C2000 for Digital Power Solutions and Digital Controlled LED Lighting System

Oct. 2011 FAE Ricky Zhang ricky-zhang@ti.com

Agenda

- C2000 Application & Digital Power / LED Lighting Market
- What is Digital Power
- Value of Digital Power
- Digital Controller Key Considerations
- What is Digital Controlled LED Lighting System
- LED Lighting and Communications
- Why C2000 for Digital Power
- Power Supply Topologies & Control Mode
- LED Control Techniques
- Software Examples and Digital Power Libraries
- LV Development Kits and Solutions
- HV Power Supply Kits
- LED Lighting Kits
- Development Support

C2000 Applications & Digital Power / LED Lighting Market

Digital Power Is a Technology Applicable to Many Markets

Digital power impacts broad applications

Challenges

- Programming
- Digital design learning curve
- Redesigning for varying power supply models
- Efficiently managing multiple load points
- Minimizing component count -

What developers need

- Easy-to-use modular software
- Training for all experience levels
- Scalable, programmable MCU platform
- Performance
- Integrated hardware

What is Digital Power

What is Digital Power?

Simply put, using a real time MCU to control the output of a power supply.

An Example Switch-Mode Power Converter

- It's a discrete control system
- It uses analog compensator/contro ller
- The controller is both a PWM generator and compensator/contro ller

The Block Diagram of the Example Switch-Mode Power Converter

Goal: maintain constant Vout regardless of change in Vin or load, within spec.

Example Digitally Controlled Switch-Mode Power Converter

Block Diagram of Digitally Controlled Power Converter

 The controller block is what differentiates between a digital power system and a conventional analog power system

within spec.

Value of Digital Power

Value of Digital Power

Increased Peak & Light Load Efficiency

- PFC Stage

- Support for Interleaved Topologies
- Active Phase Management (Shedding phases for light load efficiency improvement)
- Dynamic Boost Voltage Adjustment
- Dynamic Switching Frequency Adjustment
- Support for New Advanced High Efficient PFC Topologies
 - ➤ (ZVS/ZCS) Bridgeless PFC

- DC/DC Stage

- Adaptive Deadband Adjustment & Dynamic Switching Frequency Adjustment
- Ideal Diode Emulation
- Dynamic SyncFET Control (Soft On/Off Control)
- Burst Mode Support
- Support for New Advanced High Efficiency Topologies
 - Resonant LLC with Direct SyncFET Control
 - Dual Bridge DC/DC

Value of Digital Power - Continued

Integration, Reduced System Cost with Improved Reliability & Increased Power Density

- PFC Stage
 - Support for Interleaved and Bridgeless Topologies
 - Integrated Input Power Measurement
 - Integrated Protection (Analog and Digital Comparators)
 - Integrated AC Drop Detection & Recovery
 - Integrated Monitoring w/ Fault Prediction Capabilities to Improved Reliability
 - Primary to Secondary Communication & Frequency Synchronization
- DC/DC Stage
 - Integrated Protection (Analog and Digital Comparators)
 - Integrated Current Sharing / Support for Redundant Systems
 - Constant Current and Power Support
 - Direct SR Control Including Pre-Bias Startup Support
 - Integrated Monitoring and Communication Capabilities w/ Fault Prediction Capabilities
 - Integrated Copper Trace Current Sensing with Calibration Support
 - Non-Linear Control For Improved Transient Response

Value of Digital Power - Continued

Support for Accurate Measurement, Reporting, Data Logging & Calibration:

- Direct & Indirect Techniques for Input Power & I_RMS Current Measurement & Reporting
- Integrated Memory for Data Logging (Data-flash, FRAM, etc...)
- Support for Direct Temperature Monitoring & Calibration
- etc...

Increased Flexibility & Configurability:

- Reduced Time to Market; Feature-Set Adjustments with Simple Firmware Updates vs. Complete Hardware Redesigns...

- Increased Configurability with Possible GUI Support

- Controller Standardization; Will simplify control design over time as engineering teams become comfortable with a standard controller with Flexibility to Support a Wide Set of Topologies

Value of Digital Power - Continued

Other Performance Enhancements:

- Improved Power Factor / THD Across the Load Range: High Performance ADC with up to 8x Oversampling Capabilities
- Improved Transient Response with Non-Linear Control Capabilities across range
- Reduced EMI with Frequency Dithering
- Flexible Power Up-Down Sequencing
- etc...

Digital Controller Key Considerations

Digital Power Is a Time Sampled Control System

- Output sampling and control update happen on periodical basis same as switching mode power supply
- Key difference is control update is not affected by current output, rather output of certain time period before – sample to control update delay

- · Sample to control update delay may or may not be the same as sampling period
- Minimizing this delay is critical to performance of digital power. This delay directly erodes into control loop phase margin.
- Key contributors to the delay are
 - A/D conversion delay -> Fast A/D conversion time, advanced A/D interrupt, flexible sequencing control
 - Time it take to execute the compensation -> Fast CPU speed and high processing power, CLA, on-chip analog comparators for peak mode current control or c-b-c current limiting

Other Key Considerations

- Sample accuracy and resolution ADC resolution
- Calculation accuracy and resolution CPU word length and computing power
- Control/PWM accuracy and resolution PWM resolution
- Multiple loops, multiple tasks (monitoring and supervision, communication, etc.), multiple rails ADC speed, CPU speed and processing power

What is Digital Controlled LED Lighting System

An efficient LED system

- 1.Power supply
- 2.LED control
- 3.Communications (PLC and others)

MCUs can play a role in all three stages

Benefits of MCUs in LED lighting

- Higher efficiency
- High dimming ratio
- Very high PWM frame clock possible for no strobing effects
- Interleaving
- PWM or constant current dimming
- Performs all power management functions needed
- Adds flexibility in design and in manufacturing
- Communications/control
- Accuracy, precision and flexibility
- LED temperature sensing for increased reliability
- Adaptive dimming based on usage, aging, or ambient lighting conditions
- No separate housekeeping MCU required

TI MCUs are shipping today in...

- Light bulb replacements PAR30, MR16, etc.
- LED lighting ballasts
- FL ballasts
- LCD backlights
- Wireless lighting control – ZigBee, KNX
- Wired lighting control
 - DALI, Triac dimming, DMX-512,
- Power line

C2000 LED Target Markets

Smart Lighting

Market Needs:

- AC/DC conversion + PFC
- DC/DC conversion
- LED lighting control
- Communications (PLC, DALI, DMX, KNX, …)
- Advanced monitoring functions
- High efficiency power conversion

Typical analog designs could use 5 or more controllers plus related circuitry!
 Competitive digital designs do not have the MIPS to implement all of these functions and implement them well!

US high-brightness LED market projected to triple in size by 2014 (\$350 million) The market is growing!

C2000 LED Lighting Value Proposition

C2000 MCUs bring high levels of integration and advanced functionality to LED lighting applications

Integration:

Control with a single C2000 MCU:

- Power supply (AC/DC, PFC, DC/DC)
- LED driver stages
- Communications (PLC, RF, DALI, DMX, etc.)

Advanced Functionality:

Digital control brings flexibility to implement advanced functions:

- Temperature monitoring and correction
- Failure monitoring and correction
- Ambient Lighting adjustment
- Safety Functions
- LED aging color/brightness correction
- Color mixing and precise color tone adjustment

- Reduce BOM cost
- Reduce system complexity
- Reduce board size
- Digital power efficiency
- Dynamic response to changes at the system level
- Easy field upgrades
- Add differentiation
- Easy to implement with a digital system

C2000 Integration Picture

- 1. Integration of the power conversion from AC input through DC output
- 2. Integration of current control for dimming and brightness adjustment
- 3. Integration of PLC and advanced communications

Device Specific:

- Optimized DSP-based core provides headroom to implement all functions
- Integrated ePWM and ADC channels allow precise control of multiple LED strings
- Fast and high-resolution ADC and ePWMs allow greater dynamic response leading to increased power efficiency and reduced side-effects on the output such as flickering
- Unique IP such as the VCU on F2806x devices allow implementation of advanced communications applications such as power line communications
 - Unheard of on a low-cost MCU!

LED Lighting and Communications

Why LEDs and communications?

- Greater system intelligence
 - Coordinated lighting for applications such as stage lighting or traffic signals
- Remote control
 - For example, one could remotely disable/enable the lighting in large industrial system
 - Emergency or safety controlled lighting
- Failure reporting
 - Instant knowledge and corrective action if a lighting module fails
- Monitoring of the environment
 - Could feedback environmental conditions to a central hub whom could then increase or decrease brightness levels or change color levels depending on conditions
 - PLC is popular due to easy installation and low cost

TI Lighting Communications and Control

- TI solutions solve issue of lighting comms and control without expensive re-wiring
- Control via wireless
 - 2.4GHz, <1GHz
 - ZigBee, 802.15.4, DALI over SimpliciTI, proprietary
 - 6loWPAN
- Control via "wired"
 - DALI, DMX-512, KNX, etc.
 - Power line communications (PLC)
 - DALI over PLC
 - PLC lighting control
 - Streetlight control

Intelligent lighting tools

Protocol	MCU	Initial code dev platform	Certification/standard	Demo platform	Status/ Comments
DALI	MSP430	F2619	DALI-complete	TPS62660EVM-338	Demo code and reference design available http://focus.ti.com/general/docs/litabsmulti plefilelist.tsp?literatureNumber=slaa422
DMX512	MSP430	F2012	DMX-512—complete	Wall washer reference design	Demo code and reference design available upon request
PLC (SFSK)	C2000	F2803x	EN50065Complete	TMDSPLCKIT-V1	Available http://focus.ti.com/docs/toolsw/folders/print /tmdsplckit-v1.html
PLC (OFDM)	C2000	F2803x	EN50065(Cenelec) IEC 6100-3	TMDSPLCKIT-V2	Up to 76.8KBPS, 24-94.5kHz Released http://focus.ti.com/docs/toolsw/folders/print /tmdsplckit-v2.html
KNX	MSP430	MSP430F2	EN 50090 ISO/IEC 14543-3-x	Wienzierl / Tapko	Available through 3P
KNX-RF	MSP430/ CC25xx	MSP430F2/ CC1101	EN 50090 ISO/IEC 14543-3-x	Wienzierl	Available through 3P
6loWPAN	CC430/ CC25xx	CC430 or CC25xx			Available through 3P
802.15.4	MSP430/ CC25xx	F541x/5x CC25xx	802.15.4—complete	Multiple	Released http://focus.ti.com/analog/docs/gencontent. tsp?familyId=367&genContentId=24198
ZigBee	MSP430/ CC25xx	F5438 CC25xx	ZigBee—complete	Multiple	Released http://focus.ti.com/analog/docs/gencontent. tsp?familyId=367&genContentId=24198

Communications - DALI

- DALI stands for Digital Addressable Lighting Interface and is a worldwide standard protocol set out in IEC62386.
- Bidirectional digital protocol used to control electronic lighting ballasts.
- 0-16V (nominal) twisted pair is the standard physical layer.
- Can control up to 64 devices with each device being able to take part in a maximum of 16 "scenes".
- DALI over PLC also has had some interest from customers

Communications – Power Line Communication

PLC is a robust means of communicating over power lines.

Applications

- E-Metering
- Lighting
- Solar
- Industrial
- EVSE (Electric Vehicle charging)

Technologies (modulation schemes)

- FSK
- S-FSK
- OFDM

Standards

- Prime
- G3
- IEC 61334

Regulations

- CENELEC
- FCC
- ARIB

TI PLC Modem Development Kit (TI PLC DK)

TI PLC DK contains:

- 2 PLC modems
- Power supply and cables
- GUI and documentations
- Run any IP applications through PC host
- Part#: TMDSPLCKIT-V2
- Price: \$599 USD
- Distribution and TI eStore
- plcSUITE[™] Software available via download

- Robust narrowband PLC modem over lowvoltage/medium-voltage power line
- PLC standards/modulation supported
- PRIME
- G3
- FlexOFDM[™]
- IEC61334 S-FSK
- Scalable data rates up to 128 kbps for single phase

- Software reference design package: plcSUITE APIs, Libs, source codes
- AFE operating frequency range
 9–500 kHz (usage of different filters)
- Easy integration into end-point or network devices of AMR/AMI systems
- NRE and royalties FREE

Why C2000 for Digital Power

The C2000 Advantage for Digital Power Supplies

Real-world application software and kits Fixed- and floating-point math libraries, application-specific frameworks, optimized control blocks, model based software

36
C28x Core

The 32-bit C28x core is at the heart of every C2000 28x microcontroller. Based on a DSP architecture, the core is optimized to quickly execute math-based operations, but can also handily process general-purpose code.

C28x CPU

- 32-bit fixed-point DSP
- RISC instruction set
- 8-stage protected pipeline
- 32x32 bit fixed-point MAC for single-cycle 32-bit multiplys
- Dual 16x16 bit fixed-point MACs
- •Single-cycle instruction execution

Modified Harvard Bus Architecture

- · Separate data and instruction buss
- Two data buses one for read, one for write
- Enables fetch, read, and write in a single cycle

Emulation Logic

- Real-time emulation allows interrupt servicing even when main program is halted
- Debug host has direct access to registers and memory
- Enables data logging to the debug host
- Multiple hardware debug events and breakpoints

Piccolo ADC

ADC Improvements

Performance	Characteristics
12-bit 4.6/3.1 MSPS up to 16 Channels 2 S/H	Re-cyclic Architecture (hybrid of SAR + pipeline) Design 4 Support Pins Much Lower Power Consumption (~11mA @ 3.3V) Ratiometric (differential and unipolar) Gain & Offset Trim Registers (with internal AGND select) Rail To Rail Range (0-3.3V) Sampling Window Can Vary Between Channels Internal Temp Sensor Connection Internal Or External Reference Selection Early Interrupt Generation

Improved Triggering Mechanisms Enables Easier Support For Multi-Frequency & Phase Sampling

EPWM Comparator Support - Trip Inputs

EPWM - Dual Edge Control Traditional Single Edge Control: Output Is Updated Once Per PWM Period And There Is A Full Period Output Delay

Dual Edge Control: For The Same PWM Frequency, Output Is Updated Twice In A PWM Period And Output Delay Is Reduced To Half A Period

High Resolution PWM

	Update Period	PWM Step		
<u>EX:</u>		25 ns	10 ns	150 ps
Target PWM f = 189.753KHz	(kHz)	(bits)	(bits)	(bits)
50% Duty Cycle	20	11.0	12.3	18.3
40MHz SYSCLK	50	9.6	11.0	17.0
	100	8.6	10.0	16.0
	150	8.1	9.4	15.4
189.755 KHz, error = 2Hz = 0.001%	250	7.3	8.6	14.7
No Hi-Bes	500	6.3	7.6	13.7
190.476KHz error = 721 Hz = $0.38%$	750	5.7	7.1	13.1
	1000	5.3	6.6	12.7
	1500	4.7	6.1	12.1

2000

11.7

5.6

4.3

Math Engine: FPU + CLA + VCU

Floating-point at the core delivers:

- Performance boost
- Ease of use/time to market
 - Eliminate scaling and saturation
 - Better support for meta-language tools
- Better Code Efficiency

Control Law Accelerator adds:

- Extra 80 MIPS performance
- Parallel control loops

New VCU adds:

- Viterbi, Complex Math, CRC
- 75 added math instructions

Power Supply Topologies & Control Mode

Dual Controller Arch

Single Primary Controller Arch

Power Stage Topology Support - PFC

-0

0

Power Stage Topology – Iso. DC/DC

Power Stage Topology – Non-Iso DC/DC

Power Stage in the Loop

Voltage Mode

Avg Current Mode

Peak Current Mode

Constant Power

Peak Mode Current Control

LED Control Techniques

Power Topology - TMDSDCDCLEDKIT

Voltage bias level control and duty cycle dimming

Control Explained... - TMDSRGBLEDKIT

- Current always flowing through LED's
- Average current through LED's is adjusted by PWM duty cycle toggling
- Dimming is achieved by lowering and raising the average current flowing through the LED's
- Color levels are achieved by controlling the current levels through red, green, and blue LED strings. These LED light outputs mix to create the desired color output.
- By dimming red, green, and blue strings simultaneously, precise color control can be maintained while varying the brightness

TMDSRGBLEDKIT – More Advanced Control

With more advanced PWM generation, color hue could be precisely maintained while dimming an individual string:

- Varying the period of the PWM chopper waveforms controls the color hue
- Varying the period of the overall PWM on/off periods control the brightness and dimming

• While dimming, color hue can be precisely maintained as long as the PWM chopper frequencies are unaltered during the overall "on" periods

Temperature Issues

- Average lifetime is based on assumptions of temperature. The average LED lifetime can be 50K hours or greater. With higher temperature this number becomes lower.
- As the LED junction temperature increases, luminous flux decreases.
- Other LED characteristics change with temperature
- A heatsink is required to maintain good thermal characteristics.
- If an temperature sensor is mounted to the LED panel, a microcontroller could compensate light output and/or provide overheating warnings to the system

Aging Compensation

- Like other light sources, LEDs age with time. This aging decreases the lumen output with respect to current. (see below)
- A digital controller could gradually increase the amount of current necessary to keep light output constant through the lifetime of the LED.
 - This could be done via a lookup table

Figure 6b: Degradation characteristics^(*) of the Golden DRAGON[®] Plus with ThinGaN technology for $T_s = 55^{\circ}C$ and $T_s = 85^{\circ}C$ (grouping current $I_F = 0.35$ A)

Ambient Light Compensation

- LEDs should light an area to a specific room brightness.
- Sense the current ambient light via a luminosity sensor
- A microcontroller could then use this sensor's input to control the current reference for the LED strings.
- Applications:
 - Streetlighting: Use LED power only during dawn/dusk/eclipses when ambient light is not high enough.
 - Commercial/Industrial Lighting: Maintain light levels in a room to a regulated safe level given by the company.

Dimming scheduler

- When full brightness is not always required LED lights could be dimmed (outdoor, office, architectural)
- Additional function maybe to vary Dimming profile depending on outdoor light sensor

Software Examples and Digital Power Libraries

Control Software Basics

- Typically want to have one control loop interrupt and multiple background tasks
 - Single control loop interrupt runs all control loops
 - Enables software to be simple and loop execution time to be very deterministic
- For multiple control loop, the control loop interrupt runs at the speed of the fastest loop and the other loops are divided into sections
- Background loop runs all other tasks and services noncontrol (lower priority) interrupts
- This is TI's method for control software, some customers use and RTOS or other control schemes. The key is that the control loops must execute at a precise rate.

Software Structure

Example: Rectifier Software

Software Examples and Libraries

- TI's controlSUITE software platform includes examples and modular software libraries
 - With one download controlSUITE provides all digital power software and libraries for C2000 MCUs
- Digital power library uses a modular software approach, with each part of the system being an easy to use software block
 - Over 20 blocks for the C2000 CPU and the CLA
 - Digital power library includes detailed documentation for each block
 - Modular approach enables easy software development

Simple Open-Loop Diagram

Macro Module Connection

Initialisation in C:

// pointer & Net declarations
int *CNTL_Ref1, *CNTL_Fdbk1, *CNTL_Out1;
int *BUCK_In1, *ADC_Rslt1;
int Vref, Duty, Vout;

// "connect" the modules CNTL_Ref1 = &Vref; CNTL_Out1 = &Duty; BUCK_In1 = &Duty; CNTL_Fdbk1 = &Vout; ADC_Rslt1 = &Vout;

Run-time macro execution:

; execute run-time macros ADC_SEQ1_DRV 1 CNTL_2P2Z 1 BUCK DRV 1

Example: Example PFC + PSFB

LV Development Kits and Solutions

Digital Power and Inverter Kits

Digital Power Experimenter's Kit Application Development

\$229 Kit Includes

- F2808 controlCARD
- 2-rail DC/DC EVM using TI PowerTrain[™] modules (10A)
- On-board digital multi-meter and active load for transient response tuning
- Code Composer Studio v3.3 with code size limit of 32KB
- C2000 Applications software with example code
- Full hardware details
- Quick Start Guide
- 9V power supply
- Digital Power Supply workshop teaching material and lab software

Stand alone JTAG emulator required. <u>Recommended emulators.</u>

Part number: TMDSDCDC2KIT

Digital Power Developer's Kit Application Development

\$325 Kit Includes

- F28044 controlCARD
- 8-rail DC/DC EVM using TI PowerTrain[™] modules (10A)
- Code Composer Studio v3.3 with code size limit of 32KB
- C2000 Applications software with example code
- Full hardware details
- Quick Start Guide
- 9V power supply

Stand alone JTAG emulator required. <u>Recommended emulators.</u>

Part number: TMDSDCDC8KIT

2011-12-13

Resonant DC/DC Developer's Kit Application Development

\$229 Resonant DC/DC Kit Includes

- F2808 controlCARD
- Single transformer LLC type resonant DC/DC EVM
 - 16-22V DC input, 15 watt 12V regulated DC output, with 50mV ripple under full load
 - Four different feedback methods
 - In-rush current sensing
 - Active load for transient response tuning
 - Onboard USB JTAG emulation
- Code Composer Studio v3.3 with code size limit of 32KB
- C2000 Applications software with example code

No external emulator required!

Part number: TMDSDCRESKIT

2011-12-13

Renewable Energy Developer's Kit Application Development

\$349 Renewable Energy Kit Includes

- F2808 controlCARD
- ~45 Watts DC/AC Inverter
 - 15-20V DC input, 30V AC output, ~45 Watts
 - Front end single phase boost
 - Single phase inverter output implemented; board designed for single or three phase
 - Battery charging and management
 - Relay to switch between battery & solar panel.
 - AC line sensing and synchronization
 - All necessary voltage and current measurements for advanced development
- Code Composer Studio v3.3 with code size limit of 32KB
- C2000 Applications software with example code

Stand alone JTAG emulator required. Recommended emulators.

Part number: TMDSENERGYKIT

AC/DC Developer's Kit Application Development

\$695 AC/DC Developer's Kit

- F2808 controlCARD
- AC/DC EVM with interleaved PFC and phase-shifted full-bridge
 - 12VAC in, 80W/10A output
 - Primary side control
 - Synchronous rectification
 - Peak current mode control
 - Two-phase PFC with current balancing
- Code Composer Studio v3.3 with code size limit of 32KB
- C2000 Applications software with example code
- Full hardware details
- Quick Start Guide

Stand alone JTAG emulator required. <u>Recommended emulators.</u>

Part number: TMDSACDCKIT

HV Power Supply Kits

C2000 Fits in all Power Applications

Typical "Offline" Power Supply Stages for >~600W Power Supplies

High Voltage Reference SOLUTIONS

	TMDSHVBLPFCKIT	TMDSHVPFCKIT	TMDSHVPSFBKIT	TMDSHVRESLLCKIT
Topology	High Efficiency Bridgeless PFC AC/DC Developers Kit	High Voltage PFC Developers Kit AC/DC	Phase Shifted Isolated Full Bridge DC/DC Developers Kit	Resonant LLC Isolated Half Bridge DC/DC Developers Kit
Control Method	 Half Cycle RMS Feed Forward Auto Compensate Pgain, Igain, Dgain Loop Control 	 Auto Compensate Pgain, Igain, Dgain Loop Control 	 Peak Current Mode Control with Slope Compensation Voltage Mode Soft Start / Ramp OVP, OCP, UVP 	 Zero Voltage Switching Mode Zero Current Switching Frequency Modulation Voltage Mode Control Burst Mode Control Soft Start / Ramp OVP, OCP, UVP
Device	F28035*	F28027	F28027	F28027
Input / Output Voltage	•Universal 90– 260VAC Input •400VDC Output	•Universal 90-260VAC Input •400VDC Output	 •400VDC Input •12V regulated Output 	•400VDC Input•12V Regulated Output
Cost	\$450	\$249	\$550	\$375
-				
			-49	Texas Instruments

HV PFC (2 phase-Interleaved)

Description

- 85~285V AC input (universal)
- 2 phase interleaved
- PFC boost 400V
- 300W
- Isolated JTAG

Markets / EEs

- Telecom and Server ACDC power
- Industrial, UPS
- EV battery charging

HV PSFB + SR

Description

- 300~400V DC input / 12V output
- Phase Shifted Full Bridge
- Synchronous Rectifiers on output
- 600W
- Isolated JTAG

Markets / EEs

- Telecom and Server ACDC power
- Industrial, Solar DCDC
- EV battery charging

Vref 13 I2C SPI UART

HW status

Proto **V**

EVM 🗹

SW deliverables

• ZVS with V + Avg loop + simple SR

TE 🗹

ZVS with V + PCM loop + adaptive SR

HV PFC Bridgeless

Description

- 85~285V AC input (universal)
- PFC boost 400V
- Higher Efficiency
- 300W
- Isolated JTAG

Markets / EEs

- Telecom and Server ACDC power
- Industrial, UPS
- EV battery charging

HV Resonant LLC

Description

- 300~400V DC in / 12V DC out
- Half Bridge + SR / 300W
- Frequency controlled (150~500KHz)
- Higher Efficiency DCDC
- Isolated JTAG

Markets / EEs

- Telecom and Server ACDC power
- Industrial, Solar,
- EV battery charging

TEXAS INSTRUMENTS

LED Lighting Kits

C2000 LED Lighting Developer's Kits

DC/DC LED Lighting Developer's Kit

Hardware

- Piccolo F28035 controlCARD based
 platform
- Common SEPIC DC/DC power conversion stage
 - •12-20V input, 24V output
- 8 independent 10 watt LED string driver stages
 - Current sensing for each stringEach driver stage's power from
 - common SEPIC DC/DC
- Onboard isolated XDS100 USB JTAG emulation

No external emulator required!

Price: \$379 Part number: TMDSDCDCLEDKIT Available now!

Software

- Included in controlSUITE
- •Digital DC/DC SEPIC closed loop regulated control
- •Digital independent brightness control of each string based on current
- Incremental builds walk developers through the design process
- Includes CCS v4

Multi-DC/DC Color LED Kit

Hardware

• Supports up to eight LED strings of variable length and variable type LEDs

- Eight independent DC/DC power stages:
 - 6x Boost, driving RGB LED strings
 - 2x SEPIC, driving white LED strings
- •36V (max) DC input, 50V (max) DC output
- 400mA/string max current
- Piccolo F28027 controlCARD
- Onboard isolated XDS100 JTAG Emulation

• Detachable diffusion panel diffuses light output for demonstration of real-world lighting applications

Price:\$499Part number:TMDSRGBLEDKITAvailability:Now

Software

- Digital DC/DC SEPIC and Boost closed-loop, regulated control
- Digital brightness and color control of each string based on average current-mode control
- Simple GUI interface for out of the box experimentation with color mixing
- Incremental builds walk developers through the design process
- Includes CCS v4

Available in <u>controlSUITE™</u> and on the web at <u>www.ti.com/c2000tools</u>

C2000 LED Lighting Developer's Kits

	TMDSDCDCLEDKIT	TMDSRGBLEDKIT			
Topology	•Single SEPIC DC/DC stage driving 8	•6x Boost DC/DC stages			
	LED strings	•2x SEPIC DC/DC stages			
		•(Individual power stages for each LED string)			
Control Scheme	•PWM Dimming	 Average current-mode control (linear dimming) 			
Number of Strings	•Up to 8 strings of same length and same type LEDs	•Up to 8 LED strings of variable lengths and LED types			
Device	Piccolo F28035 controlCARD	Piccolo F28027 controlCARD			
Benefits	 Low cost, single power supply design 	 Flexible design topology allows variable length LED strings and LED types 			
	Individual LED string dimming	 Individual LED string dimming 			
	 Good for applications involving redundant usage of same-type LEDs and same-length LED strings 	• Capable of providing separate voltage levels for the red, green, and blue color components of RGB LED's			
		 Also good for non-RGB LED applications where variable string length or variable LED type are desired 			

C2000 Future LED Kits

Coming late 4Q 2011

C2000 LED development kit featuring integrated communications support.

Development Support ControlSUITE, Emulator, Flash Programming Tools, Simulation Software

controlSUITE Content Snapshot

Wide Selection of Emulators

Third Party	Emulator	Part Number	Description	Price
<u>Spectrum</u> Digital	XDS100	TMDSEMU100U-14T	Ultra low cost USB JTAG emulator based on TI's XDS100 emulation technology. Available from the <u>TI eStore</u> .	\$79.00
Blackhawk	USB2000	TMDSEMU2000U	Low cost XDS510 class, C2000 only USB emulator. Available from the <u>TI eStore</u> .	\$299.00
<u>Spectrum</u> Digital	XDS510LC	See Spectrum Digital's Website	Low cost XDS510 class, C2000 only USB emulator.	\$249.00
<u>Spectrum</u> Digital	XDS510USB	See Spectrum Digital's Website	USB XDS510 emulator, works with multiple TI processors, including C2000	\$1,299.00
<u>Signum</u> Systems	JTAGjet- C2000	See Signum System's Website	XDS510 class USB C2000 only emulator.	\$595.00
<u>Signum</u> Systems	JTAGjet- C2000-ISO	JTAGjet-C2000-ISO	XDS510 class, C2000 only, USB 2.0 emulator with optically isolated JTAG	\$795.00
<u>Signum</u> Systems	JTAGjet- C2000F-ISO	JTAGjet-C2000F-ISO	XDS510 class, C2000 only, USB 2.0 emulator with optically isolated JTAG and Flasher-C2000 utility	\$995.00

- Emulators also available from Beijing Wintech, Seed, Realtime, LSD, and ZLG in Asia
- Visit TI web and vendor web sites for latest update

Low-Cost Production Flash Programming

- Full Speed USB 1.1 (12 Mb/s) communication interface
- DSP can be programmed via JTAG or SCI-BOOT interface (TTL level-0-3V)
- TMS320F2808 with 128 kB Flash each can be programmed in 11 seconds, and can be erased, blank checked, programmed and verified in 22 seconds
- Up to 16 USB-FPA can be connected to one PC.

Up to 16 USBs connection from PC. Directly or via USB-HUB Via USB HUB

FlashPro2000 - Multi-FPA API-DLL

Open Code File -> data4.txt	path: C:\Elprotronic\Project\Cpp-DSP-C2	Interface: JTAG-fast
Open Password File > SN File Microcontroller Type Group: TMS320F28xx	DSP clock. [MHz] DSP Vcc CLK: 20.00 meassured:	CSM Security *** User defined **
TMS320-F2808 Target TMS320F2808 Balance: id=0x3C ver=0x03 Selected Device Information RAM - 18.0 kB; FLASH - 128 kB;	CLK: 20.00 PLL: 50.00 5.01 ∨ Check Sum Source: 0x060F6840 Memory: 0x060F6840 ∨	Write CSM password Device Action Reload Code File AUTO PROG. Verify CSM Password
report Downloading firmware to DSPDK Flash API version - 3.02 Peading Target Labeldone AI memory Blank checkingDK Flash programmingDK Veriging Check sum	Device Serialization rev-01 model.A8345A3 20060001 Read SN Next ModelGroup-Revision: rev-01 model.A8345A3 Next SN: [2006002 Format: yyyy1234	ERASE FLASH BLANK CHECK WRITE FLASH WRITE SN / Model VERIFY FLASH READ / COPY
Adapter: (C2000) FlashPro2000 STD	Erase / Write memory option:	AUTO PROGRAM

- FlashPro2000 USB Flash Programmer starting at \$219 from
 - <u>www.elprotronic.com</u>

Low-cost Flash Serial Programming Tool

- **Fast communication protocol** that works reliably with USB-to-RS232 converters
- Smart detection of which Flash sectors need to be erased (or manual section selection if desired)
- Automatic **32-bit CRC** (Cyclic Redundancy Checksum) generation and programming (allowing the firmware to verify the Flash integrity at MCU bootup)
- Reads standard **Intel Hex** file, allowing for other data (such as FPGA code) to be programmed into MCU Flash
- Creates and loads **Extended Hex Files** which contain the program data as well as the target configuration
- Creates and loads Remote Hex Files which contain a URL to an extended hex file stored on the Internet
- Can be called by other programs using **command line options**, for example for **batch programming**
- DTR/RTS control for resetting MCU in bootload mode
- Free download available from CodeSkin at http://www.codeskin.com/

	220001	by	.2 codeskin.	com 🦉	la,
t: .0M22	2	▼ Scar	n Ports		
		Program	1		
Hex File	e Configurat	ion			\$
Target:	-				
2808_A	PI3.02_20MH	lz	•		
Code Se	curity:				22
К	ev 1: FFFF		Key 2:	FEFE	
ĸ	ev 3: FEEE	_	Kev 4:	FEEE	
ĸ	ev 5: FEFE		Key 6:	FEEE	
К	ey 7: FFFF		Key 8:	FFFF	
Elash Ca					ŝ
	2 3 4 5	raseu: 6 7	8 9		
			ГП		
A B	CDEF	GН	IJ		
🔽 Sma	rt Sector Sele	ection			
App	end Checksun	n			
M Bran	nch after Prog	jramming			

C2000 Modeling & Code Generation

VisSim/Embedded Controls Developer: Model Based Development for TI C2000

www.vissim.com

The Mathworks Support for C2000

VisSim: Digital Power Preview DPBS available Q311

Familiar Analog Environment

Q&A Thanks!

