
Implementing Digital 

Motor Control with C2000 



Power Flow Block Diagram 

• Power is transferred from the AC line to the motor 
through the rectifier, and inverter.  

• The C2000 controls the flow of power from the AC line 
to the motor. 
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The “Ideal” Motor Control 

•  Achieve maximum torque at every speed 

•  Good transient control (currents, speed) 

•  Efficient control 

 

•  Low EMI 

•  Low electrical network pollution (harmonics) 

•  No reactive power (power factor correction) 

•  Low acoustical noise level 

 

•  Board cost 

•  Development time 

 

 



Basic Principles of DC Motors 

Torque in DC Motor 



• From the previous slides we know that if we excite the three stator coils with three-

phase voltages we will get a rotating magnetic field at the centre 

• All we now have to do to invent our PMSM (or BLDC) is to pivot a permanent 

magnet at the centre 

 

 

 

 

 

 

• The rotor will always rotate at exactly the same speed as the stator, which is why 

this type of machine is called “synchronous” 

Synchronous Motors: PMSM & BLDC 



Difference Between BLDC & PMSM 

•   PMSM control 

– Fed with sinusoidal current 

– Continuous stator flux angle change 

– All phases ON at the same time 

– Low torque ripple 

– Higher max achievable speed 

– Low noise 

•   BLDC Control 

– Fed with direct current 

– Stator Flux commutation each 60º 

– Two phases ON at the same time 

– High torque ripple 

– Commuation at high speed difficult 

– High noise 

Ebemf of PMSM 

Ebemf of BLDC 

30 150 210 230 



BLDC control strategy 

3 phases BLDC 

 star connection 

with central point N 
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Two of the three phases are always energized, while the third phase is 

turned off. 

Switching instant are linked to rotor position 
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Hall Effect Control of BLDC Motors 

VLink 

speed 

calculation 
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For better performance we use closed loop control 

• The Hall sensors and associated electronics will generate the signals 

necessary for correct commutation 

• Information from the Hall sensors are also used to calculate and feed 

back the velocity 

• Only two phases conduct at any one time; for current feedback dc-link 

current is measured and fed back 



Hall Effect Control of BLDC Motors 

• Only two out of the three phases are energised at any one time 

• The phases are energised in a 6 step manner 

• The Hall sensors and the associated electronics will generate the signals necessary 

for correct commutation 

• Current is then injected when the Ebemf of each phase as reached its flat portion. 

This will ensure constant torque 
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Hall Effect Control of BLDC Motors 

In the Previous slide, we stated that we use the signal from the hall effect to inject a DC 

current when the Bemf reaches it flat region 

– Flat current & Flat Bemf  Flat torque (i.e. constant torque) 

– No need for complex PWM (i.e. Slow switching) 
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• The back-emf Ebemf waveform is directly related to the position of the rotor. 
If we could detect the zero crossing of the back-emf waveform we could 
deduce the position of the rotor 

• We will then need to wait for 30 for the Ebemf to reach its constant region 
and then turn on the current in that phase 

 

• The waiting time needed is dependant on the motor speed and can be 
deduced by continuously measuring the previous Ebemf zero crossings.  

• Usually operated open loop at low speeds and when Ebemf becomes large 
enough to estimate accurately the loop is closed 

 

• In a BLDC system only two coils are “on” at any moment in time.  

 

• It has been shown* that Ebemf at the unconnected phase is crossing its 
zero point when the terminal voltage at that phase is equal to Vdc_link /2 

 

• In other words if we measure Va, when Va = Vdc_link/2 the  Ebemf = 0 

Sensorless Control of BLDC Machines 
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* “Microcomputer Control of Sensorless Brushless Motor”, K. Iizuka et.al, IEEE Transactions on Industry Applications, Vol IA-21, No4, May/June 1985, pp. 595 - 601 



Speed Closed-Loop Control with Current Control 

Block Diagram of Sensorless BLDC Control  

• Hall sensors are removed. Resistor dividers and on-chip ADC are used to sense phase voltages. 

• Phase voltages are used to detect zero crossing of back EMF and trigger commutation 

• See TI Application reports (SPRA498 and BPRA072) for more details 
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AC Induction Motors 

Squirrel Cage Rotor 

• Invented in 1888 by Nikola Tesla 
 

• Reliable construction: no brushes 
 

• Simple, low cost design 
 

• Good efficiency at fixed speeds. 
 

• Asynchronous 
 

• Speed and control position are expensive 
 

• Poor performance at low speed operation 
 

• Requires complex control to be competitive 

Typical applications: industrial drives, white goods, fans, high speed applications 



1. The rotating magnetic 

field in the stator, 

induces a current in the 

rotor 

2. This current will have a 

magnetic field 

associated with it 

3. This magnetic field makes 

the rotor behave like a 

magnet which will then 

follow the stator’s rotating 

magnetic field 

Induction Motor Operation 

Important: For these currents to be induced the rotor 

must travel slower than the stator this is called slip: 
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Scalar Control (V/f) - Limitations 

 + Simple to implement: All you need is three sine waves feeding the motor 

 + Position information not required (optional). 

 – Doesn’t deliver good dynamic performance. 

 – Torque delivery not optimized for all speeds 
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Scalar Control (V/f)  Limitations 
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At or near nominal speed: 

Stator voltage drop negligible: (Vm = V),  

At low speed: Rs is no longer negligible: Vm < V 
 
A large portion of energy is now wasted. 
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V/F control definition 
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Scalar control 

Speed loop 

+ Simple to implement: All you need is three sine waves 

feeding the ACI 

+ No position information needed. 

 

– Doesn‟t deliver good dynamic performance. 

– Not so good at low speed. 

 



Field Circuit Armature Circuit 
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Separated excitation DC motor model  

Flux and torque are independently controlled 

The current through the rotor windings determines how much torque is produced. 

Vector Control  

Field Oriented Control (FOC)  
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FOC control Overview 
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Vector control: 
 

This method is based on 
the dynamic model of the 
motor. 
 
The Flux (Id) and The 
Torque (Iq) are controlled 
separately. 
 
Flux and Torque are 
controlled in real time. 

Some key mathematical components are required! 
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Stationary to Rotating Reference Frame 

Again the transformation equations can simply be derived 

by resolving fs, along the desired axis:  

dqs to dqe transform: 

Inverse dqs to dqe transform: 
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3-phase Inverter Control 
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Decisions that need to be made: 

 How to drive complementary PWM? 

 In the Motor Control and PFC Developer‟s Kit we chose to use a Integrated Power Module (IPM) to generate 
the complementary PWM.  We could have used the C2000‟s deadband submodule within each PWM module 
instead. 

 In sensorless, how will we sense current? 

 In the Motor Control and PFC Developer‟s Kit we chose to use low-side sensing. 

 Low-side current sensing is more difficult, but more scalable.  In high-side current sensing, amplifiers that 
allow high common-mode voltages are expensive. 
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Why Pulse Width Modulation? 

A linear power amplifier will:  

• waste too much power 

• cost money 

• heat dissipation 

• bad for environment 

controller 

Motor 

Signal 

Power 



Why Pulse Width Modulation ?  
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PWM representation  
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PWM Signal Generation 

 Traditional way: comparing three-phase sinusoidal waveforms with a 
triangular carrier 

 Van = V.sin(ωt) (Van phase-neutral voltage) 

 PWM consideration: 

 Time Step 

 Bit width 

 Update conditions 

 Dead time 
…. 



Zero Vectors (000) & (111) 
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Motor 

• Third harmonic injection 

• Line to line voltage still sinusoidal 

• PWM technique  

• DSP hardware implemented 

• Increase the maximum inverter  
   output voltage of 15% 

• Reduce transistor commutations 
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 We build the required voltage vector as a combination of 
one of the six basic switches configuration 
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Current Sensing 
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ADC sampling window 

• Requires flexibility of triggering sample and conversion in middle of PWM pulse 

• Fast ADC S/H is required  

• CPU operation promptly 

• 3 phase current are available under all load conditions 



Flexible PWM module 
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Dual Inverter + Boost 
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3-Phase 
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At the “C”  level: 

clarkInv(&dqBuffer, &fcPwm.InputBuffer) 

fcPwmInputBuffer.ditherIn = randomGen1.calc(&randomGen1) 

fcPwm.calc(&fcPwm); 
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Digital Motor Control Library (DMC-Lib) 

The DMC-Lib contains: 

 

• PID regulators, 

• Clarke transforms, 

• Park (& Inverse) transforms, 

• Ramp generators, 

• Sine generators, 

• Space Vector generators, 

• Speed / Position meas. / estimators 

• and more… 
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Platform for Motor Control 

High Voltage + PFC $599 

TMDSHVMTRPFCKIT 

Low Voltage + PFC $369/$399 

TMDS1MTRPFCKIT / 2MTRPFCKIT 

Motor Types ACI, BLDC, PMSM BLDC 

Control ACI & PMSM FOC 

BLDC Commutation 

FOC 

(BLDC Commutation in Q3 HW Rev) 

Sensor Interface Sensorless or Hall/QEP Sensorless or Hall/QEP 

Communications Isolated USB/UART to JTAG 

Isolated CAN 

Isolated USB/UART to JTAG 

(Isolated CAN in Q3 HW Rev) 

Three Phase Inverter 350V, 1.5 Kw, IPM, Fault Protection 2 x TI DRV8402 IPM, 24-36V, 40W 

Current Sense Low-side current sense OPA2350 Low-side current sense OPA2350 

Optional Power 

Factor Correction 

Digital 750W 2PHIL, 200KHz, UCC27234 

IN: 85-132V, 170-250V  OUT:400V DC 

Digital 100W 2PHIL, 100KHz 

IN: 13-16V  OUT:24V DC 

controlCARD 



Platform for Motor Control 

High Voltage + PFC $599 

TMDSHVMTRPFCKIT 

Low Voltage + PFC $369/$399 

TMDS1MTRPFCKIT / 2MTRPFCKIT 

Software controlSUITE controlSUITE SPRC922 

IDE CCSv4.x     CCSv4.x  CCSv3.3 

DMCLibrary NEW & OPTIMIZED NEW OLD 

GUI YES Q210 NO 

PFC SW Q310 w/ new PowerLIb Q310 Yes 

Projects ACI FOC, PMSM FOC, BLDC ; All Sensored/-less 2xPMSM FOC 1/2xPMSM, +PFC 

Family 

Support 

Piccolo F2803x 

Delfino F2833x Q2 

Piccolo F2803x 

(minor mods for F2802x) 

Piccolo F2803x 

(minor mods for F2802x) 

controlCARD 



DMC – Single Axis + PFC HV 

PWM-2A

PWM-3A

PWM-4A

2H

3H

2L

3L

2H 3H

2L 3L

Driver

1

2

3

1H

1L

3ph - Inverter

PWM-2B

PWM-3B

PWM-4B

4

5

6

PFC-2PhIL

PWM-1A

PWM-1B

Filter

+

Vac

JTAG

UART

USB

12VVin

Aux 

Supply

5V

100~400

VDC

PWM-1  

Piccolo-A

I2C

SPI

UART

CPU

32 bit 

A

B

PWM-2  
A

B

PWM-3  
A

B

PWM-4  
A

B

ADC

12 bit

Vref

1

2

3

13

1

2

3

4

5

6

7

8

1 2

3
4

5 6

7 8

9



PFC – 2PhIL 

DC-AC 
3 Ph 
Inverter 

USB 

DMC – Single Axis + PFC HV 



Dual Motor Control and PFC Developer’s Kit 

PWM-1  

F28035  Piccolo

I2C

UART

CAN

CPU

32 bit 

A

B

PWM-2  
A

B

PWM-3  
A

B

PWM-4  
A

B

CAP-1

PWM-1A

PWM-1B

PWM-2A

ADC

12 bit

Vref

1

2

3

4

5

16

2H

3H

2L

3L

2H 3H

2L 3L

1

2

3

1H

1L

DRV8402 -IPM

4H

4L
PWM-2B

4

4H

4L

DC-Bus

spare

3 Phase

PM motor

PWM-3A

PWM-3B

PWM-4A

2H

3H

2L

3L

2H 3H

2L 3L

1

2

3

1H

1L

DRV8402 -IPM

4H

4L
PWM-4B

4

4H

4L

DC-Bus

spare

3 Phase

PM motor

Voltage 

sensing

Inc.

Encoder

QEP

3

Position 

Sensor

CAP

1

12V

12V

QEP
3

HOST

Vac

PWM-

5B

PWM-

5A

PWM-5  
A

B

Current 

Feedback

Current 

Feedback

L2

L1

D3

D2

Q1

Q2



Controls two motors and performs PFC  --Available-- 

Dual Axis Motor Control Board 

2-phase 

Interleaved 

PFC 

1st Motor 2nd Motor 

Isolated On-Board Emulation Control Card 



DRV8412-C2-KIT -  Motor Driver for Brushed and Stepper 

Motors with Piccolo F28035 controlCARD 



DRV8412-F28035 Brushed and Stepper Motors                       

Control Board 



DRV8312-C2-KIT - Three Phase BLDC Motor Kit 

with DRV8312 and F28035 



DRV8312-F28035 Three Phase BLDC Motor    

Control Board 

Control Card 

DRV8312 

Motor 

Connector 

DC-Bus 

Connector 

Encoder 

Interface 

Hall 

Interface 



Getting Started 

www.ti.com/c2000tools 

 





Utilities 

controlSUITE: 
Content + Content Management 

C2000 
Device 

Piccolo 
F2802x 

Piccolo 
F2803x 

Delfino 
C2834x 

Delfino 
F2833x 

Device 
Support 

Bit Fields 

API 
Drivers 

Examples 

Library 
Repository 

Math 
Library 

IQMath 

DSP 
Library 

 

Application 
Library 

 

Development 
Kits 

Hardware 
Package 

Software 
Examples 

System 
Framework 

Graphical 
User 

Interfaces 

Debug and 
Software Tools 

IDE 

RTOS 

Real-time 
Debug 

F2823x 

3rd Party 
Tools 

Please see the Tools Presentation for 

Details 



Content 

• Motor Control Methods Overview  

• Inverter / Hardware considerations  

• Software / Algorithm Considerations  

• DMC Development Kits 

• System Incremental Build  

• Demo, Q&A 

 



1A) verify 120° SV-PWM outputs  

1B) verify PWM-DACs used for analysis 

1C) Verify SV-PWM Gen  PWM Outputs / Inverter Inputs 

Incremental Build 



Incremental Build 

2A) Check ADC calc of Voltage using watch window (WW) 

2B) Check Clarke (Phase Currents) in WW 

2C) Calibrate phase current off-set to enable low load sensorless 



Resources: 

Real-Time Mode on wiki 

Chapter 7.4 in the C28x CPU Reference Guide 

Real-Time Debug 

Traditional debugging (Stop Mode) 

– stops all threads and prevents interrupts from being handled 

– makes debugging real-time systems extremely difficult 

 

C2000 Real-time Mode: 

- real-time, non-intrusive, continuous 

- Does not require use of target memory, special interrupts, or SW 

intrusiveness 

- Allows time critical interrupts to be marked for special treatment (high 

priority) 

- Allows time-critical interrupts to be serviced while background program 

execution is suspended 

- Included on all C2000 devices and integrated with Code Composer Studio 

http://tiexpressdsp.com/index.php?title=Real-Time_Mode
http://tiexpressdsp.com/index.php?title=Real-Time_Mode
http://tiexpressdsp.com/index.php?title=Real-Time_Mode
http://www-s.ti.com/sc/techlit/spru430


Incremental Build 

6) Close all loops – Full Sensorless FOC CL Speed/Current 



  

Demo, Q&A 

Thanks! 


