Using Stellaris® Microcontrollers Internal
Flash Memory to Emulate EEPROM

Application Note

I3 TEXAS

INSTRUMENTS

ANO01267-00 Copyright © 2009 Texas Instruments

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

Copyright

Copyright © 2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellariswWare are registered trademarks of Texas Instruments. ARM and
Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments
108 Wild Basin, Suite 350

Austin, TX 78746 i TEXAS ol n I = m Em
Main: +1-512-279-8800 £ C :
Fax: +1-512-279-8879 INSTRUMENTS g or ex
http//WWWl umi narymicro.com RM 1 Intelligent Processors by ARM®

September 24, 2009 2

Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

Table of Contents

[T oo [0 Tox 1 o o TR 4
EEPROM EMUIGION OVEIVIEWcvvviiiiiiiieiie e ee et e ettt e e e e ettt e e e e et e e e e e e e et e e e s eeasba e e e e s eesaaa e eeesesbaaneesensrans 4
EEPROM Emulation IMpPIEmMENTALION...........ooiiiiiiii ettt e e et e e et e e e e s stbreeeeeanes 4

ACCOMPANYING SOFIWEAIE ...ttt st e e e b et e e s e bbb et e e e bbb et e e e be e e e e anbbeeeesannrnes 5
(0] {01 1113 [] o ISR 9
R LY (=T =] Lo =TSRRI 10
9/24/09 3

Luminary Micro Confidential-Advance Product Information

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

Introduction

Electronically erasable programmable read-only memory (EEPROM) is ideal for applications that
require the ability to write, read, and update variables in non-volatile memory. Although Stellaris®
microcontrollers do not have internal EEPROM, the internal Flash memory in Stellaris
microcontrollers can provide this functionality using EEPROM emulation. A system designer could
use external serial EEPROM with Stellaris microcontrollers, but this solution is not ideal for
cost-sensitive or pin-constrained applications. Emulating EEPROM using the internal Flash memory
is a better solution and is described in detail in this application note. In addition, the EEPROM
emulation drivers and an example application that makes use of these drivers are available for
download from the www.luminarymicro.com web site.

EEPROM Emulation Overview

EEPROM is a type of non-volatile memory that is used to store variables whose values need to be
preserved when power is removed. EEPROM allows the values of these variables to be individually
erased and written.

Flash memory allows variables to be individually written (changing bits from a 1 to a 0), but cannot be
modified until the variable has been erased (changing bits from a 0 to a 1). In addition, Flash memory
has the restriction that the memory is erased by a region, typically known as a page. These pages
are much larger than the size of the variables that are stored in the memory. The page size on
Stellaris microcontrollers is 1 K bytes. In addition to their rather large size, these Flash pages can
only endure a limited number of program/erase cycles.

Given the above constraints, EEPROM emulation schemes using Flash memory have been
developed. A typical emulation scheme involves using a portion of the Flash memory and dividing it
into multiple EEPROM pages. The most recent data is stored in one of the pages, known as the
active page, using entries which are comprised of an identifier (similar to an address) and the data.
For reads, the software starts from the end of the active page and searches for the identifier and then
returns the data associated with that identifier. For writes, the identifier and data are written to the
active page in the next available entry. Once the active page is full, the most recent data for each
identifier is copied to the next page which then becomes the active page. The full page is then
available to be erased and reused as needed. The pages are used like a circular buffer to store the
data.

EEPROM Emulation Implementation

Accompanying this application note is a set of EEPROM emulation drivers that use the internal Flash
of the Stellaris family of microcontrollers to emulate real EEPROM. These drivers provide the user
the ability to read, write, and clear the EEPROM contents. Using the drivers, the user specifies the
region of Flash to be used for EEPROM emulation. In addition, the user specifies the size of the
individual EEPROM pages within the emulation region which, in effect, also specifies the number of
EEPROM pages within the region.

The beginning of each EEPROM page consists of two 32-bit status words used by the emulation
software (see Table 1). These status words are used to distinguish between completely erased
pages, the active page, and used pages. If both the first and second status words are in the erased
state, then it is assumed that this page is completely erased. If the first status word is not erased and
the second status word is erased, then the page is assumed to be in the active state. If both the first

September 24, 2009 4

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

and second status words are not in the erased state, then the page is assumed to be in the used
state.

Table 1. Status Word Relation to EEPROM Page State

State of First Status Word | State of Second Status Word | State of EEPROM Page
Erased Erased Completely Erased
Erased Not Erased Invalid state
Not Erased Erased Active
Not Erased Not Erased Used

The remainder of the EEPROM page (total page size minus the two status words) is used for storing
the EEPROM entries. The Stellaris Flash has the restriction that each 32-bit word can only be
programmed once between erase operations. Due to this restriction, each EEPROM entry is 32-bits.
Each entry consists of an 8-bit identifier and 16-bits of data (see Figure 1). The number of entries
available in an EEPROM page is ((PageSize / 4) — 2 status words). For a 1 KB page size, there are
254 entries.

Figure 1. EEPROM Page Entry

Identifier Data

An EEPROM write operation causes the next available entry in the currently active page to be written
with the given identifier and data. When the currently active EEPROM page becomes full, the next
page in the emulation region is erased and the most recent data for each identifier is copied to the
new page. The new page is then marked as the active page and the full page is marked as used.

The EEPROM read operation is implemented by reading the currently active EEPROM page
searching for the given identifier and returning the data associated with that identifier if found. The
search starts at the entry just before the next available entry and traverses the page in reverse.
Therefore, the first instance of data for that identifier is the most recent.

An EEPROM clear operation erases the EEPROM contents by marking the currently active page as
used, erasing the next page in the emulation region, and marking the erased page as the active

page.

Accompanying Software

The software that accompanies this application note consists of the EEPROM emulation drivers as
well as a simple example application that uses the drivers.

EEPROM Emulation Drivers
The EEPROM emulation drivers provide the ability to read, write, and clear the EEPROM contents.
The application programmer’s interface (API) consists of the following four functions:

September 24, 2009 5

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

B SoftEEPROMInit
long SoftEEPROMInit (unsigned long ulStart, unsigned long ulEnd,
unsigned long ulSize) ;

SoftEEPROMInit initializes the EEPROM emulation region within the Flash. This function must be
called prior to using any of the other functions in the API. The user must specify the start address
of the EEPROM emulation region, the end address of the EEPROM region, and the size of the
EEPROM pages within the EEPROM region. A value of O is returned if the initialization is
successful. A non-zero value indicates a failure.

B SoftEEPROMWrite
long SoftEEPROMWrite (unsigned short usID, unsigned short usData) ;

SoftEEPROMWrite writes the user specified identifier and data to the next available entry in the
currently active EEPROM page. If the page is full, a page swap occurs. A value of 0 is returned if
the write is successful. A non-zero value indicates a failure.

B SoftEEPROMRead
long SoftEEPROMRead (unsigned char usID, unsigned short *pusData,
tBoolean *pbFound) ;

SofttEEPROMRead reads the most recent data associated with the specified identifier. The user
must provide a pointer to a variable to store the data in and a pointer to a variable to store a value
which indicates whether or not the identifier was found. A value of 0 is returned if the read is
successful. A non-zero value indicates a failure.

B SoftEEPROMClear
long SoftEEPROMClear (void) ;

SoftEEPROMCIear erases the EEPROM contents. A value of O is returned if the clear is
successful. A non-zero value indicates a failure.

For full details on the EEPROM emulation drivers, see the software reference manual provided with
the software.

EEPROM Emulation Timing

The tables below show the timing parameters associated with the EEPROM emulation drivers for
1-KB and 2-KB EEPROM page sizes. A 50-MHz system clock is used for all of the measurements.
Data was collected from the LM3S811, LM3S6965, and LM3S9B90 evaluation boards. The timing for
the LM3S811 was taken using Rev C2 silicon and is representative of the remainder of the
Sandstorm class of microcontrollers. The timing for the LM3S6965 was taken using Rev A2 silicon
and is representative of the remainder of the Fury class of microcontrollers. The timing for the
LM3S9B90 was taken using Rev B1 silicon and is representative of the remainder of the Tempest
class of microcontrollers. Timings may vary some due to slight variations in program and erase times
for each individual part.

Below is a list of the EEPROM operations measured and an explanation of each:

B EEPROM Write Operation (Normal — no page swap) — A write operation which does not trigger a
page swap.

September 24, 2009 6

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

B EEPROM Write Operation (with page swap) — A write operation which triggers a page swap. The
minimum value applies when there is only one EEPROM identifier being used and therefore only
one entry that has to be copied to the next page. The maximum value applies when the maximum
number of identifiers (without exceeding the identifier limit of 255) must be copied to the next

page.

B EEPROM Read Operation — A read operation to the EEPROM. The minimum value applies when
the first entry read contains the requested identifier. The maximum value applies when the last
possible entry read in the page contains the first instance of the requested identifier.

B EEPROM Clear Operation — A clear operation of the EEPROM. The contents of the EEPROM are
erased.

Table 2. EEPROM Timing on LM3S811 Microcontroller — 1-K EEPROM Page Size

EEPROM Operation Min Nom Max Unit
EEPROM Write Operation (Normal — no page swap) - 415 - S
EEPROM Write Operation (with page swap)? 16.6 - 26.3 mS
EEPROM Read Operation® 1.7 - 82.66 uS
EEPROM Clear Operation - 16.4 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to

be copied to the new page.

b.The amount of time required for a read operation depends on where the identifier being searched for is located in the active

EEPROM page.

Table 3. EEPROM Timing on LM3S811 Microcontroller — 2-K EEPROM Page Size

EEPROM Operation Min Nom Max Unit
EEPROM Write Operation (Normal — no page swap) - 415 - uS
EEPROM Write Operation (with page swap)? 33.1 - 42.9° mS
EEPROM Read Operation® 1.7 - 164.6 uS
EEPROM Clear Operation - 32.7 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to

be copied to the new page.

b.The maximum time for this operation is not double that of the 1-KB page size case due to the limit of 255 identifiers and the

510 entries for a 2-KB EEPROM page.

c.The amount of time required for a read operation depends on where the identifier being searched for is located in the active

EEPROM page.

Table 4. EEPROM Timing on LM3S6965 Microcontroller — 1-K EEPROM Page Size

EEPROM Operation

Min

Nom

Max

Unit

EEPROM Write Operation (Normal — no page swap)

54.4

uS

September 24, 2009

Application Note

Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

Table 4. EEPROM Timing on LM3S6965 Microcontroller — 1-K EEPROM Page Size

EEPROM Clear Operation

EEPROM Operation Min Nom Max Unit

EEPROM Write Operation (with page swap)? 22.4 - 35.4 mS
EEPROM Read Operationb 1.7 - 82.7 uS
- 22.1 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to

be copied to the new page.

b.The amount of time required for a read operation depends on where the identifier being searched for is located in the active

EEPROM page.

Table 5. EEPROM Timing on LM3S6965 Microcontroller — 2-K EEPROM Page Size

EEPROM Clear Operation

EEPROM Operation Min Nom Max Unit

EEPROM Write Operation (Normal — no page swap) - 54.4 - S
EEPROM Write Operation (with page swap)? 44.6 - 57.6° mS
EEPROM Read Operation® 1.7 - 164.6 uS
- 44.1 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to

be copied to the new page.

b.The maximum time for this operation is not double that of the 1-KB page size case due to the limit of 255 identifiers and the

510 entries for a 2-KB EEPROM page.

¢.The amount of time required for a read operation depends on where the identifier being searched for is located in the active

EEPROM page.

Table 6. EEPROM Timing on LM3S9B90 Microcontroller — 1-K EEPROM Page Size

EEPROM Clear Operation

EEPROM Operation Min Nom Max Unit

EEPROM Write Operation (Normal — no page swap) - 310.2 - uS
EEPROM Write Operation (with page swap)? 18.9 - 45.9 mS
EEPROM Read Operationb 1.7 - 82.7 uS
- 17.8 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to

be copied to the new page.

b.The amount of time required for a read operation depends on where the identifier being searched for is located in the active

EEPROM page.

September 24, 2009

Application Note

Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

Table 7. EEPROM Timing on LM3S9B90 - 2-K EEPROM Page Size

EEPROM Operation Min Nom Max Unit
EEPROM Write Operation (Normal — no page swap) - 310.2 - uS
EEPROM Write Operation (with page swap)? 35.1 - 56.8P mS
EEPROM Read Operation® 1.7 - 164.6 uS
EEPROM Clear Operation - 33.3 - mS

a.The amount of time required for a write operation with a page swap depends on the number of unique identifiers with data to
be copied to the new page.

b.The maximum time for this operation is not double that of the 1-KB page size case due to the limit of 255 identifiers and the
510 entries for a 2-KB EEPROM page.

c.The amount of time required for a read operation depends on where the identifier being searched for is located in the active
EEPROM page.

Example Application

The application provided with the EEPROM emulation drivers is an example that uses UARTO to
interface to a PC COM port and allows the user to read and write the emulated EEPROM variables.
In addition, the user can dump and clear the emulated EEPROM contents. The example is
configured for a board with an 8-MHz crystal. The appropriate parameter in the call to
SYSCTLCLOCKSET () must be changed if a different crystal is used on the board.

To run the example:
1. Start Hyperterminal.
Select the COM port associated with the board.

. Select 115200 bits per second.

. Select no parity.

2.
3
4. Select 8 data bits.
5
6. Select 1 stop bit.
.

. Select no flow control.

At the command prompt, type “help” to see the list of commands supported.

Conclusion

The use of external EEPROM consumes pins that could be used for other purposes, increases
bill-of-material costs, and takes up board space. To overcome these issues, EEPROM can be
emulated using internal Flash memory. Texas Instruments provides a set of EEPROM emulation
drivers for the Stellaris family as well as an example application that makes use of these drivers.

September 24, 2009 9

Application Note Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM

References

The following documents and source code are available for download at www.luminarymicro.com:
B Stellaris LM3S811 microcontroller data sheet, Publication Number DS-LM3S811

B Stellaris LM3S6965 microcontroller data sheet, Publication Number DS-LM3S6965

B Stellaris LM3S9B95 microcontroller data sheet, Publication Number DS-LM3S9B95

B Source code for application note AN01267 - Using Stellaris® Microcontrollers Internal Flash
Memory to Emulate EEPROM

September 24, 2009 10

Important Notice

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from T| under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically
governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,
and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their
products and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support
that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of
Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by TI as military-grade or "enhanced plastic.” Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/Iprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

September 24, 2009 11

	Using Stellaris® Microcontrollers Internal Flash Memory to Emulate EEPROM
	Introduction
	EEPROM Emulation Overview
	EEPROM Emulation Implementation
	Accompanying Software

	Conclusion
	References

