
 TMS320C2000™ Systems Applications Collateral

 v1.3

General Purpose GUI Overview
May 2008 – Revised July 2008

The Generic GUI is an easy to use tool designed to simplify demos by allowing the user to graphically edit
program variables on the fly. With usability in mind, the GUI was developed to only need a small amount of time
and additional coding to interface with a Code Composer Studio (CCS) project. From a functionality
perspective the GUI itself works much like a CCS watch window in that numbers are shown with a QValue,
initial value, and minimum and maximum value limits. The Generic GUI is freeware built with Microsoft Visual
Studio.NET and written in C#. Overall the GUI provides the following features:

• Minimal effort and coding needed to use the GUI with any project
• Ability to boot the F28xxx from the SCI (RS-232) with a .a00 file, connect to an emulator controlled DSC,

or a flashed DSC
• Create a bootable .a00 file eliminating the need to start up Code Composer Studio.
• Customizable GUI controls
• Flexibility to give any controls a specific QValue, an initial value, or a set of minimum and maximum

values

Note that the General Purpose GUI requires Microsoft .NET framework 2.0 or higher to run. Please ensure that
this software is installed prior to running this program.

 TMS320C2000™ Systems Applications Collateral

 v1.3

Getting Started
Hardware Considerations
In order to connect the hardware to an external GUI a four-pin SCI to Serialport connection is needed. This
cable is available out-of-the-box in many of the major EVM packages. See the SCI-Serialport_Assembly file for
information on how to build your own. This is located at: C:\TI_F28xxx_SysHW\

Assuming a board is able to run with Code Composer Studio, the GeneralPurposeGUI should be able to
connect to the project from a hardware perspective without any other additional hardware consideration.
However, to ensure the program can boot to the target board the following must be true:

• For 280xx targets boot pins GPIO18 and GPIO29 must be pulled high and GPIO34 must be pulled low.
• For 283xx targets boot pins GPIO85, GPIO86, and GPIO87 must be pulled high and GPIO84 must be

pulled low.

NOTE: for customers using a controlCARD all of the mentioned GPIOs are weakly pulled high so that the DSC
will boot from flash. Therefore to ensure SCI (RS-232) can boot the target DSC only GPIO34 and/or GPIO84
will need to be pulled low by approximately a 4.7kΩ resistor. All TI F28xxx EVM boards allow a jumper to be
placed so that SCI boot capabilities are given without any external components needed.

See the F280xxBootROM UserGuide or F283xxBootROM UserGuide for further information.

Allowing a CCS Project to connect to the GUI
Only a few steps are necessary to allow the GUI to connect to any CCS project. The steps are:

1) Please ensure that GPIO-28 and GPIO-29 are set to SCI-RX and SCI-TX functionality. In the
TI_28xxx_SysSW framework, this is found in [ProjectName]-DevInit_[Target]

2) Add SciCommsGui.c to your project.

In the project window, right-click on your project, select “Add files to project”, then browse to find
SciCommsGui.c. If you are using the system framework the path will be

C:\TI_28xxx_SysSw\~SupportFiles\source\SciCommsGui.c

3) Add SCIA_Init() and SerialHostComms() to your function prototype list
4) Find/Set a CpuTimer that is running at approximately 1ms (ie. CpuTimer0Regs.PRD.all = mSec1;)
5) Add SerialCommsTimer as an int16 if it does not already exist.

Find the following code:
int16 VTimer0[4]; // Virtual Timers slaved off CPU Timer 0 (A events)
int16 VTimer1[4]; // Virtual Timers slaved off CPU Timer 1 (B events)
int16 VTimer2[4]; // Virtual Timers slaved off CPU Timer 2 (C events)

then add the line (if it does not already exist):

int16 SerialCommsTimer;

6) Declare the following variables if they do not already exist
//GUI support variables
// sets a limit on the amount of external GUI controls - increase as necessary
int16 *varSetTxtList[16]; //16 textbox controlled variables
int16 *varSetBtnList[16]; //16 button controlled variables
int16 *varSetSldrList[16]; //16 slider controlled variables
int16 *varGetList[16]; //16 variables sendable to GUI
int16 *arrayGetList[16]; //16 arrays sendable to GUI

 TMS320C2000™ Systems Applications Collateral

 v1.3

7) Add the following to the project’s initialization sequence:

SCIA_Init();

//"Set" variables
//---------------------------------------
// assign GUI variable Textboxes to desired "setable" parameter addresses
//varSetTxtList[0] = &Var;

// assign GUI Buttons to desired flag addresses
//varSetBtnList[0] = &Var;

// assign GUI Sliders to desired "setable" parameter addresses
//varSetSldrList[0] = &Var;

//"Get" variables
//---------------------------------------
// assign a GUI "getable" parameter address
//varGetList[0] = &Var;

8) Add SerialCommsTimer++; to the “Loop rate synchronizer” of the CpuTimer chosen in step 3

If Using CpuTimer0 to run at 1ms the code should look like:

void A0(void)
{
 // loop rate synchronizer for A-tasks
 if(CpuTimer0Regs.TCR.bit.TIF == 1)
 {
 CpuTimer0Regs.TCR.bit.TIF = 1; // clear flag
 //---
 (*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...)
 //---
 VTimer0[0]++; // virtual timer 0, instance 0 (spare)
 SerialCommsTimer++; // used by DSP280x_SciCommsGui.c
 }
 Alpha_State_Ptr = &B0; // Comment out to allow only A tasks
}

For example, if you are using CpuTimer1 running at 1ms add SerialCommsTimer++; to the B0 state.

9) In one of the tasks in the A,B, or C state (whichever represents the CpuTimer you chose in step 4) add
the following line of code:
SerialHostComms();

10) Edit the code in Step 7 by changing &Var to a variable in the project which will connect to the control
type specified, and then adding additional controls to the connection array as necessary. For example,
to make a variable editable by a slider in the GUI, make it an element of the varSetSldrList array. The
element chosen in the array corresponds to which slider will control the variable inserted into the array.
Repeat this step for all variables that you would like the GUI to control.

11) After this your project will be able to connect to the GUI.

 TMS320C2000™ Systems Applications Collateral

 v1.3

Running the Application
The GUI can connect to the hardware by booting a controlCARD with an .a00 file, by connecting to a flashed
controlCARD target, or by connecting to a controlCARD running from RAM via an emulator. This guide
discusses booting a .a00 file to the controlCARD.

1) Browse to C:\TI_F28xxx_SysSW\GeneralPurposeGUI\ and double-click on
GeneralPurposeGUI.exe. If the GUI does not open please ensure that Microsoft .NET Framework 2.0 is
installed on your computer. The .NET framework is required for this program to run and is often installed
through Microsoft Windows updates.

2) Click “Setup Connection” on the GUI

3) Ensure the Baud Rate is set to 57600

V1.1

 TMS320C2000™ Systems Applications Collateral

 v1.3

4) Next you will need to select your serial comport.
a. If the comport that the target is connected to is known please select it.
b. Otherwise, disconnect the emulator from the target board (if applicable). Next, click “Find Comport”

then follow the instructions at the bottom of the window. (Note: the board’s main power is controlled
by SW1) This will run through a short automated test to find the COM port that is connected to the
EVM board. Once complete you should see “Comport Found: COMXX” near the bottom of the
window. Once the comport is found you may turn the EVM board off and reconnect the emulator.

c. If the GUI is still unable to find a valid comport after fixing/checking all errors received and then
retrying, manually find the by going to:

Control Panel->System->Hardware tab->Device Manager->Ports(COM & LPT)

If using a serial port directly connected to a PC, look for a comport which shows up as
“Communications Port” and select this comport in the Setup Connection window. If using a USB to
Serial adapter look for the com port which shows “USB-to-Serial Bridge”, then select this comport in
the Setup Connection window.

 If the GUI is still unable to find a valid comport after fixing/checking all errors received and then retrying,
manually find the by going to:
Control Panel->System->Hardware tab->Device Manager->Ports(COM & LPT).
If using a serial port directly connected to the PC, look for the com port which shows up as
“Communications Port” and select this comport in the Setup Connection window. If using a USB to
Serial adapter look for the com port which shows “USB-to-Serial Bridge”, then select this comport in the
Setup Connection window.

5) Check “Boot on Connect” to boot an .a00 file to the target F28xxx. To use the GUI in conjunction a

project running from RAM in Code Composer Studio, please uncheck the checkbox and ensure the
code is running.

6) If booting the F28xxx target from the SCI either create an .a00 file or choose one to be loaded. An .a00
file is a hexadecimal conversion of an .out file and is created with the Hex2000.exe utility. Please do
one of the below to create this file.
• Click “Create Hex File” to create the necessary .a00 file. Select the path to the Hex File Utility by

browsing to C:\CCStudio_v3.3\C2000\cgtools\bin\hex2000.exe then click “Open”. Next,
browse to find a valid .out file created by the project.

V1.1

 TMS320C2000™ Systems Applications Collateral

 v1.3

• Click “…” to select an .a00 boot file.
Please see TMS320x2833x Boot ROM Reference Guide for more information on this topic. Click “OK”

7) On the Main Window click “Connect”. When asked to power cycle the board, turn the main power off
and then back on.

8) When complete press “Connect” again when the GUI asks. A progress bar in the bottom right hand
corner of the main window will show the progress of the boot procedure. When the boot procedure is
finished the program will connect to the target. Please note that booting to the DSC will not write the
program into FLASH.

9) Customize the GUI by right-clicking on controls:
• The first textbox corresponds to varSetTxtList[0] in the project, the second textbox to

varSetTxtList[1], and so on
• The first slider corresponds to varSetSldrList[0], the first
• Set Variables:

 Right-clicking on a label changes its name
 Right-clicking on a button changes its initial value
 Right-clicking on a textbox changes its Qvalue and initial value
 Right-clicking on a slider changes its Qvalue, initial value as well as minimum and maximum

values allowed for the control
• Get Variables

 Right-clicking on a label changes its name
 Right-clicking on a textbox changes its Qvalue

NOTE: To edit the configuration of the GUI without needing to connect to the GUI. The file found at
C:\TI_F28xxx_SysSW\GeneralPurposeGUI\Settings.txt can be edited as desired and will
make the necessary changes to the GUI.

 TMS320C2000™ Systems Applications Collateral

 v1.3

References
For more information please see the following guides:

F28xxx User’s Guides –
http://www.ti.com/f28xuserguides

F280xx Header Files and Peripheral Examples –

http://www-s.ti.com/sc/techzip/sprc191.zip

 TMS320C2000™ Systems Applications Collateral

 v1.3

F283xx Header Files and Peripheral Examples –

http://focus.ti.com/docs/toolsw/folders/print/sprc530.html

