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Abstract 
 
This application note presents a solution to control an AC induction motor using the TMS320F2803x 
microcontrollers. TMS320F2803x devices are part of the family of C2000 microcontrollers which enable 
cost-effective design of intelligent controllers for three phase motors by reducing the system components 
and increase efficiency. With these devices it is possible to realize far more precise digital vector control 
algorithms like the Field Orientated Control (FOC). This algorithm’s implementation is discussed in this 
document. The FOC algorithm maintains efficiency in a wide range of speeds and takes into 
consideration torque changes with transient phases by processing a dynamic model of the motor.  Among 
the solutions proposed are ways to eliminate the phase current sensors and use an observer for speed 
sensorless control. This application note covers the following: 
 

 A theoretical background on field oriented motor control principle. 
 Incremental build levels based on modular software blocks  
 Experimental results 
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Introduction 
 
The motor control industry is a strong, aggressive sector. To remain competitive new products must 
address several design constraints including cost reduction, power consumption reduction, power factor 
correction, and reduced EMI radiation.  In order to meet these challenges advanced control algorithms 
are necessary. Embedded control technology allows both a high level of performance and system cost 
reduction to be achieved.  According to market analysis, the majority of industrial motor applications use 
AC induction motors. The reasons for this are higher robustness, higher reliability, lower prices and higher 
efficiency (up to 80%) on comparison with other motor types. However, the use of induction motors is 
challenging because of its complex mathematical model, its non linear behavior during saturation and the 
electrical parameter oscillation which depends on the physical influence of temperature. These factors 
make the control of induction motor complex and call for use of a high performance control algorithms 
such as “vector control” and a powerful microcontroller to execute this algorithm. 
 
During the last few decades the field of controlled electrical drives has undergone rapid expansion due 
mainly to the benefits of microcontrollers. These technological improvements have enabled the 
development of very effective AC drive control with lower power dissipation hardware and more accurate 
control structures. The electrical drive controls become more accurate in the sense that not only are the 
DC quantities controlled but also the three phase ac currents and voltages are managed by so-called 
vector controls. This document briefly describes the implementation of the most efficient form of a vector 
control scheme: the Field Orientated Control method. It is based on three major points: the machine 
current and voltage space vectors, the transformation of a three phase speed and time dependent system 
into a two co-ordinate time invariant system and effective Space Vector Pulse Width Modulation pattern 
generation. Thanks to these algortihms, the control of AC machine acquires every advantage of DC 
machine control and frees itself from mechanical commutation drawbacks. Furthermore, this control 
structure, by achieving a very accurate steady state and transient control, leads to high dynamic 
performance in terms of response times and power conversion.  
  
 
Induction Motors  
 
Induction motors derive their name from the way the rotor magnetic field is created. The rotating stator 
magnetic field induces currents in the short circuited rotor. These currents produce the rotor magnetic 
field, which interacts with the stator magnetic field, and produces torque, which is the useful mechanical 
output of the machine.  
 
The three phase squirrel cage AC induction motor is the most widely used motor. The bars forming the 
conductors along the rotor axis are connected by a thick metal ring at the ends, resulting in a short circuit 
as shown in Fig.1. The sinusoidal stator phase currents fed in the stator coils create a magnetic field 
rotating at the speed of the stator frequency (ωs). The changing field induces a current in the cage 
conductors, which results in the creation of a second magnetic field around the rotor wires. As a 
consequence of the forces created by the interaction of these two fields, the rotor experiences a torque 
and starts rotating in the direction of the stator field. 
 
As the rotor begins to speed up and approach the synchronous speed of the stator magnetic field, the 
relative speed between the rotor and the stator flux decreases, decreasing the induced voltage in the 
stator and reducing the energy converted to torque. This causes the torque production to drop off, and the 
motor will reach a steady state at a point where the load torque is matched with the motor torque. This 
point is an equilibrium reached depending on the instantaneous loading of the motor. In brief: 
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Fig.1 Induction Motor Rotor 

 
 Owing to the fact that the induction mechanism needs a relative difference between the motor speed 

and the stator flux speed, the induction motor rotates at a frequency near, but less than that of the 
synchronous speed. 

 This slip must be present, even when operating in a field-oriented control regime. 
 The rotor in an induction motor is not externally excited. This means that there is no need for slip rings 

and brushes. This makes the induction motor robust, inexpensive and need less maintenance. 
 Torque production is governed by the angle formed between the rotor and the stator magnetic fluxes. 
 
In Fig.2 the rotor speed is denoted by Ω . Stator and rotor frequencies are linked by a parameter called 
the slip s, expressed in per unit as srss ωωω /)( −= . 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
where s is called the “slip”: it represents the difference between the synchronous frequency and the 
actual motor rotating speed. 
 
 

Fig2. Squirrel cage rotor AC induction motor cutaway view 
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Field Oriented Control  
  

Introduction 
 
A simple control such as the V/Hz strategy has limitations on the performance. To achieve better dynamic 
performance, a more complex control scheme needs to be applied, to control the induction motor. With 
the mathematical processing power offered by the microcontrollers, we can implement advanced control 
strategies, which use mathematical transformations in order to decouple the torque generation and the 
magnetization functions in an AC induction motor. Such de-coupled torque and magnetization control is 
commonly called rotor flux oriented control, or simply Field Oriented Control (FOC). 
 

The main philosophy behind the FOC 
 

In order to understand the spirit of the Field Oriented Control technique, let us start with an overview of 
the separately excited direct current (DC) Motor. In this type of motor, the excitation for the stator and 
rotor is independently controlled. An electrical study of the DC motor shows that the produced 
torque and the flux can be independently tuned. The strength of the field excitation (i.e. the magnitude 
of the field excitation current) sets the value of the flux. The current through the rotor windings determines 
how much torque is produced. The commutator on the rotor plays an interesting part in the torque 
production. The commutator is in contact with the brushes, and the mechanical construction is designed 
to switch into the circuit the windings that are mechanically aligned to produce the maximum torque. This 
arrangement then means that the torque production of the machine is fairly near optimal all the time. The 
key point here is that the windings are managed to keep the flux produced by the rotor windings 
orthogonal to the stator field. 
 

 
 
Induction machines do not have the same key features as the DC motor. However, in both cases we have 
only one source that can be controlled which is the stator currents. On the synchronous machine, the 
rotor excitation is given by the permanent magnets mounted onto the shaft. On the synchronous motor, 
the only source of power and magnetic field is the stator phase voltage. Obviously, as opposed to the DC 
motor, flux and torque depend on each other. 
 
The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be able 
to separately control the torque producing and magnetizing flux components. The control technique goal 
is to (in a sense) imitate the DC motor’s operation. 
 
 Why Field Oriented Control  
 
As a well know fact about the asynchronous machine, we face some natural limitations with a V/Hz 
control approach. FOC control will allow us to get around these limitations, by decoupling the effect of the 
torque and the magnetizing flux. With decoupled control of the magnetization, the torque producing 
component of the stator flux can now be thought of as independent torque control. Now, decoupled 
control, at low speeds, the magnetization can be maintained at the proper level, and the torque can be 
controlled to regulate the speed.  

Fig 3. Separated excitation DC motor model, flux and torque are independently controlled 
and the current through the rotor windings determines how much torque is produced. 
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To decouple the torque and flux, it is necessary to engage several mathematical transforms, and this is 
where the microcontrollers add the most value. The processing capability provided by the microcontrollers 
enables these mathematical transformations to be carried out very quickly. This in turn implies that the 
entire algorithm controlling the motor can be executed at a fast rate, enabling higher dynamic 
performance. In addition to the decoupling, a dynamic model of the motor is now used for the 
computation of many quantities such as rotor flux angle and rotor speed. This means that their effect is 
accounted for, and the overall quality of control is better. 
 
 Technical Background 
 
The Field Orientated Control consists of controlling the stator currents represented by a vector. This 
control is based on projections which transform a three phase time and speed dependent system into a 
two co-ordinate (d and q co-ordinates) time invariant system. These projections lead to a structure similar 
to that of a DC machine control. Field orientated controlled machines need two constants as input 
references: the torque component (aligned with the q co-ordinate) and the flux component (aligned with d 
co-ordinate). As Field Orientated Control is simply based on projections the control structure handles 
instantaneous electrical quantities. This makes the control accurate in every working operation (steady 
state and transient) and independent of the limited bandwidth mathematical model. The FOC thus solves 
the classic scheme problems, in the following ways: 
 
 The ease of reaching constant reference (torque component and flux component of the stator current) 
 The ease of applying direct torque control because in the (d,q) reference frame the expression of the 

torque is: 

SqR im ψ∝  

By maintaining the amplitude of the rotor flux ( Rψ ) at a fixed value we have a linear relationship between 
torque and torque component (iSq). We can then control the torque by controlling the torque component of 
stator current vector. 
 

Space Vector Definition and Projection 
 
The three-phase voltages, currents and fluxes of AC-motors can be analyzed in terms of complex space 
vectors. With regard to the currents, the space vector can be defined as follows. Assuming that ia, ib, ic are 
the instantaneous currents in the stator phases, then the complex stator current vector si  is defined by: 
 

cbas iiii 2αα ++=  

where 
π

α 3
2j

e= and 
π

α 3
4

2 j
e= , represent the spatial operators. The following diagram shows the stator 

current complex space vector: 
 

 
Fig.4 Stator current space vector and its component in (a,b,c) 
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where (a,b,c) are the three phase system axes. This current space vector depicts the three phase 
sinusoidal system. It still needs to be transformed into a two time invariant co-ordinate system. This 
transformation can be split into two steps: 
 
 (a,b,c) ),( βα⇒ (the Clarke transformation) which outputs a two co-ordinate time variant system 
 ⇒),( βα  (d,q) (the Park transformation) which outputs a two co-ordinate time invariant system 
 

The (a,b,c) ),( βα⇒  Projection (Clarke transformation) 
 
The space vector can be reported in another reference frame with only two orthogonal axis called ),( βα . 
Assuming that the axis a and the axis α are in the same direction we have the following vector diagram: 
 

 
Fig.5 Stator current space vector and its components in the stationary reference frame 

 
The projection that modifies the three phase system into the ),( βα two dimension orthogonal system is 
presented below. 
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The two phase ),( βα currents are still depends on time and speed. 
 
 The ⇒),( βα  (d,q) Projection (Park Transformation) 
 
This is the most important transformation in the FOC. In fact, this projection modifies a two phase 
orthogonal system ),( βα  into the d,q rotating reference frame. If we consider the d axis aligned with the 
rotor flux, the next diagram shows, for the current vector, the relationship from the two reference frame:  
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Fig.6 Stator current space vector and its component in ),( βα and in the d,q 

rotating reference frame 
 
where θ is the rotor flux position. The flux and torque components of the current vector are determined by 
the following equations: 
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These components depend on the current vector ),( βα components and on the rotor flux position; if we 
know the right rotor flux position then, by this projection, the d,q component becomes a constant. Two 
phase currents now turn into dc quantity (time-invariant). At this point the torque control becomes easier 
where constant isd (flux component) and isq (torque component) current components controlled 
independently.  
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The Basic Scheme for the FOC 
 
The following diagram summarizes the basic scheme of torque control with FOC: 
 

 
Fig7 Basic scheme of FOC for ACI motor 

 
Two motor phase currents are measured. These measurements feed the Clarke transformation module. 
The outputs of this projection are designated isα and isβ. These two components of the current are the 
inputs of the Park transformation that gives the current in the d,q rotating reference frame. The isd and isq 
components are compared to the references isdref (the flux reference) and isqref (the torque reference). At 
this point, this control structure shows an interesting advantage: it can be used to control either 
synchronous or induction machines by simply changing the flux reference and obtaining rotor flux 
position. In a synchronous permanent magnet motor, the rotor flux is fixed (determined by the magnets) 
and there is no need to create additional flux. Hence, when controlling a PMSM, isdref should be set to 
zero. Since induction motors need a rotor flux creation in order to operate, the flux reference must not be 
zero. This conveniently solves one of the major drawbacks of the “classic” control structures:  “the 
portability from asynchronous to synchronous drives”.     
 
The torque command isqref could be the output of the speed regulator when we use a speed FOC. The 
outputs of the current regulators are Vsdref and Vsqref; they are applied to the inverse Park transformation. 
The outputs of this projection are Vsαref and Vsβref which are the components of the stator vector voltage in 
the ),( βα stationary orthogonal reference frame. These are the inputs of the Space Vector PWM. The 
outputs of this block are the signals that drive the inverter. Note that both Park and inverse Park 
transformations need the rotor flux position. Obtaining this rotor flux position depends on the AC machine 
type (synchronous or asynchronous machine). Rotor flux position considerations are made in a following 
paragraph. 
 

Rotor Flux Position 
 

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the 
rotor flux will not be aligned with the d-axis and isd and isq, the flux and torque components of the stator 
current, will be incorrect. The following diagram shows the (a,b,c), ),( βα  and (d,q) reference frames, and 
the correct position of the rotor flux, the stator current and stator voltage space vector that rotates with d,q 
reference at synchronous speed. 
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Fig.8 Current, voltage and rotor flux space vectors in the d,q rotating reference frame and their 

relationship with a,b,c and ),( βα  stationary reference frame 
 
The measure of the rotor flux position is different if we consider synchronous or induction motor:  
 In the synchronous machine the rotor speed is equal to the rotor flux speed. Then θ (rotor flux position) 

is directly measured by position sensor or by integration of rotor speed. 
 In the induction machine the rotor speed is not equal to the rotor flux speed (there is a slip speed), then 

it needs a particular method to calculate θ. The basic method is the use of the current model which 
needs two equations of the motor model in d,q reference frame. 

Theoretically, the field oriented control for an induction motor drive can be mainly categorized into two 
types; indirect and direct schemes. The field to be oriented could be a rotor, stator, or airgap flux linkage. 
In the indirect field oriented control, the slip estimation with measured or estimated rotor speed is required 
in order to compute the synchronous speed. There is no flux estimation appearing in the system. For the 
direct scheme, the synchronous speed is computed basing on the flux angle which is available from flux 
estimator or flux sensors (e.g., Hall effects). In this implementing system, the direct (rotor) flux oriented 
control system with flux and open-loop speed estimators is described. The key module of this system is 
the flux estimator (refer to this module document for details). The overall block diagram of this project can 
be depicted in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9  Overall block diagram of direct rotor flux oriented control 
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Benefits of 32-bit C2000 Controllers for Digital Motor Control (DMC) 
 
C2000 family of devices posses the desired computation power to execute complex control algorithms 
along with the right mix of peripherals to interface with the various components of the DMC hardware like 
the ADC, ePWM, QEP, eCAP etc. These peripherals have all the necessary hooks for implementing 
systems which meet safety requirements, like the trip zones for PWMs and comparators. Along with this 
the C2000 ecosystem of software (libraries and application software) and hardware (application kits) help 
in reducing the time and effort needed to develop a Digital Motor Control solution. The DMC Library 
provides configurable blocks that can be reused to implement new control strategies. IQMath Library 
enables easy migration from floating point algorithms to fixed point thus accelerating the development 
cycle. 
 
Thus, with C2000 family of devices it is easy and quick to implement complex control algorithms 
(sensored and sensorless) for motor control. The use of C2000 devices and advanced control schemes 
provides the following system improvements:  

 Favors system cost reduction by an efficient control in all speed range implying right dimensioning of 
power device circuits 

 Use of advanced control algorithms it is possible to reduce torque ripple, thus resulting in lower 
vibration and longer life time of the motor 

 Advanced control algorithms reduce harmonics generated by the inverter thus reducing filter cost.  

 Use of sensorless algorithms eliminates the need for speed or position sensor.  

 Decreases the number of look-up tables which reduces the amount of memory required 

 The Real-time generation of smooth near-optimal reference profiles and move trajectories, results in 
better-performance 

 Generation of high resolution PWM’s is possible with the use of ePWM peripheral for controlling the 
power switching inverters 

 Provides single chip control system 

For advanced controls, C2000 controllers can also perform the following: 

 Enables control of multi-variable and complex systems using modern intelligent methods such as neural 
networks and fuzzy logic. 

 Performs adaptive control. C2000 controllers have the speed capabilities to concurrently monitor the 
system and control it. A dynamic control algorithm adapts itself in real time to variations in system 
behaviour. 

 Performs parameter identification for sensorless control algorithms, self commissioning, online 
parameter estimation update. 

 Performs advanced torque ripple and acoustic noise reduction. 

 Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of 
mechanical vibrations, failure modes can be predicted in early stages. 

 Produces sharp-cut-off notch filters that eliminate narrow-band mechanical resonance. Notch filters 
remove energy that would otherwise excite resonant modes and possibly make the system unstable. 
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TI Literature and DMC Library 
 
Literature distinguishes two types of FOC control: 
 
 Direct FOC control: In this case we try to directly estimate the rotor flux based upon the measurements 

of terminal voltages and currents.  
 
 Indirect FOC control: in this case the goal is to estimate the slip based upon the motor model in FOC 

condition and to recalculate the rotor flux angle from the integration of estimated slip and measured 
rotor speeds. Again knowing the motor parameters, especially rotor time constant, is key in order to 
achieve the FOC control  

 
In this document the Direct FOC Control is discussed.  
 
The Digital Motor Control (DMC) library is composed of functions represented as blocks. These blocks 
are categorized as Transforms & Estimators (Clarke, Park, Sliding Mode Observer, Phase Voltage 
Calculation, and Resolver, Flux, and Speed Calculators and Estimators), Control (Signal Generation, PID, 
BEMF Commutation, Space Vector Generation), and Peripheral Drivers (PWM abstraction for multiple 
topologies and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular software 
macro is separately documented with source code, use, and technical theory. Check the folders below for 
the source codes and explanations of macro blocks: 
 
 C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\v4.0 
 C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\f2803x_v2.0 

 
These modules allow users to quickly build, or customize, their own systems. The Library supports the 
three motor types: ACI, BLDC, PMSM, and comprises both peripheral dependent (software drivers) and 
target dependent modules. 
 
The DMC Library components have been used by TI to provide system examples. At initialization all DMC 
Library variables are defined and inter-connected.  At run-time the macro functions are called in order.  
Each system is built using an incremental build approach, which allows some sections of the code to be 
built at a time, so that the developer can verify each section of their application one step at a time. This is 
critical in real-time control applications where so many different variables can affect the system and many 
different motor parameters need to be tuned. 
 
Note:  TI DMC modules are written in form of macros for optimization purposes (refer to application note 
SPRAAK2 for more details at TI website). The macros are defined in the header files. The user can open 
the respective header file and change the macro definition, if needed. In the macro definitions, there 
should be a backslah”\” at the end of each line as shown below which means that the code continue in 
the next line. Any character including invisible ones like “space” after the backslash will cause compilation 
error. Therefore, make sure that the backslash is the last character in the line. In terms of code 
development, the macros are almost identical to C function, and the user can easily convert the macro 
definition to a C functions.   
 
 
 
 
 
 
 
 
 
 

#define PARK_MACRO(v)       \ 
          \ 

v.Ds = _IQmpy(v.Alpha,v.Cosine) + _IQmpy(v.Beta,v.Sine); \ 
v.Qs = _IQmpy(v.Beta,v.Cosine)  - _IQmpy(v.Alpha,v.Sine); 

A typical DMC macro definition 
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System Overview 
 
This document describes the “C” real-time control framework used to demonstrate the sensorless field 
oriented control of induction motors. The “C” framework is designed to run on TMS320C2803x based 
controllers on Code Composer Studio. The framework uses the following modules1: 
 
Macro Names Explanation 
CLARKE  Clarke Transformation 
PARK / IPARK Park and Inverse Park Transformation 
PI PI Regulators 
RC Ramp Controller (slew rate limiter) 
RG Ramp / Sawtooth Generator 
QEP / CAP QEP and CAP Drives (optional for speed loop tuning with a speed sensor) 
SPEED_PR Speed Measurement (based on sensor signal frequency) 
SPEED_FR Speed Measurement (based on sensor signal period) 
ACI_SE / ACI_FE Flux and Speed Estimators for Sensorless Applications 
SVGEN Space Vector PWM with Quadrature Control (includes IClarke Trans.) 
PHASEVOLT Phase Voltage Calculator 
PWM / PWMDAC PWM and PWMDAC Drives 
1 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro 

 
 
In this system, the sensorless Direct Field Oriented Control (DFOC) of Induction Motor will be 
experimented and the performance of the speed controller will be explored. The induction motor is driven 
by a conventional voltage-source inverter. The TMS320F2803x control card is used to generate three 
pulse width modulation (PWM) signals. The motor is driven by an integrated power module by means of 
space vector PWM technique. Two phase currents of induction motor (ia and ib) are measured from the 
inverter and sent to the TMS320x2803x via two analog-to-digital converters (ADCs). In addition, the DC-
bus voltage in the inverter is measured and sent to the TMS320x2803x via an ADC. This DC-bus voltage 
is necessary to calculate the three phase voltages when the switching functions are known. 
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HVACI_Sensorless project has the following properties: 
 
 

C Framework 

System Name Program Memory Usage 
2803x 

Data Memory Usage1 

2803x 
HVACI_Sensorless 5079 words2 1554 words 

 

1 Excluding the stack size  
2 Excluding “IQmath” Look-up Tables 
 
 
 
 
 
 
 
 
 
 
 
 
* At 10 kHz ISR frequency. Debug macros excluded (i.e. PWMDAC, Datalog and RG). IQSin/Cos tables used in macros. 
 
 
 
 
 
 
 
 
 

System Features 
Development /Emulation Code Composer Studio v4.0 (or above) with Real Time debugging 
Target Controller TMS320F2803x 
PWM Frequency 10kHz PWM (Default), 60kHz PWMDAC  
PWM Mode Symmetrical with a programmable dead band 
Interrupts ADC, end of conversion – Implements 10 kHz ISR execution rate 
Peripherals Used PWM 1 / 2 / 3 for motor control  

PWM 6A, 6B, 7A & 7B for DAC outputs 
QEP1 A,B, I  or CAP1 (optional for tuning the speed loop) 
ADC A7 for DC Bus voltage sensing,  A1 & B1 for phase current sensing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CPU Utilization  
Total Number of Cycles 1133* 
CPU Utilization @ 60 Mhz 18.8%  
CPU Utilization @ 40 Mhz 28.3%  
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The overall system implementing a 3-ph induction motor control is depicted in Fig.10. The induction motor 
is driven by the conventional voltage-source inverter. The TMS320F2803x is being used to generate the 
six pulse width modulation (PWM) signals using a space vector PWM technique, for six power switching 
devices in the inverter. Two input currents of the induction motor (ia and ib) are measured from the 
inverter and they are sent to the TMS320F2803x via two analog-to-digital converters (ADCs). In addition, 
the DC-bus voltage in the inverter is measured and sent to the TMS320F2803x via an ADC as well. This 
DC-bus voltage is necessary in order to calculate three phase voltages of induction motor when the 
switching functions are known. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
The software flow is described in the Figure 11 below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10 A 3-ph induction motor drive implementation 
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 Fig.11 System software flowchart 
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1 Since the motor is rated at 220V, the motor can run only at a certain speed and torque range properly without saturating the 
PID regulators in the control loop when the DC bus is fed from 110V AC entry. As an option, the user can run the PFC on HV 
DMC drive platform as boost converter to increase the DC bus voltage level or directly connect a DC power supply. 

 
Hardware Configuration (HVDMC R1.1 Kit) 
 
Please refer to the HVMotorCtrl+PFC How to Run Guide found: 
 

C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit_v2.0\~Docs  
 
for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup 
instructions are captured below for quick reference 
 

HW Setup Instructions 

1. Open the Lid of the HV Kit  

2. Install the Jumpers [Main]-J3, J4 and J5, J9 for 3.3V, 5V and 15V power rails and JTAG reset line. 

3. Unpack the DIMM style controlCARD and place it in the connector slot of [Main]-J1. Push vertically 
down using even pressure from both ends of the card until the clips snap and lock. (to remove the 
card simply spread open the retaining clip with thumbs) 

4. Connect a USB cable to connector [M3]-JP1. This will enable isolated JTAG emulation to the      
C2000 device. [M3]-LD1 should turn on. Make sure [M3]-J5 is not populated. If the included Code 
Composer Studio is installed, the drivers for the onboard JTAG emulation will automatically be 
installed. If a windows installation window appears try to automatically install drivers from those 
already on your computer. The emulation drivers are found at 
http://www.ftdichip.com/Drivers/D2XX.htm. The correct driver is the one listed to support the FT2232.  

5. If a third party JTAG emulator is used, connect the JTAG header to [M3]-J2 and additionally [M3]-J5 
needs to be populated to put the onboard JTAG chip in reset.  

6. Ensure that [M6]-SW1 is in the “Off” position. Connect 15V DC power supply to [M6]-JP1. 

7. Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as well 
indicating the control card is receiving power from the board. 

8. Note that the motor should be connected to the [M5]-TB3 terminals after you finish with the first 
incremental build step. 

9. Note the DC Bus power should only be applied during incremental build levels when instructed to do 
so. The two options to get DC Bus power are discussed below, 

(i)  To use DC power supply, set the power supply output to zero and connect [Main]-BS5 and BS6 to DC    
power supply and ground respectively. 

(ii) To use AC Mains Power, Connect [Main]-BS1 and BS5 to each other using banana plug cord. Now 
connect one end of the AC power cord to [Main]-P1. The other end needs to be connected to output 
of a variac. Make sure that the variac output is set to zero and it is connected to the wall supply 
through an isolator. 
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For reference the pictures below show the jumper and connectors that need to be connected for this lab.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

    CAUTION: The inverter bus capacitors remain charged for a long time after the high 
power line supply is switched off/disconnected. Proceed with caution! 

ACI 
Motor 

Encoder 
or Tacho 

 

15V DC 

AC 
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J3,J4,J5 
J9 

Fig. 12 Using AC Power to generate DC Bus Power 
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    CAUTION: The inverter bus capacitors remain charged for a long time after the high 
power line supply is switched off/disconnected. Proceed with caution! 

ACI 
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J3,J4,J5 
J9 

DC Power Supply (max. 350V) 
+ - 

Fig. 13 Using External DC power supply to generate DC-Bus for the inverter 
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Software Setup Instructions to Run HVACI_Sensorless Project  

Please refer to the “Generic Steps for Software Setup for HVMotorCtrl+PFC Kit Projects” section in the 
HVMotorCtrl+PFC Kit How To Run Guide  
 
C:\TI\controlSUITE\development_kits\HVMotorCtrl+PfcKit_v2.0\~Docs 
 
Select the HVACI_Sensorless as the active project. Verify that the build level is set to 1, and then right 
click on the project name and select “Rebuild Project”. Once build completes, launch a debug session to 
load the code into the controller. Now open a watch window and add the critical variables as shown in the 
table below and select the appropriate Q format for them. 
 
 

 
Table 1 Watch Window Variables 

 
Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following 
location: 

 C:\TI\ControlSUITE\developement_kits\HVMotorCtrl+PfcKit_v2.0\HVACI_sensorless 

Click on Continuous Refresh button      on the top left corner of the graph tab to enable periodic capture of 
data from the microcontroller. 
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Incremental System Build for ACI Sensorless project 

The system is gradually built up in order for the final system can be confidently operated. Six phases of 
the incremental system build are designed to verify the major software modules used in the system. Table 
1 summarizes the modules testing and using in each incremental system build. 
 
 

Software Module Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 
PWMDAC_MACRO √ √ √ √ √ √ 
RC_MACRO √ √ √ √   
RG_MACRO √ √ √ √   
IPARK_MACRO √√ √ √ √ √ √ 
SVGEN_MACRO √√ √ √ √ √ √ 
PWM_MACRO √√ √ √ √ √ √ 
CLARKE_MACRO  √√ √ √ √ √ 
PARK_MACRO  √√ √ √ √ √ 
VOLT_MACRO  √√ √ √ √ √ 
CAP_MACRO   √√ √ √  
SPEED_PR_MACRO   √√ √ √  
QEP_MACRO   √√ √ √  
PEED_FR_MACRO   √√ √ √  
PI_MACRO (IQ)   √√ √ √ √ 
PI_MACRO (ID)   √√ √ √ √ 
ACI_FE    √√ √ √ 
ACI_SE    √√ √ √ 
PI_MACRO (SPD)     √√ √√ 
Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase. 

 
Table 2 Testing modules in each incremental system build 
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Level 1 Incremental Build  

At this step keep the motor disconnected. Assuming the load and build steps described in the 
“HVMotorCtrl+PFC Kit How To Run Guide” completed successfully, this section describes the steps for a 
“minimum” system check-out which confirms operation of system interrupt, the peripheral & target 
independent I_PARK_MACRO (inverse park transformation) and SVGEN_MACRO (space vector 
generator) modules and the peripheral dependent PWM_MACRO (PWM initializations and update) 
modules. Open HVACI_Sensorless-Settings.h and select level 1 incremental build option by setting the 
BUILDLEVEL to LEVEL1 (#define   BUILDLEVEL LEVEL1). Now right click on the project name and click 
Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real time 
mode and run. Set “EnableFlag” to 1 in the watch window.  The variable named “IsrTicker” will now keep 
on increasing, confirm this by watching the variable in the watch window. This confirms that the system 
interrupt is working properly. 
 
In the software, the key variables to be adjusted are summarized below. 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 VdTesting (Q24): for changing the d-qxis voltage in per-unit. 
 VqTesting (Q24): for changing the q-axis voltage in per-unit. 
 
Level 1A (SVGEN_MACRO Test) 
 
In this level we would test the Space Vector Generator Macro(SVGEN_MACRO). The SpeedRef value is 
specified to the RG_MACRO module via RC_MACRO module. The IPARK_MACRO module is 
generating the outputs to the SVGEN_MACRO module. Three outputs from SVGEN_MACRO module are 
monitored via the graph window as shown in Fig. 15 where Ta, Tb, and Tc waveform are 120o apart from 
each other. Specifically, Tb lags Ta by 120o and Tc leads Ta by 120o. Check the PWM test points on the 
board to observe PWM pulses (PWM-1H to 3H and PWM-1L to 3L) and make sure that the PWM module 
is running properly.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.15 SVGEN duty cycle outputs Ta, Tb, Tc and Tb-Tc 
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Level 1B (testing The PWMDAC Macro) 
 

To monitor internal signal values in real time PWM DACs are very useful tools. Present on the HV DMC 
board are PWM DAC’s which use an external low pass filter to generate the waveforms ([Main]-J14, DAC-1 
to 4). A simple 1st–order low-pass filter RC circuit is used to filter out the high frequency components. The 
selection of R and C value (or the time constant, τ) is based on the cut-off frequency (fc), for this type of 
filter; the relation is as follows: 

cf
RC

π
τ

2
1

==  

For example, R=1.8kΩ and C=100nF, it gives fc = 884.2 Hz. This cut-off frequency has to be below the 
PWM frequency. Using the formula above, one can customize low pass filters used for signal being 
monitored. 

 
The DAC circuit low pass filters ([Main]-R10 to13 & [Main]-C15 to18) is shipped with 2.2kΩ and 220nF on 
the board. Refer to application note SPRAA88A for more details at TI website. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Level 1C (PWM_MACRO and INVERTER Test) 
 

After verifying SVGEN_MACRO module in level 1a, the PWM_MACRO software module and the 3-phase 
inverter hardware are tested by looking at the low pass filter outputs. For this purpose, if using the external 
DC power supply gradually increase the DC bus voltage and check the Vfb-U, V and W test points using an 
oscilloscope or if using AC power entry slowly change the variac to generate the DC bus voltage. Once the 
DC Bus voltage is greater than 15 to 20V you would start observing the Inverter phase voltage dividers and 
waveform monitoring filters (Vfb-U, Vfb-V, Vfb-W) enable the generation of the waveform and ensures theta 
the inverter is working appropriately. Note that the default RC values are optimized for AC motor state 
observers employing phase voltages. 
 
 

After verifying this, reduce the DC Bus voltage, take the controller out of real time mode (disable), 
reset the processor      (see “HVMotorCtrl+PFC Kit How To Run Guide” for details). Note that 
after each test, this step needs to be repeated for safety purposes. Also note that improper 
shutdown might halt the PWMs at some certain states where high currents can be drawn, hence 

caution needs to be taken while doing these experiments.

Fig.16 DAC-1-4 outputs showing Ta, Tb, Tc and Tb-Tc 
waveforms 
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Level 1 verifies the target independent modules, duty cycles and 
PWM updates. The motor is disconnected at this level. 
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Level 2 Incremental Build  
 
Assuming the Level1 incremental build 1 is completed successfully, this section verifies the analog-to-
digital conversion, Clarke / Park transformations and phase voltage calculations. Connect the motor to the 
board.In the software, the key variables to be adjusted are summarized below. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 VdTesting(Q24): for changing the d-qxis voltage in per-unit. 
 VqTesting(Q24): for changing the q-axis voltage in per-unit. 
 
Open HVACI_Sensorless-Settings.h and select level 2 incremental build option by setting the 
BUILDLEVEL to LEVEL2 (#define   BUILDLEVEL LEVEL2) and save the file. Now Right Click on the 
project name and click Rebuild Project. Once the build is complete click on debug button, reset CPU, 
restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named 
“IsrTicker” will be incrementally increased as seen in watch windows to confirm the interrupt working 
properly. 
 

Level 2A – Testing the Phase Voltage module 
 
In this part, the phase voltage calculation module, PHASEVOLT_MACRO, will be tested. Gradually 
increase the DC bus voltage. The following waveforms should be observed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 The VphaseA, VphaseB, and VphaseC waveforms should be 120o apart from each other. Specifically, 
VphaseB lags VphaseA by120o (Figure 17) and VphaseC leads VphaseA by 120. 

Alternatively user can modify the datalog setting to verify the following relation between the signals 

 The Valpha waveform should be same as the VphaseA waveform. 

 The Valpha waveform should be leading the Vbeta waveform by 90o at the same magnitude. 

 
Note that the open loop experiments are meant to test the ADCs, inverter stage, sw modules etc. 
Therefore running motor under load or at various operating points is not recommended. 
 

Fig 17 Calculated phase A&B voltages by volt1 module, rg1.Out and 
svgen_dq1.Ta 
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Phase 2B – Testing the Clarke module 
 
In this part the Clarke module will be tested. The three measured line currents are transformed to two 
phase dq currents in a stationary reference frame. The outputs of this module can be checked from graph 
window.  
 
Verify the followings: 
 
 The clark1.Alpha waveform should be leading the clark1.Beta waveform by 90o at the same magnitude. 
 The clark1.Alpha waveform should be same as the clark1.As waveform. 
 
It is important that the measured line current must be lagging with the reconstructing phase voltage 
because of the nature of the ACI motor. As mentioned in the previous section, three input switching 
functions may not be functioning correctly (see this module documentation for details). This can be easily 
checked as follows (Note you may need to modify datalog settings and/or graph windows settings to 
observe these signals): 
 

 The clark1.Alpha waveform should be lagging the Valpha waveform at an angle by nature of the 
reactive load of Induction motor. 

 The clark1.Beta waveform should be lagging the Vbeta waveform at the same angle. 

 If the clark1.Alpha and Valpha or clark1.Beta and Vbeta waveforms in the previous step are not truly 
affecting the lagging relationship, then set OutofPhase to 1 at the beginning of the 
PHASEVOLT_MACRO module. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 18 The waveforms of phase A voltage & current and phase B voltage & current 
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Since the low side current measurement technique is used employing shunt resistors on inverter phase 
legs, the phase current waveforms observed from current test points ([M5]-Ifb-U, and [M5]-Ifb-V) are 
composed of pulses as shown in Fig 19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Level 2B – Adjusting PI Limits 
 
Note that the vectorial sum of d-q PI outputs should be less than 1.0 which refers to maximum duty cycle 
for SVGEN macro. Another duty cycle limiting factor is the current sense through shunt resistors which 
depends on hardware/software implementation. Depending on the application requirements 3, 2 or a 
single shunt resistor can be used for current waveform reconstruction. The higher number of shunt 
resistors allow higher duty cycle operation and better dc bus utilization.  
 
Run the system with default VdTesting, VqTesting and SpeedRef and gradually increase VdTesting and 
VqTesting values. Meanwhile, watch the current waveforms in the graph window. Keep increasing until 
you notice distorted current waveforms and write down the maximum allowed VdTesting and VqTesting 
values. Make sure that these values are consistent with expected d-q current component maximums 
while running the motor. After this build level, PI outputs will automatically generate the voltage reference 
and determine the PWM duty cycle depending on the d-q current demand, therefore set pi_id.Umax/min 
and pi_iq.Umax/min according to recorded VdTesting and VqTesting values respectively. 
 
Running motor without proper PI limits can yield distorted current waveforms and unstable closed 
loop operations which may damage the hardware.  
 
Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking the 
controller out of realtime mode and reset.  

Fig.19 Amplified Phase A current 
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Level 2 verifies the analog-to-digital conversion, offset compensation, clarke / park transformations.
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Level 3 Incremental Build 
 
Assuming the previous section is completed successfully, this section verifies the dq-axis current 
regulation performed by PI modules and speed measurement modules (optional). To confirm the 
operation of current regulation, the gains of these two PI controllers are necessarily tuned for proper 
operation. 
 
Open HVACI_Sensorless-Settings.h and select level 3 incremental build option by setting the 
BUILDLEVEL to LEVEL3 (#define   BUILDLEVEL LEVEL3). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef(Q24): for changing the d-qxis voltage in per-unit. 
 IqRef(Q24): for changing the q-axis voltage in per-unit. 
 
In this build, the motor is supplied by AC input voltage and the (AC) motor current is dynamically 
regulated by using PI module through the park transformation on the motor currents. 
 
The steps are explained as follows: 

 Launch a debug session, enable time mode and run the project. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different), Idref to a certain value 
to generate rated flux  

 Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus voltage. 

 Check pi_id.Fdb in the watch windows with continuous refresh feature whether or not it should be 
keeping track pi_id.Ref for PI module. If not, adjust its PI gains properly. 

 Check pi_iq.Fdb in the watch windows with continuous refresh feature whether or not it should be 
keeping track pi_iq.Ref for PI module. If not, adjust its PI gains properly. 

 To confirm these two PI modules, try different values of pi_id.Ref and pi_iq.Ref or SpeedRef. 

 For both PI controllers, the proportional, integral, derivative and integral correction gains may be re-
tuned to have the satisfied responses. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset.  
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During running this build, the current waveforms in the CCS graphs should appear as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Level 3B – QEP / SPEED_FR test (optional for speed-loop tuning) 
 
This section verifies the QEP1 driver and its speed calculation. Qep drive macro determines the rotor 
position and generates a direction (of rotation) signal from the shaft position encoder pulses. Make sure 
that the output of the incremental encoder is connected to [Main]-H1 and QEP/SPEED_FR macros are 
initialized properly in the HVACI_Sensorless.c file depending on the features of the speed sensor. Refer 
to the pdf files regarding the details of related macros in motor control folder 
(C:\TI\controlSUITE\libs\app_libs\motor_control). The steps to verify these two software modules related 
to the speed measurement can be described as follows: 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to 
get the appropriate DC-bus voltage. Now the motor is running close to reference speed. 

 Check the “speed1.Speed” in the watch windows with continuous refresh feature whether or not the 
measured speed is less than SpeedRef a little bit due to a slip of motor. 

 To confirm these modules, try different values of SpeedRef to test the Speed. 

 Use oscilloscope to view the electrical angle output, ElecTheta, from QEP_MACRO module and the 
emulated rotor angle, Out, from RG_MACRO at PWMDAC outputs with external low-pass filters. 

 Check that both ElecTheta and Out are of saw-tooth wave shape and have the same period. If the 
measured angle is in opposite direction, then change the order of motor cables connected to inverter 
output (TB3 for HVDMC kit). 

 Check from Watch Window that qep1.IndexSyncFlag is set back to 0xF0 every time it reset to 0 by 
hand. Add the variable to the watch window if it is not already in the watch window. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset.  

Fig.20 Svgen_dq1.Ta, phase A voltage, and phase A& B current waveforms. 
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Level 3C – CAP / SPEED_PR test (optional for speed-loop tuning) 
 
In this case, the CAP1 input is chosen to detect the edge. If available, make sure that the sensor output is 
connected to [Main]-H1  and CAP/SPEED_PR macros are initialized properly in the HVACI_Sensorless.c 
file depending on the features of the speed sensor. Typically the capture is used to measure speed when 
a simple low cost speed sensing system is available. The sensor generates pulses when detecting the 
teeth of a sprocket or gear and the capture drive provides the instantaneous value of the selected time 
base (GP Timer) captured on the occurrence of an event. Refer to the pdf files regarding the details of 
related macros in motor control folder (C:\TI\controlSUITE\libs\app_libs\motor_control). The steps to verify 
these two software modules related to the speed measurement can be described as follows:  
 
 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to 
get the appropriate DC-bus voltage. Now the motor is running reference speed. 

  Check the “speed2.Speed” in the watch windows with continuous refresh feature whether or not they 
should be less than SpeedRef a little bit due to a slip of motor. 

 To confirm these modules, try different values of SpeedRef to test the Speed. 

 Reduce voltage at variac / dc power supply to zero, halt program and stop real time mode. Now the 
motor is stopping. 

An alternative to verify these two software modules without running the motor can be done by using a 
function generator. The key steps can be explained as follows: 

 Use a function generator to generate the 3.3V (DC) square-wave with the desired frequency 
corresponding to the number of teeth in sprocket and the wanted speed in rpm. Then, connect only the 
pulse signal and ground wires from the function generator to HVDMC board. The desired frequency of 
the square-wave produced by function generator can be formulated as: 

HzTEETHRPMf wavesquare 60_
×

=  

where RPM is the wanted speed in rpm, and TEETH is the number of teeth in sprocket. 

 Compile/load/run program with real time mode and then increase voltage at variac to get the 
appropriate DC-bus voltage. Now the motor is running. Note that the SpeedRef could be set to any 
number. 

 Check the speed2.Speed and speed2.SpeedRpm in the watch windows with continuous refresh feature 
whether or not they should be corresponding to the wanted speed that is chosen before. 

 To confirm these modules, change different frequencies of square-wave produced by function 
generator with corresponding wanted (known) speed to check the Speed and SpeedRpm. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset.  
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 Level 3 verifies the dq-axis current regulation performed by PI macros and speed measurement modules
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Level 4 Incremental Build 

Assuming the previous section is completed successfully; this section verifies flux estimation (ACI_FE) 
and open-loop speed estimation (ACI_SE), respectively. 
 
Open HVACI_Sensorless-Settings.h and select level 4 incremental build option by setting the 
BUILDLEVEL to LEVEL4 (#define   BUILDLEVEL LEVEL4). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef (Q24): for changing the d-qxis voltage in per-unit. 
 IqRef (Q24): for changing the q-axis voltage in per-unit. 
 
The tuning of proportional and integral gains (Kp_fe and Ki_fe) inside the flux estimator may be critical for 
very low speed operation. The key steps can be explained as follows: 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Compile/load/run program with real time mode and then increase voltage at variac / dc power supply to 
get the appropriate DC-bus voltage. Now the motor is running close to reference speed. 

 Compare fe1.ThetaFlux with rg1.Out via PWMDAC with external low-pass filter and an oscilloscope. 
They should be identical with a small phase shift. 

 If fe1.ThetaFlux does not give the ramp waveform, the Kp and Ki inside the flux estimator are required 
to be re-tuned (likely to be reduced). 

 To confirm this flux estimator, try different values of SpeedRef. 

 Compare se1.WrHat with reference speed or measured speed in the watch windows with continuous 
refresh feature whether or not it should be nearly the same. 

 To confirm this open-loop speed estimator, try different values of SpeedRef 
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During running this build, the current waveforms in the CCS graphs should appear as follows: 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.21 Estimated d&q  fluxes,estimated theta and phase A current waveform 



C2000 Systems and Applications  35 
 

SVGEN
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb
Ualpha

Ubeta

Level 4 - Incremental System Build Block Diagram

 Level 4 verifies the flux and speed estimation performed by ACI_FE and ACI_SE
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Level 5 Incremental Build 

Assuming the previous section is completed successfully, this section verifies the speed regulator 
performed by PI module. The system speed loop is closed by using the measured speed as a feedback. 
 
Open HVACI_Sensorless-Settings.h and select level 5 incremental build option by setting the 
BUILDLEVEL to LEVEL5 (#define   BUILDLEVEL LEVEL5). Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef (Q24): for changing the d-qxis voltage in per-unit. 
 
The speed loop is closed by using measured speed. It should be emphasized that the motor can spin only 
one direction when the measured speed (from capture driver) does not give information about the 
direction like QEP based speed measurement. Therefore, if the speed sensor is not an incremental 
encoder, the SpeedRef is required to be positive. The key steps can be explained as follows: 
 
Level 5A 

 Compile/load/run program with real time mode. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Add the soft-switch variables “lsw” to the watch window in order to switch from current loop to 
speed loop. In the code lsw manages  the loop setting as follows: 

- lsw=0, close the current loop. 
- lsw=1, close the speed loop. 

 Set lsw to 1. Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus 
voltage and now the motor is running around the reference speed (0.3 pu).  

 Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus voltage and now 
the motor is running around the reference speed (0.3 pu). 

 Compare Speed with SpeedRef in the watch windows with continuous refresh feature whether or not it 
should be nearly the same. 

 To confirm this speed PI module, try different values of SpeedRef (positive only). 

 For speed PI controller, the proportional, integral, derivative and integral correction gains may be re-
tuned to have the satisfied responses. 

 At very low speed range, the performance of speed response relies heavily on the good rotor flux angle 
computed by flux estimator.  

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset.  

 Note that the IdRef is set to be constant at a certain value that is not too much for driving the motor. 
Practically, it may be calculated from the rated flux condition. 
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Level 5B (Alternative method) 

In order to test ACI_FE only, disconnect the speed PI and Iq PI modules, and apply constant “Iqref” as 
the reference to Iq PI as shown in Level 5B. If the ACI_FE runs properly, the motor should spin smoothly. 
If not, check the parameters in HVACI_Sensorless-Settings.h. Make sure that the base (pu) quantities are 
set to maximum measurable current, voltage etc., and motor electrical parameters are correct. The DC 
bus voltage should be high enough in order not to saturate the PI outputs. Run the same experiment 
again and keep tuning ACI_FE gains. Note that, in this scheme the speed is not controlled, therefore a 
non-zero torque (Iq) reference will spin the motor very fast unless loaded. Therefore keep the Iqref low 
(typically less than 0.1 pu depending on the experimental setup) and load the motor using a brake, 
generator etc. Increase Iqref or reduce the amount of load, if the motor speed is too low or the generated 
torque by the motor is not enough to handle the applied load. After tuning the ACI_FE, add speed PI into 
the system as shown in the block diagram and tune it, if needed. This method will help the user tune 
ACI_FE and speed PI separately. 
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 Level 5 verifies the speed PI module and estimated theta (lsw=1)
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 Level 5 verifies the estimated theta 

Alpha

Beta

Qs

Ds
IdRef

ACI
Motor

PWM 
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO As

Bs

Alpha

Beta

Alpha

Beta

QEPn

SPEED FR
MACRO ElecTheta

Direction
QEP 

MACRO
QEP
HW

Speed

SpeedRpm

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase 
Inverter

Ta

Tb

Tc

DcBusVolt

ADC 
MACRO

ACI_FE
MACRO Valpha

Vbeta

Isalpha

Isbeta

Sine/Cos

Isbeta

ThetaFlux

PsiDrs

PsiQrs

Isalpha

Estimated 
Speed

PARK
MACRO

ACI_SE 
MACRO

IqRef



C2000 Systems and Applications  40 
 

Level 6 Incremental Build 
 
Assuming the previous section is completed successfully, this section verifies the speed regulator 
performed by PI module. The system speed loop is closed by using the estimated speed as a feedback. 
 
Open HVACI_Sensorless-Settings.h and select level 6 incremental build option by setting the 
BUILDLEVEL to LEVEL6 (#define   BUILDLEVEL LEVEL6).  Now Right Click on the project name and 
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real 
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be 
incrementally increased as seen in watch windows to confirm the interrupt working properly. 
 
 SpeedRef (Q24): for changing the rotor speed in per-unit. 
 IdRef (Q24): for changing the d-qxis voltage in per-unit. 
 
The speed loop is closed by using estimated speed. Unlike the Capture based sensored system in 
previous build, the motor can spin both directions because the estimated speed (from open-loop speed 
estimator) gives information about the direction. Therefore, the SpeedRef can be either positive or 
negative value. The key steps can be explained as follows: 

 Compile/load/run program with real time mode. 

 Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different). 

 Set lsw to 1. Gradually increase voltage at variac / dc power supply to get an appropriate DC-bus 
voltage and now the motor is running with this reference speed (0.3 pu).  

 Compare se1.WrHat with SpeedRef in the watch windows with continuous refresh feature whether or 
not it should be nearly the same. 

 To confirm this speed PI module, try different values of SpeedRef (positive or negative). 

 For speed PI controller, the proportional, integral, derivative and integral correction gains may be re-
tuned to have the satisfied responses.  

 At very low speed range, the performance of speed response relies heavily on the good rotor flux angle 
computed by flux estimator. 

 Bring the system to a safe stop as described at the end of build 1 by reducing the bus voltage, taking 
the controller out of realtime mode and reset.  

 Note that the IdRef is set to be constant at a certain value that is not too much for driving the motor. 
Practically, it may be calculated from the rated flux condition and follow a flux weakening profile at high 
speed region.  

Note:  Using scheme 6B is recommended until completing the loop-tuning process to achieve smooth 
start-up. This scheme employs a soft loop-switch in the code for sensorless speed loop transient. For this 
purpose, add soft-switch variable “lsw” to watch window and set it to 1 in order close the speed loop. 
Each time close the speed loop earlier manually from watch window until achieving direct sensorless 
start-up.  
 
As a mid-step in between level 5 and level 6, a soft switch can be used in level 5A to change the speed PI 
feedback from sensor based speed measurement to estimated speed. In this case, the initial speed 
estimation ambiguities will be handled by measured speed until the system is perfectly tuned.   
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During running this build, the current waveforms in the CCS graphs should appear as follows: 
 

 

 
 
 
 
 
 
 
 
 
 

 
 

Fig23 Flux and torque components of the stator current in the synchronous reference frame under  
1.0 pu step- load and 0.3 pu speed monitored from PWMDAC outputs 

Fig.22 Phase A&B current, estimated theta and phase A voltage waveforms 
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 Level 6 verifies the complete system
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Level 6B - Incremental System Build Block Diagram

 Level 6 verifies the complete system
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