Implementing Digital Motor Control with C2000

Power Flow Block Diagram

- Power is transferred from the AC line to the motor through the rectifier, and inverter.
- The C2000 controls the flow of power from the AC line to the motor.

Content

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

The "Ideal" Motor Control

- Achieve maximum torque at every speed
- Good transient control (currents, speed)
- Efficient control
- Low EMI
- Low electrical network pollution (harmonics)
- No reactive power (power factor correction)
- Low acoustical noise level
- Board cost
- Development time

Basic Principles of DC Motors

Torque in DC Motor

Synchronous Motors: PMSM & BLDC

- From the previous slides we know that if we excite the three stator coils with threephase voltages we will get a rotating magnetic field at the centre
- All we now have to do to invent our PMSM (or BLDC) is to pivot a permanent magnet at the centre

• The rotor will always rotate at exactly the same speed as the stator, which is why this type of machine is called "synchronous"

Difference Between BLDC & PMSM

BLDC Control

- Fed with direct current
- Stator Flux commutation each 60°
- Two phases ON at the same time
- High torque ripple
- Commuation at high speed difficult
- High noise

PMSM control

- Fed with sinusoidal current
- Continuous stator flux angle change
- All phases ON at the same time
- Low torque ripple
- Higher max achievable speed
- Low noise

BLDC control strategy

Hall Effect Control of BLDC Motors

For better performance we use closed loop control

- The Hall sensors and associated electronics will generate the signals necessary for correct commutation
- Information from the Hall sensors are also used to calculate and feed back the velocity
- Only two phases conduct at any one time; for current feedback dc-link current is measured and fed back

Hall Effect Control of BLDC Motors

- Only two out of the three phases are energised at any one time
- The phases are energised in a 6 step manner
- The Hall sensors and the associated electronics will generate the signals necessary for correct commutation
- Current is then injected when the E_{bemf} of each phase as reached its flat portion. This will ensure constant torque

Hall Effect Control of BLDC Motors

In the Previous slide, we stated that we use the signal from the hall effect to inject a DC current when the Bemf reaches it flat region

- Flat current & Flat Bemf → Flat torque (i.e. constant torque)
- No need for complex PWM (i.e. Slow switching)

Back EMF of BLDC Motor

Sensorless Control of BLDC Machines

- The back-emf E_{bemf} waveform is directly related to the position of the rotor. If we could detect the zero crossing of the back-emf waveform we could deduce the position of the rotor
- We will then need to wait for 30° for the $E_{\rm bemf}$ to reach its constant region and then turn on the current in that phase
- The waiting time needed is dependant on the motor speed and can be deduced by continuously measuring the previous E_{bemf} zero crossings.
- Usually operated open loop at low speeds and when E_{bemf} becomes large enough to estimate accurately the loop is closed
- In a BLDC system only two coils are "on" at any moment in time.
- It has been shown* that $E_{\rm bemf}$ at the unconnected phase is crossing its zero point when the terminal voltage at that phase is equal to $V_{dc\ link}/2$
- In other words if we measure V_a , when $V_a = V_{dc_link}/2$ the $E_{bemf} = 0$

* "Microcomputer Control of Sensorless Brushless Motor", K. Iizuka et.al, IEEE Transactions on Industry Applications, Vol IA-21, No4, May/June 1985, pp. 595 - 601

Block Diagram of Sensorless BLDC Control

- Hall sensors are removed. Resistor dividers and on-chip ADC are used to sense phase voltages.
- Phase voltages are used to detect zero crossing of back EMF and trigger commutation
- See TI Application reports (SPRA498 and BPRA072) for more details

Speed Closed-Loop Control with Current Control

AC Induction Motors

- Invented in 1888 by Nikola Tesla
- Reliable construction: no brushes
- Simple, low cost design
- Good efficiency at fixed speeds.
- Asynchronous
- Speed and control position are expensive
- Poor performance at low speed operation
- Requires complex control to be competitive

Typical applications: industrial drives, white goods, fans, high speed applications

Induction Motor Operation

- 1. The rotating magnetic field in the stator, induces a current in the rotor
 - 2. This current will have a magnetic field associated with it
 - 3. This magnetic field makes the rotor behave like a magnet which will then follow the stator's rotating magnetic field

Important: For these currents to be induced the rotor must travel slower than the stator this is called slip:

$$S = \frac{\omega_e - \omega_r}{\omega_e}$$

Scalar Control (V/f) - Limitations

- + Simple to implement: All you need is three sine waves feeding the motor
- + Position information not required (optional).
- Doesn't deliver good dynamic performance.
- Torque delivery not optimized for all speeds

Scalar Control (V/f) Limitations

At or near nominal speed:

At low speed: Rs is no longer negligible: Vm < V

Stator voltage drop negligible: (Vm = V),

A large portion of energy is now wasted.

V/F control definition

- + Simple to implement: All you need is three sine waves feeding the ACI
- + No position information needed.
- Doesn't deliver good dynamic performance.
- Not so good at low speed.

Vector Control Field Oriented Control (FOC)

Separated excitation DC motor model

Flux and torque are independently controlled

The current through the rotor windings determines how much torque is produced.

Vector Control Concepts

- + Better dynamic response
- + Good performance at lower speeds
- Need rotor position info

FOC control Overview

Vector control:

This method is based on the dynamic model of the motor.

The Flux (Id) and The Torque (Iq) are controlled separately.

Flux and Torque are controlled **in real time.**

Some key mathematical components are required!

Stationary Reference Frame

Stationary to Rotating Reference Frame

Again the transformation equations can simply be derived by resolving f_s , along the desired axis:

dq^s to dq^e transform:

$$f_{qs}^{e} = f_{qs}^{s} \cos(\omega_{e}t) - f_{ds}^{s} \sin(\omega_{e}t)$$
$$f_{ds}^{e} = f_{qs}^{s} \sin(\omega_{e}t) + f_{ds}^{s} \cos(\omega_{e}t)$$

Inverse dq^s to dq^e transform:

 $f_{qs}^{s} = f_{qs}^{e} \cos(\omega_{e}t) + f_{ds}^{e} \sin(\omega_{e}t)$ $f_{ds}^{s} = -f_{qs}^{e} \sin(\omega_{e}t) + f_{ds}^{e} \cos(\omega_{e}t)$

Determination of Torque & Flux from Stator Currents

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

3-phase Inverter Control

Decisions that need to be made:

- How to drive complementary PWM?
 - In the Motor Control and PFC Developer's Kit we chose to use a Integrated Power Module (IPM) to generate the complementary PWM. We could have used the C2000's deadband submodule within each PWM module instead.
- In sensorless, how will we sense current?
 - > In the Motor Control and PFC Developer's Kit we chose to use low-side sensing.
 - > Low-side current sensing is more difficult, but more scalable. In high-side current sensing, amplifiers that allow high common-mode voltages are expensive.

Why Pulse Width Modulation?

A linear power amplifier will:

- waste too much power
- cost money
- heat dissipation
- bad for environment

Why Pulse Width Modulation ?

PWM representation

High efficiency switching

PWM Signal Generation

- Traditional way: comparing three-phase sinusoidal waveforms with a triangular carrier
- V_{an} = V.sin(ωt) (Van phase-neutral voltage)
- PWM consideration:
 - Time Step
 - Bit width
 - Update conditions
 - Dead time

Space Vector PWM principle

- Third harmonic injection
- Line to line voltage still sinusoidal
- PWM technique
- DSP hardware implemented
- Increase the maximum inverter output voltage of 15%
- Reduce transistor commutations
- We build the required voltage vector as a combination of one of the six basic switches configuration

Current Sensing

- Requires flexibility of triggering sample and conversion in middle of PWM pulse
- Fast ADC S/H is required
- CPU operation promptly
- 3 phase current are available under all load conditions

Flexible PWM module

Single EPWM module (in detail)

Dual Inverter + Boost

Dual - 3 Phase Inv. for Motor Drives

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

TI DMC Software Library

Interconnecting Modules

At the "C" level:

clarkInv(&dqBuffer, &fcPwm.InputBuffer)
fcPwmInputBuffer.ditherIn = randomGen1.calc(&randomGen1)
fcPwm.calc(&fcPwm);

Digital Motor Control Library (DMC-Lib)

The DMC-Lib contains:

- PID regulators,
- Clarke transforms,
- Park (& Inverse) transforms,
- Ramp generators,
- Sine generators,
- Space Vector generators,
- Speed / Position meas. / estimators
- and more...

PMSM FOC Sensorless with SMO

Content

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

Platform for Motor Control

Platform for Motor Control

IDE

DMCLibrary	NEW & OPTIMIZED	NEW	OLD
GUI	YES	Q210	NO
PFC SW	Q310 w/ new PowerLlb	Q310	Yes
Projects	ACI FOC, PMSM FOC, BLDC ; All Sensored/-less	2xPMSM FOC	1/2xPMSM, +PFC
Family Support	Piccolo F2803x Delfino F2833x Q2	Piccolo F2803x (minor mods for F2802x)	Piccolo F2803x (minor mods for F2802x)

DMC – Single Axis + PFC HV

DMC – Single Axis + PFC HV

PFC – 2PhIL

DC-AC 3 Ph Inverter

Dual Motor Control and PFC Developer's Kit

Dual Axis Motor Control Board

Controls two motors and performs PFC

--Available--

DRV8412-C2-KIT - Motor Driver for Brushed and Stepper Motors with Piccolo F28035 controlCARD

DRV8412-F28035 Brushed and Stepper Motors Control Board

INSTRUMENTS

DRV8312-C2-KIT - Three Phase BLDC Motor Kit with DRV8312 and F28035

DRV8312-F28035 Three Phase BLDC Motor **Control Board**

Control Card

Hall

Motor Connector

DC-Bus Connector

Getting Started

www.ti.com/c2000tools

	High Voltage PFC and Motor Control Developer's Kit	TMDSHVMTRPFC This kit does NO' require an extern JTAG emulator. Digital Motor Control Accessor	KIT 1.5 T col nal fac sin	5KW digital motor control mbined with 700W power ctor correction using a ngle Piccolo MCU	\$599.00 Order Now	Control SUITE
Please install the ba igital Motor Con	iseline software befo Itrol Accessories	ore installing the b s Id Motor Control De	oard spe	ecific software. 's Kit		
	Kit	Part Num	Part Number	Description	Price	Software
	AC Induction Mo	otor HVAC	IMTR	AC Induction motor with encoder	\$379.00 Order Now	Control SUITE
OR	Permanent Magn Synchronous Mo	net HVPM otor	SMMTR	PMSM motor with encoder	\$299.00 Order Now	Control SUITE
	Brushless DC Motor		DCMTR	BLDC motor with hall	\$199.00	Control

controlSUITE: Content + Content Management

Content

- Motor Control Methods Overview
- Inverter / Hardware considerations
- Software / Algorithm Considerations
- DMC Development Kits
- System Incremental Build
- Demo, Q&A

Incremental Build

1C) Verify SV-PWM Gen → PWM Outputs / Inverter Inputs

Level 1 verifies the target independent modules, duty cycles and PWM update. The motor is disconnected at this level.

Incremental Build

2C) Calibrate phase current off-set to enable low load sensorless

Level 2 verifies the analog-to-digital conversion, offset compensation, clarke / park transformations, phase voltage calculations

Real-Time Debug

Traditional debugging (Stop Mode)

- stops all threads and prevents interrupts from being handled
- makes debugging real-time systems extremely difficult

C2000 Real-time Mode:

- real-time, non-intrusive, continuous
- Does not require use of target memory, special interrupts, or SW intrusiveness
- Allows time critical interrupts to be marked for special treatment (high priority)
- Allows time-critical interrupts to be serviced while background program execution is suspended
- Included on all C2000 devices and integrated with Code Composer Studio

Resources: <u>Real-Time Mode on wiki</u> <u>Chapter 7.4 in the C28x CPU Reference Guide</u>

Incremental Build

Demo, Q&A Thanks!

