I3 TEXAS
INSTRUMENTS

MSP430® IQmathLib Users Guide version
01.00.02.07

USER’S GUIDE

MSP430-IQmathLib-UsersGuide-01.00.02.07 Copyright © Texas Instruments Incorporated.

Copyright

Copyright © Texas Instruments Incorporated. All rights reserved.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 01.00.02.07 of this document, last updated on July 10, 2014.

2 July 10, 2014

Table of Contents

Table of Contents

CopyHght . . . e e e e e e e e e e e e e e e e e 2
Revision Information L L e e e e e e e e 2
1 Introduction e e e e e e e e e e e e e e 5
2 Using The Qmath and IQmath Libraries oo, 7
21 QmathDataTypes o e 7
22 1QmathDataTypes o e 9
2.3 Usingthe Libraries e 11
2.4 MSP430-GCC Beta Support e 16
2.5 Calling Functions From C e 17
2.6 Selecting The Global Qand IQ Formats e 18
2.7 Example Projects e 19
2.8 Function Groups e 22
3 Qmath Functions L . e e e e e e e e e e e e e 23
3.1 Qmath Introduction e e 23
3.2 Qmath Format Conversion Functions e 24
3.3 Qmath Arithmetic Functions e 29
3.4 Qmath Trigonometric Functions L 39
3.5 Qmath Mathematical Functions 44
3.6 Qmath Miscellaneous Functions e 48
4 I1QmathFunctions i i i e e 51
41 1Qmath Introduction L e e 51
4.2 lQmath Format Conversion Functions e 52
4.3 lQmath Arithmetic Functions e 58
4.4 |Qmath Trigonometric Functions L 68
4.5 lQmath Mathematical Functions 74
4.6 lQmath Miscellaneous Functions 78
5 Optimization Guide For AdvancedUsers 81
5.1 Introduction e e 81
5.2 Advanced Multiplication L L e 82
5.3 Advanced Division L. e e 84
5.4 Inlined Multiplication with the MPY32 Peripheral 85
6 Benchmarks o . e e e e e e e e e e e e e e e e 87
6.1 MSP430 Software Multiply 88
6.2 MSP430F4xx Family e 90
6.3 MSP430F5xx, MSP430F6xx and MSP430FRxx Family 92
IMPORTANT NOTICE i e 94

July 10, 2014 3

Table of Contents

4 July 10, 2014

Introduction

1

Introduction

The Texas Instruments® MSP430 IQmath and Qmath Libraries are a collection of highly optimized
and high-precision mathematical functions for C programmers to seamlessly port a floating-point
algorithm into fixed-point code on MSP430 devices. These routines are typically used in compu-
tationally intensive real-time applications where optimal execution speed, high accuracy and ultra
low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execu-
tion speeds considerably faster and energy consumption considerably lower than equivalent code
written using floating-point math.

Th math library provi functions for with 16-bit fix in . Th function

have been optimized for all MSP430 devices and can efficiently be used with or without a hardware

multiplier. The functions provide up to 16 bits of accuracy to satisfy the majority of applications on
MSP430 devices.

The IQmath library provi h me function h math library with 32-bi n
higher racy. Th functions are provi for when an lication r ir r mpa-

rable or greater than the equivalent floating point math functions.
The following tool chains are supported:

= |AR Embedded Workbench for MSP430
m Texas Instruments Code Composer Studio

July 10, 2014

Administrator
Underline

Administrator
Underline

Introduction

6 July 10, 2014

Edited by Foxit Reader
Copyright(C) by Foxit Software Company,2005-2008
For Evaluation Only.

Using The Qmath and IQmath Libraries

2.1

Using The Qmath and IQmath Libraries
Qmath Data Types

The Qmath library uses a 16-bit fixed-point signed number (an “int16_t” in C99) as its basic data
type. The Q format of this fixed-point number can range from Q1 to Q15, where the Q format
number indicates the number of fractional bits. The Q format value is stored as an integer with an
implied scale based on the Q format and the number of fractional bits. Equation 2.1 shows how
a Q format decimal number z, is stored using an integer value z; with an implied scale, where n
represents the number of fractional bits.

Qn(zg) =x; x27" (2.1)

For example the Q12 value of 3.625 is stored as an integer value of 14848, shown in equation 2.2
below.

[2 12 3.625=14848|
14848 x 2712 = Q12(3.625)

(2.2)

C typedefs are provided for the various Q formats, and these Qmath data types should be used in
preference to the underlying “int16_t" data type to make it clear which variables are in Q format.

The following table provides the characteristics of the various Q formats (the C data type, the
number of integer bits, the number of fractional bits, the smallest negative value that can be repre-
sented, the largest positive value that can be represented, and the smallest difference that can be
represented):

Bits Range .
Type Integer | Fractional Min Max Resolution
_gql5 1 15 -1 0.999 970 0.000 030
_ql4 2 14 -2 1.999 940 0.000 061
_gl3 3 13 -4 3.999 830 0.000 122
_gl2 4 12 -8 7.999 760 0.000 244
_qll 5 11 -16 15.999 510 0.000 488
_ql0 6 10 -32 31.999 020 0.000 976
_g9 7 9 -64 63.998 050 0.001 953
_g8 8 8 -128 127.996 090 0.003 906
_q7 9 7 -256 255.992 190 0.007 812
_g6 10 6 -512 511.984 380 0.015 625
_g5 11 5 -1,024 | 1,023.968 750 0.031 250
_qg4 12 4 -2,048 2047.937 500 0.062 500
_a3 13 3 -4,096 | 4,095.875 000 0.125 000
_q2 14 2 -8,192 | 8,191.750 000 0.250 000
_gql 15 1 -16,384 | 16,383.500 000 0.500 000

Table 2.1: Qmath Data Types

In addition to these specific Q format types, there is an additional type that corresponds to the
GLOBAL_Q format. This is _g, and it matches one of the above Q formats (based on the setting of

July 10, 2014

Administrator
文本框
2的12次方乘以3.625=14848

Edited by Foxit Reader
Copyright(C) by Foxit Software Company,2005-2008
For Evaluation Only.

Using The Qmath and IQmath Libraries

GLOBAL_0Q). The GLOBAL_0Q format has no impact when using the specific _gN types and function
such as _g12.

8 July 10, 2014

Using The Qmath and IQmath Libraries

2.2

IQmath Data Types

The IQmath library uses a 32-bit fixed-point signed number (an “int32_t" in C99) as its basic data
type. The 1Q format of this fixed-point number can range from IQ1 to 1Q30, where the IQ format
number indicates the number of fractional bits. The 1Q format value is stored as an integer with an
implied scale based on the 1Q format and the number of fractional bits. Equation 2.3 shows how
a 1Q format decimal number z;, is stored using an integer value z; with an implied scale, where n
represents the number of fractional bits.

IQn(zig) = x; % 27" (2.3)

For example the 1Q24 value of 3.625 is stored as an integer value of 60817408, shown in equation
2.4 below.

60817408 x 2724 = 1Q24(3.625) (2.4)

C typedefs are provided for the various IQ formats, and these IQmath data types should be used in
preference to the underlying “int32_t” data type to make it clear which variables are in 1Q format.

The following table provides the characteristics of the various 1Q formats (the C data type, the
number of integer bits, the number of fractional bits, the smallest negative value that can be repre-
sented, the largest positive value that can be represented, and the smallest difference that can be
represented):

July 10, 2014

Using The Qmath and IQmath Libraries

Bits Range .

Type Integer | Fractional Min Max Resolution

_ig30 2 30 -2 1.999 999 999 | 0.000 000 001
_ig29 3 29 -4 3.999 999 998 | 0.000 000 002
_iqg28 4 28 -8 7.999 999 996 | 0.000 000 004
_iqg27 5 27 -16 15.999 999 993 | 0.000 000 007
_iqg26 6 26 -32 31.999 999 985 | 0.000 000 015
_ig25 7 25 -64 63.999 999 970 | 0.000 000 030
_ig24 8 24 -128 127.999 999 940 | 0.000 000 060
_ig23 9 23 -256 255.999 999 881 | 0.000 000 119
_iqg22 10 22 -512 511.999 999 762 | 0.000 000 238
_ig21 11 21 -1,024 1,023.999 999 523 | 0.000 000 477
_ig20 12 20 -2,048 2,047.999 999 046 | 0.000 000 954
_iql9 13 19 -4,096 4,095.999 998 093 | 0.000 001 907
_iqgls 14 18 -8,192 8,191.999 996 185 | 0.000 003 815
_iql7 15 17 -16,384 16,383.999 992 371 | 0.000 007 629
_iqgle 16 16 -32,768 32,767.999 984 741 | 0.000 015 259
_iqgls 17 15 -65,536 65,535.999 969 483 | 0.000 030 518
_iqgl4 18 14 -131,072 131,071.999 938 965 | 0.000 061 035
_iqgl3 19 13 -262,144 262,143.999 877 930 | 0.000 122 070
_iqgl2 20 12 -524,288 524,287.999 755 859 | 0.000 244 141
_iqgl1l 21 11 -1,048,576 1,048,575.999 511 720 | 0.000 488 281
_iqlo0 22 10 -2,097,152 2,097,151.999 023 440 | 0.000 976 563
_ig9 23 9 -4,194,304 4,194,303.998 046 880 | 0.001 953 125
_ig8 24 8 -8,388,608 8,388,607.996 093 750 | 0.003 906 250
_iqg7 25 7 -16,777,216 16,777,215.992 187 500 | 0.007 812 500
_ig6 26 6 -33,554,432 33,554,431.984 375 000 | 0.015 625 000
_ig5 27 5 -67,108,864 67,108,863.968 750 000 | 0.031 250 000
_iqg4 28 4 -134,217,728 134,217,727.937 500 000 | 0.062 500 000
_ig3 29 3 -268,435,456 268,435,455.875 000 000 | 0.125 000 000
_ig2 30 2 -536,870,912 536,870,911.750 000 000 | 0.250 000 000
_iqgl 31 1 -1,073,741,824 | 1,073,741,823.500 000 000 | 0.500 000 000

Table 2.2: IQmath Data Types

In addition to these specific 1Q format types, there is an additional type that corresponds to the
GLOBAL_1Q format. This is _iq, and it matches one of the above 1Q formats (based on the setting
of GLOBAL_10Q).The GLOBAL_TIQ format has no impact when using the specific _igN types and
function such as _ig24.

10

July 10, 2014

Using The Qmath and IQmath Libraries

2.3

Using the Libraries

The Qmath and IQmath libraries are available for a wide range of MSP430 devices from value line
to the F5xx series to the latest FRAM based devices. The libraries are available in the top level

libraries directory and are divided by IDE and multiplier hardware support.

Each library name is constructed with the IDE and multiplier hardware used such that it matches

the directory path. The name is then followed by a specifier for the CPU version and code and data
models if licable.

2.3.1 Code Composer Studio
The Code Composer Studio (CCS) libraries are provided in easy to use archive files, QmathLib.a
and IQmathLib.a. The archive files should be used with projects in place of any .lib files. When link-
ing, the archive file will select the correct library based on CPU, memory and data model compiler
settings.
To add a library to an existing CCS project, simply navigate to the device directory under IQmath-
Lib/libraries/CCS and drag and drop the QmathLib.a or IQmathLib.a file to the CCS project. When
prompted select "Link to files" and you are done!
+'+ File Operation @
Select how files should be imported into the project:
/| Create link locations relative to: |PRO_IECT_LOC "|
Configure Drag and Drop Settings...
':?:' [oK] | Cancel |
Figure 2.1: CCS file add prompt
The full list of CCS libraries are provided in the tables below. These are automatically selected
when using QmathLib.a or IQmathLib.a but can also be added directly to a project.
Library Name CPU | Multiply Hardware | Code Model | Data Model
*x_MPYsoftware_CPU.lib CPU Software
*x_MPYsoftware_CPUX_small_code_small_data.lib CPUX Software small small
x_MPYsoftware_CPUX_large_code_small_data.lib CPUX Software large small
x_MPYsoftware_CPUX_large_code_restricted_data.lib | CPUX Software large restricted
x_MPYsoftware_CPUX_large_code_large_data.lib CPUX Software large large

Table 2.3: CCS software multiply libraries for all MSP430 devices.

July 10, 2014

11

Administrator
Underline

Administrator
Underline

Administrator
Underline

Using The Qmath and IQmath Libraries

Library Name CPU | Multiply Hardware | Code Model | Data Model
*_MPY32_4xx_CPU.lib CPU MPY32 - -
x_MPY32_4xx_CPUX_small_code_small_data.lib CPUX MPY32 small small
x_MPY32_4xx_CPUX_large_code_small_data.lib CPUX MPY32 large small
x_MPY32_4xx_CPUX_large_code_restricted_data.lib | CPUX MPY32 large restricted
x_MPY32_4xx_CPUX_large_code_large_data.lib CPUX MPY32 large large

Table 2.4: CCS MPY32 libraries for F4xx devices.

Library Name CPU | Multiply Hardware | Code Model | Data Model
% _MPY32_5xx_6xx_CPUX_small_code_small_data.lib CPUX MPY32 small small
x_MPY32_5xx_6xx_CPUX_large_code_small_data.lib CPUX MPY32 large small
x_MPY32_5xx_6xx_CPUX_large_code_restricted_data.lib | CPUX MPY32 large restricted
x_MPY32_5xx_6xx_CPUX_large_code_large_data.lib CPUX MPY32 large large

Table 2.5: CCS MPY32 libraries for F5xx, F6xx, FR5xx and FR6xx devices.

2.3.2 |AR Embedded Workbench for MSP430

The IAR Embedded Workbench for MSP430 libraries are provided under the IQmath-

Lib/libraries/IAR folder and organized by multiplier hardware support and device family. When
selecting a library the CPU version, code and data model must match the options used in the
project settings shown below.

12 July 10, 2014

Administrator
Underline

Using The Qmath and IQmath Libraries

Cateqgary:

General Options
CJC++ Compiler
Assembler
Custom Build
Build Actions
Linker
TI ULP Advisor
Debugger

FET Debugger
Simulator

Options for node "IQmathLib_functional_exl”

=l

Target |Output | Library Configuration I Library Options I Stack/Heap | * | *

Device
MSP430F5529
L0g2
@ L092 mode
C052 emulation mode

Positionindependence
[] Code and read-only data

MNo dynamic read/fwrite initialization

[T Bxclude RESET vector

Code Model Data Model
@ Small @ Small
() Large) Medium
) Large

Hloating-point

Size of type ‘double’

@ 32 bits

(7) B4 bits

Hardware multiplier
Hardware multiplier
@ Allow direct access
() Use only library calls

[Ok] [Cancel

Figure 2.2: 1AR code and data model options

The IAR library files can be added to a project either by dragging and dropping the library to the

project or right clicking the project and selecting Add -> Add Files as shown below.

July 10, 2014

13

Using The Qmath and IQmath Libraries

[|@mathLib_empty_praject - Debug

Files

=] IQmathLib_E)G(_Exx_FRxx_wurkspace
sm=lm|lOmathLib_empty
— [1QmathLib_| AR Sxx_xoFF
main.c

[Qutput

H2 (3 QmathLib_empty_project-De
main.c

— [QrnathLib_ AR Bxx_Bxx_FF
3 Qutput

=1 () Signal_FFT - Debug

— [OmathLib_lAF_Bxx_Bx_FF
Signal_FFT.c

[Qutput

project atlotre

Make
Compile
Rebuild All

Clean
Stop Build
Add

Remove

Rename...

Wersion Control System

Open Containing Folder...

File Properties...

Set as Active

-

Figure 2.3: IAR add files option

Add Files..,
Add Group...

When selecting a library file for versions of IAR previous to 6.10, the code model is always set to
large for CPUX based devices. The library selected must be large code model and then the data
model that matches the project settings shown above.

The full list of IAR libraries are provided in the tables below.

Library Name CPU | Multiply Hardware | Code Model | Data Model
*_MPYsoftware_CPU.lib CPU Software - -
*+_MPYsoftware_ CPUX_small_code_small_data.lib | CPUX Software small small
*_MPYsoftware_CPUX_small_code_medium_data.lib | CPUX Software small medium
x_MPYsoftware_CPUX_small_code_large_data.lib | CPUX Software small large
x_MPYsoftware_CPUX_large_code_small_data.lib | CPUX Software large small
*x_MPYsoftware_CPUX_large_code_medium_data.lib | CPUX Software large medium
*x_MPYsoftware_CPUX_large_code_large_data.lib | CPUX Software large large

Table 2.6: IAR software multiply libraries for all MSP430 devices.

14

July 10, 2014

Administrator
Underline

Administrator
Underline

Using The Qmath and IQmath Libraries

Library Name CPU | Multiply Hardware | Code Model | Data Model
*_MPY32_4xx_CPU.lib CPU MPY32 - -

*_MPY32_4xx_CPUX_small_code_small_data.lib CPUX MPY32 small small

% _MPY32_4xx_CPUX_small_code_medium_data.lib CPUX MPY32 small medium

x_MPY32_4xx_CPUX_small_code_large_data.lib CPUX MPY32 small large

x_MPY32_4xx_CPUX_large_code_small_data.lib CPUX MPY32 large small
x_MPY32_4xx_CPUX_large_code_restricted_data.lib | CPUX MPY32 large medium

x_MPY32_4xx_CPUX_large_code_large_data.lib CPUX MPY32 large large

Table 2.7: IAR MPY32 libraries for F4xx devices.

Library Name CPU | Multiply Hardware | Code Model | Data Model
% MPY32_ 5xx_6xx_CPUX_small_code_small_data.lib CPUX MPY32 small small
*_MPY32_ 5xx_6xx_CPUX_small_code_medium data.lib CPUX MPY32 small medium
x_MPY32_5xx_6xx_CPUX_small_code_large_data.lib CPUX MPY32 small large
*x_MPY32_5xx_6xx_CPUX_large_code_small_data.lib CPUX MPY32 large small
x_MPY32_5xx_6xx_CPUX_large_code_restricted_data.lib | CPUX MPY32 large restricted
*x_MPY32_5xx_6xx_CPUX_large_code_large_data.lib CPUX MPY32 large large

Table 2.8: IAR MPY32 libraries for F5xx, F6xx, FR5xx and FR6xx devices.

July 10, 2014 15

Using The Qmath and IQmath Libraries

2.4

MSP430-GCC Beta Support

The CCS libraries are built for and intended for use with the Tl compiler tool chain. These libraries
can be linked with and used by MSP430-GCC projects, however this feature is untested and is the

responsibility of the user to verify end application functionality.

When linking the libraries with MSP430-GCC the x.a archive files cannot be used and the library
file must be manually selected. Additionally, the ——gc—sections linker option must be applied to
discard unused sections and avoid including additional code and data sections than is required by
the application. This can be applied in the CCS GUI on the linker settings page shown below.

e P roperties for MSP430F5529_GCC_IQmathLib_test

type filter text
. Resource
General
4 Build
. GNU Cempiler
a GMNU Linker
Basic
Libraries
Symbols

Miscellaneous
GMU Objcopy Utility [Disabled]
Debug

Basic

=[O s

S v

-

Configuration: |Debug [Active |

v| | Manage Configurations... |

Output file (-o)
Write a map file (-Map)

Set start address (-g, --entry)

"§ProjName}.out”

"§{ProjName}.map”

Browse...
Browse...

Do not use the standard system startup files when linking (-nostartfiles)

Do not use the standard system libraries when linking (-nodefaultlibs)

Do not use the standard systemn startup files or libraries when linking (-nostdlib)

Do not link with the shared libraries (-static)

| Remove unused sections (--gc-sections)

-

s

m

oK

Cancel

Figure 2.4: MSP430-GCC linker options

16

July 10, 2014

Using The Qmath and IQmath Libraries

2.5 Calling Functions From C

In order to call a Qmath or IQmath function from C, the C header file must be included. Then, the
_qd, _aN, _ig and _igN data types, along with the Qmath and IQmath functions can be used by
the application.

As an example, the following code performs some simple arithmetic in Q12 format:

#include "QmathLib.h"

int
main (void)
{
_ql2 X, Y, Z;

X
Y

_0Q012(1.0);
_Q12(7.0);

Z _Ql2div (X, Y);

July 10, 2014

17

Using The Qmath and IQmath Libraries

2.6

Selecting The Global Q and IQ Formats

Numerical precision and dynamic range requirements vary considerably from one application to an-
other. The libraries provides a GL.OBAL_Q and GLOBAL_1Q format (using the _g and _i g data types
respectively) that an application can use to perform its computations in a generic format which can
be changed at compile time. An application written using the GLOBAL_Q and GLOBAL_IQ formats
can be changed from one format to another by simply changing the GLOBAL_0Q and GLOBAL_IQ
values and recompiling, allowing the precision and performance effects of different formats to be
easily measured and evaluated.

The setting of GLOBAL_Q and GLOBAL_TQ does not have any influence in the _gN and _igN format
and corresponding functions. These types will always have the same fixed accuracy regardless of
the GLOBAL_Q or GLOBAL_IQ formats.

The default GLOBAL_Q format is Q10 and the default GLOBAL_ 10 format is IQ24. This can be easily
overridden in one of two ways:

m In the source file, the format can be selected prior to including the header file. The following
example selects a GLOBAL_Q format of Q8:

//

// Set GLOBAL_Q to 8 prior to including QmathLib.h.
//

#define GLOBAL_Q 8

#include "QmathLib.h"

m |n the project file, add a predefined value for GLOBAL_Q or GLOBAL_IQ. The method to add a
predefined value varies from tool chain to tool chain.

The first method allows different modules in the application to have different global format values,
while the second method changes the global format value for the entire application. The method
that is most appropriate varies from application to application.

Note: Some functions are not available when GLOBAL_Q and GLOBAL_IQ are set to 15 and 30
respectively. Please see the Qmath and IQmath function chapters for a list of functions and the
available Q and IQ formats.

18

July 10, 2014

Using The Qmath and IQmath Libraries

2.7

2.7.1

Example Projects

The IQmathLib provides four example projects for use with CCS or IAR:

m Empty QmathLib project

m Empty IQmathLib project

m QmathLib basic functional example

m QmathLib signal generator and FFT example

The empty QmathLib and IQmathLib projects provide a starting point for building a fixed point
application. These projects will already have the libraries added and the include path set to include
the header files.

The third example (QmathLib_functional_ex3) demonstrates how to use several of the QmathLib
functions and data types to perform basic math calculations.

The fourth example (QmathLib_signal_FFT_ex4) is a code example that demonstrates how the
QmathLib can be used to write application code. The example can be separated into two parts:

m Generate an input signal from multiple cosine waves.
m Perform a complex DFT (FFT) on the input signal.

The result of the complex DFT can be used to approximate the original signals amplitude and phase
angle at each of the frequency bins.

Importing CCS Example Projects

The CCS example projects are provided as .projectspec files for each device family. These files can
be imported to the workspace as a new project using the "Import" option and selecting the "Existing
CCS Eclipse Projects" category shown below.

July 10, 2014

19

Using The Qmath and IQmath Libraries

<"« Impert

Select

Imports existing CCS Eclipse projects into workspace,

Select an import source:

type filter text

= [E s

2 [General

s = C/C++

4 [Code Composer Studio
ue, Build Variables
20 Existing CCS Eclipse Projects
[Legacy CC5v3.3 Projects

. = Git
» = Install
» [= Run/Debug
» [= Team
3

Figure 2.5: CCS Import Options

Select next and browse to the IQmathLib installation directory. The example projects for all devices

will be listed and can be imported.

20

July 10, 2014

Using The Qmath and IQmath Libraries

'« Import CCS Eclipse Projects

Select CCS Projects to Import
Select a directory to search for existing CC5 Eclipse projects.

(@ Select search-directory: Ci\ti\msp430\QMATHLIB_01_10_00_00

() Select archive file:

Discovered projects:

[T & 1QmathLib_empty_sx2_MPY32_dsoc [C:\t1 A3 IQMATHLIB_01_10_00_00%ex

[T & 1QmathLib_empty_ex@_MPY32 5w e [C:\ i mspd 300 QMATHLIE 01
[T & 1QmathLib_empty_sx2_MPYsoftware [C:\ti\mspd 300 QMATHLIE 01
[& QmathLib_empty_exl_MPY32_ther [Ctmispd30 THLIB_01_10
[T & QmathLib_empty_exd_MPY32_Swe_fec [T\ mspd IMATHLIE_01_1i
[& QmathLib_empty_exl_MPYsoftware [C:\timspd 300 QMATHLIE 01 10
[& QmathLib_functional_e3_MPY32_dwec [COHmspd 300 OQMATHLIB 01 1
[T & QmathLib_functienal_e3_MPY32_So e [CHmspd 30 IOMATHLIE 01 11
[& QmathLib_functional_ed_MPYsoftware [\t mspd 300 QMATHLIE 011
[& QmathLib_signal_FFT_exd_MPY32_dsec [\t mspd 300 IQMATHLIE 01 1
[T & QmathLib_signal_FFT_exd_MPY32_Sc_Goc [C\t\mspd 30VQMATHLIE 01 100

[& QmathLib_signal_FFT_exd_MPY¥software [C\ti\mspd300IQMATHLIE 01_10 00

€| 1 | 3

[7] Automatically import referenced projects found in sarme search-directory

Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@ s

Cancel

Figure 2.6: CCS Import Projects Window

July 10, 2014

21

Using The Qmath and IQmath Libraries

2.8 Function Groups

The Qmath and IQmath routines are organized into five groups:
m Format conversion functions - methods to convert numbers to and from the various formats.

m Arithmetic functions - methods to perform basic arithmetic (addition, subtraction, multiplication,
division).

m Trigonometric functions - methods to perform trigonometric functions (sin, cos, atan, and so
on).

m Mathematical functions - methods to perform advanced arithmetic (square root, e*, and so
on).

m Miscellaneous - miscellaneous methods (saturation and absolute value).

In the chapters that follow, the methods in each of these groups are covered in detail.

22 July 10, 2014

Qmath Functions

3.1

Qmath Functions

Qmath IntrodUCHON 23
Qmath Format Conversion FUNCHONSo e e e e 24
Qmath Arithmetic FUNCHIONS e e e e et 29
Qmath Trigonometric FUNCHONS e e e 39
Qmath Mathematical FUNCHONS i e e e e e 44
Qmath Miscellaneous FUNCHONSo e e e e e e e 48

Qmath Introduction

The Qmath library provides 16-bit fixed point math functions that have been optimized for the 16-bit
MSP430 architecture. The library has been optimized to make efficient use of resources for all
MSP430 devices. Execution times, code size and constant data tables are kept to a minimum for
each function.

The Qmath library takes advantage of the MPY32 multiplier peripheral when it is available. If the
device does not have the MPY32 peripheral then the CPU is used to perform a software multiply.
For this reason some functions will utilize larger constant data tables to reduce the number of
multiplies required to compute the result. Many of these tables are shared between functions and
will only need to be included into the applications constant memory once.

The majority of applications will only require 16-bit accuracy. If greater accuracy is required for
calculation see the IQmath chapter for a list of equivalent 32-bit functions.

July 10, 2014

23

Qmath Functions

3.2

3.2.1

3.2.2

Qmath Format Conversion Functions

The format conversion functions provide a way to convert numbers to and from various Q formats.
There are functions to convert Q numbers to and from single-precision floating-point numbers, to
and from integers, to and from strings, to and from various Q formats, and to extract the integer and
fractional portion of a Q number. The following table summarizes the format conversion functions:

_atoQN

Function Name | Q Format | Input Format | Output Format

_atoQN 1-15 char * QN

QN 1-15 float QN
_QNfrac 1-15 QN QN
_QNint 1-15 QN short
_QNtoa 1-15 QN char*
_QNtoF 1-15 QN float
_QNtoQ 1-15 QN GLOBAL_Q
_QtoQN 1-15 GLOBAL_Q QN

Converts a string to a Q number.

Prototype:
_aN

_atoQN (const char =*A)

for a specific Q format (1 <= N <= 15)

Or

g9

_atoQ(const char =A)

for the global Q format

Parameters:

A is the string to be converted.

Description:

This function converts a string into a Q number. The input string may contain (in order) an
optional sign and a string of digits optionally containing a decimal point. A unrecognized char-
acter ends the string and returns zero. If the input string converts to a number greater than the
minimum or maximum values for the given Q format, the return value is limited to the minimum
or maximum value.

Returns:

Returns the Q number corresponding to the input string.

_QN

Converts a floating-point constant or variable into a Q number.

24

July 10, 2014

Qmath Functions

Prototype:
_gN
_ON(float A)

for a specific Q format (1 <= N <= 15)
- Or -

g
_O(float A)

for the global Q format

Parameters:
A is the floating-point variable or constant to be converted.

Description:
This function converts a floating-point constant or variable into the equivalent Q number. If the
input value is greater than the minimum or maximum values for the given Q format, the return
value wraps around and produces inaccurate results.

Returns:
Returns the Q number corresponding to the floating-point variable or constant.

3.2.3 _QNfrac

Returns the fractional portion of a Q number.

Prototype:
—gN
_ONfrac(_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

e
_QOfrac(_g A)

for the global Q format

Parameters:
A is the input number in Q format.

Description:
This function returns the fractional portion of a Q number as a Q number.

Returns:
Returns the fractional portion of the input Q number.

3.24 _QNint

Returns the integer portion of a Q number.

July 10, 2014 25

Qmath Functions

Prototype:
long
_ONint (_gN A)

for a specific Q format (1 <= N <= 15)
-or-
long
_Qint (_g A)

for the global Q format

Parameters:
A is the input number in Q format.

Description:
This function returns the integer portion of a Q number.

Returns:
Returns the integer portion of the input Q number.

3.25 _QNtoa

Converts a Q number to a string.

Prototype:
int
_ONtoa (char =*A,
const char =B,
_gN C)

for a specific Q format (1 <= N <= 15)
- Or -
int
_Qtoa (char =*A,

const char =B,
_gq C)

for the global Q format

Parameters:
A is a pointer to the buffer to store the converted Q number.

B is the format string specifying how to convert the Q number. Must be of the form “Yexx.yyf”
with xx and yy at most 2 characters in length.

C is the Q number to convert.

Description:
This function converts the Q number to a string, using the specified format.

Example:
_Qtoa (buffer, "%$2.4f", glnput)

26 July 10, 2014

Qmath Functions

Returns:
Returns 0 if there is no error, 1 if the width is too small to hold the integer characters, and 2 if
an illegal format was specified.

3.2.6 _QNtoF

Converts a Q number to a single-precision floating-point number.

Prototype:
float
_QONtoF (_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

float
_QtoF (_g A)

for the global Q format

Parameters:
A is the Q number to be converted.

Description:
This function converts a Q number into a single-precision floating-point number.

Returns:
Returns the single-precision floating-point number corresponding to the input Q number.

3.2.7 _QNtoQ

Converts a Q number in QN format to the global Q format.

Prototype:

S|
_ONtoQ (_aN A)

for a specific Q format (1 <= N <= 15)

Parameters:
A is Q number to be converted.

Description:
This function converts a Q number in the specified Q format to a Q number in the global Q
format.

Returns:
Returns the Q number converted into the global Q format.

3.2.8 _QtoQN

Converts a Q number in the global Q format to the QN format.

July 10, 2014 27

Qmath Functions

Prototype:
_gN
_QtoON(_gq A)

for a specific Q format (1 <= N <= 15)

Parameters:
A is the Q number to be converted.

Description:
This function converts a Q number in the global Q format to a Q number in the specified Q
format. be limited to the minimum or maximum value.

Returns:
Returns the Q number converted to the specified Q format.

28 July 10, 2014

Qmath Functions

3.3 Qmath Arithmetic Functions

The arithmetic functions provide basic arithmetic (addition, subtraction, multiplication, division) of
Q numbers. No special functions are required for addition or subtraction; Q numbers can simply
be added and subtracted using the underlying C addition and subtraction operators. Multiplication
and division require special treatment in order to maintain the Q number of the result. The following
table summarizes the arithmetic functions:

Function Name | Q Format | Input Format | Output Format
_Qdiv2 1-15 QN QN
_Qdiv4 1-15 QN QN
_Qdiv8 1-15 QN QN
_Qdivie 1-15 QN QN
_Qdiv32 1-15 QN QN
_Qdive4 1-15 QN QN
_Qmpy2 1-15 QN QN
_Qmpy4 1-15 QN QN
_Qmpy8 1-15 QN QN

_Qmpy16 1-15 QN QN
_Qmpy32 1-15 QN QN
_Qmpy64 1-15 QN QN
_QNdiv 1-15 QN/QN QN
_QNmpy 1-15 QN*QN QN
_QNmpyl16 1-15 QN*short QN
_QNmpyli6frac 1-15 QN*short QN
_QNmpyl16int 1-15 QN*short short
_QNmpyQX 1-15 QN*QN QN
_QNrmpy 1-15 QN*QN QN
_QNrsmpy 1-15 QN*QN QN

3.3.1 _Qdiv2

Divides a Q number by two.

Prototype:
_gN
_Qdiv2 (_gN A)

Parameters:
A is the number to be divided, in Q format.

Description:
This function divides a Q number by two. This will work for any Q format.

Returns:
Returns the number divided by two.

3.3.2 _Qdiv4

Divides a Q number by four.

July 10, 2014 29

Qmath Functions

Prototype:
_gN
_Qdiv4 (_gN A)

Parameters:
A is the number to be divided, in Q format.

Description:
This function divides a Q number by four. This will work for any Q format.

Returns:
Returns the number divided by four.

3.3.3 _Qdiv8
Divides a Q number by eight.
Prototype:
_aN
_0Qdiv8 (_gN A)
Parameters:
A is the number to be divided, in Q format.
Description:
This function divides a Q number by eight. This will work for any Q format.
Returns:
Returns the number divided by eight.
3.34 _Qdivi6e
Divides a Q number by sixteen.
Prototype:
_gN
_Qdivle (_gN A)
Parameters:
A is the number to be divided, in Q format.
Description:
This function divides a Q number by sixteen. This will work for any Q format.
Returns:
Returns the number divided by sixteen.
3.3.5 _Qdiv32
Divides a Q number by thirty two.
30 July 10, 2014

Qmath Functions

3.3.6

3.3.7

3.3.8

Prototype:
_gN
_0div32 (_gN A)

Parameters:
A is the number to be divided, in Q format.

Description:

This function divides a Q number by thirty two. This will work for any Q format.

Returns:
Returns the number divided by thirty two.

_Qdive4

Divides a Q number by sixty four.
Prototype:

—gN

_0dive4 (_gN A)

Parameters:
A is the number to be divided, in Q format.

Description:

This function divides a Q number by sixty four. This will work for any Q format.

Returns:
Returns the number divided by sixty four.

_Qmpy2
Multiplies a Q number by two.
Prototype:

—gN

_Ompy2 (_gN A)

Parameters:
A is the number to be multiplied, in Q format.

Description:
This function multiplies a Q number by two. This will work for any Q format.

Returns:
Returns the number multiplied by two.

_Qmpy4

Multiplies a Q number by four.

July 10, 2014

31

Qmath Functions

Prototype:
—gN
_Qmpy4 (_gN A)

Parameters:
A is the number to be multiplied, in Q format.

Description:
This function multiplies a Q number by four. This will work for any Q format.

Returns:
Returns the number multiplied by four.

3.3.9 _Qmpy8
Multiplies a Q number by eight.
Prototype:
_agN
_Qmpy8 (_gN A)
Parameters:
A is the number to be multiplied, in Q format.
Description:
This function multiplies a Q number by eight. This will work for any Q format.
Returns:
Returns the number multiplied by eight.
3.3.10 _Qmpy16
Multiplies a Q number by sixteen.
Prototype:
_gN
_Ompyl6 (_gN A)
Parameters:
A is the number to be multiplied, in Q format.
Description:
This function multiplies a Q number by sixteen. This will work for any Q format.
Returns:
Returns the number multiplied by sixteen.
3.3.11 _Qmpy32
Multiplies a Q number by thirty two.
32 July 10, 2014

Qmath Functions

3.3.12

3.3.13

Prototype:
—gN
_Qmpy32 (_gN A)

Parameters:
A is the number to be multiplied, in Q format.

Description:
This function multiplies a Q number by thirty two. This will work for any Q format.

Returns:
Returns the number multiplied by thirty two.

_Qmpy64

Multiplies a Q number by sixty four.

Prototype:
_aN
_QOmpy64 (_aN A)

Parameters:
A is the number to be multiplied, in Q format.

Description:
This function multiplies a Q number by sixty four. This will work for any Q format.

Returns:
Returns the number multiplied by sixty four.

_QNdiv
Divides two Q numbers.
Prototype:

_gN

_QONdiv (_gN A,

_gN B)
for a specific Q format (1 <= N <= 15)
- or -

e
_Qdiv(_g A,

_4q B)
for the global Q format

Parameters:
A is the numerator, in Q format.

B is the denominator, in Q format.

July 10, 2014

33

Qmath Functions

Description:
This function divides two Q numbers, returning the quotient in Q format. The result is satu-
rated if it exceeds the capacity of the Q format, and division by zero always results in positive
saturation (regardless of the sign of A).

Returns:
Returns the quotient in Q format.

3.3.14 _QNmpy

Multiplies two Q numbers.

Prototype:
—aN
_ONmpy (_qN A,
_aN B)

for a specific Q format (1 <= N <= 15)
- Or -
—q

_Ompy (_g A,
_q B)

for the global Q format

Parameters:
A is the first number, in Q format.
B is the second number, in Q format.

Description:
This function multiplies two Q numbers, returning the product in Q format. The result is neither
rounded nor saturated, so if the product is greater than the minimum or maximum values for
the given Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in Q format.

3.3.15 _QNmpyl16

Multiplies a Q number by an integer.

Prototype:
_aN
_ONmpyIl6 (_gN A,
long B)

for a specific Q format (1 <= N <= 15)
- or -

e
_OmpyIl6 (_gq A,
long B)

34 July 10, 2014

Qmath Functions

3.3.16

3.3.17

for the global Q format

Parameters:
A is the first number, in Q format.

B is the second number, in integer format.

Description:
This function multiplies a Q number by an integer, returning the product in Q format. The result
is not saturated, so if the product is greater than the minimum or maximum values for the given
Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in Q format.

_QNmpyli6frac

Multiplies a Q number by an integer, returning the fractional portion of the product.

Prototype:
—aN
_QONmpyIlé6frac(_gN A,
long B)

for a specific Q format (1 <= N <= 15)
- or -

e
_QOmpyIl6frac(_g A,
long B)

for the global Q format

Parameters:
A is the first number, in Q format.

B is the second number, in integer format.

Description:
This function multiplies a Q number by an integer, returning the fractional portion of the product
in Q format.

Returns:
Returns the fractional portion of the product in Q format.

_QNmpyl16int
Multiplies a Q number by an integer, returning the integer portion of the result.
Prototype:

long

_QNmpyIléint (_gN A,

long B)

July 10, 2014

35

Qmath Functions

for a specific Q format (1 <= N <= 15)

- Or -
long
_OmpyIléint (_g A,
long B)
for the global Q format
Parameters:

A is the first number, in Q format.
B is the second number, in integer format.

Description:
This function multiplies a Q number by an integer, returning the integer portion of the product.
The result is saturated, so if the integer portion of the product is greater than the minimum or
maximum values for an integer, the result will be saturated to the minimum or maximum value.

Returns:
Returns the product in Q format.

3.3.18 _QNmpyQX

Multiplies two Q numbers.

Prototype:
_aN
_ONmpyQX (_aN A,
long 0QA,
9N B,
long 0OB)

for a specific Q format (1 <= N <= 15)
- Or -

-d

_OmpyQX (_g A,
long QA,
—a B,
long QB,)

for the global Q format

Parameters:
A is the first number, in Q format.
QA is the Q format for the first number.
B is the second number, in Q format.
QB is the Q format for the second number.

Description:
This function multiplies two Q numbers in different Q formats, returning the product in a third
Q format. The result is neither rounded nor saturated, so if the product is greater than the
minimum or maximum values for the given output Q format, the return value will wrap around
and produce inaccurate results.

36 July 10, 2014

Qmath Functions

Returns:
Returns the product in Q format.

3.3.19 _QNrmpy

Multiplies two Q numbers, with rounding.

Prototype:
_gN
_ONrmpy (_gN A,
_gN B)
for a specific Q format (1 <= N <= 15)
- Or -

e}
_Qrmpy (_g A,
_q B)

for the global Q format

Parameters:
A is the first number, in Q format.

B is the second number, in Q format.

Description:
This function multiplies two Q numbers, returning the product in Q format. The result is rounded
but not saturated, so if the product is greater than the minimum or maximum values for the given
Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in Q format.

3.3.20 _QNrsmpy

Multiplies two Q numbers, with rounding and saturation.

Prototype:
_aN
_ONrsmpy (_gN A,
_gN B)

for a specific Q format (1 <= N <= 15)
- Or -

-9
_Qrsmpy (_q A,
—9 B)

for the global Q format

Parameters:
A is the first number, in Q format.

July 10, 2014 37

Qmath Functions

B is the second number, in Q format.

Description:
This function multiplies two Q numbers, returning the product in Q format. The result is rounded
and saturated, so if the product is greater than the minimum or maximum values for the given Q
format, the return value is saturated to the minimum or maximum value for the given Q format
(as appropriate).

Returns:
Returns the product in Q format.

38 July 10, 2014

Qmath Functions

3.4 Qmath Trigonometric Functions

The trigonometric functions compute a variety of the trigonometric functions for Q numbers. Func-
tions are provided that take the traditional radians inputs (or produce the traditional radians output
for the inverse functions), as well as a cycles per unit format where the range [0, 1) is mapped onto
the circle (in other words, 0.0 is 0 radians, 0.25 is 7/2 radians, 0.5 is 7 radians, 0.75 is 37/2 radians,
and 1.0 is 27 radians). The following table summarizes the trigonometric functions.

Function Name | Q Format | Input Format | Output Format
_QNacos 1-14 QN QN
_QNasin 1-14 QN QN
_QNatan 1-15 QN QN
_QNatan2 1-15 QN,QN QN

_QNatan2PU 1-15 QN,QN QN
_QNcos 1-15 QN QN
_QNcosPU 1-15 QN QN
_QNsin 1-15 QN QN
_QNsinPU 1-15 QN QN

3.4.1 _QNacos

Computes the inverse cosine of the input value.

Prototype:
_aN
_QONacos (_gN A)

for a specific Q format (1 <= N <= 14)
- Or -

g
_Qacos(_g A)

for the global Q format

Parameters:
A is the input value in Q format.

Description:
This function computes the inverse cosine of the input value.

Note:
This function is not available for Q15 format.

Returns:
The inverse cosine of the input value, in radians.

3.4.2 _QNasin

Computes the inverse sine of the input value.

July 10, 2014 39

Qmath Functions

Prototype:
_gN
_ONasin (_gN A)

for a specific Q format (1 <= N <= 14)
- Or -

e
_Qasin(_g A)

for the global Q format

Parameters:
A is the input value in Q format.

Description:
This function computes the inverse sine of the input value.

Note:
This function is not available for Q15 format.

Returns:
The inverse sine of the input value, in radians.

3.4.3 _QNatan

Computes the inverse tangent of the input value.

Prototype:
_gN
_ONatan (_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

-9
_Qatan(_g A)

for the global Q format

Parameters:
A is the input value in Q format.

Description:
This function computes the inverse tangent of the input value.

Returns:
The inverse tangent of the input value, in radians.

3.4.4 QNatan2

Computes the inverse four-quadrant tangent of the input point.

40 July 10, 2014

Qmath Functions

Prototype:
_gN
_ONatan2 (_gN A,
_aN B)

for a specific Q format (1 <= N <= 15)
- Or -

e
_Qatan2(_gq A,

_4q B)

for the global Q format

Parameters:
A is the Y coordinate input value in Q format.
B is the X coordinate input value in Q format.

Description:
This function computes the inverse four-quadrant tangent of the input point.

Returns:
The inverse four-quadrant tangent of the input point, in radians.

3.4.5 QNatan2PU

Computes the inverse four-quadrant tangent of the input point, returning the result in cycles per

unit.
Prototype:
_aN
_QNatan2PU(_gN A,
_aN B)
for a specific Q format (1 <= N <= 15)
- Or -
_q
_Qatan2PU(_g A,
_a B)
for the global Q format
Parameters:

A is the X coordinate input value in Q format.
B is the Y coordinate input value in Q format.

Description:
This function computes the inverse four-quadrant tangent of the input point, returning the result
in cycles per unit.

Returns:
The inverse four-quadrant tangent of the input point, in cycles per unit.

July 10, 2014 41

Qmath Functions

3.4.6 QNcos

Computes the cosine of the input value.

Prototype:
_aN
_ONcos (_gN A)

for a specific Q format (1 <= N <= 15)
- or -

e
_Qcos (_g A)

for the global Q format

Parameters:
A is the input value in radians, in Q format.

Description:

This function computes the cosine of the input value.

Returns:
The cosine of the input value.

3.4.7 _QNcosPU

Computes the cosine of the input value in cycles per unit.

Prototype:
_gN
_QONcosPU(_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

g
_QcosPU(_g A)

for the global Q format

Parameters:
A is the input value in cycles per unit, in Q format.

Description:

This function computes the cosine of the input value.

Returns:
The cosine of the input value.

3.4.8 _QNsin

Computes the sine of the input value.

42

July 10, 2014

Qmath Functions

Prototype:

_gN
_ONsin (_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

e
_Osin(_g A)

for the global Q format

Parameters:
A is the input value in radians, in Q format.

Description:

This function computes the sine of the input value.

Returns:
The sine of the input value.

3.49 QNsinPU

Computes the sine of the input value in cycles per unit.

Prototype:

_agN
_ONsinPU(_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

g9
_0sinPU(_g A)

for the global Q format

Parameters:

A is the input value in cycles per unit, in Q format.

Description:
This function computes the sine of the input value.

Returns:
The sine of the input value.

July 10, 2014

43

Qmath Functions

3.5

Qmath Mathematical Functions

The mathematical functions compute a variety of advanced mathematical functions for Q numbers.
The following table summarizes the mathematical functions:

Function Name | Q Format | Input Format | Output Format
_QNexp 1-15 QN QN
_QNilog 1-15 QN QN
_QNsqrt 1-15 QN QN
_QNisqrt 1-15 QN QN
_QNmag 1-15 QN,QN QN

_QNimag 1-15 QN,QN QN

3.5.1 _QNexp
Computes the base-e exponential value of a Q number.
Prototype:
_aN
_ONexp (_gN A)
for a specific Q format (1 <= N <= 15)
- Or -
e}
_Qexp(_gq A)
for the global Q format
Parameters:
A is the input value, in Q format.
Description:
This function computes the base-e exponential value of the input, and saturates the result if it
exceeds the range of the Q format in use.
Returns:
Returns the base-e exponential of the input.
3.5.2 _QNlog
Computes the base-e logarithm of a Q number.
Prototype:
—aN
_ONlog (_gN A)
for a specific Q format (1 <= N <= 15)
- Or -
44 July 10, 2014

Qmath Functions

_q
_Qlog(_g A)

for the global Q format

Parameters:
A is the input value, in Q format.

Description:

This function computes the base-e logarithm of the input, and saturates the result if it exceeds
the range of the Q format in use.

Returns:
Returns the base-e logarithm of the input.

3.5.3 _QNsqrt

Computes the square root of a Q number.

Prototype:
_gN
_ONsqgrt (_gN A)

for a specific Q format (1 <= N <= 15)
- or -

-a
_Qsqrt (_gq A)

for the global Q format

Parameters:
A is the input value, in Q format.

Description:
This function computes the square root of the input. Negative inputs result in an output of 0.

Returns:
Returns the square root of the input.

3.54 _QNisqgrt

Computes the inverse square root of a Q number.

Prototype:
_gN
_ONisqgrt (_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

_q
_Qisqgrt(_g A)

July 10, 2014 45

Qmath Functions

for the global Q format

Parameters:
A is the input value, in Q format.

Description:
This function computes the inverse square root (1 / sqgrt) of the input, and saturates the result
if it exceeds the range of the Q format in use. Negative inputs result in an output of 0.

Returns:
Returns the inverse square root of the input.

3.5.5 _QNmag
Computes the magnitude of a two dimensional vector.
Prototype:
_aN
_QONmag (_gN A,
_gN B)
for a specific Q format (1 <= N <= 15)
- Or -
e}
_Omag (_g A,
_a B)
for the global Q format
Parameters:
A is the first input value, in Q format.
B is the second input value, in Q format.
Description:
This function computes the magnitude of a two-dimensional vector provided in Q format. The
result is always positive and saturated if it exceeds the range of the Q format in use.
This is functionally equivalent to _QNsqrt(_QNrmpy(A, A) + _QNrmpy(B, B)), but provides bet-
ter accuracy, speed, and intermediate overflow handling than building this computation from
_QNsqrt() and _QNrmpy().
Returns:
Returns the magnitude of a two dimensional vector.
3.5.6 _QNimag
Computes the inverse magnitude of a two dimensional vector.
Prototype:
_aN
_ONimag (_gN A,
_gN B)
46

July 10, 2014

Qmath Functions

for a specific Q format (1 <= N <= 15)

- Or -
-d
_Qimag (_g A,
_a B)
for the global Q format
Parameters:

A is the first input value, in Q format.
B is the second input value, in Q format.

Description:
This function computes the inverse magnitude (1 / QNmag) of a two-dimensional vector pro-
vided in Q format. The result is always positive and saturated if it exceeds the range of the Q
format in use.

Returns:
Returns the inverse of the magnitude of a two dimensional vector.

July 10, 2014 47

Qmath Functions

3.6 Qmath Miscellaneous Functions

The miscellaneous functions are useful functions that do not otherwise fit elsewhere. The following
table summarizes the miscellaneous functions:

Function Name | Q Format | Input Format | Output Format
_QNabs 1-15 QN QN
_QNsat 1-15 QN QN

3.6.1 _QNabs

Finds the absolute value of a Q number.

Prototype:

_aN
_QONabs (_gN A)

for a specific Q format (1 <= N <= 15)
- Or -

e
_Qabs (_g A)

for the global Q format

Parameters:
A is the input value in Q format.

Description:
This function computes the absolute value of the input Q number.

Returns:
Returns the absolute value of the input.

3.6.2 _QNsat

Satures a Q number.

Prototype:
_gN
_ONsat (_gN A,
_agN Pos,
_aN Neg)

for a specific Q format (1 <= N <= 15)

- or -

g

_QOsat (_g A,
_q Pos,
_g Neg)

48 July 10, 2014

Qmath Functions

for the global Q format

Parameters:
A is the input value in Q format.

Pos is the positive limit in Q format.
Neg is the negative limit in Q format.

Description:
This function limits the input Q number between the range specified by the positive and nega-
tive limits.

Returns:
Returns the saturated input value.

July 10, 2014 49

Qmath Functions

50

July 10, 2014

IQmath Functions

4

4.1

IQmath Functions

IQMath INtrodUCHON 51
IQmath Format Conversion FUNCHIONSottt e e e et 52
IQmath Arithmetic FUNCHONS e e e 58
IQmath Trigonometric FUNCLIONS o e e 68
IQmath Mathematical FUNCHIONS i i e e e e 74
IQmath Miscellaneous FUNGHIONSi i e e e e e e 78

IQmath Introduction

The IQmath library provides the same function set as the Qmath library with 32-bit data types
and higher accuracy. These functions are provided for when an application requires accuracy
comparable or greater than the equivalent floating point math functions. As a result the code size
and constant data tables are going to be larger than the Qmath library counterparts.

Execution time is increased however it remains manageable for devices with the MPY32 peripheral.
For devices without the MPY32 peripheral the execution time will be an order of magnitude higher
than the Qmath counterparts and it is recommended to only use the IQmath functions when greater
than 16-bit accuracy is necessary.

When mixing Qmath and IQmath, the IQmath library provides functions for converting between Q
and IQ data types to make combining Qmath and IQmath easy and seamless.

July 10, 2014

51

IQmath Functions

4.2 IQmath Format Conversion Functions

The format conversion functions provide a way to convert numbers to and from various IQ formats.
There are functions to convert IQ numbers to and from single-precision floating-point numbers, to
and from integers, to and from strings, to and from 16-bit QN format numbers, to and from various
IQ formats, and to extract the integer and fractional portion of an IQ number. The following table
summarizes the format conversion functions:

Function Name | Q Format | Input Format | Output Format
_atolQN 1-30 char * IQN
_IGN 1-30 float IQN
_IQNfrac 1-30 IQN IQN
_IQNint 1-30 IQN long
_IQNtoa 1-30 IQN char *
_IQNtoF 1-30 IQN float
_IQNtolQ 1-30 IQN GLOBAL_IQ
_lQtolQN 1-30 GLOBAL_IQ IQN
_lQtoQN 1-15 GLOBAL_IQ QN
_QNtolQ 1-15 QN GLOBAL_IQ

421 _atolQN

Converts a string to an 1Q number.

Prototype:
_igN
_atoIQN (const char =xA)

for a specific 1Q format (1 <= N <= 30)
- Or -

_ig
_atoIQ (const char =*A)

for the global 1Q format

Parameters:
A is the string to be converted.

Description:
This function converts a string into an IQ number. The input string may contain (in order)
an optional sign and a string of digits optionally containing a decimal point. A unrecognized
character ends the string and returns zero. If the input string converts to a number greater
than the minimum or maximum values for the given |IQ format, the return value is limited to the
minimum or maximum value.

Returns:
Returns the 1Q number corresponding to the input string.

52 July 10, 2014

IQmath Functions

422 _IQN

Converts a floating-point constant or variable into an IQ number.

Prototype:
_igN
_ION(float A)

for a specific 1Q format (1 <= N <= 30)
- Or -

_iq
_IQ(float A)

for the global 1Q format

Parameters:

A is the floating-point variable or constant to be converted.

Description:

This function converts a floating-point constant or variable into the equivalent IQ number. If the
input value is greater than the minimum or maximum values for the given 1Q format, the return

value wraps around and produces inaccurate results.

Returns:

Returns the 1Q number corresponding to the floating-point variable or constant.

4.2.3 _IQNfrac

Returns the fractional portion of an IQ number.

Prototype:
_igN
_IQNfrac(_igN A)
for a specific 1Q format (1 <= N <= 30)
- Or -
_ig
_IQfrac(_ig A)

for the global 1Q format

Parameters:
A is the input number in IQ format.

Description:

This function returns the fractional portion of an IQ number as an 1Q number.

Returns:

Returns the fractional portion of the input 1Q number.

July 10, 2014

53

IQmath Functions

42.4 _|QNint

Returns the integer portion of an IQ number.

Prototype:
long
_IQNint (_igN A)

for a specific 1Q format (1 <= N <= 30)
- Or -

long
_IQint (_ig A)

for the global 1Q format

Parameters:
A is the input number in IQ format.

Description:
This function returns the integer portion of an IQ number.

Returns:
Returns the integer portion of the input IQ number.

4.2.5 _IQNtoa

Converts an 1Q number to a string.

Prototype:
int
_IQONtoa (char =*A,
const char =B,
_1gN C)

for a specific 1Q format (1 <= N <= 30)
- Or -
int
_IQtoa(char =xA,

const char =B,
_ig C)

for the global 1Q format

Parameters:
A is a pointer to the buffer to store the converted IQ number.

B is the format string specifying how to convert the IQ number. Must be of the form “Yoxx.yyf”
with xx and yy at most 2 characters in length.

C is the IQ number to convert.

Description:
This function converts the IQ number to a string, using the specified format.

54 July 10, 2014

IQmath Functions

Example:
_IQtoa (buffer, "%4.8f", igInput)

Returns:
Returns 0 if there is no error, 1 if the width is too small to hold the integer characters, and 2 if
an illegal format was specified.

4.2.6 _IQNtoF

Converts an 1Q number to a single-precision floating-point number.

Prototype:
float
_IQNtoF (_igN A)

for a specific 1Q format (1 <= N <= 30)
- or -

float
_IQtoF (_ig A)

for the global 1Q format

Parameters:
A is the |IQ number to be converted.

Description:
This function converts an IQ number into a single-precision floating-point number. Since single-
precision floating-point values have only 24 bits of mantissa, 8 bits of accuracy will be lost via
this conversion.

Returns:
Returns the single-precision floating-point number corresponding to the input IQ number.

4.2.7 _IQNtolQ

Converts an 1Q number in IQN format to the global 1Q format.

Prototype:
_ig
_IQNtoIQ(_igN A)

for a specific 1Q format (1 <= N <= 30)

Parameters:
A is IQ number to be converted.

Description:
This function converts an IQ number in the specified 1Q format to an IQ number in the global
1Q format.

Returns:
Returns the IQ number converted into the global IQ format.

July 10, 2014 55

IQmath Functions

42.8 _1QtolQN
Converts an 1Q number in the global IQ format to the IQN format.
Prototype:
_igN
_IQtoIQN(_ig A)
for a specific 1Q format (1 <= N <= 30)
Parameters:
A is the IQ number to be converted.
Description:
This function converts an IQ number in the global IQ format to an IQ number in the specified
IQ format. be limited to the minimum or maximum value.
Returns:
Returns the 1Q number converted to the specified IQ format.
429 _IQtoQN
Converts an 1Q number to a 16-bit number in QN format.
Prototype:
short
_IQtoQN(_ig A)
for a specific Q format (1 <= N <= 15)
Parameters:
A is the IQ number to be converted.
Description:
This function converts an 1Q number in the global IQ format to a 16-bit number in QN format.
Returns:
Returns the QN number corresponding to the input IQ number.
4.2.10 _QNtolQ
Converts a 16-bit QN number to an 1Q number.
Prototype:
_ig
_QONtoIQ (short A)
for a specific Q format (1 <= N <= 15)
Parameters:
A is the QN number to be converted.
Description:
This function converts a 16-bit QN number to an IQ number in the global 1Q format.
56 July 10, 2014

IQmath Functions

Returns:
Returns the 1Q number corresponding to the input QN number.

July 10, 2014 57

IQmath Functions

4.3

IQmath Arithmetic Functions

The arithmetic functions provide basic arithmetic (addition, subtraction, multiplication, division) of
IQ numbers. No special functions are required for addition or subtraction; IQ numbers can simply
be added and subtracted using the underlying C addition and subtraction operators. Multiplication
and division require special treatment in order to maintain the IQ number of the result. The following

table summarizes the arithmetic functions:

Function Name | Q Format | Input Format | Output Format
_lQdiv2 1-30 IQN IQN
_lQdiv4 1-30 IQN IQN
_lQdivs 1-30 IQN IQN
_lQdivie 1-30 IQN IQN
_lQdiv32 1-30 IQN IQN
_lQdive4 1-30 IQN IQN
_lQmpy2 1-30 IQN IQN
_lQmpy4 1-30 IQN IQN
_lQmpy8 1-30 IQN IQN

_lQmpy16 1-30 IQN IQN
_lQmpy32 1-30 IQN IQN
_lQmpy64 1-30 IQN IQN
_IQNdiv 1-30 IQN/IQN IQN
_IQNmpy 1-30 IQN*IQN IQN
_|IQNmpyI32 1-30 IQN*long IQN
_|QNmpyI32frac 1-30 IQN*long IQN
_|QNmpyI32int 1-30 IQN*long long
_IQNmpylQX 1-30 IQN*IQN IQN
_IQNrmpy 1-30 IQN*IQN IQN
_|IQNrsmpy 1-30 IQN*IQN IQN

4.3.1 _1Qdiv2
Divides an 1Q number by two.
Prototype:
_igN
_IQdiv2 (_igN A)
Parameters:
A is the number to be divided, in 1Q format.
Description:
This function divides an IQ number by two. This will work for any 1Q format.
Returns:
Returns the number divided by two.
4.3.2 _1Qdiv4
Divides an 1Q number by four.
58 July 10, 2014

IQmath Functions

4.3.3

4.3.4

4.3.5

Prototype:
_igN
_IQdiv4 (_igN A)

Parameters:
A is the number to be divided, in IQ format.

Description:
This function divides an IQ number by four. This will work for any IQ format.

Returns:
Returns the number divided by four.

_1Qdiv8

Divides an 1Q number by eight.
Prototype:

_igN

_IQdiv8 (_igN A)

Parameters:
A is the number to be divided, in IQ format.

Description:
This function divides an IQ number by eight. This will work for any 1Q format.

Returns:
Returns the number divided by eight.

_1Qdiv16

Divides an 1Q number by sixteen.
Prototype:

_igN

_IQdivl6 (_igN A)

Parameters:
A is the number to be divided, in IQ format.

Description:
This function divides an IQ number by sixteen. This will work for any 1Q format.

Returns:
Returns the number divided by sixteen.

_1Qdiv32

Divides an 1Q number by thirty two.

July 10, 2014

59

IQmath Functions

Prototype:
_igN
_IQdiv32(_igN A)

Parameters:
A is the number to be divided, in IQ format.

Description:
This function divides an IQ number by thirty two. This will work for any 1Q format.

Returns:
Returns the number divided by thirty two.

4.3.6 _IQdive4

Divides an 1Q number by sixty four.
Prototype:

_igN

_IQdive4 (_igN A)

Parameters:
A is the number to be divided, in 1Q format.

Description:
This function divides an IQ number by sixty four. This will work for any IQ format.

Returns:
Returns the number divided by sixty four.

437 _1Qmpy2

Multiplies an 1Q number by two.
Prototype:

_igN

_IQmpy2 (_igN A)

Parameters:
A is the number to be multiplied, in IQ format.

Description:
This function multiplies an 1Q number by two. This will work for any 1Q format.

Returns:
Returns the number multiplied by two.

43.8 _lQmpy4

Multiplies an 1Q number by four.

60 July 10, 2014

IQmath Functions

Prototype:
_igN
_IOmpy4 (_igN A)

Parameters:
A is the number to be multiplied, in 1Q format.

Description:
This function multiplies an IQ number by four. This will work for any 1Q format.

Returns:
Returns the number multiplied by four.

439 _lQmpy8

Multiplies an IQ number by eight.
Prototype:

_igN

_IQmpy8 (_igN A)

Parameters:
A is the number to be multiplied, in 1Q format.

Description:
This function multiplies an IQ number by eight. This will work for any 1Q format.

Returns:
Returns the number multiplied by eight.

4.3.10 _lQmpy16

Multiplies an 1Q number by sixteen.
Prototype:

_igN

_IOmpyl6 (_igN A)

Parameters:
A is the number to be multiplied, in I1Q format.

Description:
This function multiplies an 1Q number by sixteen. This will work for any 1Q format.

Returns:
Returns the number multiplied by sixteen.

4.3.11 _1Qmpy32

Multiplies an IQ number by thirty two.

July 10, 2014 61

IQmath Functions

Prototype:
_igN
_IOmpy32 (_igN A)

Parameters:
A is the number to be multiplied, in 1Q format.

Description:
This function multiplies an IQ number by thirty two. This will work for any 1Q format.

Returns:
Returns the number multiplied by thirty two.

4.3.12 _1Qmpy64

Multiplies an 1Q number by sixty four.

Prototype:
_igN
_IQ0mpy64 (_igN A)

Parameters:
A is the number to be multiplied, in 1Q format.

Description:
This function multiplies an 1Q number by sixty four. This will work for any 1Q format.

Returns:
Returns the number multiplied by sixty four.

4.3.13 _|QNdiv
Divides two 1Q numbers.
Prototype:
_igN
_IQNdiv (_igN A,

_igN B)
for a specific 1Q format (1 <= N <= 30)
- or -
_iq
_IQdiv(_ig A,
_ig B)
for the global 1Q format

Parameters:
A is the numerator, in IQ format.

B is the denominator, in |Q format.

62 July 10, 2014

IQmath Functions

Description:
This function divides two IQ numbers, returning the quotient in 1Q format. The result is satu-
rated if it exceeds the capacity of the |Q format, and division by zero always results in positive
saturation (regardless of the sign of A).

Returns:
Returns the quotient in 1Q format.

4.3.14 _IQNmpy

4.3.15

Multiplies two 1Q numbers.

Prototype:
_igN
_IQNmpy (_igN &,
_igN B)

for a specific 1Q format (1 <= N <= 30)
- Or -

_iq
_IQmpy (_iqg A,
_ig B)

for the global 1Q format

Parameters:
A is the first number, in IQ format.
B is the second number, in 1Q format.

Description:
This function multiplies two 1Q numbers, returning the product in 1Q format. The result is neither
rounded nor saturated, so if the product is greater than the minimum or maximum values for
the given 1Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in 1Q format.

_IQNmpyl32
Multiplies an 1Q number by an integer.
Prototype:

_igN

_IQONmpyI32(_igN A,

long B)
for a specific 1Q format (1 <= N <= 30)
- or -
_ig
_IOmpyI32(_iqg A,
long B)

July 10, 2014

63

IQmath Functions

for the global 1Q format

Parameters:
A is the first number, in IQ format.

B is the second number, in integer format.

Description:
This function multiplies an 1Q number by an integer, returning the product in I1Q format. The
result is not saturated, so if the product is greater than the minimum or maximum values for the
given 1Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in 1Q format.

4.3.16 _|IQNmpyl32frac

Multiplies an 1Q number by an integer, returning the fractional portion of the product.

Prototype:

_igN
_IQONmpyI32frac(_igN A,
long B)

for a specific 1Q format (1 <= N <= 30)
- Or -
_iqg
_IQmpyI32frac(_iqg A,
long B)
for the global IQ format

Parameters:
A is the first number, in IQ format.

B is the second number, in integer format.

Description:
This function multiplies an IQ number by an integer, returning the fractional portion of the
product in IQ format.

Returns:
Returns the fractional portion of the product in 1Q format.

4.3.17 _IQNmpyl32int

Multiplies an 1Q number by an integer, returning the integer portion of the result.

Prototype:

long
_IQNmpyI32int (_igN A,
long B)

64 July 10, 2014

IQmath Functions

for a specific 1Q format (1 <= N <= 30)

- Or -
long
_IQ0mpyI32int (_iqg A,
long B)
for the global 1Q format
Parameters:

A is the first number, in 1Q format.
B is the second number, in integer format.

Description:
This function multiplies an 1Q number by an integer, returning the integer portion of the product.
The result is saturated, so if the integer portion of the product is greater than the minimum or
maximum values for an integer, the result will be saturated to the minimum or maximum value.

Returns:
Returns the product in 1Q format.

4.3.18 _IQNmpylQX

Multiplies two IQ numbers.

Prototype:
_igN
_IQONmpyIQX (_igN A,
long IQA,
_igN B,
long IQB)

for a specific 1Q format (1 <= N <= 30)
- Or -
_ig
_IQmpyIQX(_iqg A,
long IOQA,
_ig B,
long IQRB,)

for the global 1Q format

Parameters:
A is the first number, in 1Q format.
IQA is the IQ format for the first number.
B is the second number, in 1Q format.
I@B is the 1Q format for the second number.

Description:
This function multiplies two 1Q numbers in different |Q formats, returning the product in a third
IQ format. The result is neither rounded nor saturated, so if the product is greater than the
minimum or maximum values for the given output 1Q format, the return value will wrap around
and produce inaccurate results.

July 10, 2014 65

IQmath Functions

Returns:
Returns the product in 1Q format.

4.3.19 _IQNrmpy

Multiplies two IQ numbers, with rounding.

Prototype:
_igN
_IONrmpy (_igN A,
_igN B)
for a specific 1Q format (1 <= N <= 30)
- Or -

_iq
_IQrmpy (_ig A,
_ig B)

for the global 1Q format

Parameters:
A is the first number, in IQ format.

B is the second number, in |Q format.

Description:
This function multiplies two 1Q numbers, returning the product in 1Q format. The result is
rounded but not saturated, so if the product is greater than the minimum or maximum values
for the given 1Q format, the return value wraps around and produces inaccurate results.

Returns:
Returns the product in 1Q format.

4.3.20 _IQNrsmpy

Multiplies two IQ numbers, with rounding and saturation.

Prototype:
_igN
_IQNrsmpy (_igN A,
_igN B)
for a specific 1Q format (1 <= N <= 30)
- Or -

_iqg
_IQrsmpy(_iqg A,
_ig B)

for the global 1Q format

Parameters:
A is the first number, in IQ format.

66 July 10, 2014

IQmath Functions

B is the second number, in 1Q format.

Description:
This function multiplies two 1Q numbers, returning the product in 1Q format. The result is
rounded and saturated, so if the product is greater than the minimum or maximum values for
the given 1Q format, the return value is saturated to the minimum or maximum value for the
given 1Q format (as appropriate).

Returns:
Returns the product in 1Q format.

July 10, 2014 67

IQmath Functions

4.4 1Qmath Trigonometric Functions

The trigonometric functions compute a variety of the trigonometric functions for IQ numbers. Func-
tions are provided that take the traditional radians inputs (or produce the traditional radians output
for the inverse functions), as well as a cycles per unit format where the range [0, 1) is mapped onto
the circle (in other words, 0.0 is 0 radians, 0.25 is 7/2 radians, 0.5 is 7 radians, 0.75 is 37/2 radians,
and 1.0 is 27 radians). The following table summarizes the trigonometric functions.

Function Name | Q Format | Input Format | Output Format
_lQNacos 1-29 IQN IQN
_IQNasin 1-29 IQN IQN
_IQNatan 1-29 IQN IQN
_IQNatan2 1-29 IQN,IQN IQN
_IQNatan2PU 1-30 IQN,IQN IQN
_IQNcos 1-29 IQN IQN
_IQNcosPU 1-30 IQN IQN
_IQNsin 1-29 IQN IQN
_IQNsinPU 1-30 IQN IQN

441 _IQNacos

Computes the inverse cosine of the input value.

Prototype:
_igN
_IQNacos (_igN A)
for a specific 1Q format (1 <= N <= 29)
- Or -
_iqg
_IQacos(_ig A)
for the global 1Q format

Parameters:
A is the input value in 1Q format.

Description:
This function computes the inverse cosine of the input value.

Note:
This function is not available for IQ30 format because the full output range (-7 through =) cannot
be represented in IQ30 format (which ranges from -2 through 2).

Returns:
The inverse cosine of the input value, in radians.

68 July 10, 2014

IQmath Functions

442

443

_IQNasin

Computes the inverse sine of the input value.

Prototype:
_igN
_IQNasin(_igN A)

for a specific 1Q format (1 <= N <= 29)
- Or -

_iqg
_IQasin(_ig A)

for the global 1Q format

Parameters:
A is the input value in 1Q format.

Description:

This function computes the inverse sine of the input value.

Note:

This function is not available for IQ30 format because the full output range (-7 through =) cannot

be represented in Q30 format (which ranges from -2 through 2).

Returns:
The inverse sine of the input value, in radians.

_IQNatan

Computes the inverse tangent of the input value.

Prototype:
_igN
_IQNatan (_igN A)
for a specific 1Q format (1 <= N <= 29)
- Or -
_ig
_IQatan(_ig A)

for the global 1Q format

Parameters:
A is the input value in 1Q format.

Description:

This function computes the inverse tangent of the input value.

Note:

This function is not available for IQ30 format because the full output range (-7 through =) cannot

be represented in IQ30 format (which ranges from -2 through 2).

July 10, 2014

69

IQmath Functions

Returns:
The inverse tangent of the input value, in radians.

4.4.4 _|IQNatan2

Computes the inverse four-quadrant tangent of the input point.

Prototype:
_igN
_IQNatan2 (_igN A,
_igN B)
for a specific 1Q format (1 <= N <= 29)

- Or -
_ig
_IQatanz2 (_ig A,

_ig B)

for the global 1Q format

Parameters:
A is the Y coordinate input value in 1Q format.
B is the X coordinate input value in 1Q format.

Description:
This function computes the inverse four-quadrant tangent of the input point.

Note:
This function is not available for IQ30 format because the full output range (-7 through =) cannot
be represented in IQ30 format (which ranges from -2 through 2).

Returns:
The inverse four-quadrant tangent of the input point, in radians.

445 |IQNatan2PU

Computes the inverse four-quadrant tangent of the input point, returning the result in cycles per
unit.

Prototype:
_igN
_IQNatan2PU(_igN A,
_1gN B)
for a specific 1Q format (1 <= N <= 30)
- Or -
_ig
_IQatan?2PU(_ig A,
_ig B)
for the global 1Q format

70 July 10, 2014

IQmath Functions

Parameters:
A is the X coordinate input value in IQ format.
B is the Y coordinate input value in 1Q format.

Description:
This function computes the inverse four-quadrant tangent of the input point, returning the result
in cycles per unit.

Returns:
The inverse four-quadrant tangent of the input point, in cycles per unit.

4.4.6 _IQNcos

Computes the cosine of the input value.

Prototype:
_igN
_IQNcos (_igN A)
for a specific 1Q format (1 <= N <= 29)
- Or -
_iqg
_IQcos (_ig A)

for the global 1Q format

Parameters:
A is the input value in radians, in IQ format.

Description:
This function computes the cosine of the input value.

Note:
This function is not available for IQ30 format because the full input range (-7 through =) cannot
be represented in IQ30 format (which ranges from -2 through 2).

Returns:
The cosine of the input value.

4.4.7 _|IQNcosPU

Computes the cosine of the input value in cycles per unit.

Prototype:
_igN
_IQNcosPU(_igN A)

for a specific 1Q format (1 <= N <= 30)
- Or -

_iq
_IQcosPU(_iqg A)

July 10, 2014 71

IQmath Functions

for the global 1Q format

Parameters:
A is the input value in cycles per unit, in IQ format.

Description:
This function computes the cosine of the input value.

Returns:
The cosine of the input value.

4.4.8 _IQNsin

Computes the sine of the input value.

Prototype:
_igN
_IQNsin (_igN A)
for a specific 1Q format (1 <= N <= 29)
- Or -
_iqg
_IQ0sin(_ig A)

for the global 1Q format

Parameters:
A is the input value in radians, in IQ format.

Description:
This function computes the sine of the input value.

Note:
This function is not available for IQ30 format because the full input range (-7 through =) cannot
be represented in Q30 format (which ranges from -2 through 2).

Returns:
The sine of the input value.

449 _IQNsinPU

Computes the sine of the input value in cycles per unit.

Prototype:
_igN
_IQONsinPU(_igN A)

for a specific 1Q format (1 <= N <= 30)
- Or -

_iq
_I0sinPU(_iqg A)

72 July 10, 2014

IQmath Functions

for the global 1Q format

Parameters:
A is the input value in cycles per unit, in IQ format.

Description:
This function computes the sine of the input value.

Returns:
The sine of the input value.

July 10, 2014 73

IQmath Functions

4.5 IQmath Mathematical Functions

The mathematical functions compute a variety of advanced mathematical functions for IQ numbers.
The following table summarizes the mathematical functions:

Function Name | Q Format | Input Format | Output Format
_|lQNexp 1-30 IQN IQN
_IQNlog 1-30 IQN IQN
_IQNsqrt 1-30 IQN IQN
_lQNisqrt 1-30 IQN IQN
_IQNmag 1-30 IQN,IQN IQN

_lQNimag 1-30 IQN,IQN IQN

451 _|QNexp

Computes the base-e exponential value of an IQ number.

Prototype:
_igN
_IQNexp (_igN A)
for a specific 1Q format (1 <= N <= 30)
- Or -
_iq
_IQexp(_ig A)
for the global 1Q format

Parameters:
A is the input value, in 1Q format.

Description:
This function computes the base-e exponential value of the input, and saturates the result if it
exceeds the range of the 1Q format in use.

Returns:
Returns the base-e exponential of the input.

4.5.2 _|QNlog

Computes the base-e logarithm of an IQ number.

Prototype:
_igN
_IQONlog(_igN A)

for a specific 1Q format (1 <= N <= 30)

Or

74 July 10, 2014

IQmath Functions

_iq
_I0log(_ig A)
for the global 1Q format

Parameters:
A is the input value, in 1Q format.

Description:

This function computes the base-e logarithm of the input, and saturates the result if it exceeds
the range of the IQ format in use.

Returns:
Returns the base-e logarithm of the input.

453 _IQNsqgrt

Computes the square root of an IQ number.

Prototype:
_igN
_IQNsqgrt (_igN A)
for a specific 1Q format (1 <= N <= 30)
- or -
_iq
_IOQsgrt(_ig A)
for the global 1Q format

Parameters:
A is the input value, in 1Q format.

Description:
This function computes the square root of the input. Negative inputs result in an output of 0.

Returns:
Returns the square root of the input.

4.5.4 _|QNisqrt

Computes the inverse square root of an IQ number.

Prototype:
_igN
_IQNisqgrt (_igN A)
for a specific 1Q format (1 <= N <= 30)
- Or -
_iqg
_IQisqgrt(_ig A)

July 10, 2014 75

IQmath Functions

4.5.5

4.5.6

for the global 1Q format

Parameters:
A is the input value, in 1Q format.

Description:
This function computes the inverse square root (1 / sqrt) of the input, and saturates the result
if it exceeds the range of the 1Q format in use. Negative inputs result in an output of 0.

Returns:
Returns the inverse square root of the input.

_IQNmag

Computes the magnitude of a two dimensional vector.

Prototype:

_igN
_IQNmag(_igN A,
_1igN B)

for a specific 1Q format (1 <= N <= 30)
- or -

_iq
_I0Omag(_iqg A,
_ig B)

for the global 1Q format

Parameters:
A is the first input value, in 1Q format.

B is the second input value, in 1Q format.

Description:
This function computes the magnitude of a two-dimensional vector provided in IQ format. The
result is always positive and saturated if it exceeds the range of the 1Q format in use.

This is functionally equivalent to _IQNsqgrt(_IQNrmpy(A, A) + _IQNrmpy(B, B)), but provides
better accuracy, speed, and intermediate overflow handling than building this computation from
_IQNsqrt() and _IQNrmpy(). For example, _IQ16mag(_IQ16(30000), _1Q16(1000)) correctly
returns _1Q16(30016.6...), even though the intermediate value of _IQ16rmpy(_IQ16(30000),
_1Q16(1000)) overflows an _iq16.

Returns:
Returns the magnitude of a two dimensional vector.

_IQNimag

Computes the inverse magnitude of a two dimensional vector.

76

July 10, 2014

IQmath Functions

Prototype:

_igN
_IQONimag (_igN A,
_1gN B)

for a specific 1Q format (1 <= N <= 30)
- Or -

_ig
_IQimag(_ig A,
_ig B)

for the global 1Q format

Parameters:
A is the first input value, in 1Q format.

B is the second input value, in 1Q format.

Description:
This function computes the inverse magnitude (1 / IQNmag) of a two-dimensional vector pro-
vided in 1Q format. The result is always positive and saturated if it exceeds the range of the IQ
format in use.

Returns:
Returns the inverse of the magnitude of a two dimensional vector.

July 10, 2014 77

IQmath Functions

4.6 IQmath Miscellaneous Functions

The miscellaneous functions are useful functions that do not otherwise fit elsewhere. The following
table summarizes the miscellaneous functions:

Function Name | Q Format | Input Format | Output Format
_IQNabs 1-30 IQN IQN
_IQNsat 1-30 IQN IQN

4.6.1 _IQNabs

Finds the absolute value of an IQ number.

Prototype:
_igN
_IQNabs (_igN A)

for a specific 1Q format (1 <= N <= 30)
- Or -

_ig
_IQabs(_ig A)

for the global 1Q format

Parameters:
A is the input value in 1Q format.

Description:
This function computes the absolute value of the input IQ number.

Returns:
Returns the absolute value of the input.

4.6.2 IQNsat

Satures an IQ number.

Prototype:
_igN
_IQNsat (_igN A,
_igN Pos,
_igN Neg)

for a specific IQ format (1 <= N <= 30)

or

_iqg

_IQsat(_ig A,
_iqg Pos,
_iqg Neg)

78 July 10, 2014

IQmath Functions

for the global 1Q format

Parameters:
A is the input value in 1Q format.

Pos is the positive limit in 1Q format.
Neg is the negative limit in IQ format.

Description:
This function limits the input IQ number between the range specified by the positive and nega-
tive limits.

Returns:
Returns the saturated input value.

July 10, 2014 79

IQmath Functions

80

July 10, 2014

Optimization Guide For Advanced Users

Optimization Guide For Advanced Users

Introduction

This chapter will cover optimizations for advanced users of fixed point math. Often times there are
several ways to implement the same fixed point algorithm, all with varying differences in complex-
ity, code size, execution time and energy consumption. It is up to the application programmer to
implement the algorithms in the most efficient manner that best suits the application goals.

July 10, 2014

81

Optimization Guide For Advanced Users

5.2

Advanced Multiplication

It is very rare that an application will use the same fixed point format for all calculations. Usually it is
necessary to convert arguments to the same type however there are properties of fixed point mul-
tiplication that can be used to avoid these conversions. The fixed point multiplication function can
be written as follows using the Q and |Q formats represented in equations 2.1 and 2.3 respectively.

(T %277) % (y; % 27™2) = @y x y; * 2~ (n1+n2) (5.1)

The result of the integer multiply will have an integer component with double the precision of the
original type ("int32_t" for Q and "int64_t" for IQ) and the implied scale exponents will be a combi-
nation of the two. Thus with no further steps the result of Q and I1Q multiplication will be in Q,,, +,)
Or IQ(n, +n,) format.

The result must be converted to the desired Q or IQ type by adding a constant s to equation 5.1 to
manipulate both the integer result and implied scale.
(3% 277) s (13 % 2772) = @y % gy % 275 % 2057 (1A n2) (5.2)

The real integer component will be solved for by implementing equation 5.3. The resulting implied
scale does not need to be implemented since it is only implied, equation 5.4 gives the implied scale
of the result and thus the Q or 1Q format.

9(s—(n1+ns)) (5.4)

For multiplication of two identical Q or IQ types the scale exponents n; and ns will both be equal to
n, giving a resulting exponent of 2n. In order to obtain a result in the same Q or IQ format as the
arguments the constant s must also be equal to n.

2(57(n1+n2)) _ 2(77,7(1’7/4’1’7/)) —9n (55)

For example, the 1Q24 multiplication function is implemented below with a scale constant of 24. It
is important to remember that one of the scales is implied and will not actually be solved.

(2 %272) (g %272 =2y vy #2724 & 9(2A=(24424)) — sy, 52724 5 272 (5.6)

Thus we can see each Q and I1Q multiplication function will implement a constant scale s equal to
the Q or 1Q type. This can be used to our advantage when mixing Q or 1Q types into equation 5.2.

For example an application requires the multiplication of two arguments in IQ20 and 1Q27 format
and would like the result in 1Q24 format. First we must solved equation 5.4 for the desired constant
scale s that gives us the result in the correct format.

9(s—(20427)) _ 9—24 (5.7)

The result of solving for s is 23. Instead of implementing a custom multiplication function for this
set of arguments we can use the 1Q23 multiply functions since it will also implement a scale of 23.
Substituting our arguments into the full equation 5.2 will give the full result.

82

July 10, 2014

Optimization Guide For Advanced Users

(2 %27 20) 5 (y; %2727 =2y vy #2723 % 2(23=(20427)) — s gy %2723 5 2724 (5.8)

To solve the integer component the 1Q23 multiply function is used and the implied scale will be 2—24,
or Q24 format.

The C code for this multiply operation can be written in many ways, three of which are shown below.

#define GLOBAL_IQ 24
#include "IQmathLib.h"

intl6_t mainl (void)

{

_1920 X = _IQ20(10);
_ig27 Y = _I1I027(0.1);
_ig z;

// Z =X x Y
Z = _IompyIQX (X, Q20, Y, Q27);
}

intl6_t main2 (void)

{
_1g20 X = _IQ20(10);
_ig27 Y = _I027(0.1);
_iq 7z, Xt, Yt;

// Scale X and Y to the global format.
Xt = _IQ20toIQ(X);
Yt _IQ027toIQ(Y);

/] 7 =X x Y
z = _IOompy (Xt, Yt);
}

intl6_t main3 (void)

{

_19g20 X = _I0Q20(10);
_ig27 Y = _I027(0.1);
_iq Z;

// 7 =X Y
Z = _IQ23mpy (X, Y);
}

The _10mpyI0X function used in mainl will consume the most cycles and energy of the three
implementation. This function correctly calculates the result as 1. 0.

The code in main2 is more efficient however it requires conversion between I1Q and the GLOBAL_IQ
formats. This method is prone to overflows and loss of precision as the 1Q formats must be
scaled to match the GLOBAL_1Q format before they can be multiplied. In this example argument
Y loses four bits of accuracy when it is scale to the global IQ format and the result is calculated
as 0.9999996424. In addition to the loss of accuracy the code produced by the compiler will be
larger than necessary and require the use of temporary registers, decreasing overall performance.

The code in main3 demonstrates the best way to perform this multiplication. Using the method
outlined in equation 5.2 that has been solved in equation 5.8, only a single line of code is required.
This method will yield the fastest execution time, lowest energy consumption, lowest code size and
experience no possibility of intermediate saturation or loss of precision due to scaling to interme-
diate values. The result is correctly calculated as 1.0 and no precision is lost. Although this is
the most efficient method to perform the multiplication, extra care must be taken to make sure the
correct multiplication function is used.

July 10, 2014 83

Optimization Guide For Advanced Users

5.3

Advanced Division

Division operations can be simplified in many of the same ways as multiplication. Similar to equation
5.2, equation 5.9 below gives a the fixed point divide function with a scale constant s.

. —ni .
% = 2ty pnmm—y) (5.9)
Yi k272 Yi

It is important to note that for division the scale is added with a positive exponent for the integer
component and a negative exponent for the implied scale. In the same way as multiplication, each
Q and 1Q multiplication function will implement a constant scale s equal to the Q or 1Q type.

For example, an application requires a division with an IQ29 numerator and 1Q30 denominator with
the result in 1Q24 format. For this operation a scale constant of 25 is used by using the 1Q25 divide
function. The corresponding C code is given below.

—29
T; %2 == Ti 925 4 9(30-29-25) _ Ti 925 , 9—24 (5.10)
Yi * 27 Yi Yi

#include "IQmathLib.h"

extern _iqg29 X;
extern _ig30 Y;

intl6_t main(void)
{
/] 7 =X /Y
_ig24 7z = _IQ25div (X, Y);

For a second example, two integers are divided with the result in Q15 format by using the Q15
divide function. This operation is very useful for taking any two arguments of identical format and
calculating the ratio in Q15 format.

-0
T;*2 ZT; T;
LT = Tl pl8,9(0-0-18) — T 915, 9= 15 (5.11)
Yi * 2 Yi Yi
#include "QmathLib.h"
extern intlo_t X;
extern intl6_t Y;
intl6_t main(void)
{
/] 7 =X /Y
_gl5 z = _Q15div (X, Y);

84

July 10, 2014

Optimization Guide For Advanced Users

5.4 Inlined Multiplication with the MPY32 Peripheral

Accessing the MPY32 multiplier peripheral directly in-line with the application code can significantly
speed up processing time by removing the overhead of function calls, returns and context saving.
Each multiply function implemented in the Qmath and IQmath libraries saves context of the multi-
plier peripheral and disables interrupts to ensure safe operation in either main or interrupts. When
adding direct access to the multiplier it is not always necessary to save context of the multiplier
or disable interrupts. It is the responsibility of the application programmer to determine if saving
multiplier context is necessary based on the usage of the multiplier within interrupts.

The following code snippets show how the multiplier can be used to perform Q15 and IQ31 multi-
plications with direct access to the peripheral.

static inline _g _Ql5mpy_inline(_g gl5Argl, _g gl5Arg2)
{

uintl6_t uil6Result;

uintl6_t uiléIntState;

uintlé6_t uilé6MPYState;

/* Disable interrupts and save multiplier mode. [optional] =/
uiléIntState = __get_interrupt_state();
__disable_interrupt();

uiléMPYState = MPY32CTLO;

/* Set the multiplier to fractional mode. =/
MPY32CTLO = MPYFRAC;

/* Perform multiplication and save result. =/

MPYS = gl5Argl;

OP2 = glb5Arg2;

__delay_cycles(3); //Delay for the result to be ready
uil6Result = RESHI;

/* Restore multiplier mode and interrupts. [optional] =/
MPY32CTLO = uil6MPYState;
__set_interrupt_state(uilé6IntState);

return (_g)uil6Result;

}

static inline _iq _IQ31mpy_inline(_ig ig31Argl, _ig ig31Arg2)
{

uint32_t ui32Result;

uintl6_t uiléIntState;

uintl6_t uiléMPYState;

/+ Disable interrupts and save multiplier mode. [optional] =/
uiléIntState = __get_interrupt_state();
__disable_interrupt();

uil6MPYState = MPY32CTLO;

/* Set the multiplier to fractional mode. %/
MPY32CTLO = MPYFRAC;

/* Perform multiplication and save result. x/
MPYS32L = ig31Argl;

MPYS32H = ig31Argl >> 16;

OP2L = iqg31lArg2;

OP2H = ig31lArg2 >> 16;

__delay_cycles(5); //Delay for the result to be ready
ui32Result = RES2;
ui32Result |= (uint32_t)RES3 << 16;

July 10, 2014 85

Optimization Guide For Advanced Users

/* Restore multiplier mode and interrupts. [optional] =/
MPY32CTLO = uil6MPYState;
__set_interrupt_state(uiléIntState);

return (_ig)ui32Result;

For more details about using the MPY32 peripheral and the required delay timings please see the
MPY32 chapter in the device Family User Guide.

86 July 10, 2014

Benchmarks

Benchmarks

MSP430 Software MURIPIYo 88
MSPAB0FAXX Family ...t e e e e 90
MSP430F5xx, MSP430F6xx and MSP430FRxx Family ... e 92

This chapter gives benchmarks of the available Qmath and IQmath functions for each device family.
The benchmarks are given with the following considerations:

m The number of execution cycles and program memory usage provided assumes the Q14 or
Q15 formats for Qmath functions and the 1Q29 or IQ30 format for IQmath functions. Execution
cycles may vary for inputs that are not within a normal input range and other Q and 1Q formats.

m Program memory usage may vary by a few bytes for other Q and 1Q formats.

m Some functions that are implemented as C preprocessor macros do not have benchmarks for
execution cycles or code size. These entries will be left empty.

m The number of execution cycles provided in the table includes the call and return and assumes
that the library is running from internal flash or FRAM.

m There are cross functional dependencies that may result in additional functions being included
into the application. The code size can vary based on application and functions used.

m Some of the constant data tables are shared across functions. As a result the code size may
be less than the benchmarks indicate if multiple functions use the same constant data table.

m Accuracy should always be tested and verified within the end application.

July 10, 2014 87

Benchmarks

6.1

MSP430 Software Multiply

m libraries/IAR/MPYsoftware/QmathLib_|IAR_MPYsoftware CPU.lib
m |ibraries/IAR/MPYsoftware/IQmathLib_IAR_MPYsoftware CPU.lib

These benchmarks have been run using MSP430G2553 with the following libraries:

6.1.1 MSP430 Software Multiply Qmath Benchmarks
Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atoQN 16 - 194 0
_QN 16 - - 0
_QNfrac 16 14 10 0
_QNint 16 - - 0
_QNtoa 16 324 0
_QNtoF 16 39 24 0
_Qdiv2 16 1 B 0
_Qdiv4 16 2 - 0
_Qdiv8 16 3 - 0
_Qdiv16 16 4 - 0
_Qdiv32 16 5 - 0
_Qdive4 16 6 - 0
_Qmpy2 16 1 - 0
_Qmpy4 16 2 - 0
_Qmpy8 16 3 - 0
_Qmpy16 16 4 - 0
_Qmpy32 16 5 - 0
_Qmpy64 16 6 - 0
_QNdiv 14 366 162 256
_QNmpy 16 178 92 0
_QNmpyl16 16 - - 0
_QNmpyli6frac 16 - - 0
_QNmpyl16int 16 - - 0
_QNmpyQX 16 - - 0
_QNrmpy 16 177 114 0
_QNrsmpy 16 196 166 0
_QNacos 13 201 106 68
_QNasin 13 201 106 68
_QNatan 12 549 120 132
_QNatan2 12 549 120 132
_QNatan2PU 14 543 96 132
_QNcos 14 423 156 140
_QNcosPU 14 587 196 140
_QNsin 14 435 160 140
_QNsinPU 14 588 198 140
_QNexp 13 497 100 80
_QNlog 13 357 128 64
_QNsqrt 14 220 190 192
_QNisqrt 14 515 200 96
_QNmag 14 706 256 192
_QNimag 13 954 268 96
_QNabs 16 - - 0
_QNsat 16 - - 0

88 July 10, 2014

Benchmarks

6.1.2

MSP430 Software Multiply IQmath Benchmarks

Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atolQN 32 - 266 0
_IQN 23 - - 0
_IQNfrac 32 15 10 0
_IQNint 32 - - 0
_IQNtoa 32 - 412 0
_IQNtoF 23 50 116 0
_IQNtolQ 32 - - 0
_lQtolQN 32 - - 0
_lQtoQN 32 - - 0
_QNtolQ 32 - - 0
_lQdiv2 32 2 - 0
_IQdiv4 32 4 - 0
_lQdiv8 32 6 - 0
_lQdivie 32 8 - 0
_lQdiv32 32 10 - 0
_lQdive4 32 12 - 0
_lQmpy2 32 2 - 0
_lQmpy4 32 4 - 0
_lQmpy8 32 6 - 0
_lQmpy16 32 8 - 0
_lQmpy32 32 10 - 0
_lQmpy64 32 12 - 0
_IQNdiv 30 2573 154 65
_IQNmpy 32 374 126 0
_IQNmpyI32 32 - - 0
_IQNmpyl32frac 32 - - 0
_IQNmpyI32int 32 - - 0
_IQNmpylQX 32 - - 0
_IQNrmpy 32 374 156 0
_|IQNrsmpy 32 413 238 0
_lQNacos 26 1658 216 340
_IQNasin 26 1658 216 340
_IQNatan 27 4113 188 528
_IQNatan2 27 4113 188 528
_lQNatan2PU 30 3706 184 528
_IQNcos 27 1697 326 208
_IQNcosPU 27 2078 342 208
_IQNsin 27 1690 330 208
_IQNsinPU 27 2081 346 208
_IQNexp 30 4401 268 132
_IQNlog 28 6229 260 60
_IQNsqrt 31 3551 368 192
_|QNisqgrt 31 3217 362 192
_IQNmag 30 5469 484 192
_IQNimag 30 5154 480 192
_IQNabs 32 - - 0
_IQNsat 32 - - 0

July 10, 2014

89

Benchmarks

6.2

MSP430F4xx Family

These benchmarks have been run using MSP430F4794 with the following libraries:

m libraries/IAR/MPY32/4xx/QmathLib_IAR_MPY32_4xx_CPU.lib
m |ibraries/IAR/MPY32/4xx/IQmathLib_IAR_MPY32_4xx_CPU.lib

6.2.1 MSP430F4xx Family Qmath Benchmarks
Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atoQN 16 - 216 0
_QN 16 - - 0
_QNfrac 16 14 10 0
_QNint 16 - - 0
_QNtoa 16 558 0
_QNtoF 16 39 24 0
_Qdiv2 16 1 B 0
_Qdiv4 16 2 - 0
_Qdiv8 16 3 - 0
_Qdiv16 16 4 - 0
_Qdiv32 16 5 - 0
_Qdive4 16 6 - 0
_Qmpy2 16 1 - 0
_Qmpy4 16 2 - 0
_Qmpy8 16 3 - 0
_Qmpy16 16 4 - 0
_Qmpy32 16 5 - 0
_Qmpy64 16 6 - 0
_QNdiv 14 120 196 256
_QNmpy 16 52 48 0
_QNmpyl16 16 - - 0
_QNmpyli6frac 16 - - 0
_QNmpyl16int 16 - - 0
_QNmpyQX 16 - - 0
_QNrmpy 16 55 54 0
_QNrsmpy 16 63 90 0
_QNacos 13 88 138 68
_QNasin 13 88 138 68
_QNatan 12 187 150 132
_QNatan2 12 187 150 132
_QNatan2PU 14 182 126 132
_QNcos 14 102 194 140
_QNcosPU 14 137 234 140
_QNsin 14 114 202 140
_QNsinPU 14 140 238 140
_QNexp 13 118 142 80
_QNlog 13 111 168 64
_QNsqrt 14 102 214 192
_QNisqrt 14 134 248 96
_QNmag 14 163 300 192
_QNimag 13 184 328 96
_QNabs 16 - - 0
_QNsat 16 - - 0

90 July 10, 2014

Benchmarks

6.2.2

MSP430F4xx Family IQmath Benchmarks

Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atolQN 32 - 336 0
_IQN 23 - - 0
_IQNfrac 32 15 10 0
_IQNint 32 - - 0
_IQNtoa 32 - 706 0
_IQNtoF 23 50 116 0
_IQNtolQ 32 - - 0
_lQtolQN 32 - - 0
_lQtoQN 32 - - 0
_QNtolQ 32 - - 0
_lQdiv2 32 2 - 0
_IQdiv4 32 4 - 0
_lQdiv8 32 6 - 0
_lQdivi6 32 8 - 0
_lQdiv32 32 10 - 0
_lQdive4 32 12 - 0
_lQmpy2 32 2 - 0
_lQmpy4 32 4 - 0
_lQmpy8 32 6 - 0
_lQmpy16 32 8 - 0
_lQmpy32 32 10 - 0
_lQmpy64 32 12 - 0
_IQNdiv 30 319 150 65
_IQNmpy 32 69 68 0
_IQNmpyI32 32 - - 0
_IQNmpyl32frac 32 - - 0
_IQNmpyI32int 32 - - 0
_IQNmpylQX 32 - - 0
_IQNrmpy 32 73 76 0
_|IQNrsmpy 32 81 116 0
_lQNacos 26 225 300 340
_IQNasin 26 225 300 340
_IQNatan 27 515 268 528
_IQNatan2 27 515 268 528
_lQNatan2PU 30 480 248 528
_IQNcos 27 260 456 208
_IQNcosPU 27 286 478 208
_IQNsin 27 272 468 208
_IQNsinPU 27 296 482 208
_IQNexp 30 494 320 132
_IQNlog 28 629 318 60
_IQNsqrt 31 382 544 192
_|QNisqgrt 31 364 520 192
_IQNmag 30 548 734 192
_IQNimag 30 530 710 192
_IQNabs 32 - - 0
_IQNsat 32 - - 0

July 10, 2014

91

Benchmarks

6.3

MSP430F5xx, MSP430F6xx and MSP430FRxx Family

These benchmarks have been run using MSP430F5529 with the following libraries:

m libraries/IAR/MPY32/5xx_6xx/QmathLib_IAR_MPY32 5xx_6xx_CPUX_small code small_data.lib
m |ibraries/IAR/MPY32/5xx_6xx/IQmathLib_IAR_MPY32_ 5xx_6xx_CPUX_small_code_ small_data.lib

6.3.1 MSP430F5xx, MSP430F6xx and MSP430FRxx Family Qmath
Benchmarks
Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atoQN 16 206 0
_QN 16 0
_QNfrac 16 14 10 0
_QNint 16 0
_QNtoa 16 532 0
_QNtoF 16 39 26 0
_Qdiv2 16 1 0
_Qdiv4 16 2 0
_Qdiv8 16 3 0
_Qdivie 16 4 0
_Qdiv32 16 5 0
_Qdive4 16 6 0
_Qmpy2 16 1 0
_Qmpy4 16 2 0
_Qmpy8 16 3 0
_Qmpy16 16 4 0
_Qmpy32 16 5 0
_Qmpy64 16 6 - 0
_QNdiv 14 103 184 256
_QNmpy 16 47 48 0
_QNmpyl16 16 0
_QNmpyli6frac 16 0
_QNmpyl16int 16 0
_QNmpyQX 16 0
_QNrmpy 16 50 54 0
_QNrsmpy 16 58 90 0
_QNacos 13 80 132 68
_QNasin 13 80 132 68
_QNatan 12 175 142 132
_QNatan2 12 175 142 132
_QNatan2PU 14 169 122 132
_QNcos 14 91 174 140
_QNcosPU 14 118 210 140
_QNsin 14 98 180 140
_QNsinPU 14 121 214 140
_QNexp 13 105 134 80
_QNlog 13 99 162 64
_QNsqrt 14 95 190 192
_QNisqrt 14 118 220 96
_QNmag 14 147 280 192
_QNimag 13 162 302 96
_QNabs 16 0
_QNsat 16 0
92 July 10, 2014

Benchmarks

6.3.2

MSP430F5xx,
Benchmarks

Function Accuracy (Bits) | Execution Cycles | Code Size | Const Data
_atolQN 32 - 312 0
_IQN 23 - - 0
_IQNfrac 32 15 10 0
_IQNint 32 - - 0
_IQNtoa 32 - 676 0
_|QNtoF 23 50 116 0
_IQNtolQ 32 - - 0
_lQtolQN 32 - - 0
_lQtoQN 32 - - 0
_QNtolQ 32 - - 0
_lQdiv2 32 2 - 0
_lQdiv4 32 4 - 0
_lQdivs 32 6 - 0
_lQdiv16 32 8 - 0
_lQdiv32 32 10 - 0
_lQdive4 32 12 - 0
_lQmpy2 32 2 - 0
_lQmpy4 32 4 - 0
_lQmpy8 32 6 - 0
_lQmpy16 32 8 - 0
_lQmpy32 32 10 - 0
_lQmpy64 32 12 - 0
_IQNdiv 30 278 136 65
_IQNmpy 32 62 68 0
_|IQNmpyl32 32 - - 0
_|IQNmpyl32frac 32 - - 0
_IQNmpyI32int 32 - - 0
_IQNmpylQX 32 - - 0
_IQNrmpy 32 66 76 0
_IQNrsmpy 32 74 116 0
_lQNacos 26 194 282 340
_IQNasin 26 194 282 340
_IQNatan 27 445 256 528
_IQNatan2 27 445 256 528
_lQNatan2PU 30 417 238 528
_IQNcos 27 219 438 208
_IQNcosPU 27 241 460 208
_IQNsin 27 230 450 208
_IQNsinPU 27 250 464 208
_IQNexp 30 431 286 132
_IQNlog 28 556 294 60
_IQNsqrt 31 333 522 192
_IQNisqgrt 31 318 498 192
_IQNmag 30 480 710 192
_IQNimag 30 464 686 192
_|lQNabs 32 - - 0
_IQNsat 32 - - 0

MSP430F6xx and MSP430FRxx Family lQmath

July 10, 2014

93

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications N ’
Amplifiers amplifier.ti.com Audio Wmotive
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁ(tj)_ro_?dlban? |
DSP dsp.ficom Digital Control Www.1.com/digrarcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © , Texas Instruments Incorporated

94 July 10, 2014

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 Using The Qmath and IQmath Libraries
	2.1 Qmath Data Types
	2.2 IQmath Data Types
	2.3 Using the Libraries
	2.4 MSP430-GCC Beta Support
	2.5 Calling Functions From C
	2.6 Selecting The Global Q and IQ Formats
	2.7 Example Projects
	2.8 Function Groups

	3 Qmath Functions
	3.1 Qmath Introduction
	3.2 Qmath Format Conversion Functions
	3.3 Qmath Arithmetic Functions
	3.4 Qmath Trigonometric Functions
	3.5 Qmath Mathematical Functions
	3.6 Qmath Miscellaneous Functions

	4 IQmath Functions
	4.1 IQmath Introduction
	4.2 IQmath Format Conversion Functions
	4.3 IQmath Arithmetic Functions
	4.4 IQmath Trigonometric Functions
	4.5 IQmath Mathematical Functions
	4.6 IQmath Miscellaneous Functions

	5 Optimization Guide For Advanced Users
	5.1 Introduction
	5.2 Advanced Multiplication
	5.3 Advanced Division
	5.4 Inlined Multiplication with the MPY32 Peripheral

	6 Benchmarks
	6.1 MSP430 Software Multiply
	6.2 MSP430F4xx Family
	6.3 MSP430F5xx, MSP430F6xx and MSP430FRxx Family

	IMPORTANT NOTICE

