Hi，

ECAN手册1.3节，eCAN controller中，对内部的MMU描述不是很清晰，我把我的理解画在了下面。

如果Mail box对can controller和CPU是共享内存，那么can controller对MB0 写的时候CPU对MB3写会有问题嘛？

代码如下：

[image: image1.wmf]MB

0

RX

MB

1

RX

MB

2

TX

MB

3

TX

CAN controller

CPU

下面代码的问题是，我在发送时写到MB中的数据和我再读回来的数据不一样
void SendFrame(const CanFrame* const pTxFrame)

{

 static UINT32 entCnt=0;

UINT32 canTRS;

UINT32 canTA;

UINT32 canRMP;

UINT32 canRMP2;

 UINT16 l_TxData[8U];

 UINT32 canErr;

 UINT32 canTxErr;

 UINT32 canRxErr;

 UINT32 MSGDHL[2];

UINT32 MSGDHL_READ[2];

 /* Set the sending frame as HEAD frame*/

 if (HEAD_FRAME == pTxFrame->type)

 {

 entCnt++;

 MSGDHL[0]=pTxFrame->dataLo; //先保存一下要发送的数据
 MSGDHL[1]=pTxFrame->dataHi;

 canTRS=s_ECanaRegs.CANTRS;

 canTA=s_ECanaRegs.CANTA;

 canRMP=s_ECanaRegs.CANRMP; //此时RMP=2；
 EALLOW;

 s_ECanaRegs.CANMC &= ~0x0000001FUL; /* Clear MBNR */

 s_ECanaRegs.CANMC |= ECAN_TX_HEAD_MBOX_INDEX; /* Set MBNR as current mailbox */

 s_ECanaRegs.CANMC |= BIT8L; /* Change data field request */

 s_ECanaMboxes.MBOX[ECAN_TX_HEAD_MBOX_INDEX].MSGDH = pTxFrame->dataLo; //把发送的数据写到MB中
 s_ECanaMboxes.MBOX[ECAN_TX_HEAD_MBOX_INDEX].MSGDL = pTxFrame->dataHi;

 s_ECanaRegs.CANMC &= ~BIT8L;

 EDIS;

 // s_ECanaRegs.CANME |= ECAN_TX_HEAD_MBOX_BITS; /* Enable mailbox */

#ifdef FEATURE_DEBUG_MODE /* TODO: Test */

 {

 MSGDHL_READ[1]=s_ECanaMboxes.MBOX[ECAN_TX_HEAD_MBOX_INDEX].MSGDL; //把写进MB中的数据再读回来

 MSGDHL_READ[0]=s_ECanaMboxes.MBOX[ECAN_TX_HEAD_MBOX_INDEX].MSGDH;

 canErr=s_ECanaRegs.CANES;

 canRxErr=s_ECanaRegs.CANREC;

 canTxErr=s_ECanaRegs.CANTEC;

 canRMP2=s_ECanaRegs.CANRMP; //此时RMP=3
 if((MSGDHL_READ[1]!=MSGDHL[1]) ||(MSGDHL_READ[0]!=MSGDHL[0]))

 {

//出错了！！
 canErr=s_ECanaRegs.CANES;

 canRxErr=s_ECanaRegs.CANREC;

 canTxErr=s_ECanaRegs.CANTEC;

 }

 TT_DUMP_DATA(l_TxData, 8U);

 FAULT_ARGV32(pTxFrame->dataHi);

 FAULT_ARGV32(pTxFrame->dataLo);

 ASSERT(MSGDHL[0]==pTxFrame->dataLo);

 ASSERT(MSGDHL[1]==pTxFrame->dataHi);

 FAULT_CREATE(FL0_DUMP, FFL_DRIVER, CUR_LINE);

 FAULT_SUBMIT(FL0_DUMP);

 }

#endif

 s_ECanaRegs.CANMC &= ~BIT8L; /* Back to normal operation */

 s_ECanaRegs.CANME |= ECAN_TX_HEAD_MBOX_BITS; /* Enable mailbox */

 /* Send */

 s_ECanaRegs.CANTRS |= ECAN_TX_HEAD_MBOX_BITS;

//s_ECanaRegs.CANMIM|=(ECAN_RX_HEAD_MBOX_BITS + ECAN_RX_BODY_MBOX_BITS);

 }

 else

 {

 s_ECanaRegs.CANME &= ~ECAN_TX_BODY_MBOX_BITS; /* Disable mailbox */

 s_ECanaRegs.CANMC &= ~0x0000001FUL; /* Clear MBNR */

 s_ECanaRegs.CANMC |= ECAN_TX_BODY_MBOX_INDEX; /* Set MBNR as current mailbox */

 s_ECanaRegs.CANMC |= BIT8L; /* Change data field request */

 s_ECanaMboxes.MBOX[ECAN_TX_BODY_MBOX_INDEX].MSGDH = pTxFrame->dataLo;

 s_ECanaMboxes.MBOX[ECAN_TX_BODY_MBOX_INDEX].MSGDL = pTxFrame->dataHi;

 s_ECanaRegs.CANMC &= ~BIT8L; /* Back to normal operation */

 s_ECanaRegs.CANME |= ECAN_TX_BODY_MBOX_BITS; /* Enable mailbox */

 /* Send */

 s_ECanaRegs.CANTRS |= ECAN_TX_BODY_MBOX_BITS;

 }

}

 s_ECanaRegs.CANMIM =/* ECAN_RX_HEAD_MBOX_BITS + ECAN_RX_BODY_MBOX_BITS +*/

 ECAN_TX_HEAD_MBOX_BITS + ECAN_TX_BODY_MBOX_BITS;

 /* Mailbox Interrupt Level Register:

 bitn=0, The mailbox interrupt is generated on interrupt line 0

 bitn=1, The mailbox interrupt is generated on interrupt line 1.*/

 s_ECanaRegs.CANMIL = ECAN_TX_HEAD_MBOX_BITS + ECAN_TX_BODY_MBOX_BITS;

s_ECanaRegs.CANOPC = 0xFFFFFFFF;

_1381130568.vsd

