Texas Instruments Smart Grid Business Unit

www.ti.com/smartgrid

Agenda

- WW Smart Grid Activities
- TI Smart Grid Business Unit
- -TI PLC Development & Roadmap
- HW Architecture
- plcSUITE
- TI PLC FlexOFDM
- TI PLC Standard Activities
- TI PLC field test overview
- TI PLC certification and lab test procedure

WW Smart Grid Activities

Overview about WW Smart Grid activities

North America

- Obama announced \$3.5B USD government stimulus funding for Smart Grid
- US is one of the leading countries in moving to a smart grid
- Main communication technologies used:

a) meter to grid RF mesh <1GHz

b) meter to home area network (HAN) RF 2.4GHz ZigBee

- Smart Grid applications move to all IPv6 which demands higher performance &

high memory application processors

-Smart Energy Profiles at Home Area Network for smart appliances, energy monitor, etc

- OFDM based Power Line Communications for Grid-2-home, solar panel/solar

farms, smart building, street lighting applications

Overview about WW Smart Grid activities

Europe

- The European Technology Platform (ETP) estimates an investment of €390B USD until 2030

- Italian utility Enel became the first utility in the world to roll out smart meters (40 million customers. By 2006, Enel had spent \$3 billion for smart grid infrastructure and was reaping \$750 million in annual savings)

-Iberdrola, ERDF, Enel and E.ON are first rolling out smart meters with PLC

- PLC PRIME standard for AMI/AMR deploying >500K units in Iberdrola Grid in 2011
- PLC G3 standard by ERDF deploying >2K units in French Grid in 2011
- 1Mu rural meters, 34Mu city meters of G1 by ERDF 2012-2013
- France, Spain are the most experienced in PLC implementation (FSK, PRIME)
- W-Mbus for In-Home network connectivity

Overview about WW Smart Grid activities

China

- China government invests \$\$\$ on all perspectives of smart grid application: smart metering (AMR/AMI), solar energy/solar farm, Electrical Vehicle

- China State Grid Corporation Company (SGCC) invests >\$30B for 170M units smart emeter project from 2010
 - 200M rural e-meters will be replaced by the standardized e-meter in 2010- 2011
- CEPRI is the technology arm of SGCC and plays an important role in China e-meter market
 - Standard drafts, lead the bidding, certificate the e-meter
 - TI formed strategic relationship with CEPRI for SoC for smart grid market
- China Grid Architecture:
 - Core Network -> Data Concentrator: Wireless (GPRS, etc)
 - Data Concentrator Acquisition Unit: LV PLC (main) and Low Power RF
 - Acquisition Unit → eMeter: RS485 (main) and LV PLC
- Key care-about: Robustness, Cost, Power

China State Grid E-meter Project AMR System

- LPW and PLC are allowed in the connection between concentrator and e-meter or acquisition unit, but PLC is preferred by State grid now
- Acquisition unit is used to connect the RS485 e-meter to PLC concentrator
- 1 concentrator or acquisition unit can support 1 to 32 meters
- ISPN/Optical fiber/ GPRS/CDMA/ Ethernet/ 230M special wireless network/ mid voltage PLC are allowed in the connection between concentrator and server center

TI Smart Grid Business Unit

Focus segments for a Smart Grid

Smart Grid infrastructure

Smart Meters

Smart homes and buildings

Concentrators

- Power Monitoring & Protection
- Renewable Energy
- HV Circuit Breaker

- Electricity meter
- Gas meter
- Water meter

- In home display
- Thermostats
- Smart Appliances
- •Circuit Breaker
- Charging elect.
- vehicle

TI Technologies for Smart Grid Solutions

Marketing, BD, System/Application, Software team, Standardization & Government relations support

Examples of TI's System solutions for Smart Grid

TI can offer: Smart meter architecture

TI PLC Development & Roadmap

PLC for Smart Meter Application

Market

- Research reports ~250M installed smart meters by 2015
- Europe and North America are leading with Asia growing fast
- PLC is the most adopted communication technology in Smart Meters: 60% share

Popular PLC for Smart Meter Standards: -IEC-61334 S-FSK/G1, PRIME, G3, G.9955, P1901.2

PLC Frequency Bands

• PLC frequency bands in Europe

- Defined by the CENELEC:
 - CENELEC-A (3 kHz 95 kHz) are exclusively for energy providers
 - CENELEC-B, C, D bands are open for end-user applications
- Bands A, B and D protocol layer is defined by standards or proprietarily defined
- Band C is regulated CSMA access

PLC frequency bands in USA

- Single wide band from 150 to 450 kHz
- FCC band 10 kHz 490 kHz
- Access protocol defined by standard
- HomePlug broadband: 2–30 MHz

• PLC frequency bands in Japan

ARIB band 10 kHz – 450 kHz

• PLC frequency bands in China

- 3–90 kHz preferred by CEPRI
- 3–500 kHz single-band not regulated

IEC61334, PRIME, G3 and IEEE P1901.2

Parameter	IEC61334 S-FSK	PRIME(OFDM) G3(OFDM)		P1901.2(OFDM)
Modulation Size	Spread Frequency Shift Keying	DBPSK / DQPSK/D8PSK DBPSK / DQPSK/(D8PSK)		DBPSK/DQPSK/D8PSK/ Coherent Modulation
Forward Error Correction	N/A	Rate ½ Convolutional Code	Rate ½ ConvolutionalOuter RS + inner rate ½Codeconvolutional code	
Data Rate	2.4Kbps	21, 42, 64, 84, 64Kbps (w/ coding) 20.36,/34.76/(46) Kbps (with coding)		Scalable up to 250Kbps
Band plan	CENELEC-A	Continuous 42-89 KHz (defined for LV scenario)	Continuous 42-89 KHz36-91 KHz with tonelefined for LV scenario)masking for SFSK	
ROBO Mode	No	Νο	Yes	Yes
Tone Mask	No	No Yes		Yes
Adaptive Tone Map	No	Yes	Yes	Yes
MAC	IEC61334 MAC	PRIME MAC 802.15.4/G3 profile		802.15.4 based
Convergence Layer	IEC61334-4-32	IEC61334-4-32/IPv4	6LoWPAN/IPv6	6LoWPAN/IPv6
Meter Application	COSEM/DLMS	COSEM/DLMS, IP	COSEM/DLMS, IP	COSEM/DLMS, IP

TI PLC Programmable Solution

TI Narrowband PLC Solution Flexible, scalable and easy to customize

- Flexible Hardware: Single HW Digital + AFE support
 - Frequency (0-500KHz)
 - C2000 family: F28335, F2806x, F28035(piccolo-B), Concerto
 - Conformance Certified: PRIME Alliance Certification Lab
- plcSUITE SW Package:
 - Multiple standards: PRIME, G3, P1901.2, IEC61334 (S-FSK)
 - Certified SW Libs, APIs
- FlexOFDM: Further Feature Enhancements

PRIME

Features

- Terminates @ IEC4-32 LLC in F28069
- CENELEC-A band
- BPSK, QPSK, 8PSK, ROBO
- IPv4/IPv6*, automatic network formation

TI PLC formation

- Resources Usage:
 - ➢ MIPS: ∼60MHz Peak
 - ➢ RAM/FLASH: 90KB RAM, 220KB
- Room for eMeter App in F28069
- ROBO tested for crossing LV/MV transformers

Quality

- Prime Conformance Certified
- Interoperable with 4 major DC

vendors: Current, ZIV, Ormazabal, Nucleus.

• Mass deployment in Iberdrola grid

Texas Instruments

G3

- ERDF G3 Conformance Test Ready
- WW Field Tests: LV/MV transformer crossing, LV/LV field tests

HW Architecture

Application-Specific MCU – What is it?

- ASIP Application-specific instruction set processor
 - Provides <u>special instructions</u> to accelerate PLC computations
 - FEC computations (Viterbi acceleration, Galois field arithmetic)
 - FFT/IFFT acceleration
 - Complex arithmetic
 - Security engine (CRC, other instructions to accelerate AES computations)
 - Provides instructions to accelerate frequently used computations
- Benefits
 - Competes with custom ASIC in terms of cost and power dissipation while achieving full software programmability
 - Reduces MIPS, clock frequency, program memory size
 - Lower cost and power than a general purpose DSP / MCU
 - Ability to evolve implementations as PLC standards evolve

Application-Specific VITERBI Instructions

TI VCU Accelerates Communications

(Viterbi, CRC and Complex Arithmetic ASIP)

F2806x – New Piccolo Series

Performance

- 80 MHz C28x 32-bit CPU
- Floating Point Unit
- VCU (Viterbi, Complex Math, CRC)
- Control Law Accelerator
- Full software compatibility with previous generations
 6 Ch DMA

Features

- Core
 - C28x 32-bit CPU
 - Single cycle 32-bit MAC
 - 80MHz Performance
 - Floating Point Unit
 - VCU (Viterbi, Complex Math, CRC)

Control Law Accelerator

- Extra 80 MIPS Performance
- Floating Point

Memory

- Flash: 128, 256 KB
- RAM: 36, 68, 100 KB

Highlights

- Single 3.3V supply
- High accuracy on-chip oscillators (10MHz)
- Three analog comparators with 10-bit reference
- 150ps resolution on PWM frequency
- 12-bit ratio-metric ADC
- 2 x Quadrature Encoder Pulse (eQEP) Unit
- CAN 2.0B up to 16 mailboxes
- USB 2.0 FS Device

Markets: Power Line Modem, UPS, Motion and Low End Drives

Piccolo	Memory	Power & Clocking
C28x 32-bit 80MHz	256 KB Flash	• Dual Osc 10 MHz
FPU Unit	100 KB RAM	Dynamic PLL Ratio
VCU Unit	Boot ROM	Changes • POR
	Debug	• BOR
DMA-6CH	Real-Time JTAG	
Peripherals	Timer Modules	
3x Comp	8x ePWM Modules:	
Missing Clock De	tection Circuitry	16x PWM outputs
Missing Clock Der 128-Bit Securi	tection Circuitry ity Key/Lock	16x PWM outputs (8x 150ps high-res)
Missing Clock De 128-Bit Securi Converter	tection Circuitry ity Key/Lock	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP
Missing Clock Der 128-Bit Securi Converter 16 ch, 2SH, 12-bi	tection Circuitry ity Key/Lock t, 3 MSPS ADC	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP 4 x HRCAP
Missing Clock Der 128-Bit Securi Converter 16 ch, 2SH, 12-bi Serial Interfac	tection Circuitry ity Key/Lock t, 3 MSPS ADC	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP 4 x HRCAP 2 x 32-bit eQEP
Missing Clock Der 128-Bit Securi Converter 16 ch, 2SH, 12-bi Serial Interfact USB 2.0 F	tection Circuitry ity Key/Lock t, 3 MSPS ADC es S Device	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP 4 x HRCAP 2 x 32-bit eQEP Watchdog Timer
Missing Clock Der 128-Bit Securi Converter 16 ch, 2SH, 12-bi Serial Interfac USB 2.0 FS 2x SPI, 1x	tection Circuitry ity Key/Lock t, 3 MSPS ADC es S Device McBSP	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP 4 x HRCAP 2 x 32-bit eQEP Watchdog Timer 3x 32-bit CPU Timers
Missing Clock Def 128-Bit Securi Converter 16 ch, 2SH, 12-bi Serial Interfact USB 2.0 F 2x SPI, 1x 2x S	tection Circuitry ity Key/Lock t, 3 MSPS ADC es S Device McBSP CI	16x PWM outputs (8x 150ps high-res) 3 x 32-bit eCAP 4 x HRCAP 2 x 32-bit eQEP Watchdog Timer 3x 32-bit CPU Timers

105C/125C and Q100

Packages: 80-pin LQFP*, 100-pin LQFP *USB available 1Q'11

plcSUITE

TI plcSUITE Software Framework

plcSUITE[™] Software Frame

TI Prime SW Stack

TI G3 SW Stack

PLC SW Framework

- Single SW Framework supporting Prime, G3, flexOFDM, (SFSK)
- RTOS (DSP BIOS) for Scheduling
 - Multi-threading (different priorities from deadlines): HWIs, SWIs, Task
 - Inter-thread communications: semaphores, mailbox message queues, mutex
 - OS timer: sleep, timeout callback
- PLC Functional Libraries with Standard APIs (Independent of OS or HW Platform)
 - PHY, MAC, CL libraries for PRIME
 - PHY, MAC/ADP libraries for G3
 - PHY library for flexOFDM
- HAL Abstraction with Standard APIs (Same interface for discrete AFE or AFE031, F28335, F2806X)
 - AFE (ADC, ePWM, eCAP, DMA)
 - Peripherals (SPIs, UART, I2C, McBSP, GPIOs)
- Host Message Protocol (Interface to application processor)
- Embedded meter emulation application
- Enable customers to intercept at different layer as desired (e.g. at PHY layer, Host application layer), provides:
 - Functional libraries
 - DSP application examples code: Interface to PHY
 - Host application example code: Interface to Host

TI plcSUITE Host Interface Messages

Message	PRIME Standard	G3 Standard	Description
Туре			
0x00	DATA TRANSFER	DATA TRANSFER	Application specific Data messages
0x01	GET_SYSTEM_INFO	GET_SYSTEM_INFO	Get system (HW/SW) info
0x02	GET_PHY_PIB	GET_PHY_PIB	Get PHY PIB attributes from PLC device
0x03	GET_MAC_PIB	GET_MAC_PIB	Get MAC PIB attributes from PLC device
0x04	SET_INFO	SET_INFO	Set certain configuration to PLC device
0x05	SHUTDOWN	SHUTDOWN	Reset PLC device
0x06	SETUP_ALARM	SETUP_ALARM	Setup alarm notifications
0x07	ALARM	ALARM	Alarm Notification
0x08	NW_REGISTER	NETWORK_START	Initiate network registration process
0x09	NW_UNREGISTER		Initiate network un-registration process
0x0a	CONNECT	CONNECT	MAC Initiate connection setup process
0x0b	DISCONNECT	DISCONNECT	MAC Initiate connection teardown process
0x0c	LOAD_SYSTEM_CONFIG	LOAD_SYSTEM_CONFIG	Load system configuration data
0x0d	SET_MAC_PIB	SET_MAC_PIB	Set MAC PIB attributes from PLC device
0x0e	CLEAR_PHY_PIB	CLEAR_PHY_PIB	Clear certain PHY PIB attributes.
0x0f	CLEAR_MAC_PIB	CLEAR_MAC_PIB	Clear certain MAC PIB attributes.
0x10	ATTACH	ATTACH	PRIME CL-432 Establish Request and Confirm
0x11	DETACH	DETACH	PRIME CL-432 Release Request and Confirm
0x12		DISCOVER	Network Discovery
0x13	FIRMWARE_UPGRADE		FW Upgrade process.
0x0e - 0x7f	Reserved		
0x80 - 0xfe	Diagnostic messages		
0xff	Reserved		

- >90% Common Messages
- Easy migrate from PRIME to G3 or vice versa

TI Helps for Fast SW Development/Port

	PHY High-Level API					
PHY RX Manager	Statistic Output:	PHY Tx Manager				
Preamble Detection & Header Parser	RSSI, SNR, CRC, header CRC, etc	Frame Generation and Timing Control Transmitter State Machine (steady state)				
Receiver State Machine (steady state)	_					
Re-sync and Automatic Gain Control	Common State Machine	Power Control				
Front End Processing Algorithm Lib(Rx/Tx) Symbol Processing Algorithm Lib (Tx/Rx) Bit Processing Algorithm Lib (Tx/Rx) Math/Utility Lib						
TI DSP-BIOS (SWI, Scheduler, IPC, Memory Management)						
HAL Layer API						
Peripheral HAL LIB (ADC, PWM/HRPWM, DMA, UART, etc)						

All SW LIBs with Cycle Counts Available TODAY!!!

TI PLC FlexOFDM

TI FlexOFDM Definition: Customizable OFDM

• Frequency Band/Bandwith Flexibility:

- Any frequency channel: 0-500KHz, Any channel BW (today limited to 12KHz)
- Automatic channel scan for channel quality measurement and monitor
- Flexible Analog Front End: AFE031, AFE032, AFE033
- Flexible PHY Layer: Best of G3/PRIME and more ...
 - Fully automated adaptive tone map and tone mask (P1901.2 contribution)
 - Coherent modulation with pilots embedded (P1901.2 optional feature)
 - Provision for longer preamble sequence for harsh line condition
 - Optional more repetitions in the header
 - Configurable block inter-leaver sizes
 - Zero-Crossing interference cancellation
 - Others to come
- Flexible MAC Layer: Best of G3/PRIME/802.15.4e and more
 - CSMA/CA baseline
 - Customizable GTS schedule for multiple applications: DC-DC msg/SEP2.0
 - Multiple routing (AODV, LOAD, RPL, etc): p2p/p2mp, star, tree, mesh
 - Closely coupled with PHY FlexOFDM PHY features: ATM, etc.

Performance in Impulse Noise Channel

- PRIME interleaver is 2ms
 - PRIME DBPSK gives error floor with this impulse noise
 - With ROBO mode with repetition 4, will give longer interleaver
 - TI gives flexibility to provide ROBO mode
 - TI differential ROBO gives 0dB SNR for 1e-2 FER
 - TI coherent ROBO gives -3dB SNR for 1e-2 FER

Gain from coherent modulation - Example

- With realistic impulsive noise model, coherent modulation gives more than 2 dB improvement for FEC without repetitions
- Gain is even greater with more repetitions

Pilots

Time (OFDM symbols)

- Green circles denote pilots, grey denote data
- Regular time-frequency pilot structure enables channel estimation, sampling frequency offset estimation

Pilots+coherent modulation + more reptitions → Better header performance

• Enables header decoding below -5 dB even with realistic crystals

PLC-Lite in plcSUITE

plcSUITE[™] Software Frame

FlexLite/FSK Comparison (1)

- **AWGN performance:** OFDM performance in all white Gaussian noise (AWGN) 7dB better than FSK
 - FSK has to inject 2 times the signal amplitude compared to OFDM to get same performance

Standards: Multiple PLC standards are using OFDM – PRIME, G3, ITU G.9955, ITU G.hnem/IEEE1901.2

FlexLite/FSK comparison (2)

Frequency diversity: FSK may suffer from lack of frequency diversity
 Both of FSK carriers may suffer from the

FSK carriers need to be separated by a large frequency spacing to have the frequency diversity against notches in frequency domain

• An "X" kHz spacing at around 144 kHz FSK needs to be "10X" kHz at 1.8 MHz to have the same robustness to frequency selective fading

TI PLC Standard Activities

OFDM PLC Alliances and International Standards

• G3 Alliance – EDF/ERDF + 3 SC vendors + 3 meter manufacturers

- Cenelec A and FCC 145.3 478 KHz. LV/MV network
- Interoperability, mesh network , band plan in discussion
- Full scale deployment on French grid in 2014-2015. Worldwide applicability

• PRIME Alliance – Iberdrola + 3 SC vendors + 3 meter manufacturers

- CENELEC A band, LV access network
- PHY and MAC are stable. Tree topology, adding PHY ROBO mode for impulse noise
- Full scale deployment on Iberdrola grid in 2012-2013. Worldwide applicability.

• IEEE P1901.2

- Interoperable with G3 Cenelec A and G3 FCC. Band plans: Cen A, Cen B, FCC 145.3-478 KHz
- Sub-banding, coherent modulation, mesh network, beaconing, channel models, coexistence in discussion.
- Draft in progress. International standard expect in 2012

• ITU-T G.hnem

- Coherent modulation, synchronous beacons, full FCC band, robust preamble, MV/LV
- Not interoperable with G3 although G3 and PRIME Cen A are G.hnem Annexes
- Draft complete. International standard in 2012.

• SAE J2931-3 (EV – EVSE communications)

- Based on G3 (TI/Maxim). Band plan: Cen B/C/D and full FCC
- EMC testing completed at Ford. Testing at EPRI and DOE in August 2011. IPv6. 6lowPAN, SEP2.0 supported.

• ISO / IEC JWG CI for EV PLC, IEC 15118-3

- HomePlug Green PHY and G3/P1901.2 are under consideration.
- European automakers leaning towards HPGP, but auto qualified production chipsets not available

TI active participation in the Smart Grid Initiatives

TI Standard Participation & Contribution

- TI Contributes to IEEE, ITU, and ISO standards
- TI Participates in Industry Alliances
 - PRIME, G3, WiFi-WFA, Zigbee, others

• TI ITU-T G.hnem Accepted Contributions

- Pilots and coherent modulation: TI proposed add pilots to enable coherent modulation
- Interleaver: TI proposed block interleavers of length at most 10 ms (half of zero crossing)
- FEC: TI proposed concatenated coding as opposed to LDPC
- Tone spacing: TI proposed changing to multiple of PRIME / G3 tone spacings
- Preamble structure: TI proposed adding channel estimation symbols to aid in synchronization

• TI P1901.2 Technical Contributions:

- Pilots TI proposed adding pilots to enable coherent modulation
- Beacon TI proposed adding optional beacon mode with multiple beacon slots and CAP slots
- PHY operation in multiple tone masks TI proposed defining PHY operation in multiple tone masks
- Channel modeling for A/B/C/D band parameters TI lead channel model work
- MAC operation in multiple tone masks TI proposed multiple-tone mask operation in the MAC, combining ideas in 15.4 beacon mode with other features. Under discussion

TI Activity in PLC for EV/EVSE

- Multiple successful tests made with G3 FCC
- TI brings additional experience on Home Area Network Communication: LPRF or PLC
- TI can address the full system Meter to Car communication

SAE, G3 FCC, P1901.2, G.hnem Situation

- IEEE P1901.2 PHY is superset of G3 FCC
 - Incremental updates and features (interleaver, preamble, others)
- SAE J2931-3 PHY is G3 FCC subset
- MAC's are identical and based on 802.15.4 for large mesh network
 - J2931-3 MAC can be simplified for point-to-point operation
 - MAC should be stable. Evolutionary enhancements (routing, networking, etc..) will be done at Layer 3
- NB OFDM SDO's include IEEE, ITU-T
- NB OFDM Alliances: G3-PLC, PRIME Alliance
- IPV6 and SEP 2.0 supported
- Up to 300 Kbps with G3 FCC
- G3 FCC is open technology
- G3 advantage is thru transformer communications and support for large networks

TI PLC Field Test Experience

Field Test Scenarios

- LV side of transformer to eMeter
- Crossing MV/LV transformer(s) to eMeter
- Street Lighting applications
- Solar applications
- Electrical Vehicle(EV) to Electrical Vehicle Service Entity (EVSE) Communications

TI PLC Field Tests For last 180 Days

Where	When	Band/NW	Software	Results
Southern US	May 2010	CENELEC-A LV/MV	PRIME+ROBO	Channel and noise in Cenelec band
Japan	Aug 2010	CENELEC-A + FCC, MV/LV	PRIME+ROBO+subband	Cenelec + FCC band demonstration with cap bank
Southern US	Nov 2010	FCC, MV/LV	PRIME+ROBO+subband	Good SNR for MV-MV comm
Central Indiana	Dec 2010	FCC, MV/LV	PRIME+ROBO+subband	support communication on entire FCC / ARIB bandwidth
Milan	Feb 2011	CENELEC-A, LV/LV	PRIME+ROBO	Passed all the LV/LV test cases
Milwaukee, WI	Mar 2011	CENELEC-A+FCC, MV/LV	G3-CENELEC A +flex OFDM	Passed with the erasure channel with actuators
Southern US	Mar 2011	FCC, LV/LV, LV/MV	G3-FCC with flexible masks	Channel and noise captures Confirm flexOFDM tests about insufficient SNR
Hiroshima, Japan	April 2011	FCC, LV/LV	G3-FCC with flexible masks	Passed all the LV/LV test cases except the WHT case.
Beijing, China	Apr 2011	FCC, LV/LV	G3-FCC with flexible masks	Achieved up to 200m in out-door grid to meter tests Challenges in in-door tests
Spain	2011	CENELEC-A, LV/LV	PRIME	Official field deployment for hundreds of meters
Mexico City, Mexic	May 2011	CENELEC+FCC, LV/LV	PRIME and G3-FCC	Successfully pass 2 circuit-breakers for G3-FCC, PRIME has difficulty
Turkey	June 2011	CENELECA, LV/LV	PRIME & G3-CENELC	Successfully pass all test cases competitor either pass or fail

TI PRIME Based 220 Meters in Burriana, Spain

Connected Meters

MV/LV Transformer Tests in US grid

- Successfully crossed MV/LV transformer in US grid
- PHY data rates 1.5 20 kbps at a distance of
 1.6 mi
- LV-LV results upto
 350m distance
 MV-LV results up to
 3km distance

LV-LV Tests in China Grid (Apr. 2011)

- Connection made in each apartment building for variant distance for CENELEC & FCC
- Tested both day time (light load) and evening/night time (heavy load)
- Achieved upto 200m even at evening time (high noise and attenuation)

Mexico LV-LV Test (April, 2011)

CONTACTOS MONOFASICOS POLARIZADOS PAREDES DE CALIBRACION CIRCUITO 9

DISTANCIA APROXIMADA DEL TRANSFORMADOR HACIA EL GABINETE DE CONECCIONES PRINCIPAL ES DE60M, 4 CABLES DEL CALIBRE 4/0 Y UNA TIERRA FISICA DEL CALIBRE 4 20M DE DISTANCIA DEL GABINETE DE CONEXIONESE HACIA EL CENTRO DE CARGA 1 CALIBRACION 4 CABLES

Load	CEN A (40-90kHz)	CEN A with tone mask (40-90kHz with 60- 77kHz not transmitting)	CEN B (98- 122kHz)	CEN B/C (98- 138kHz)	FCC Low (145kHz- 310kHz)	FCC High (310- 478kHz)
Normal Load	ROBO: 0% FER DBPSK: 100%FER	ROBO: 0% FER DBPSK: 100% FER	ROBO: 0% FER DBPSK: 50% FER	ROBO: 0% FER DBPSK: 0% FER DQPSK: 10% FER	ROBO: 0% FER DBPSK: 100% FER	ROBO: 0% FER DBPSK: 100% FER
Additional Load	N/A	N/A	N/A	ROBO: 0% FER DBPSK: N/A	N/A	N/A

Japan – Mar 2011

- Test G3-FCC PHY communication between two modem separated by 100m, with three switchable taps at 25, 50, 75m from AC room
 - Noisy load equipment can be connected to taps. Typical load tried = space heater "Kotatsu"
- Many switchable loads at receiver in Room 2
 - plate heater, space heater, microwave oven, TV, DVD player, ...
- Results from tests using TI G3-FCC modems
 - Adding load equipment at Room 2 is the main challenge (tap loads impact SNR, but effect of loads in Room 2 more dramatic)
 - G3-FCC with 168.75 kHz bandwidth offers good performance for most loads, except for the case of IHT-only load
 - For IHT-only load, G3-FCC with 93.75 kHz bandwidth offers good performance
 - Reverse direction (room 2 -> AC room) is good for all loads tested. No problems with thermal shutdown

LV-LV Tests in Turkey

- Lab tests
 - With 200m extension cable, 34kbps achieved with G3 DQPSK
 - With 200m extension cable and contact noise (with hair dryer, etc), 34kbps achieved with G3 DQPSK
- Factory tests
 - With 350m distance, 20kbps achieved with PRIME DBPSK (Factory machine off)
 - With 350m distance, 20kbps achieved with PRIME DBPSK (Factory machines on)
 - File transfer is also ok

Street Lighting Applications

• Ckt breaker 12, phase AC to AC, was tested in CENELEC A band (PRIME)

21kbps at ~1200ft

• Ckt 17 phase BC to Ckt 12 phase AC was tested in FCC band (170-184 kHz)

10kbps at ~4000ft (=1.2km)

 Circuit breaker room that feed light poles

Courtesy of Google

Solar Applications

 Communicate between a transmitter on 4 solar panels on the rooftop to a receiver ~25 m away on power line.

- Inverter switching frequency has harmonics of 20 kHz
- Achieved error free communication of 42 kbps

Communication Across DC Charger Cable

• DC charger setup and connection of TI modem

DC charger (max 250A)

Ground wires _ Charger cable

24V battery

- Demonstrated 42 kbps in DC+/gnd configuration with charger on
- Expect at least 21 kbps in DC+/- configuration with Li-ion batteries (lower current ripple during charging)

TI PLC Certification and Lab Test

TI PLC is PRIME Certified

- Passed PRIME Conformance Test
- PHY: 100%
- MAC: 100%
- **CENELEC:** 100%
- Certification performed by Tecnalia/KEMA laboratory in Spain

DUT:	MAC: ediediediedied							
CODE	DESCRIPTION	RESULT	EXPE	CTED	VEREDICT	COMMENTS		
						i		
	2.2 PHY Test Cases: Functional Category							
	Verify error free communication (0% FER) when communicating							
2.2.1	directly over the LISN stated in the PRIME PHY Spec (20hm) and	2000 frames measured with TI's tool	at least 19	96 frames	OK			
	output level 120 dBuV, PPDU length 256 bytes							
	Verify error free communication (0% FER) when communicating					1		
2.2.2	directly over the LISN stated in the PRIME PHY Spec (20hm) and	2000 frames measured with TI's tool	at least 19	96 frames	OK	1		
	output level 120 dBuV, PPDU length 256 bytes							
	Verify error free communication (0% FER) when communicating							
2.2.3	directly over the LISN stated in the PRIME PHY Spec (20hm) and	2000 frames measured with TI's tool	at least 19	96 frames	OK	1		
	output level 120 dBuV, PPDU length 256 bytes							
	Verify error free communication (0% FER) when communicating					1		
2.2.4	directly over the LISN stated in the PRIME PHY Spec (20nm) and	2000 frames measured with 11's tool	at least 19	96 frames	OK.	1		
	output level 120 dBuy, PPDU length 256 bytes							
0.05	Verify error free communication (U% PER) when communicating	0000 frames manual with Tile is a	-		01/	1		
2.2.5	directly over the LISN stated in the PRIME PHY Spec (20nm) and	2000 trames measured with TTS tool	at least 19	96 trames	UK.			
	output level 120 dBuy, PPDU length 256 bytes							
0.05	disative event the LICN stated in the DRIME DWY Once (OObm) and	2000 frames measured with Tils teel	at least 10	06 frames	OK	1		
2.2.0	auteutileuel 100 dBul/ DDDL length 255 bides	2000 frames measured with TTS tool	acreateris	50 marries	UK.	1		
	Vertex error free communication (0%, EER) when communicating							
227	dractly over the LICN stated in the DRIME DHV Cose (20hm) and	2000 frames measured with Tils tool	at least 10	06 framer	OK	1		
	output level 120 dBul/ DDDI Llength 255		at reader 13	50 married	U.S.	1		
	Verify error free communication (0% EER) when communicating							
228	directly over the LISN stated in the DRIME DHV Spec (20hm) and	2000 frames measured with Ti's tool	at least 19	96 frames	OK	1		
2.2.0	output level 120 dBuV, PPDU length 256 bytes	2000 marries measured war no tool			U.S.			
	Verify error free communication (0% FER) when receiving input							
2.2.9	signal of 122 dBuV	2000 frames measured with TI's tool	at least 19	96 frames	OK	1		
				1		skipping this test from the certificat		
2.2.10	Verify Zero Crossing detection		50Hz nx1000	60Hz nx833	N/A	process until there is a window to		
						modify the PRIME spec		
2.4 PHY Test Cases: Signal Quality category								
	Verify that the EVM of the received signal at output level of 120			-	0 1/			
2.4.1	dBuV is above 17dB.	16.002 db (505) measured with TTS tool	>17	ab	OK	1		
	Verify that the EVM of the transmitted signal output level of 120		- 17	40		l		
2.4.2	dBuV is above 17dB.	17.33 dB (504)	>17	00	UK	1		

tecnal	ia
tecnal	ia)

PRIME Certification Procedures

- Test Categorices:
 - EMC
 - PHY
 - MAC
 - CS Layers

G3 Certification Procedures

• WS3 Focuses on PHY Interoperability Test Process

- Tests of the digital part of the PHY layer at the simulator level
- Tests of the complete PHY layer at the simulator level
- Plug fest

• ERDF Technical Lab Tests

- PHY Tests
- Data Link Layer Tests
- Upper Layer Tests

• PHY Tests Example

- Conformance to standard
- Dynamic range
- Harmonics measurements
- Robustness against impulse noise
- Robustness against white noise
- Robustness against sinusoidal noise

-

Network Registration Test

Network registration test for the following scenarios were performed successfully

PRIME Modem: PHY Test & Validation

PHY Validation

- Generate test vectors in MATLAB
 - PRIME transmit signal generated using software model
 - Add narrowband interferers and / or impulse noise in MATLAB
- Load test vectors on AMU, add impairments models and play
 - Background noise: white/colored
 - Multipath distortion using line-impedance channel model
- Receive signal in analog + digital board
- Compare results against MATLAB

VALIDATION: Measured LAB BER = MATLAB simulated BER

PHY Validation

- Transmitter set to transmit 1Vrms
- No power line connection
 - Direction connection with an attenuator
- DBPSK + FEC with 235byte transmitting
- Test results
 - A=75dB attenuation measured with 0 BER/FER
 - The received level is $1Vrms*10^{-75/20} = 200uVrms$
 - Attenuation was verified with a spectrum analyzer

LISN Measurements in TI Lab

- Follow the procedure in EN 50065-1
- Measurements on R&S FSQ-26 doing both RMS and quasi-peak measurements
- TI uses R&S ENV 216 for LISN
- Measurement Setup:

Network Validation

- Data Concentrator
- Meters
- Multi-level Network
 - Registration
 - Connection
 - Long/short Cycle Test
 - Firmware Upgrade

PRIME PHY Transmit Chain

• Transmit side block diagram

Receive side block diagram

PRIME PHY Receive Chain

Receive side analog specifications:

INSTRUMENTS