TMS320F28027之ADC
参考文档SPRUGE5F
TMS320F28027的ADC功能:
1．12位双采样保持电路。
2．同时采样和序列采样方式。
3．全范围电压输入，0V到3.3V固定，或者VREFLO到VREFHI可调。
4．系统时钟全频运行，无需分频。
5．16输入通道。
6．16个SOC配置，设置触发，采样窗口，通道。
7．16个独立保存转换结果的结果寄存器。
8．多触发源。
9．9个灵活的PIE中断。
SOC操作原理：
与以往的ADC类型不同，TMS320F28027的ADC为3型，它是基于SOC的而不是基于序列的。SOC可以配置定义一个单独通道的独立转换。包括三种配置：开始转换的触发源，转换的通道，采样窗口的大小。每个SOC是独立配置的，可以有很多种触发源，通道，采样窗口大小的组合。如果需要，多个SOC可以配置成一样的触发源，通道，采样窗口大小。这提供了一种灵活的配置方法。可以配置转换在不同通道用不同的触发独立采样。可以用一个单独的触发过采样一个相同的通道。可以创建同一个触发不同通道的转换序列。
SOCx的触发源由ADCSOCxCTL寄存器中的TRIGSEL和ADCINTSOCSEL1或 ADCINTSOCSEL2 寄存器配置。软件可以通过ADCSOCFRC1寄存器产生一个SOC事件。通道和采样窗口大小可以通过ADCSOCxCTL寄存器的CHSEL和ACQPS配置。
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采样保持窗口：
外部驱动能力的不同影响推动模拟信号速度和有效性。有一些电路需要更长的时间，使电荷正确地转移到ADC的采样电容。为了满足需求，ADC可以在SOC中独立地控制采样窗口的宽度。每个ADCSOCxCTL寄存器都有6位域，ACQPS，用来决定采样保持窗口的大小。写到这个位域的值要比期望的采样保持窗口的包括的周期要少1。例如：位域的值为15，那就需要16个周期来采样。允许最少的采样周期是7（ACQPS=6）。完成一次转换的时间由采样时间加转换时间（13个ADC时钟）组成。
ONESHOT单次转换支持：
该模式将允许你在循环计划的下一个SOC触发时，执行一次循环转换。这种模式只适用于循环轮中的通道。那些没有配置在循环轮中触发的通道，将会基于ADCSOCPRIORITYCTL寄存器中的SOCPRIORITY确定优先级。
ONESHOT模式对顺序和同时采样方式作用如下：
顺序模式：只有在RR模式中的下一个激活的soc才允许生成。触发其它所有的soc均会被忽略。
同时模式：如果当前RR指针指向的SOC使能了同时采样方式，激活的SOC会从当前的指针增加到二个，这是因为同时采样方式会产生SOCx和SOCx+1的结果，而且SOCx+1不会被用户触发。
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Incoming ADC Trigger

Process sampling
with current ADC
state machine

Beginning with current Round Robin
Pointer, only set the SOCFLG
bit for next triggered sequence




AD转换的优先级：
当数个SOC标志同时被设置，两种形式的优先级顺序中的一种决定它们转换的顺序。默认的决定方式是轮转。在这种策略中，没有某个SOC会有比其它更高的优先级。优先级由轮转指针决定。ADCSOCPRIORITYCTL寄存器中的RRPOINTER指向最后转换的SOC。最高优先级SOC就是下一个比RRPOINTER值大的SOC，在SOC0到SOC15中轮回。复位时的值是32，因为0表示转换已经发生。当RRPOINTER值为32，最高优先级的是SOC0。当ADCCTL1.RESET被置位或者SOCPRICTL寄存器被写入，RRPOINTER被设备复位。
ADCSOCPRIORITYCTL寄存器的SOCPRIORITY可用于配置所有SOC的优先级。如果一个SOC被设置成高优先级，它将会当前转换完成之后中断轮转，把自己插入到下一次转换中。当转换完成，轮转在被中断处继续。如果两个高优先级的SOC同时被触发，编号较低的SOC被优先考虑。
同时采样模式：
在某些应用中，保持两个采样的信号之间的最小延迟是非常重要的。ADC模块包括双采样保持电路，允许两个不同的通道同时采样。同时采样模式是通过ADCSAMPLEMODE寄存器为两个soc配置的。偶数SOC与接着的奇数SOC作为一对，使用同一个使能位。这一对的动作如下：
1. 其中一个SOCx的触发将开始一对的转换。
2. 一对通道的转换包括A和B对应的CHSEL的值（0-7）。
3. 两个通道同时采样。
4. A通道先转换。
5. A通道转换结束，偶数EOCx将会产生一个脉冲。B通道转换结束，奇数EOCx将会产生一个脉冲。
6. A通道的转换结果将会存放在偶数ADCRESULTx寄存器中，A通道的转换结果将会存放在偶数ADCRESULTx寄存器中。
转换结束和中断操作：
由于有16个独立的SOCx配置，所以有16个EOCx标志。在序列采样中，EOCx是直接与SOCx相关联的。在同时采样模式中，如上5所述。根据ADCCTL1.INTPULSEPOS的设定，EOCx脉冲将会发生在转换开始或者结束时。
ADC模块包括9个能被PIE标志或者通过PIE的中断，每个中断都可以配置接受EOCx信号作为中断源。哪个EOCx信号作为中断源是在INTSELxNy寄存器中配置的。另外，ADCINT1和ADCINT2信号可作为一个SOCx的触发。这有利于建立一个连续的转换。
上电序列：
ADC复位后是关闭状态。在写任意ADC寄存器之前必须置位PCLKCR0寄存器中的ADCENCLK位。启动ADC的操作序列如下：
1. 如果希望使用外部参考源，在ADCCTL1寄存器的ADCREFSEL中使能这种模式。
2. 在ADCCTL1寄存器（5-7位ADCPWDN,ADCBGPWD,ADCREFPWD）中一起启动参考源，带隙和模拟电路。
3. 通过设置ADCCTL1寄存器的ADCENABLE使能ADC。
4. 在首次转换之前延时1毫秒。
ADC校准：
任何转换器都固有一个零偏移误差和满量程的增益误差。该ADC出厂校时在25摄氏度校正两者，同时允许用户修改任何偏移量的校正应对应用程序环境的影响，如环境温度。除非处在某些仿真环境下，或者需要修改出厂设置，用户不需要执行任何特定的操作。ADC将会在设备引导过程中得到合适的校正。
厂家设定与校准功能：
在制造和测试过程中，德州仪器伴随着一对内部晶振的设置，校正一些ADC设置。这些设置内嵌在保留的OTP memory中，作为一个C语言可调用函数Device_cal()，在Boot ROM启动引导过程中，程序调用这个函数写出厂设置到各个有效寄存器。在这种情况发生时，ADC和内部振荡器不会保留他们的指定参数。如果引导程序在仿真过程中被跳过，用户必须确保校准设置能被写入各寄存器，以确保ADC和内部振荡器满足在数据手册中的要求。这可以手动调用Device_cal()，或者在应用程序中设定。
ADC零点偏移校准：
零点偏移误差被定义为，当转换一个在VREFLO电压时得到的结果。这个基本误差会影响ADC的所有转换，包括满刻度的增益和线性度指标，决定了转换器的直流精度。零点偏移误差可能是正的，或者是负的，正的意味着转换VREFLO时得到一个正的结果。负的意味着转换一个高于VREFLO的电压结果仍会是0。为了更正这种错误，两种误差的补码都会被写入ADCOFFTRIM寄存器。这个寄存器的值在AD转换结果保存到ADC结果寄存器之前会被用到。此操作被完全包含在ADC内核，所以结果的定时将不会受到影响，ADC能够保持全动态范围通过修改微调值。调用Device_cal()把厂家校正的零点偏移写到ADCOFFTRIM寄存器，用户能够修改ADCOFFTRIM的值以减少环境造成偏移误差。这个可以通过设置ADCCTRL1的VREFLOCONV位实现，不需要任何一个ADC通道。
如下步骤重新校准ADC偏移：
1. Set ADCOFFTRIM to80 (50h)

2. SetADCCTL1.VREFLOCONV to 1

3. Perform multiple conversions on B5 (i.e. sampleVREFLO) and take an average to account for board noise

4. Set ADCOFFTRIM to 80 (50h) minus the averageobtained in step 3

5. SetADCCTL1.VREFLOCONV to 0.

文件DSP2802x(3x)_Adc.c中的AdcOffsetSelfCal()函数实现了以上操作。
ADC满量程增益校准：
增益错误是一个增量，随着输入电压的增加。满量程增益错误发生在输入电压最大值的时候。如同偏移误差一样，增益误差可能是正的也可能是负的。一个正的满量程增益误差，意味着输入未来最大值之前转换结果就已经到达最大值。一个负的满量程增益误差，意味着转换结果永远达不到最大值。校正函数Device_cal()会写一个厂家调整值到ADCREFTRIM寄存器以矫正ADC的满量程增益误差。这个寄存器在调用Device_cal()之后不应该被改动。
ADC偏移电流校正：
为了增加ADC的精度，Device_cal()函数同样会向ADC的一个寄存器写入厂家调整值矫正偏移电流，这个寄存器在调用Device_cal()之后不应该被修改。
程序设计：
以CPU TIM0为触发，同时采样两路电压。
程序：
1. /*********************************************

2. 标题：ADC_test.c

3. 软件平台：CCS v5.2

4. 硬件平台：C2000 LaunchPad

5. 主频：60M

6. 描述：练习ADC,同时采样模式，ADCINA4与ADCINB4

7. 基于2802x C/C++ Header Files V1.26

8. author：小船
9. data：2012-10-08

10. As supplied, this project is configured for "boot to SARAM"

11. operation. The 2802x Boot Mode table is shown below.

12. $Boot_Table

13. While an emulator is connected to your device, the TRSTn pin = 1,

14. which sets the device into EMU_BOOT boot mode. In this mode, the

15. peripheral boot modes are as follows:

16. Boot Mode: EMU_KEY EMU_BMODE

17. (0xD00) (0xD01)

18. ---------------------------------------

19. Wait !=0x55AA X

20. I/O 0x55AA 0x0000

21. SCI 0x55AA 0x0001

22. Wait 0x55AA 0x0002

23. Get_Mode 0x55AA 0x0003

24. SPI 0x55AA 0x0004

25. I2C 0x55AA 0x0005

26. OTP 0x55AA 0x0006

27. Wait 0x55AA 0x0007

28. Wait 0x55AA 0x0008

29. SARAM 0x55AA 0x000A <-- "Boot to SARAM"

30. Flash 0x55AA 0x000B

31. Wait 0x55AA Other

32. Write EMU_KEY to 0xD00 and EMU_BMODE to 0xD01 via the debugger

33. according to the Boot Mode Table above. Build/Load project,

34. Reset the device, and Run example

35. $End_Boot_Table

36. **********************************************/

37. #include "DSP28x_Project.h" // Device Headerfile and Examples Include File

38. #include "LEDs.h"

39. interrupt void tim0_isr(void);

40. interrupt void ADC_convered(void);

41. Uint16 ADCINA4_Voltage_sum = 0;

42. Uint16 ADCINB4_Voltage_sum = 0;

43. Uint16 ADCINA4_Voltage = 0;

44. Uint16 ADCINB4_Voltage = 0;

45. char convered_count = 0;

46. void main(void)

47. {

48. // Step 1. Initialize System Control:

49. // PLL, WatchDog, enable Peripheral Clocks

50. // This example function is found in the DSP2802x_SysCtrl.c file.

51. InitSysCtrl();

52. // Step 2. Initalize GPIO:

53. // This example function is found in the DSP2802x_Gpio.c file and

54. // illustrates how to set the GPIO to it's default state.

55. // InitGpio(); // Skipped for this example

56. // Step 3. Clear all interrupts and initialize PIE vector table:

57. // Disable CPU interrupts

58. DINT;

59. // Initialize PIE control registers to their default state.

60. // The default state is all PIE interrupts disabled and flags

61. // are cleared.

62. // This function is found in the DSP2802x_PieCtrl.c file.

63. InitPieCtrl();

64. // Disable CPU interrupts and clear all CPU interrupt flags:

65. IER = 0x0000;

66. IFR = 0x0000;

67. // Initialize the PIE vector table with pointers to the shell Interrupt

68. // Service Routines (ISR).

69. // This will populate the entire table, even if the interrupt

70. // is not used in this example. This is useful for debug purposes.

71. // The shell ISR routines are found in DSP2802x_DefaultIsr.c.

72. // This function is found in DSP2802x_PieVect.c.

73. InitPieVectTable();

74. // Step 4. Initialize all the Device Peripherals:

75. // This function is found in DSP2802x_InitPeripherals.c

76. // InitPeripherals(); // Not required for this example

77. // Step 5. User specific code:

78. InitAdc();

79. EALLOW;

80. AdcRegs.ADCSAMPLEMODE.bit.SIMULEN0 = 1; //同时采样
81. AdcRegs.ADCSOC0CTL.bit.CHSEL = 4; //soc通道选择
82. AdcRegs.ADCSOC1CTL.bit.CHSEL = 12;

83. AdcRegs.ADCSOC0CTL.bit.ACQPS = 6; //采样时间
84. AdcRegs.ADCSOC1CTL.bit.ACQPS = 6;

85. AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 1; //soc触发选择,TIM0

86. AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; //结果存入寄存器才产生中断
87. PieVectTable.ADCINT1 = &ADC_convered;

88. AdcRegs.INTSEL1N2.bit.INT1SEL = 1; //中断线1选择soc1

89. AdcRegs.INTSEL1N2.bit.INT1CONT = 0;

90. AdcRegs.INTSEL1N2.bit.INT1E = 1; //中断使能
91. PieCtrlRegs.PIEIER1.bit.INTx1 = 1; //使能int1.1

92. EDIS;

93. /****************设置定时器，用以触发ADC*****************/

94. CpuTimer0Regs.TPR.bit.TDDR = 59;

95. CpuTimer0Regs.TPRH.bit.TDDRH = 0; //对输入时钟60分频，60M/60=1M

96. CpuTimer0Regs.PRD.all = 500000;//定时0.5s

97. CpuTimer0Regs.TCR.bit.TRB = 1; //reload

98. CpuTimer0Regs.TCR.bit.TIE = 1; //使能中断
99. CpuTimer0Regs.TCR.bit.TSS = 0; //开始计数
100. EALLOW;

101. PieVectTable.TINT0 = &tim0_isr;

102. PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //使能PIE

103. PieCtrlRegs.PIEIER1.bit.INTx7 = 1; //使能int1.7

104. IER |= 0x0001;//使能GROUP1

105. EINT;

106. EDIS;

107. LEDs_init();

108. while(1)

109. {

110. };

111. }

112. interrupt void ADC_convered(void)

113. {

114. LED_toggle(LED2);

115. ADCINA4_Voltage_sum += AdcResult.ADCRESULT0;

116. ADCINB4_Voltage_sum += AdcResult.ADCRESULT1;

117. AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

118. PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

119. convered_count++;

120. /*********转换16次，取平均值*********/

121. if(convered_count > 15)

122. {

123. ADCINA4_Voltage = ADCINA4_Voltage_sum >> 4;//相当于除以16

124. ADCINB4_Voltage = ADCINB4_Voltage_sum >> 4;

125. ADCINA4_Voltage_sum = 0;

126. ADCINB4_Voltage_sum = 0;

127. convered_count = 0;

128. }

129. }

130. interrupt void tim0_isr(void)

131. {

132. LED_toggle(LED0);

133. PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

134. }

135. //===========================================================================

136. // No more.

137. //===========================================================================

程序运行结果：
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Property Value
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