC Tool (pin 2) and VCC Target (pin 4) of the JTAG header and also specify
a value for VCC in the debugger that is equal to the external supply voltage.

4. C-SPY can download data into RAM, information, and flash main memories. A warning message
is output if an attempt is made to download data outside of the device memory spaces.

5. C-SPY can debug applications that utilize interrupts and low power modes (see FAQ Debugging
#26).

6. C-SPY cannot access the device registers and memory while the device is running. C-SPY
displays "-" to indicate that a register/memory field is invalid. The user must stop the device to access
device registers and memory. Any displayed register/memory fields are then updated.

30 Frequently Asked Questions SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Debugging (C-SPY)

7. When C-SPY is started, the flash memory is erased and the opened file is programmed in
accordance with the download options as set in Project → Options → FET Debugger → Download
Control. This initial erase and program operations can be disabled selecting Project → Options → FET
Debugger → Download Control → Suppress Download. Programming of the flash can be initiated
manually with Emulator → Init New Device.

8. The parallel port designators (LPTx) have the following physical addresses: LPT1: 378h, LPT2:
278h, LPT3: 3BCh. The configuration of the parallel port (ECP, Compatible, Bidirectional, Normal) is
not significant; ECP seems to work well (see FAQ Debugging #1 for additional hints on solving
communication problems between C-SPY and the device).

9. C-SPY may assert RST/NMI to reset the device when C-SPY is started and when the device is
programmed. The device is also reset by the C-SPY RESET button, and when the device is manually
reprogrammed (Emulator → Init New Device), and when the JTAG is resynchronized (Emulator →
Resynchronize JTAG). When RST/NMI is not asserted (low), C-SPY sets the logic driving RST/NMI to
high-impedance, and RST/NMI is pulled high via a resistor on the PCB.

RST/NMI may get asserted and negated after power is applied when C-SPY is started. RST/NMI may
then get asserted and negated a second time after device initialization is complete.

Within C-SPY, Emulator → "Power on" Reset cycles the power to the target to generate a power-on
reset.

10. C-SPY can debug a device whose program reconfigures the function of the RST/NMI pin to
NMI.

11. The level of the XOUT/TCLK pin is undefined when C-SPY resets the device. The logic driving
XOUT/TCLK is set to high-impedance at all other times.

12. When making current measurements of the device, ensure that the JTAG control signals are
released (Emulator → Release JTAG on Go), otherwise the device will be powered by the signals on
the JTAG pins and the measurements will be erroneous (see FAQ Debugging #14).

13. Most C-SPY settings (breakpoints, etc.) are preserved between sessions.

14. When C-SPY has control of the device, the CPU is ON (that is, it is not in low-power mode)
regardless of the settings of the low-power mode bits in the status register. Any low-power mode
conditions are restored prior to Step or Go. Consequently, do not measure the power consumed by the
device while C-SPY has control of the device. Instead, run your application using Go with JTAG
released (see FAQ Debugging #12).

15. The View → Memory → Memory Fill dialog of C-SPY requires hexadecimal values for Starting
Address, Length, and Value to be preceded with "0x". Otherwise the values are interpreted as
decimal.

16. The Memory debug view of C-SPY (View → Memory) can be used to view the RAM, the information
memory, and the flash main memory. The Memory utility of C-SPY can be used to modify the RAM;
the information memory and flash main memory cannot be modified using the Memory utility.
The information memory and flash main memory can be programmed only when a project is opened
and the data is downloaded to the device, or when Emulator → Init New Device is selected.

17. C-SPY does not permit the individual segments of the information memory and the flash main
memory to be manipulated separately; consider the information memory to be one contiguous
memory, and the flash main memory to be a second contiguous memory.

18. The Memory window correctly displays the contents of memory where it is present. However, the
Memory window incorrectly displays the contents of memory where there is none present.
Memory should be used only in the address ranges specified by the device data sheet.

19. C-SPY utilizes the system clock to control the device during debugging. Therefore, device counters,
etc., that are clocked by the Main System Clock (MCLK) are affected when C-SPY has control of
the device. Special precautions are taken to minimize the effect upon the Watchdog Timer. The CPU
core registers are preserved. All other clock sources (SMCLK, ACLK) and peripherals continue to
operate normally during emulation. In other words, the Flash Emulation Tool is a partially intrusive
tool.
Devices that support clock control (Emulator → Advanced → Clock Control) can further minimize these
effects by selecting to stop the clock(s) during debugging (see FAQ Debugging #24).

31SLAU138X–June 2004–Revised November 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Debugging (C-SPY) www.ti.com

20. There is a time after C-SPY performs a reset of the device [when the C-SPY session is first
started, when the flash is reprogrammed (via Init New Device), and when JTAG is resynchronized
(Resynchronize JTAG)] and before C-SPY has regained control of the device that the device
executes code normally. This behavior may have side effects. Once C-SPY has regained control of
the device, it performs a reset of the device and retains control.

21. When programming the flash, do not set a breakpoint on the instruction immediately following
the write to flash operation. A simple workaround to this limitation is to follow the write to flash
operation with a NOP, and set a breakpoint on the instruction following the NOP (see FAQ Debugging
#23).

22. The Dump Memory length specifier is restricted to four hexadecimal digits (0 to FFFF). This
limits the number of bytes that can be written from 0 to 65535. Consequently, it is not possible to write
memory from 0 to 0xFFFF inclusive, as this would require a length specifier of 65536 (or 10000h).

23. Multiple internal machine cycles are required to clear and program the flash memory. When single
stepping over instructions that manipulate the flash, control is given back to C-SPY before these
operations are complete. Consequently, C-SPY updates its memory window with erroneous
information. A workaround to this behavior is to follow the flash access instruction with a NOP, and
then step past the NOP before reviewing the effects of the flash access instruction (see FAQ
Debugging #21).

24. Peripheral bits that are cleared when read during normal program execution (that is, interrupt
flags) are cleared when read while being debugged (that is, memory dump, peripheral registers).

When using certain MSP430 devices (such as MSP430F15x/16x and MSP430F43x/44x devices), bits
do not behave this way (that is, the bits are not cleared by C-SPY read operations).

25. C-SPY cannot be used to debug programs that execute in the RAM of 'F12x and 'F41x devices.
A workaround to this limitation is to debug programs in flash.

26. While single stepping with active and enabled interrupts, it can appear that only the interrupt
service routine (ISR) is active (that is, the non-ISR code never appears to execute, and the single
step operation always stops on the first line of the ISR). However, this behavior is correct because the
device always processes an active and enabled interrupt before processing non-ISR (that is, mainline)
code. A workaround for this behavior is, while within the ISR, to disable the GIE bit on the stack so that
interrupts are disabled after exiting the ISR. This permits the non-ISR code to be debugged (but
without interrupts). Interrupts can later be reenabled by setting GIE in the status register in the Register
window.

On devices with the clock control emulation feature, it may be possible to suspend a clock between
single steps and delay an interrupt request (Emulator → Advanced → Clock Control).

27. The base (decimal, hexadecimal, etc.) property of Watch Window variables is not preserved
between C-SPY sessions; the base reverts to Default Format.

28. On devices equipped with a Data Transfer Controller (DTC), the completion of a data transfer cycle
preempts a single step of a low-power mode instruction. The device advances beyond the
low-power mode instruction only after an interrupt is processed. Until an interrupt is processed, it
appears that the single step has no effect. A workaround to this situation is to set a breakpoint on the
instruction following the low-power mode instruction, and then execute (Go) to this breakpoint.

29. The transfer of data by the Data Transfer Controller (DTC) may not stop precisely when the
DTC is stopped in response to a single step or a breakpoint. When the DTC is enabled and a
single step is performed, one or more bytes of data can be transferred. When the DTC is enabled and
configured for two-block transfer mode, the DTC may not stop precisely on a block boundary when
stopped in response to a single step or a breakpoint.

30. The C-SPY Register window supports instruction cycle length counters. The cycle counter is
active only while single stepping. The count is reset when the device is reset, or the device is run (Go).
The count can be edited (normally set to zero) at any time.

31. It is possible to use C-SPY to get control of a running device whose state is unknown. Simply
use C-SPY to program a dummy device, and then start the application with Release JTAG on Go
selected. Remove the JTAG connector from the dummy device and connect to the unknown device.
Select Debug → Break (or the Stop hand) to stop the unknown device. The state of the device can
then be interrogated.

32 Frequently Asked Questions SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Debugging (C-SPY)

32. Resetting a program temporarily requires a breakpoint if Project → Options → Debugger → Setup →
Run To is enabled. If N or more breakpoints are set, Reset sets a virtual breakpoint and runs to the
Run To function. Consequently, it may require a significant amount of time before the program
resets (that is, stops at the Run To function). During this time the C-SPY indicates that the program is
running, and C-SPY windows may be blank (or may not be correctly updated).

33. Run To Cursor temporarily requires a breakpoint. If N breakpoints are set and virtual breakpoints are
disabled, Run To Cursor incorrectly uses a virtual breakpoint. This results in very slow program
execution.

34. The simulator is a CPU core simulator only; peripherals are not simulated, and interrupts are
statistical events.

35. On devices without data breakpoint capabilities, it is possible to associate with an instruction
breakpoint an (arbitrarily complex) expression that C-SPY evaluates when the breakpoint is hit. This
mechanism can be used to synthesize a data breakpoint. See the C-SPY documentation for a
description of this complex breakpoint mechanism.

36. The ROM Monitor referenced by the C-SPY documentation applies only to older MSP430Exxx
(EPROM) based devices; it can be ignored when using the FET and the flash-based MSP430F
devices.

37. Special function registers (SFRs) and the peripheral registers are displayed in View → Register.
38. The putchar()/getchar() breakpoints are set only if these functions are present (and the

mechanism is enabled). Note that putchar()/getchar() could be indirectly referenced by a library
function.

39. The flash program/download progress bar does not update gradually. This behavior is to be
expected. The progress bar updates whenever a "chunk" of memory is written to flash. The
development tools attempt to minimize the number of program chunks to maximize programming
efficiency. Consequently, it is possible, for example, for a 60K-byte program to be reduced to a single
chunk, and the progress bar is updated until the entire write operation is complete.

40. After moving a complete EW430 project (including workspace-, project-, source- and generated
object-files) to a different storage location (for example, a different PC) a rebuild of the object files
(rebuild project) is required before starting C-Spy. The Linker stores absolute path names in the object
files which most probably do not match with the new storage location. C-Spy would pop up a message
that the source files cannot be located or show other strange artifacts during debugging.

33SLAU138X–June 2004–Revised November 2011 Frequently Asked Questions
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

34 Frequently Asked Questions SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Appendix B
SLAU138X–June 2004–Revised November 2011

FET-Specific Menus

Topic ... Page

B.1 Menus .. 36

35SLAU138X–June 2004–Revised November 2011 FET-Specific Menus
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Menus www.ti.com

B.1 Menus

B.1.1 Emulator → Device Information

Opens a window with information about the target device being used. Also, this window allows adjusting
the target voltage in the case an MSP-FET430UIF interface is used to supply power to the target by
performing a right-click inside this window. The supply voltage can be adjusted between 1.8 V and 5 V.
This voltage is available on pin 2 of the 14-pin target connector to supply the target from the
MSP-FET430UIF. If the target is supplied externally, the external supply voltage should be connected to
pin 4 of the target connector, so the MSP-FET430UIF can set the level of the output signals accordingly.

B.1.2 Emulator → Release JTAG on Go

C-SPY uses the device JTAG signals to debug the device. On some MSP430 devices, these JTAG
signals are shared with the device port pins. Normally, C-SPY maintains the pins in JTAG mode so that
the device can be debugged. During this time the port functionality of the shared pins is not available.

However, when Release JTAG On Go is selected, the JTAG drivers are set to three-state, and the device
is released from JTAG control (TEST pin is set to GND) when Go is activated. Any active on-chip
breakpoints are retained, and the shared JTAG port pins revert to their port functions.

At this time, C-SPY has no access to the device and cannot determine if an active breakpoint (if any) has
been reached. C-SPY must be manually commanded to stop the device, at which time the state of the
device is determined (that is, was a breakpoint reached?) (see FAQ Debugging #12).

B.1.3 Emulator → Resynchronize JTAG

Regain control of the device.

It is not possible to Resynchronize JTAG while the device is operating.

B.1.4 Emulator → Init New Device

Initialize the device according to the settings in the Download Options. Basically, the current program file
is downloaded to the device memory. The device is then reset. This option can be used to program
multiple devices with the same program from within the same C-SPY session.

It is not possible to select Init New Device while the device is operating.

B.1.5 Emulator → Secure - Blow JTAG Fuse

Blows the fuse on the target device. After the fuse is blown, no communication with the device is possible.

B.1.6 Emulator → Breakpoint Usage

List all used hardware and virtual breakpoints, as well as all currently defined EEM breakpoints.

B.1.7 Emulator → Advanced → Clock Control

Disable the specified system clock while C-SPY has control of the device (following a Stop or breakpoint).
All system clocks are enabled following a Go or a single step (Step/Step Into) (see FAQ Debugging #19).

B.1.8 Emulator → Advanced → Emulation Mode

Specify the device to be emulated. The device must be reset (or reinitialized through Init New Device)
following a change to the emulation mode.

B.1.9 Emulator → Advanced → Memory Dump

Write the specified device memory contents to a specified file. A conventional dialog is displayed that
permits the user to specify a file name, a memory starting address, and a length. The addressed memory
is then written in a text format to the named file. Options permit the user to select word or byte text format,
and address information and register contents also can be appended to the file.

36 FET-Specific Menus SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Menus

B.1.10 Emulator → Advanced → Breakpoint Combiner

Open the Breakpoint Combiner dialog box. The Breakpoint Combiner dialog box permits one to specify
breakpoint dependencies. A breakpoint is triggered when the breakpoints are encountered in the specified
order.

B.1.11 Emulator → State Storage Control

Open the State Storage dialog box. The State Storage dialog box permits the user to use the state
storage module. The State Storage Module is not present on all MSP430 derivatives. See Table 2-1 for
implementation details

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

B.1.12 Emulator → State Storage Window

Open the State Storage window, and display the stored state information as configured by the State
Storage dialog.

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

B.1.13 Emulator → Sequencer Control

Open the Sequencer dialog box. The Sequencer dialog box permits the user to configure the sequencer
state machine.

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

B.1.14 Emulator → "Power on" Reset

Cycle power to the device to effect a reset.

B.1.15 Emulator → GIE on/off

Enables or disables all interrupts. Needs to be restored manually before Go.

B.1.16 Emulator → Leave Target Running

If C-SPY is closed, the target keeps running the user program.

B.1.17 Emulator → Force Single Stepping

On Go the program is executed by single steps. The cycle counter works correctly only in this mode.

NOTE: Availability of Emulator → Advanced menus

Not all Emulator → Advanced menus are supported by all MSP430 devices. These menus
are grayed out.

37SLAU138X–June 2004–Revised November 2011 FET-Specific Menus
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

Menus www.ti.com

38 FET-Specific Menus SLAU138X–June 2004–Revised November 2011
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

www.ti.com Document Revision History

Document Revision History
Version Changes/Comments

Related Documentation From Texas Instruments, Added CC430 documentationSLAU138X
Table 2-1, Added CC430F512x, CC430F514x, CC430F614x, MSP430G22xx

SLAU138W Updated Table 2-1.

Added Section 2.2.4 and Section 2.2.5.SLAU138V
Updated Table 2-1.

SLAU138U Updated Table 2-1

SLAU138T Updated Table 2-1

Added Section 2.2.2.SLAU138S
Updated Table 2-1 with MSP430x092 and MSP430F438/F439.

Added emulation features for MSP430G2xxx, MSP430F51x1, MSP430F51x2, MSP430F550x, MSP430F5510,SLAU138R MSP430F551x, MSP430F552x, MSP430F663x.

SLAU138Q Updated supported operating systems in Section 1.1.

SLAU138P Updated features for MSP430F461x and MSP430F461x 1 in Table 2-1.

SLAU138O Removed Appendix C: 80-Pin MSP430F44x and MSP430F43x Device Emulation

SLAU138N Added information on MSP430F5xx and CC430 devices

• Removed information on hardware. It was moved into the MSP430 Hardware Tools User's Guide (SLAU278).
SLAU138M • Added emulation features for MSP430F55xx and MSP430F54xxA in Table 2-1.

• Updated and extended Table 2-1 with architecture information.

• Added MSP-FET430U100A kit in Section 1.7 and MSP-TS430PZ100A target socket module schematic (Figure
B-19) and PCB (Figure B-20).

• Added emulation features for CC430F513x, CC430F612x, CC430F613x, MSP430F41x2, MSP430F47x,
SLAU138L MSP430FG479, and MSP430F471xx in Table 2-1.

• Updated MSP-TS430PN80 target socket module schematic (Figure B-15) with information on MSP430F47x and
MSP430FG47x.

• Removed information throughout on MSP-FET430Pxx0 and MSP-FET430X110 kits.

• Added MSP-FET430U5x100 kit and MSP-TS430PZ5x100 target socket module schematic.
SLAU138K • Added overview of debug interfaces as Table 1-1.

• Added eZ430-F2013, T2012, and eZ430-RF2500.

SLAU138J • Updated Section 1-7.

• Added MSP-TS430PW28 Target Socket Module, Schematic (Figure B-5) and PCB (Figure B-6).
• Updated MSP-FET430U28 kit content information (DW or PW package support) (Section 1-7).

SLAU138I • Added Emulation features for MSP430F21x2 to Table 2-1.
• Updated MSP-TS430PW14 Target Socket Module, Schematic (Figure B-1).
• Updated MSP-TS430DA38 Target Socket Module, Schematic (Figure B-7).

SLAU138H • Updated Appendix E

• Added Emulation features for MSP430F22x2, MSP430F241x, MSP430F261x, MSP430FG42x0 and
SLAU138G MSP430F43x1 to Table 2-1.

• Updated Figure B-15 and Figure B-16 in Appendix B.

• Renamed MSP-FET430U40 to MSP-FET430U23x0.
• Replaced MSP-FET430U40 schematic and PCB figures with renamed MSP-FET430U23x0 images.SLAU138F
• Added FAQ Hardware #2 in Section A.1.
• Added FAQ Debugging #3 in Section A.3.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

39SLAU138X–June 2004–Revised November 2011 Revision History
Submit Documentation Feedback

Copyright © 2004–2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU278
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138X

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES
ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have
electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete
in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental
measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does
not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling
(WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER
AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all
appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or
services described herein.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or
safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES
ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio
frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are
designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may
be required to correct this interference.

http://www.ti.com/esh

	Table of Contents
	Preface
	1 Get Started Now!
	1.1 Software Installation
	1.2 Flashing the LED
	1.3 Important MSP430 Documents on the CD-ROM and Web

	2 Development Flow
	2.1 Overview
	2.2 Using KickStart
	2.2.1 Project Settings
	2.2.2 Additional Project Settings for MSP430L092 / MSP430C092
	2.2.2.1 MSP430L092 Loader Code
	2.2.2.2 Password Protection of MSP430C092

	2.2.3 Creating a Project From Scratch
	2.2.4 Additional Project Settings for LPMx.5 Debugging
	2.2.4.1 What is LPMx.5
	2.2.4.2 Debug LPMx.5
	2.2.4.3 LPMx.5 Debug Limitations

	2.2.5 Password Protection for MSP430 Devices
	2.2.6 Using an Existing IAR V1.x/V2.x/V3.x Project
	2.2.7 Stack Management and .xcl Files
	2.2.8 How to Generate Texas Instruments .TXT (and Other Format) Files
	2.2.9 Overview of Example Programs

	2.3 Using C-SPY
	2.3.1 Breakpoint Types
	2.3.2 Using Breakpoints
	2.3.3 Using Single Step
	2.3.4 Using Watch Windows

	A Frequently Asked Questions
	A.1 Hardware
	A.2 Program Development (Assembler, C-Compiler, Linker)
	A.3 Debugging (C-SPY)

	B FET-Specific Menus
	B.1 Menus
	B.1.1 Emulator → Device Information
	B.1.2 Emulator → Release JTAG on Go
	B.1.3 Emulator → Resynchronize JTAG
	B.1.4 Emulator → Init New Device
	B.1.5 Emulator → Secure - Blow JTAG Fuse
	B.1.6 Emulator → Breakpoint Usage
	B.1.7 Emulator → Advanced → Clock Control
	B.1.8 Emulator → Advanced → Emulation Mode
	B.1.9 Emulator → Advanced → Memory Dump
	B.1.10 Emulator → Advanced → Breakpoint Combiner
	B.1.11 Emulator → State Storage Control
	B.1.12 Emulator → State Storage Window
	B.1.13 Emulator → Sequencer Control
	B.1.14 Emulator → "Power on" Reset
	B.1.15 Emulator → GIE on/off
	B.1.16 Emulator → Leave Target Running
	B.1.17 Emulator → Force Single Stepping

	Document Revision History
	Important Notices

