
C2000™ MCU 1-Day Workshop

Workshop Guide and Lab Manual

C2000 MCU 1-Day Workshop
Revision 2.0
November 2016

Workshop Topics

2 C2000 MCU 1-Day Workshop

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI’s publication of information regarding any third party’s products or services does not
constitute TI’s approval, warranty or endorsement thereof.

Copyright  2014 – 2016 Texas Instruments Incorporated

Revision History
April 2014 – Revision 1.0

October 2014 – Revision 1.1

November 2016 – Revision 2.0

Mailing Address
Texas Instruments
C2000 Technical Training
13905 University Boulevard
Sugar Land, TX 77479

 Workshop Topics

C2000 MCU 1-Day Workshop 3

Workshop Topics
Workshop Topics ... 3
Workshop Introduction ... 5

Outline .. 5
Required Workshop Materials .. 6
F28379D LaunchPad ... 6
F28x7x Piccolo / Delfino Comparison .. 7

Architectural Overview ... 8
F2837xD Block Diagram .. 8
Simplified F28x7x Memory Map ... 9
Interrupt Response Manager ... 10
Direct Memory Access (DMA) .. 10
Control Law Accelerator (CLA) .. 11
Viterbi / Complex Math Unit (VCU) .. 11
Trigonometric Math Unit (TMU).. 12
External Memory Interface (EMIF) ... 12
Communication Peripherals ... 13
On-Chip Safety Features ... 13

Programming Development Environment .. 14
Programming Model ... 14
Code Composer Studio .. 15
Software Development and COFF Concepts ... 15
Edit and Debug Perspective... 17
Target Configuration .. 18
CCS Project and Build Options .. 19
CCSv6 Debug Environment ... 22
Dual Subsystem Debug ... 24
Lab File Directory Structure ... 25

Lab 1: Dual-Core Debug with F2837xD ... 26
Reset, Interrupts and System Initialization... 33

Reset Sources .. 33
Boot Process .. 33
Emulation Boot Mode ... 34
Stand-Alone Boot Mode ... 35
Reset Code Flow – Summary .. 36
Interrupt Sources .. 36
Peripheral Interrupt Expansion – PIE ... 38
F2837xD PIE Assignment Table .. 38
PIE Block Initialization .. 40
F2837xD Dual-Core Interrupt Structure ... 41
F28x7x Oscillator / PLL Clock Module ... 42
Watchdog Timer Module .. 43
F28x7x General-Purpose Input-Output .. 44
GPIO Input X-Bar ... 45
GPIO Output X-Bar .. 46

Analog Subsystem ... 48
ADC Subsystem ... 48
ADC Module Block Diagram .. 49
ADC Triggering .. 50
ADC Conversion Priority .. 51
Post Processing Block ... 52
Comparator Subsystem ... 54

Workshop Topics

4 C2000 MCU 1-Day Workshop

Digital-to-Analog Converter .. 55
Sigma Delta Filter Module (SDFM) .. 56

Lab 2: Analog-to-Digital Converter ... 57
Control Peripherals .. 64

ePWM Module Signals and Connections ... 64
ePWM Block Diagram .. 64
ePWM Time-Base Sub-Module ... 65
ePWM Compare Sub-Module .. 66
ePWM Action Qualifier Sub-Module .. 66
ePWM Dead-Band Sub-Module ... 69
ePWM Chopper Sub-Module ... 70
ePWM Trip-Zone and Digital Compare Sub-Module ... 71
ePWM Event-Trigger Sub-Module ... 74
Hi-Resolution PWM (HRPWM) .. 75
Capture Module (eCAP) ... 75
Quadrature Encoder Pulse Module (eQEP) ... 77

Lab 3: Control Peripherals ... 79
Inter-Processor Communications (IPC) ... 84

IPC Global Shared SARAM and Message SARAM ... 84
Interrupts and Flags ... 86
IPC Data Transfer .. 88

Lab 4: Inter-Processor Communications .. 90
Support Resources .. 94

C2000 MCU Multi-day Training Course ... 94
controlSUITE™ .. 94
Experimenter’s Kit .. 95
Perpheral Explorer Kit .. 95
LaunchPad Evaluation Kit .. 96
Application Kits ... 96
XDS100 / XDS200 Class JTAG Emulators .. 97
C2000 Workshop Download Wiki .. 97
For More Information… .. 98

Appendix A – F28379D Experimenter Kit .. 99
Overview .. 99
Experimenter Kit and LaunchPad Mapping ... 99
Stand-Alone Operation (No Emulator) ... 100

 Workshop Introduction

C2000 MCU 1-Day Workshop 5

Workshop Introduction

C2000 Microcontroller 1-Day Workshop

C2000 Technical Training

Copyright © 2016 Texas Instruments. All rights reserved.
C2000 is a trademark of Texas Instruments.

Outline

Outline
Workshop Introduction
 Architectural Overview
 Programming Development Environment

 Lab 1: Using Code Composer Studio with the F2837xD

 Reset, Interrupts and System Initialization
 Analog Subsystem

 Lab 2: Configuring the ADC as a data acquisition system

 Control Peripherals
 Lab 3: Generating a PWM waveform

 Inter-Processor Communications (IPC)
 Lab 4: Data transfer using Inter-Processor Communications

 Support Resources

Workshop Introduction

6 C2000 MCU 1-Day Workshop

Required Workshop Materials

Required Workshop Materials
http://processors.wiki.ti.com/index.php/

C2000_One-Day_Workshop

F28379D LaunchPad (LAUNCHXL-F28379D)

 Install Code Composer Studio v6.2.0

Run the workshop installer
C2000 MCU 1-Day Workshop-2.0-Setup.exe

Lab Files / Solution Files

Student Guide

F28379D LaunchPad

F28379D LaunchPad

Note: F28379D – 337 pin package

XD
S

10
0v

2
em

ul
at

io
n

 c
irc

ui
try

CON1: USB
emulation/

UART

JP2: GND
from USB
(disables
isolation)

JP1: 3.3V
from USB
(disables
isolation)

J2/J4 *

* = BoosterPack plug-in module connector

TMS320F28379D

J1/J3 * J5/J7 *

J6/J8 *

JP4/JP5
(connects
3.3V/5V
to J5/J7)

S1: Boot
Modes

S3: Reset

D10: GPIO31 (blue)
D9: GPIO34 (red)
D1: Power (green)

J12:
CAN

J14:
QEP_A

J15:
QEP_B

J21
(ADC-D

differential
pair inputs)

J20/J19
(Optional SMA

connector point)

JP3: 5V
from USB
(disables
isolation)

J13/J11
I2C

 Workshop Introduction

C2000 MCU 1-Day Workshop 7

F28x7x Piccolo / Delfino Comparison

F2807x / F2837xS / F2837xD Comparison
F2807x F2837xS F2837xD

C28x CPUs 1 1 2
Clock 120 MHz 200 MHz 200 MHz
Flash / RAM / OTP 256Kw / 50Kw / 2Kw 512Kw / 82Kw / 2Kw 512Kw / 102Kw / 2Kw
On-chip Oscillators P P P

Watchdog Timer P P P

ADC Three 12-bit Four 12/16-bit Four 12/16-bit
Buffered DAC 3 3 3
Analog COMP w/DAC P P P

FPU P P P (each CPU)

6-Channel DMA P P P (each CPU)

CLA P P P (each CPU)

VCU / TMU - / P P / P P / P (each CPU)

ePWM / HRPWM P / P P / P P / P
eCAP / HRCAP P / - P / - P / -
eQEP P P P

SCI / SPI / I2C P / P / P P / P / P P / P / P
CAN / McBSP / USB P / P / P P / P / P P / P / P
UPP - P P

EMIF 1 2 2

F2806x / F2833x / F2837xD Comparison
F2806x F2833x F2837xD

C28x CPUs 1 1 2
Clock 90 MHz 150 MHz 200 MHz
Flash / RAM / OTP 128Kw / 50Kw / 1Kw 256Kw / 34Kw / 1Kw 512Kw / 102Kw / 2Kw
On-chip Oscillators P - P

Watchdog Timer P P P

ADC One 12-bit (SOC) One 12-bit (SEQ) Four 12/16-bit (SOC)

Buffered DAC - - 3
Analog COMP w/DAC P - P

FPU P P P (each CPU)

6-Channel DMA P P P (each CPU)

CLA P - P (each CPU)

VCU / TMU P / - - / - P / P (each CPU)

ePWM / HRPWM P / P P / P P / P
eCAP / HRCAP P / P P / - P / -
eQEP P P P

SCI / SPI / I2C P / P / P P / P / P P / P / P
CAN / McBSP / USB P / P / P P / P / - P / P / P
UPP - - P

EMIF - 1 2

Architectural Overview

8 C2000 MCU 1-Day Workshop

Architectural Overview

F2837xD Block Diagram

F2837xD – Dual Core Block Diagram

TMS320F28x7x Core Block Diagram

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

3
32-bit

Timers

PIE
Interrupt
Manager

Watchdog

CLA

CLA Bus

32x32 bit
Multiplier

FPU

CPU
Register Bus

R-M-W
Atomic

ALU

TMU

VCU

DMA
6 Ch.

DMA Bus

EMIF

ePWM

eCAP

eQEP

ADC

McBSP

I2C

SCI

SPI

CAN 2.0B

USB 2.0

GPIO

DAC

CMPSS

 Architectural Overview

C2000 MCU 1-Day Workshop 9

F28x CPU + FPU + VCU + TMU and CLA
 MCU/DSP balancing code density &

execution time
16-bit instructions for improved code density
32-bit instructions for improved execution time

 32-bit fixed-point CPU + FPU
 32x32 fixed-point MAC, doubles as dual

16x16 MAC
 IEEE Single-precision floating point

hardware and MAC
 Floating-point simplifies software

development and boosts performance
 Viterbi, Complex Math, CRC Unit (VCU)

adds support for Viterbi decode, complex
math and CRC operations

 Parallel processing Control Law Accelerator
(CLA) adds IEEE Single-precision 32-bit
floating point math operations

 CLA algorithm execution is independent of
the main CPU

 Trigonometric operations supported by TMU
 Fast interrupt service time
 Single cycle read-modify-write instructions

Data Bus

3
32-bit

Timers
CPU

Register Bus

Program Bus

32x32 bit
Multiplier

FPU

R-M-W
Atomic

ALU
CLA

CLA Bus

TMU

VCU

PIE

Watchdog

Simplified F28x7x Memory Map

Simplified F28x7x Memory Map

M0 RAM (1Kw)

M1 RAM (1Kw)

PIE Vectors (512w)

CLA to CPU MSG
RAM (128w)

CPU to CLA MSG
RAM (128w)

EMIF-2 (4Kw)

LS0 – LS5 RAM
(2Kw each)

D0 – D1 RAM
(2Kw each)

0x000000

0x000400

0x000D00

0x001480

0x002000

0x008000

0x00B000

0x001500

GS0 – GS15
RAM (4Kw each)

CPU2 to CPU1 IPC
MSG RAM (1Kw)

CPU1 to CPU2 IPC
MSG RAM (1Kw)

FLASH (256Kw)

User OTP (1Kw)

EMIF-1 (2.9Mw)

Boot ROM (32Kw)
BROM Vectors (64w)

0x00C000

0x03F800

0x03FC00

0x078000

0x080000

0x100000

0x3F8000
0x3FFFC0

LS0 – LS5 RAM
accessible by
CPU & CLA

GS0 – GS15
and EMIF1

accessible by DMA
(only GS0 – GS7
RAM on F2807x)

Notes:
1. Only EMIF-1 on

F2807x
2. IPC MSG RAMs

only on F2837xD
3. 512Kw FLASH on

F2837xS

Architectural Overview

10 C2000 MCU 1-Day Workshop

Interrupt Response Manager

F28x Fast Interrupt Response Manager
 192 dedicated PIE

vectors
 No software decision

making required
 Direct access to RAM

vectors
 Auto flags update
 Concurrent auto

context save

28x CPU Interrupt logic

28x
CPUINTM192

Pe
rip

he
ra

l I
nt

er
ru

pt
s

 1
2x

16
 =

 1
92

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 192

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

IFR IER

Direct Memory Access (DMA)

Direct Memory Access (DMA)

McBSP

DMA
6-channels

ADC
Result 0-15

Triggers

PIE
DINTCH1-6

PWM1
PWM2

PWM11
PWM12

Transfers data between peripherals and/or
memory without intervention from the CPU

GS0 RAM

GS15 RAM

EMIF

ADCA/B/C/D (1-4, EVT)
MXEVTA/B MREVTA/B

XINT1-5 TINT0-2
ePWM1-12 (SOCA-B)

SD1FLT1-4 SD2FLT1-4
SPITX/RX (A-C)

USBA_EPx_RX/TX1-3
software

IPC RAM

SPI

 Architectural Overview

C2000 MCU 1-Day Workshop 11

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)
C28x CPU

CLA
PWM

ADC
&

CMP

 The CLA is a 32-bit floating-point processor that
responds to peripheral triggers and executes
code independent of the main CPU

 Designed for fast trigger response and oriented
toward math computations

 Direct access to ePWM, HRPWM, eCAP, eQEP,
ADC result, CMPSS, DAC, SDFM, SPI, McBSP, and
uPP registers

 Frees up the CPU for other tasks
(communications and diagnostics)

Viterbi / Complex Math Unit (VCU)

Viterbi / Complex Math Unit (VCU-II)
Extends C28x instruction

set to support:
 Viterbi operations

 Decode for communications
 Complex math

 16-bit fixed-point complex FFT
 used in spread spectrum

communications, and many signal
processing algorithms

 Complex filters
 used to improve data reliability,

transmission distance, and power
efficiency

 Power Line Communications
(PLC) and radar applications

 Cyclic Redundancy Check
(CRC)
 Communications and memory

robustness checks
 Other: OFDM interleaving &

de-interleaving, Galois Field
arithmetic, AES acceleration

VCU execution
registers VCU-II

VSTATUS

VR0

VR1

VR2

VR3

VR4

VR5

VR6

VR7

VR8

VT0

VT1

VCRC

VSM0
to

VSM63

Data path logic for VCU-II
Instruction

1. General instructions
2. CRC instructions
3. Arithmetic instructions
4. Galois Field instructions
5. Complex FFT instructions

VCU II
Control Logic

Architectural Overview

12 C2000 MCU 1-Day Workshop

Trigonometric Math Unit (TMU)

Trigonometric Math Unit (TMU)

 Supported by natural C and C-intrinsics
 Significant performance impact on algorithms such as:

• Park/ Inverse Park • DQ0 Transform & Inverse DQ0
• Space Vector GEN • FFT Magnitude & Phase Calculations

Adds instructions to FPU for
calculating common

Trigonometric operationsx

y
r

y =
 r

* s
in

(ra
d)

x = r * cos(rad)

Operation Instruction Exe Cycles Result Latency FPU Cycles w/o TMU
Z = Y/X DIVF32 Rz,Ry,Rx 1 5 ~24
Y = sqrt(X) SQRTF32 Ry,Rx 1 5 ~26
Y = sin(X/2pi) SINPUF32 Ry,Rx 1 4 ~33
Y = cos(X/2pi) COSPUF32 Ry,Rx 1 4 ~33
Y = atan(X)/2pi ATANPUF32 Ry,Rx 1 4 ~53
Instruction To
Support ATAN2
Calculation

QUADF32 Rw,Rz,Ry,Rx
ATANPUF32 Ra,Rz
ADDF32 Rb,Ra,Rw

3 11 ~90

Y = X * 2pi MPY2PIF32 Ry,Rx 1 2 ~4
Y = X * 1/2pi DIV2PIF32 Ry,Rx 1 2 ~4

External Memory Interface (EMIF)

External Memory Interface (EMIF)
 Provides a means for the CPU, DMA, and CLA to connect

to various memory devices
 Support for synchronous (SDRAM) and asynchronous

(SRAM, NOR Flash) memories
 F2837xD includes two EMIFs

 EMIF1 – 16/32-bit interface shared between CPU1 and CPU2
 EMIF2 – 16-bit interface dedicated to CPU1

Arbiter/
Memory

Protection
EMIF1

16/32-Bit
Interface

CPU1

CPU1.DMA1

CPU2

CPU2.DMA1

Arbiter/
Memory

Protection
EMIF2

16-Bit
Interface

CPU1

CPU1.CLA1

EMIF1 shared between CPU1 & CPU2 EMIF2 dedicated to CPU1

 Architectural Overview

C2000 MCU 1-Day Workshop 13

Communication Peripherals

Communication Peripherals
 Four Serial Communication Interfaces (SCI)

with 16-level deep TX/RX FIFOs
 Three Serial Peripheral Interfaces (SPI) with

16-level deep TX/RX FIFOs
 Two Inter-Integrated Circuit Interfaces (I2C)

with 16-level deep TX/RX FIFOs
 Two Multi-channel Buffered Serial Ports

(McBSP) with double-buffered TX and triple-
buffered RX

 Two Controller Area Network Ports (CAN)
with 32 mailboxes each

One USB + PHY port

On-Chip Safety Features

On-Chip Safety Features
 Memory Protection

 ECC and parity enabled RAMs, shared RAMs protection
 ECC enabled flash memory

 Clock Checks
 Missing clock detection logic
 PLLSLIP detection
 NMIWDs
 Windowed watchdog

 Write Register Protection
 LOCK protection on system configuration registers
 EALLOW protection
 CPU1 and CPU2 PIE vector address validity check

 Annunciation
 Single error pin for external signalling of error

Programming Development Environment

14 C2000 MCU 1-Day Workshop

Programming Development Environment

Programming Model

Register Programming Model
 DriverLib

 C functions automatically set
register bit fields

 Common tasks and
peripheral modes supported

 Reduces learning curve and
simplifies programming

 Bit Field Header Files
 C structures – Peripheral

Register Header Files
 Register access whole or by

bits and bit fields are
manipulated without masking

 Ease-of-use with CCS IDE
 Direct Register Access

 User code (C or assembly)
defines and access register
addresses

Hardware

Software

Registers and Addresses

DriverLib

H
ar

dw
ar

e
A

bs
tra

ct
io

n

Bit Fields

Direct

Programming Model Comparison

 The device support package includes documentation and examples showing how to
use the Bit Field Header Files or DriverLib

 Device support packages located at: C:\TI\controlSUITE\device_support\
 controlSUITE can be downloaded at www.ti.com\controlSUITE

EPwm1Regs.CMPA.half.CMPA = EPwm1Regs.TBPRD * duty;

EPWM_setCounterCompareValue(EPWM2_BASE, EPWM_COUNTER_COMPARE_A, duty);

*CMPR1 = 0x1234;

Direct Register Access
 Register addresses # defined individually
 User must compute bit-field masks
 Not easy-to-read

Bit Field Header Files
 Header files define all registers as structures
 Bit-fields directly accessible
 Easy-to-read

DriverLib
 DriverLib performs low-level register manipulation
 Easy-to-read
 Highest abstraction level

 Programming Development Environment

C2000 MCU 1-Day Workshop 15

Code Composer Studio
Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (TI) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

Code Composer Studio: IDE

 Integrates: edit, code generation,

and debug

 Single-click access using buttons

 Powerful graphing/profiling tools

 Automated tasks using Scripts

 Based on the Eclipse open source

software framework

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is becoming
a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from
TI resulting in a compelling feature-rich development environment for embedded developers.
CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

Software Development and COFF Concepts
In an effort to standardize the software development process, TI uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of all
resources necessary for the proper operation of the module. Modules can be written using CCS
or any text editor capable of providing a simple ASCII file output. The expected extension of a
source file is .ASM for assembly and .C for C programs.

Programming Development Environment

16 C2000 MCU 1-Day Workshop

CCS – Software Development

 Code Composer Studio includes:
 Integrated Edit/Debug GUI
Code Generation Tools
 TI-RTOS

Asm Link

Editor

Debug

Compile

Graphs,
Profiling

Code
Simulator

Development
Tool

External
Emulator

MCU
Board

Libraries

lnk.cmd
Build

CCS includes a built-in editor, compiler, assembler, linker, and an automatic build process.
Additionally, tools to connect file input and output, as well as built-in graph displays for output are
available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (.OUT), which runs on the device, and can include a .MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

The concept of COFF tools is to allow modular development of software independent of hardware
concerns. An individual assembly language file is written to perform a single task and may be
linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.
Code developed independently of hardware concerns increases the benefits of modularity by al-
lowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create
a new hardware allocation, avoiding the possibility of memory resource conflicts.

 Programming Development Environment

C2000 MCU 1-Day Workshop 17

Edit and Debug Perspective
A perspective defines the initial layout views of the workbench windows, toolbars, and menus that
are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

Edit and Debug Perspective
 Each perspective provides a set of functionality

aimed at accomplishing a specific task

 Edit Perspective
 Displays views used

during code development
 C/C++ project, editor, etc.

 Debug Perspective
 Displays views used for

debugging
 Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

Programming Development Environment

18 C2000 MCU 1-Day Workshop

Target Configuration
A Target Configuration tells CCS how to connect to the device. It describes the device using GEL
files and device configuration files. The configuration files are XML files and have a *.ccxlm file
extension.

Creating a Target Configuration

 File  New  Target
Configuration File

 Select connection type

 Select device

 Save configuration

 Programming Development Environment

C2000 MCU 1-Day Workshop 19

CCS Project and Build Options
CCS works with a project paradigm. Essentially, within CCS you create a project for each
executable program you wish to create. Projects store all the information required to build the
executable. For example, it lists things like: the source files, the header files, the target system’s
memory-map, and program build options.

CCSv6 Project

 List of files:
 Source (C, assembly)
 Libraries
 SYS/BIOS configuration file
 Linker command files

 Project settings:
 Build options (compiler,

assembler, linker, and
TI-RTOS)

 Build configurations

Project files contain:

To create a new project, you need to select the following menu items:

File  New  CCS Project

Along with the main Project menu, you can also manage open projects using the right-click popup
menu. Either of these menus allows you to modify a project, such as add files to a project, or
open the properties of a project to set the build options.

Programming Development Environment

20 C2000 MCU 1-Day Workshop

A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv6 Project(s)
CPU1 CPU2

Advanced Setting / Project Templates and Examples

 File  New  CCS Project

Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options – called configurations: one called Debug, the other Release (you might think of as
optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. The following slide is a sample of the configuration options.

There is a one-to-one relationship between the items in the text box on the main page and the
GUI check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.
• -o <filename> specifies the output (executable) filename.

• -m <filename> creates a map file. This file reports the linker’s results.

• -c tells the compiler to autoinitialize your global and static variables.

• -x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, TI provides two default sets of options (con-
figurations) in each new project you create. The Release (optimized) configuration invokes the
optimizer with –o3 and disables source-level, symbolic debugging by omitting –g (which disables
some optimizations to enable debug).

 Programming Development Environment

C2000 MCU 1-Day Workshop 21

CCSv6 Build Options – Compiler / Linker

 Separate build options for each project – CPU1 & CPU2
 Compiler

 Categories for code generation tools – controls many aspects
of the build process, such as:
 Optimization level
 Target device
 Compiler / assembly / link options

 Linker
 Categories for linking – specify various link options
 ${PROJECT_ROOT} specifies the current project directory

Programming Development Environment

22 C2000 MCU 1-Day Workshop

CCSv6 Debug Environment
The basic buttons that control the debug environment are located in the top of CCS:

The common debugging and program execution descriptions are shown below:

Start debugging

Image Name Description Availability

New Target
Configuration

Creates a new target configuration file. File New Menu
Target Menu

Debug Opens a dialog to modify existing debug configura-
tions. Its drop down can be used to access other
launching options.

Debug Toolbar
Target Menu

Connect
Target

Connect to hardware targets. TI Debug Toolbar
Target Menu

Debug View Context Menu

Terminate All Terminates all active debug sessions. Target Menu
Debug View Toolbar

 Programming Development Environment

C2000 MCU 1-Day Workshop 23

Program execution

Image Name Description Availability

Halt Halts the selected target. The rest of the debug
views will update automatically with most recent
target data.

Target Menu
Debug View Toolbar

Run Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until a breakpoint is encountered.

Target Menu
Debug View Toolbar

Run to Line Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until the specific source/assembly line is
reached.

Target Menu
Disassembly Context Menu
Source Editor Context Menu

Go to Main Runs the programs until the beginning of function
main in reached. Debug View Toolbar

Step Into Steps into the highlighted statement. Target Menu
Debug View Toolbar

Step Over Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it
will continue in the method from which the current
method was called. The cursor jumps to the decla-
ration of the method and selects this line.

Target Menu
Debug View Toolbar

Step Return Steps out of the current method. Target Menu
Debug View Toolbar

Reset Resets the selected target. The drop-down menu
has various advanced reset options, depending on
the selected device.

Target Menu
Debug View Toolbar

Restart Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
main on target load or restart" is set the target will
run to the specified symbol, otherwise the execu-
tion state of the target is not changed.

Target Menu
Debug View Toolbar

Assembly
Step Into

The debugger executes the next assembly instruc-
tion, whether source is available or not.

TI Explicit Stepping Toolbar
Target Advanced Menu

Assembly
Step Over

The debugger steps over a single assembly instruc-
tion. If the instruction is an assembly subroutine,
the debugger executes the assembly subroutine
and then halts after the assembly function returns.

TI Explicit Stepping Toolbar
Target Advanced Menu

Programming Development Environment

24 C2000 MCU 1-Day Workshop

Dual Subsystem Debug

Launching Dual Subsystem Debug (1)

1st subsystem (CCS Edit Perspective) -
Clicking “Debug” button will automatically:

Launch the debugger
Connects to target
Programs flash memory

 Note 2nd subsystem is disconnected
 Next step will connect 2nd subsystem

Launching Dual Subsystem Debug (2)

2nd subsystem (CCS Debug Perspective) -
In Debug window right-click on emulator and

select “Connect target”
Highlight emulator and load program (flash)

Run  Load  Load Program…

 Both subsystems are connected
 Next step is dual subsystem start-up sequence

 Programming Development Environment

C2000 MCU 1-Day Workshop 25

Dual Subsystem Debug Start-up
 Start-up sequence

1. Reset CPU1 subsystem
2. Reset CPU2 subsystem
3. Run CPU1 subsystem
4. Run CPU2 subsystem
5. Stop and debug either subsystem

 Debug window controls “selected”
subsystem for the debug interaction
Highlight appropriate subsystem for debug

Lab File Directory Structure

Lab File Directory Structure

 All modified files are in the
Project Folder

 Original source files are
always available for reuse, if
a file becomes corrupted

Original Source Files

Source Files are “Added” to
the Project Folder

Supporting Files and Libraries
 Easier to make projects portable
 ${PROJECT_ROOT} provides

an anchor point for paths to files
that travel with the project

 Easier to maintain and update
supporting files and libraries

Note: CCSv6 will automatically add ALL files contained in the folder where the project is created

Lab 1: Dual-Core Debug with F2837xD

26 C2000 MCU 1-Day Workshop

Lab 1: Dual-Core Debug with F2837xD
 Objective

The objective of this lab exercise is to become familiar with the Code Composer Studio (CCS)
development environment while using a dual core F2837xD device. Details on setting up the
target configuration, creating a new project, setting build options, and connecting to the dual-core
device will be explained. A typical F2837xD application consists of two separate and completely
independent CCS projects. One project is for CPU1, and the other project is for CPU2. A project
contains all the files needed to develop an executable output file (.out) which can be run on the
F2837xD device. In this lab exercise we will have CPU1 blink LED D10 and the CPU2 blink LED
D9.

Lab1: Dual-Core Debug with F2837xD

 Use Code Composer Studio (CCS) in
dual-core debug environment
 Set up target configuration
Create CPU1 project

CPU1 blinks LED D10 (software delay loop)
 Load and run CPU2 project

CPU2 blinks LED D9 (software delay loop)

LED D10
LED D9

 Initial Hardware Set Up

Note: The lab exercises in this workshop have been developed and targeted for the F28379D
LaunchPad. Optionally, the F28379D Experimenter Kit can be used. Other F2807x or
F2837xS development tool kits may be used and might require some minor modifications
to the lab code and/or lab directions; however the Inter-Processor Communications lab
exercise will require either the F28379D LaunchPad or the F28379D Experimenter Kit.
Refer to Appendix A for additional information about the F28379D Experimenter Kit.

• F28379D LaunchPad:

Using the supplied USB cable – plug the USB Standard Type A connector into the computer USB
port and the USB Mini Type B connector into the LaunchPad. This will power the LaunchPad
using the power supplied by the computer USB port. Additionally, this USB port will provide the
JTAG communication link between the device and Code Composer Studio.

 Lab 1: Dual-Core Debug with F2837xD

C2000 MCU 1-Day Workshop 27

At the beginning of the workshop, boot mode switch S1 position 3 must be set to “1 – ON”. This
will configure the device for emulation boot mode.

 Initial Software Set Up
Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required controlSUITE files is included with the lab files. This provides portability, making the
workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

 Procedure

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or selecting it

from the Windows Start menu. When CCS loads, a dialog box will prompt you for the
location of a workspace folder. Use the default location for the workspace and click OK.

This folder contains all CCS custom settings, which includes project settings and views when
CCS is closed so that the same projects and settings will be available when CCS is opened
again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens, an introduction page appears. Close the page by clicking the X on
the “Getting Started” tab. You should now have an empty workbench. The term “workbench”
refers to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the “CCS Edit” perspective view. Notice the CCS Edit icon in the
upper right-hand corner. A perspective defines the initial layout views of the workbench
windows, toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The “CCS Edit”
perspective is used to create or build C/C++ projects. A “CCS Debug” perspective view will
automatically be enabled when the debug session is started. This perspective is used for
debugging C/C++ projects.

Set Up Target Configuration
3. Open the emulator target configuration dialog box. On the menu bar click:

File  New  Target Configuration File

In the file name field type F2837xD.ccxml. This is just a descriptive name since multiple
target configuration files can be created. Leave the “Use shared location” box checked and
select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down list
and choose “Texas Instruments XDS100v2 USB Debug Probe”. In the “Board or Device” box
type F28379D to filter the options. In the box below, check the box to select “F28379D”.
Click Save to save the configuration, then close the “F2837xD.ccxml” set up window by
clicking the X on the tab.

5. To view the target configurations, click:

View  Target Configurations

and click the plus sign (+) to the left of “User Defined”. Notice that the F2837xD.ccxml file is
listed and set as the default. If it is not set as the default, right-click on the .ccxml file and
select “Set as Default”. Close the Target Configurations window by clicking the X on the tab.

Lab 1: Dual-Core Debug with F2837xD

28 C2000 MCU 1-Day Workshop

Create a New Project – CPU1
6. A project contains all the files needed to develop an executable output file (.out) which will run

on the MCU hardware. To create a new project for CPU1 click:

File  New  CCS Project

A CCS Project window will open. At the top of this window, filter the “Target” options by using
the pull-down list on the left and choose “2837xD Delfino”. In the pull-down list immediately
to the right, choose the “TMS320F28379D” device.

Leave the “Connection” box blank since we already set up the target configuration.

7. The next section selects the project settings. In the Project name field type Lab1_cpu01.
Uncheck the “Use default location” box. Click the Browse… button and navigate to:

C:\F2837xD\Labs\Lab1\cpu01

Click OK.

8. Next, open the “Advanced setting” section and set the “Linker command file” to “<none>”.
We will be using our own linker command file, rather than the one supplied by CCS.

9. Then, open the “Project templates and examples” section and select the “Empty Project”
template. Click Finish.

A new project has now been created. Notice the “Project Explorer” window contains
Lab1_cpu01. The project is set Active and the output files will be located in the Debug folder.
At this point, the project does not include any source files. The next step is to add the source
files to the project.

Add Files to Project – CPU1

Note: The local copy of the supporting files and libraries in this workshop are identical to the
required controlSUITE files. The workshop lab exercises will make use of these files as
often as possible. When adding files to the project, a window will appear asking to “copy”
or “link” the files. Selecting “Copy files” will make a copy of the original file to work with in
the local project directory. Selecting “Link files” will set a reference to the original file and
will use the original file. Typically, “link files” is used when the files will not be modified.
To avoid accidently modifying the original files, we will use “copy files” throughout this
workshop and work with the local copy in the project directory.

For convenience, all of the needed source files for this lab exercise are located in the same
folder.

10. To add the source files to the project, right-click on Lab1_cpu01 in the “Project Explorer”
window and select:

Add Files…

or click: Project  Add Files…

Navigate to C:\F2837xD\Labs\Source_files. Select all of the files in this folder and
click Open. Next, add (“copy files”) the files to the project by clicking OK. The files used in
this project are:

 Lab 1: Dual-Core Debug with F2837xD

C2000 MCU 1-Day Workshop 29

2837xD_RAM_lnk_cpu1.cmd F2837xD_PieCtrl.c
F2837xD_CodeStartBranch.asm F2837xD_PieVect.c
F2837xD_DefaultISR.c F2837xD_SysCtrl.c
F2837xD_GlobalVariableDefs.c F2837xD_usDelay.asm
F2837xD_Gpio.c Lab1_cpu01.c
F2837xD_Headers_nonBIOS_cpu1.cmd

In the Project Explorer window, click the plus sign (+) to the left of Lab1_cpu01 and notice
that the files are listed.

Project Build Options – CPU1
11. Configure the build options by right-clicking on Lab1_cpu01 in the “Project Explorer” window

and select “Properties”. We need to set up the include search path to include the peripheral
register header files. Under “C2000 Compiler” select “Include Options”. In the search path
box (“Add dir to #include search path”) click the Add icon (first icon with green plus sign).
Then in the “Add directory path” window type (one at a time):

${PROJECT_ROOT}/../../../Device_support/F2837xD_headers/include

${PROJECT_ROOT}/../../../Device_support/F2837xD_common/include

Click OK to include each search path.

12. Next, we need to configure the predefined symbols. Under “C2000 Compiler” select
“Advanced Options” and then “Predefined Symbols”. In the predefined name box (“Pre-
define NAME”) click the Add icon (first icon with green plus sign). Then in the “Enter Value”
window type (one at a time): CPU1 and _LAUNCHXL_F28379D (note leading underscore).
Click OK to include each name. These names are used in the project to conditionally include
the peripheral register header files code specific to CPU1 and the LaunchPad. Finally, click
OK to save and close the Properties window.

Inspect the Project – CPU1
13. Open and inspect Lab1_cpu01.c by double clicking on the filename in the Project Explorer

window. The code in this lab exercise will be running from internal RAM. In function main(),
the code lines shown below are used to configure the GPIO pins. On the LaunchPad,
GPIO31 and GPIO34 are used to blink LEDs D10 and D9, respectively.

Since CPU1 has control over all the IO pins, GPIO31 can be manipulated directly by CPU1.
However, for this lab exercise, we would like to have CPU2 control GPIO34 so it can blink
D9. This will be accomplished using the IPC (Inter-Processor Communications) module on
the device. The function calls are used here to set up the GPIO pin so it is ready for CPU2
to use.

14. At the bottom of function main() is an infinite “for” loop. The instructions inside the loop blink
LED D10 on the LaunchPad at a rate determined by the DELAY_US() macro. The LED
status is changed by the code lines which write to the GPIO31 pin.

Lab 1: Dual-Core Debug with F2837xD

30 C2000 MCU 1-Day Workshop

15. CCS contains an outline viewer which displays the components of each source file. Open the
outline viewer by clicking:

View  Outline

Notice that the outline window contents change as each source file is viewed in the editor.
For the source file “Lab1_cpu01” the outline window contains:

The list is short since this is a very simple project, but for more complex source files the
“Outline” view provides a useful way of finding symbols and function calls within the file.

Open a New Project – CPU2
16. A project named Lab1_cpu02 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate to:
C:\F2837xD\Labs\Lab1\cpu02 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous project (CPU1). The files
used in this project are:

2837xD_RAM_lnk_cpu2.cmd F2837xD_PieCtrl.c
F2837xD_CodeStartBranch.asm F2837xD_PieVect.c
F2837xD_DefaultISR.c F2837xD_SysCtrl.c
F2837xD_GlobalVariableDefs.c F2837xD_usDelay.asm
F2837xD_Gpio.c Lab1_cpu02.c
F2837xD_Headers_nonBIOS_cpu2.cmd

Inspect the Project – CPU2
17. Open and inspect Lab1_cpu02.c by double clicking on the filename in the Project Explorer

window. The code for CPU2 is almost identical to that for CPU1. One difference is the
timings of the LED status changes at the bottom of main(). Locate these lines. Notice that
the code which toggles the I/O pin uses the function GPIO_WritePin(). As mentioned, this
uses the Inter-Processor Communications (IPC) module to send the data from CPU2 to
CPU1, which has control over the GPIO pins.

Build and Load the Projects – CPU1 & CPU2
18. Two buttons on the horizontal toolbar control code generation. Hover your mouse over each

button as you read their descriptions:

Button Name Description_____________________________________

 1 Build Full build and link of all source files
 2 Debug Automatically build, link, load/program and launch debug-session

Note: In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the

ZhangKafei
高亮

 Lab 1: Dual-Core Debug with F2837xD

C2000 MCU 1-Day Workshop 31

linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g., symbol
and label addresses, source file links, etc.) will automatically load so that CCS knows where
everything is in your code. In this lab exercise, code will be running from RAM only.

19. In the Project Explorer window click on the “Lab1_cpu01” project to set it active. Then click
the “Build” button (hammer) and watch the tools run in the “Console” window. Check for any
errors in the “Problems” window. Repeat this step for the “Lab1_cpu02” project.

20. Again, in the Project Explorer window click on the “Lab1_cpu01” project to set it active. CCS
in the “CCS Edit” perspective view can automatically save modified source files, build the
program, open the “CCS Debug” perspective view, connect and download it to the target
(load RAM memory or program flash memory), and then run the program to the beginning
main(), in a single step.

Click on the “Debug” button (green bug) or click RUN  Debug

A Launching Debug Session window will open. Select only CPU1 to load the program on,
and then click OK.

The CCS Debug icon in the upper right-hand corner indicates that we are now in the “CCS
Debug” perspective view. The program ran through the C-environment initialization routine in
the run-time support library and stopped at “main()” in Lab1_cpu01.c. The blue arrow in the
left hand column of the source code window indicates the current position of the CPU1
program counter (PC). The “Debug” window reflects the current status of CPU1 and CPU2.

Notice that CPU1 is currently connected and CPU2 is “Disconnected”. This means that CCS
has no control over CPU2 thus far; it is freely running from the view of CCS. Of course CPU2
is under control of CPU1 and since we have not executed an Inter Processor Communication
(IPC) command yet, CPU2 is stopped by an “Idle” mode instruction in the Boot ROM.

21. Next, we need to connect to and load the program on CPU2. Right-click at the line “Texas
Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2” and select “Connect Target”.

22. With the line “Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2” still
highlighted, load the program:

Run  Load  Load Program…

Browse to the file: C:\F2837xD\Labs\Lab1\cpu02\Debug\Lab1_cpu02.out and select
OK to load the program.

Debug Environment Windows
It is standard debug practice to watch local and global variables while debugging code.
There are various methods for doing this in Code Composer Studio. Next, we will examine
the use of an “Expressions” window.

23. To add global variables to the “Expressions” window, click the “Expressions” tab near the top
of the CCS window. (Note that the expressions window can be manually opened by clicking:

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

ZhangKafei
高亮

Lab 1: Dual-Core Debug with F2837xD

32 C2000 MCU 1-Day Workshop

View  Expressions on the menu bar). In the Expression window an ampersand, which
means the “address of”, is not used. The Expressions window knows we are specifying a
symbol.

24. In main() for each CPU there is a counter which keeps track of the number of times each LED
has changed state. We will monitor these variables. In the empty box in the “Expression”
column (click on the text “Add new expression”), type ToggleCount1 and then enter.

25. Repeat the above step to add the variable ToggleCount2 to the Expressions window.

Running the Code – CPU1 & CPU2
Two buttons on the horizontal toolbar are commonly used to control program execution. Hover
your mouse over each button as you read the following descriptions:

Button Name Description_____________________________________

 1 Resume Run the selected target (F8)
 2 Suspend Halt the selected target (Alt+F8)

26. In the Debug window, click on the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU1”. Then run the code on CPU1 by clicking the green “Resume” button.
LED D10 on the LaunchPad should now be blinking at approximately 1Hz.

27. In the Debug window, click on the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU2”. As before, then run the code on CPU2 by clicking the “Resume”
button. LED D9 should now also be blinking, though at a different frequency than D10.

28. Halt the CPU2 program by clicking on the “Suspend” button. In the Expressions window the
ToggleCount2 variable should have recorded a small number of LED state changes.
Notice that the ToggleCount1 variable is not recognized on CPU2

29. Click on CPU1 in the Debug window and halt the program using the “Suspend” button.
Again, the ToggleCount1 variable should have a small number while ToggleCount2 is
unrecognized.

In the forthcoming labs we will explore several other features of the CCS environment, including
real-time debugging and the graph plotting capabilities of the software.

Terminate Debug Session and Close Project
30. The “Terminate” button will terminate the active debug session, close the debugger and

return CCS to the “CCS Edit” perspective view.

Click: Run  Terminate or use the Terminate icon:

31. Next, close the Lab1_cpu01 and Lab1_cpu02 projects by right-clicking on each project in the
Project Explorer window and select Close Project.

End of Exercise

ZhangKafei
高亮

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 33

Reset, Interrupts and System Initialization

Reset Sources

Reset Sources

POR – Power-on Reset generates a device reset during
power-up conditions

RESC – Reset Cause register contains the cause of the
last reset (sticky bits maintain state with multiple resets)

Note: Only F2807x devices support an on-chip voltage regulator (VREG) to
generate the core voltage.

Watchdog Timer *

XRS pin active
To XRS pin

F28x7x

XRSPower-on Reset

Hibernate Reset

Missing Clock Detect

Logic shown is functional representation, not actual implementation
* = CPU1.WD resets both cores and

CPU2.WD resets CPU2 only

Boot Process

Dual-Core Boot Process

CPU1 starts execution from CPU1 boot
ROM while CPU2 is held in reset

CPU1 controls the boot process
CPU2 goes through its own boot process

under the control of CPU1 – except when
CPU2 is set to boot-to-flash

 IPC registers are used to communicate
between CPU1 and CPU2 during the boot
process

Reset, Interrupts and System Initialization

34 C2000 MCU 1-Day Workshop

Reset – Bootloader

TRST = JTAG Test Reset

EMU_BOOTCTRL register located in PIE RAM at 0x000D00
Z1OTP_BOOTCTRL register located in OTP at 0x07801E
Z2OTP_BOOTCTRL register located in OTP at 0x07821E

Reset vector
fetched from

boot ROM
0x3F FFC0

Emulation Boot
Boot determined by
EMU_BOOTCTRL:

EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by

2 GPIO pins and
ZxOTP_BOOTCTRL:

OTP_KEY and OTP_BMODE

TRST = 1 TRST = 0

Reset
ENPIE = 0
INTM = 1

YES NOEmulator
Connected ?

CPU2

CPU2 held in
reset until

released by
CPU1.

Emulation Boot Mode

Emulation Boot Mode (TRST = 1) slide 1 of 2

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process.

Emulation Boot
Boot determined by
EMU_BOOTCTRL :

EMU_KEY and EMU_BMODE

Emulator Connected

EMU_KEY = 0x5A ? Boot Mode
Wait

NO

YES

EMU_BMODE = 0xFE ?
CPU1 only

YES

NO

EMU_BMODE = 0xFF ? Boot Mode
Emulate CPU1/2

Stand-Alone

YES

NO

Boot Mode
Parallel I/O
SCI-A
Wait
GetMode

GPIO 72 GPIO 84
0 0
0 1
1 0
1 1

Boot pins can be
mapped to any GPIO
pins. GetMode reads
ZxOTP_BOOTCTRL
(not the boot pins).

Reads OTP for boot
pins and boot mode.

EMU_BOOTPIN1 EMU_BOOTPIN0 EMU_BMODE EMU_KEY
7 – 015 – 823 – 1631 – 24

CPU1 EMU_BOOTCTRL Register

reserved reserved EMU_BMODE EMU_KEY
7 – 015 – 823 – 1631 – 24

CPU2 EMU_BOOTCTRL Register

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 35

Emulation Boot Mode (TRST = 1) slide 2 of 2

Boot Mode
Parallel I/O
SCI-A
GetMode
SPI-A
I2C-A
CAN-A
M0 SARAM
FLASH
Wait
USB-0
SCI-A *
SPI-A *
I2C-A *
CAN-A *

EMU_BMODE =
0x00
0x01
0x03
0x04
0x05
0x07
0x0A
0x0B
other
0x0C
0x81
0x84
0x85
0x87

Boot Mode
FLASH

NO
Continued from
previous slide

YES

OTP_KEY = 0x5A ?

Boot Mode
Parallel I/O
SCI-A
SPI-A
I2C-A
CAN-A
M0 SARAM
FLASH
USB-0
Wait
SCI-A *
SPI-A *
I2C-A *
CAN-A *

OTP_BMODE =
0x00
0x01
0x04
0x05
0x07
0x0A
0x0B
0x0C
other
0x81
0x84
0x85
0x87* Alternate RX/TX GPIO

pin mapping for CPU1 only Boot Mode
FLASH
Wait

OTP_BMODE =
0x0B
other

CPU1
GetMode

CPU1
&

CPU2

CPU2
GetMode

CPU1
only

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TRST = 0)

Stand-alone Boot
Boot determined by

2 GPIO pins and
ZxOTP_BOOTCTRL :
OTP_KEY and OTP_BMODE

Emulator Not Connected

Boot Mode
Parallel I/O
SCI
Wait
GetMode

GPIO GPIO
72 84
0 0
0 1
1 0
1 1

Boot Mode
FLASH

NO

Boot Mode
Parallel I/O
SCI-A
SPI-A
I2C-A
CAN-A
M0 SARAM
FLASH
USB-0
Wait
SCI-A *
SPI-A *
I2C-A *
CAN-A *

OTP_BMODE =
0x00
0x01
0x04
0x05
0x07
0x0A
0x0B
0x0C
other
0x81
0x84
0x85
0x87

Boot Mode
FLASH
Wait

OTP_BMODE =
0x0B
other

CPU1
GetMode

CPU2
GetMode

CPU1
only

Z1OTP_BOOTCTRL
OTP_KEY = 0x5A ?

Z2OTP_BOOTCTRL
OTP_KEY = 0x5A ?

NO

Use
Z1OTP_

BOOTCTRL

YES

YESUse
Z2OTP_

BOOTCTRL OTP_BOOTPIN1 OTP_BOOTPIN0 OTP_BMODE OTP_KEY
7 – 015 – 823 – 1631 – 24

CPU1 ZxOTP_BOOTCTRL Register

reserved reserved OTP_BMODE OTP_KEY
7 – 015 – 823 – 1631 – 24

CPU2 ZxOTP_BOOTCTRL Register

Reset, Interrupts and System Initialization

36 C2000 MCU 1-Day Workshop

Reset Code Flow – Summary

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (512Kw)

0x080000

0x000000

0x3F8000

0x3FFFC0

Boot ROM (32Kw)

BROM vector (64w)
* reset vector

Boot Code

•
•

•
•

RESET

Execution Entry
determined by

Emulation Boot Mode or
Stand-Alone Boot Mode

Bootloading
Routines

(SCI, SPI, I2C,
USB, CAN,
Parallel I/O)

InitBoot

0x000000

* reset vector = 0x3FEAC2 for CPU1; 0x3FE649 for CPU2

0x080000

Interrupt Sources

Interrupt Sources

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,

eCAN, McBSP,
DMA, CLA, WD

Internal Sources

External Sources

XINT1 – XINT5

TZx

XRS

NMI

F28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

•••

TINT2
TINT1
TINT0

PIE
(Peripheral

Interrupt
Expansion)

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 37

Maskable Interrupt Processing
Conceptual Core Overview

 A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

1

0

1

(IFR)
“Latch”

Core
Interrupt

F28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

 If the individual and global switches are turned “on” the
interrupt reaches the core

INT1

INT2

INT14

Core Interrupt Registers

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Flag Register (IFR)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Enable Register (IER)

INTMST1
Bit 0Interrupt Global Mask Bit (INTM)

(enable = 0 / disable = 1)

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

(pending = 1 / absent = 0)

(enable = 1 / disable = 0)

Reset, Interrupts and System Initialization

38 C2000 MCU 1-Day Workshop

Peripheral Interrupt Expansion – PIE

Peripheral Interrupt Expansion - PIE

IF
R

IE
R

IN
TM 28x

Core

Core Interrupt logic

PIE module for 192 Interrupts

INT1.y interrupt group
INT2.y interrupt group
INT3.y interrupt group
INT4.y interrupt group
INT5.y interrupt group
INT6.y interrupt group
INT7.y interrupt group
INT8.y interrupt group
INT9.y interrupt group
INT10.y interrupt group
INT11.y interrupt group
INT12.y interrupt group

INT1 – INT12

12 Interrupts

192

INT1.1

INT1.2

INT1.16

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

(TINT1)
(TINT2)

INT13
INT14
NMI

Pe
rip

he
ra

l I
nt

er
ru

pt
s

12

 x
 1

6
=

19
2

F2837xD PIE Assignment Table

F2837xD PIE Assignment Table - Lower
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKE TINT0 ADCD1 XINT2 XINT1 ADCC1 ADCB1 ADCA1

INT2 PWM8_
TZ

PWM7_
TZ

PWM6_
TZ

PWM5_
TZ

PWM4_
TZ

PWM3_
TZ

PWM2_
TZ

PWM1_
TZ

INT3 PWM8 PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1

INT4 ECAP6 ECAP5 ECAP4 ECAP3 ECAP2 ECAP1

INT5 EQEP3 EQEP2 EQEP1

INT6 MCBSP
B_TX

MCBSP
B_RX

MCBSP
A_TX

MCBSP
A_RX SPIB_TX SPIB_RX SPIA_TX SPIA_RX

INT7 DMA_CH6 DMA_CH5 DMA_CH4 DMA_CH3 DMA_CH2 DMA_CH1

INT8 SCID_TX SCID_RX SCIC_TX SCIC_RX I2CB_
FIFO I2CB I2CA_

FIFO I2CA

INT9 DCANB_2 DCANB_1 DCANA_2 DCANA_1 SCIB_TX SCIB_RX SCIA_TX SCIA_RX

INT10 ADCB4 ADCB3 ADCB2 ADCB_
EVT ADCA4 ADCA3 ADCA2 ADCA_

EVT

INT11 CLA1_8 CLA1_7 CLA1_6 CLA1_5 CLA1_4 CLA1_3 CLA1_2 CLA1_1

INT12 FPU_UF FPU_OF VCU XINT5 XINT4 XINT3

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 39

F2837xD PIE Assignment Table - Upper
INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9

INT1 IPC3 IPC2 IPC1 IPC0

INT2 PWM12_
TZ

PWM11_
TZ

PWM10_
TZ

PWM9_
TZ

INT3 EPWM12 EPWM11 EPWM10 EPWM9

INT4

INT5 SD2 SD1

INT6 SPIC_TX SPIC_RX

INT7

INT8 UPPA

INT9 USBA

INT10 ADCD4 ADCD3 ADCD2 ADCD_
EVT ADCC4 ADCC3 ADCC2 ADCC_

EVT

INT11

INT12 CLA_UF CLA_OF AUX_PLL
_SLIP

SYS_PLL
_SLIP

RAM_ACC
_VIOLAT

FLASH_C
_ERROR

RAM_C_
ERROR

EMIF_
ERROR

PIE Registers

PIEVECT ENPIE

PIECTRL register 015 - 1

#include “F2837x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //enable PWM2 interrupt in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

PIEIFRx register (x = 1 to 12)

INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9 INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIEIERx register (x = 1 to 12)

INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9 INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
15 - 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset, Interrupts and System Initialization

40 C2000 MCU 1-Day Workshop

PIE Block Initialization

PIE Block Initialization

•
•
•

// CPU Initialization

InitPieCtrl();
•
•
•

Main.c

•
•
•

// Initialize PIE_RAM

memcpy();
•
•
•

PieCtrl.c

// Enable PIE Block
PieCtrlRegs.
PIECTRL.bit.
ENPIE=1;

• • ••
•
•

// Base Vectors

PieVect.c

PIE_VECT_TABLE

•
•
•

// Core INT1 re-map

// Core INT12 re-map

PIE RAM
Vectors

512w
(ENPIE = 1)

Boot ROM
Reset Vector

1

2
2

3

Memory Map

PIE Initialization Code Flow - Summary
RESET

<0x3F FFC0>
Reset Vector

<reset vector> = Boot Code

Flash Entry Point
<0x08 0000> = LB _c_int00

M0SARAM Entry Point
<0x00 0000> = LB _c_int00

_c_int00:

CALL main()

•
•
•

OR

main()
{ initialization();

}

Initialization()
{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
512 Word RAM

0x00 0D00 – 0EFF

•
•
•

Main.c

CodeStartBranch.asm

rts2800_fpu32.lib

Boot option determines
code execution entry point

interrupt void name(void)
{

}

•
•
•

DefaultIsr.c

Interrupt

.sect “codestart”

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 41

Interrupt Signal Flow – Summary

Peripheral
Interrupt

PIEIFRx PIEIERx
INTx.y

PieCtrlRegs.PIEIERx.bit.INTxy = 1;

IER INTMIFR

asm(“ CLRC INTM”);IER |= 0x0001;
 0x0FFF;

1

1

Peripheral Interrupt Expansion (PIE) – Interrupt Group x

Core Interrupt Logic

PIE Vector Table

INTx.y name

interrupt void name(void)

{

}

•
•
•

DefaultIsr.c

Core
INTx

(For peripheral interrupts where x = 1 to 12, and y = 1 to 16)

F2837xD Dual-Core Interrupt Structure

F2837xD Dual-Core Interrupt Structure

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,
eCAN, McBSP, WD

Internal Sources

External Sources

TZx XRS

NMI
CPU1 CORE

INT1

INT13

INT2
INT3

INT12

INT14

•••ePIE.1

TINT2.1
TINT1.1
TINT0.1

XINT1 – XINT5

DMA1.1 CLA1.1

TINT0.2
TINT1.2
TINT2.2

Internal Sources

NMI
CPU2 CORE

INT1

INT13

INT2
INT3

INT12

INT14

•••

IPC

ePIE.2

DMA1.2 CLA1.2

Reset, Interrupts and System Initialization

42 C2000 MCU 1-Day Workshop

F28x7x Oscillator / PLL Clock Module

F28x7x Oscillator / PLL Clock Module

* default

X2 XT
A

L
O

SC

X1
XT

A
L

XCLKIN
(X2 n.c.)

Internal
OSC 1

(10 MHz)

Internal
OSC 2

(10 MHz)

OSCCLKSRCSEL

110
101
101
011
010
001
000*

PLL PLLCLK

OSCCLK

PLLSYSCLK
(PLL bypass)

SYSPLLMULT

M
U

X

1/n

SYSCLKDIV

OSC1CLK

OSC2CLK

EXTCLK

WDCLK

XCLKOUT
(GPIO 73)

1x
00*
01

1/n
AUXPLLCLK

XCLKOUTDIV

XCLKOUTSEL

CPU2.SYSCLK
CPU1.SYSCLK

PLLCLK
PLLSYSCLK

AUX
PLL

1/n AUXPLLCLK

AUXOSCCLKSRCSEL
AUXPLLDIV

00*
01
10AUXCLKIN (from GPIO)

AUXCLK

0*

1
SYSPLLCTL1

F28x7x PLL and LOSPCP

IMULT CLKIN
0 0 0 0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 0 0 0 1 OSCCLK x 1 / n
0 0 0 0 0 1 0 OSCCLK x 2 / n
0 0 0 0 0 1 1 OSCCLK x 3 / n

1 1 1 1 1 0 1 OSCCLK x 125/ n
1 1 1 1 1 1 0 OSCCLK x 126 / n
1 1 1 1 1 1 1 OSCCLK x 127 / n

PLL PLLCLK

OSCCLK

CPUx PLLSYSCLK CPUx.SYSCLK

LOSPCP

(PLL bypass)

CPUx.LSPCLK

M
U

X

1/n

ClkCfgRegs.SYSPLLMULT.bit.IMULT

ClkCfgRegs.SYSCLKDIVSEL.bit.PLLSYSCLKDIV

ClkCfgRegs.LOSPCP.bit.LSPCLK

LSPCLK Peripheral Clk Freq
0 0 0 CPUx.SYSCLK / 1
0 0 1 CPUx.SYSCLK / 2
0 1 0 CPUx.SYSCLK / 4 *
0 1 1 CPUx.SYSCLK / 6
1 0 0 CPUx.SYSCLK / 8
1 0 1 CPUx.SYSCLK / 10
1 1 0 CPUx.SYSCLK / 12
1 1 1 CPUx.SYSCLK / 14

LSBs in reg. – others reserved

* default

SYSPLL
DIVSEL n

111111 /126

000010 /4 *
000001 /2
000000 /1

• • • • • •

FMULT CLKIN
0 0 Fractional x 0 *
0 1 Fractional x 0.25
1 0 Fractional x 0.5
1 1 Fractional x 0.75

• • • • • •

ClkCfgRegs.SYSPLLMULT.bit.FMULT

0*

1
ClkCfgRegs.SYSPLLCTL1.bit.PLLCLKEN

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 43

F2837xD Dual-Core System Clock

WDCLK

WD.2

WD.1

PLLSYSCLK

CPUSELy SCIx

CPU2.SYSCLK

CPU1.SYSCLK

SPIxPERx

CPU2

CPU1

LOSPCP

LOSPCP

CPU2.LSPCLK

CPU1.LSPCLK

PERCLKDIVSEL

/1, /2

EPWM

EPWMCLK

CPUTIMER2.2

CPUTIMER2.1CPU1.SYSCLK
INTOSC1
INTOSC2
EXTCLK

AUXPLLCLK

CPU2.SYSCLK
INTOSC1
INTOSC2
EXTCLK

AUXPLLCLK

CPU2.TMR2CLKCTL

CPU1.TMR2CLKCTL

LSPCLKDIV

PERx

EPWMCLKDIV

PERx.SYSCLK PERx.SYSCLK

PERx.SYSCLK
EXTCLK

AUXCLKIN
CANxBCLKSEL

CANx Bit CLK

Watchdog Timer Module

Watchdog Timer Module

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

WDCNTR

window
minimum

WDWCR WDCNTR
less than
WDWCR

CNT

WDKEY

Reset, Interrupts and System Initialization

44 C2000 MCU 1-Day Workshop

F28x7x General-Purpose Input-Output

F28x7x GPIO Grouping Overview

Internal B
us

GPIO Port A Group
Mux1 Register
(GPAGMUX1)
[GPIO 0 to 15] GPIO Port A

Direction Register
(GPADIR)

[GPIO 0 to 31]

GPIO Port A Mux1
Register

(GPAMUX1)
[GPIO 0 to 15]

GPIO Port A Group
Mux2 Register
(GPAGMUX2)

[GPIO 16 to 31]

GPIO Port A Mux2
Register

(GPAMUX2)
[GPIO 16 to 31]

GPIO Port A

Input
Qual

GPIO Port F Group
Mux1 Register
(GPFGMUX1)

[GPIO 160 to 175] GPIO Port F
Direction Register

(GPFDIR)
[GPIO 160 to 191]

GPIO Port F Mux1
Register

(GPFMUX1)
[GPIO 160 to 175]

GPIO Port F Group
Mux2 Register
(GPFGMUX2)

[GPIO 176 to 191]

GPIO Port F Mux2
Register

(GPFMUX2)
[GPIO 176 to 191]

GPIO Port F

Input
Qual

F28x7x GPIO Pin Block Diagram

See device datasheet for pin function selection matrices

• •01
00

•• 10
11

Peripheral 1
Peripheral 2
Peripheral 3

• •01
00

•• 10
11

Peripheral 5
Peripheral 6
Peripheral 7

• •01
00

•• 10
11

Peripheral 9
Peripheral 10
Peripheral 11

• •01
00

•• 10
11

Peripheral 13
Peripheral 14
Peripheral 15

•

•
10

11

•
•

01
00

0

4

8

12

Pin

Internal Pull-Up
0 = enable
1 = disable

(default GPIO 0-xx)

GPxPUD

0*
1

0 = Input
1 = Output

GPxSET
GPxCLEAR

GPxTOGGLE

GPxDAT In
Out

GPxDIR

Input
Qualification

GPxINV GPxQSEL1/2
GPxCTRL

GPxMUX1/2

GPxGMUX1/2

* = Default x = A, B, C, D, E, or F Logic shown is functional representation, not actual implementation

To Input X-Bar

Output X-Bar muxed with Peripheral GPIO pins

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 45

F28x7x GPIO Input Qualification

 Qualification available on ports A - F
 Individually selectable per pin

 no qualification (peripherals only)
 sync to CPUx.SYSCLK only
 qualify 3 samples
 qualify 6 samples

Input
Qualificationpin

to GPIO and
peripheral
modules

CPUx.SYSCLK

T T T

samples taken

T = qual period

GPIO Input X-Bar

F28x7x GPIO Input X-Bar

Input X-Bar

ePWM
X-Bar

Output X-Bar

ePWM and eCAP
Sync Chain

ePWM
Modules

CPU.PIE
CLA

Asynchronous
Synchronous
Sync. + Qual.

ADC

GPIO0

GPIOx

INPUT7
INPUT8
INPUT9
INPUT10
INPUT11
INPUT12

IN
PU

T1
4

IN
PU

T1
3

IN
PU

T6
IN

PU
T5

IN
PU

T4
IN

PU
T3

IN
PU

T2
IN

PU
T1

TRIP6

TRIP4
TRIP5
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12

EXTSYNCIN1
EXTSYNCIN2

ADCEXTSOC

●●●
●●●

XINT5
XINT4
XINT3
XINT2
XINT1

eCAP1
eCAP2
eCAP3
eCAP4
eCAP5
eCAP6

TZ1, TRIP1
TZ2, TRIP2
TZ3, TRIP3

Reset, Interrupts and System Initialization

46 C2000 MCU 1-Day Workshop

F28x7x GPIO Input X-Bar Architecture

INPUTx

INPUTxSELECT

GPIO 0

GPIO n

This block diagram is replicated 14 times

Input Destinations

INPUT1 ePWM[TZ1, TRIP1], ePWM X-Bar, Output X-Bar

INPUT2 ePWM[TZ2, TRIP2], ePWM X-Bar, Output X-Bar

INPUT3 ePWM[TZ3, TRIP3], ePWM X-Bar, Output X-Bar

INPUT4 XINT1, ePWM X-Bar, Output X-Bar

INPUT5 XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM X-Bar, Output X-Bar

INPUT6 XINT3, ePWM[TRIP6], EXTSYNCIN2, ePWM X-Bar, Output X-Bar

INPUT7 eCAP1

INPUT8 eCAP2

INPUT9 eCAP3

INPUT10 eCAP4

INPUT11 eCAP5

INPUT12 eCAP6

INPUT13 XINT4

INPUT14 XINT5

GPIO Output X-Bar

F28x7x GPIO Output X-Bar

EPWM/ECAP sync

ADCSOCAO

ADCSOCBO

ECAP1
ECAP2
ECAP3
ECAP4
ECAP5
ECAP6

ADCA
ADCB
ADCC
ADCD

GPIO
Module

CMPSS1

CMPSS8

INPUT X-Bar

OUTPUT
X-Bar

SD1

SD2

OUTPUT1
OUTPUT2
OUTPUT3
OUTPUT4
OUTPUT5
OUTPUT6
OUTPUT7
OUTPUT8

INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6

EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4

ECAP1.OUT
ECAP2.OUT
ECAP3.OUT
ECAP4.OUT
ECAP5.OUT
ECAP6.OUT

ADCSOCA

ADCSOCB

EXTSYNCOUT

CTRIPOUTH
CTRIPOUTL

CTRIPOUTL
CTRIPOUTH

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 47

F28x7x GPIO Output X-Bar Architecture

MUX 0 1 2 3
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
17 SD1FLT1.COMPL
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
19 SD1FLT2.COMPL
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
21 SD1FLT3.COMPL
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
23 SD1FLT4.COMPL
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
25 SD2FLT1.COMPL
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
27 SD2FLT2.COMPL
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
29 SD2FLT3.COMPL
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
31 SD2FLT4.COMPL

MUX 0 1 2 3
0 CMPSS1.CTRIPOUTH CMPSS1.CTRIPH_OR_CTRIPL ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPOUTL INPUTXBAR1 ADCCEVT1
2 CMPSS2.CTRIPOUTH CMPSS2.CTRIPH_OR_CTRIPL ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPOUTL INPUTXBAR2 ADCCEVT2
4 CMPSS3.CTRIPOUTH CMPSS3.CTRIPH_OR_CTRIPL ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPOUTL INPUTXBAR3 ADCCEVT3
6 CMPSS4.CTRIPOUTH CMPSS4.CTRIPH_OR_CTRIPL ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPOUTL INPUTXBAR4 ADCCEVT4
8 CMPSS5.CTRIPOUTH CMPSS5.CTRIPH_OR_CTRIPL ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPOUTL INPUTXBAR5 ADCDEVT1

10 CMPSS6.CTRIPOUTH CMPSS6.CTRIPH_OR_CTRIPL ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPOUTL INPUTXBAR6 ADCDEVT2
12 CMPSS7.CTRIPOUTH CMPSS7.CTRIPH_OR_CTRIPL ADCBEVT3
13 CMPSS7.CTRIPOUTL ADCSOCA ADCDEVT3
14 CMPSS8.CTRIPOUTH CMPSS8.CTRIPH_OR_CTRIPL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPOUTL ADCSOCB ADCDEVT4

0
0.1
0.2
0.3
0.4

1
1.1
1.2
1.3
1.4

31
31.1
31.2
31.3
31.4

Latch
OUTPUTx

OUTPUTINV

OUTPUTLATCHENABLE

OUTPUTxMUXENABLE

OUTPUTxMUX0TO15CFG.MUX0

OUTPUTxMUX0TO15CFG.MUX1

OUTPUTxMUX16TO31CFG.MUX31

This block diagram is replicated 8 times

Muxed with
Peripheral
GPIO Pins

Analog Subsystem

48 C2000 MCU 1-Day Workshop

Analog Subsystem

Analog Subsystem
 Four dual-mode ADCs

 16-bit mode
1 MSPS each (up to 4 MSPS system)
Differential inputs
External reference

 12-bit mode
3.5 MSPS each (up to 14 MSPS system)
Single-ended or differential inputs
 Internal or external reference

 Eight comparator subsystems
 Each contains:

Two 12-bit reference DACs
Two comparators
Digital glitch filter

 Three 12-bit buffered DAC outputs
 Sigma-Delta Filter Module (SDFM)

ADC Subsystem

ADC Subsystem

ADC-A
16/12-bit

16 channel

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ADC-B
16/12-bit

16 channel

ADC-C
16/12-bit

16 channel

ADC-D
16/12-bit

16 channel

DACOUTA/ADCINA0
DACOUTB/ADCINA1
CMPIN1P/ADCINA2
CMPIN1N/ADCINA3

CMPIN4N/ADCIN15

Reserved

TEMP SENSOR

VDAC/ADCINB0
DACOUTC/ADCINB1
CMPIN3P/ADCINB2
CMPIN3N/ADCINB3

CMPIN5P/ADCINC4
CMPIN5N/ADCINC5

CMPIN6P/ADCINC2
CMPIN6N/ADCINC3

CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3

Reserved

CMPIN2P/ADCINA4
CMPIN2N/ADCINA5

ADCINB4
ADCINB5

ADCIND4
ADCIND5

DACOUTA

DACOUTA

DACOUTA

DACOUTA

VREFD

VREFC

VREFB

VREFA

Reserved
Reserved

Reserved
Reserved

Reserved
Reserved

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

VREFLOD
VREFLOD
Reserved
Reserved

VREFLOC
VREFLOC
Reserved
Reserved

VREFLOA
VREFLOA
Reserved
Reserved

VREFLOB
VREFLOB

Reserved

Reserved

CMPIN4P/ADCIN14
Reserved

Reserved
Reserved

Reserved
Reserved

*** Multiple ADC modules allow simultaneous sampling or independent operation ***

 Analog Subsystem

C2000 MCU 1-Day Workshop 49

ADC Module Block Diagram

ADC Module Block Diagram

12/16-bit
A/D

Converter
SOCx

EOCx

S/HMUX

ADCRESULT0
ADCRESULT1
ADCRESULT2

ADCRESULT15

Result
MUX

ADC
Generation

Logic

ADC full-scale
input range is

0 to 3.3V
CHSEL ADC

Interrupt
Logic

ADCINT1-4

Software

External Pin(GPIO/ADCEXTSOC)

EPWMxSOCA/C (x = 1 to 12)

EPWMxSOCB/D (x = 1 to 12)

CPU1 Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS

SO
C

x
Tr

ig
ge

rs

SOCx Configuration Registers

Po
st

 P
ro

ce
ss

in
g

B
lo

ck

ADCIN1
ADCIN0

ADCIN2
ADCIN3

ADCIN14
ADCIN15

CPU2 Timer (0,1,2)

ADC SOCx Functional Diagram

This block diagram is replicated 16 times

ADCINT1
ADCINT2

Re-Trigger

ADCINT1
ADCINT2
ADCINT3
ADCINT4

Channel
Select

Sample
Window

Result
RegisterS

O
C
x

E
O
C
x

ADCSOCxCTL

ADCINTSOCSEL1
ADCINTSOCSEL2

INTSELxNy

ADCRESULTx

Software Trigger
TINT0 (CPU1 Timer 0)
TINT1 (CPU1 Timer 1)
TINT2 (CPU1 Timer 2)
ADCEXTSOC (GPIO)

SOCA/C (ePWM1)
SOCB/D (ePWM1)

SOCA/C (ePWM12)
SOCB/D (ePWM12)

TINT0 (CPU2 Timer 0)
TINT1 (CPU2 Timer 1)
TINT2 (CPU2 Timer 2)

T
r
i
g
g
e
r

ADCSOCFRC1

Analog Subsystem

50 C2000 MCU 1-Day Workshop

ADC Triggering

Example – ADC Triggering

Sample A0  A2  A5 when ePWM1 SOCB/D is generated and then generate ADCINT1:

Channel
A0

Sample
7 cycles Result0

Channel
A2

Sample
10 cycles Result1

Channel
A5

Sample
8 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1

SOCB/D (ETPWM1)

Sample A2  A4  A6 continuously and generate ADCINT2:

Channel
A2

Sample
10 cycles Result3

Channel
A4

Sample
15 cycles Result4

Channel
A6

Sample
12 cycles Result5

SOC3

SOC4

SOC5

no interrupt

no interrupt

ADCINT2

ADCINT2

Software Trigger

Note: setting ADCINT2 flag does not need to generate an interrupt

Example – ADC Ping-Pong Triggering

Sample all channels continuously and provide Ping-Pong interrupts to CPU/system:

Channel
B0

Sample
7 cycles

SOC0 no interrupt
ADCINT2

Software Trigger
Result0

Channel
B1

Sample
7cycles

SOC1 no interruptResult1

Channel
B2

Sample
7 cycles

SOC2

no interrupt

Result2

Channel
B3

Sample
7 cycles

SOC3 Result3

Channel
B4

Sample
7 cycles

SOC4 no interruptResult4

Channel
B5

Sample
7 cycles

SOC5 Result5

ADCINT1

ADCINT2

ADCINT1
Software Trigger

 Analog Subsystem

C2000 MCU 1-Day Workshop 51

ADC Conversion Priority

ADC Conversion Priority
 When multiple SOC flags are set at the same time –

priority determines the order in which they are converted

 High Priority
 High priority SOC will interrupt the round robin wheel

after current conversion completes and insert itself as
the next conversion

 After its conversion completes, the round robin wheel
will continue where it was interrupted

 Round Robin Burst Mode
 Allows a single trigger to convert one or more SOCs in

the round robin wheel
 Uses BURSTTRIG instead of TRIGSEL for all round

robin SOCs (not high priority)

 Round Robin Priority (default)
 No SOC has an inherent higher priority than another
 Priority depends on the round robin pointer

Conversion Priority Functional Diagram

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order
of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

SOC0
SOC1
SOC2
SOC3
SOC4
SOC5
SOC6
SOC7
SOC8
SOC9
SOC10
SOC11
SOC12
SOC13
SOC14
SOC15

R
ou

nd
 R

ob
in

H
ig

h
Pr

io
rit

y

SOCPRIORITY

RRPOINTER

AdcRegs.SOCPRICTL

Analog Subsystem

52 C2000 MCU 1-Day Workshop

Round Robin Burst Mode Diagram

Burst Enable
Disables/enables burst modeBURSTEN

AdcxRegs.ADCBURSTCTL

BURSTSIZE

BURSTTRIGSEL

SOC Burst Size
Determines how many

SOCs are converted per
burst trigger

SOC Burst Trigger
Source Select

Determines which trigger
starts a burst conversion

sequence

Software, CPU1 Timer0-2
ePWM1 ADCSOCA/C – B/D 
ePWM12 ADCSOCA/C – B/D

CPU2 Timer0-2

Post Processing Block

Purpose of the Post Processing Block
 Offset Correction

 Remove an offset associated with an ADCIN channel possibly
caused by external sensors and signal sources
 Zero-overhead; saving cycles

 Error from Setpoint Calculation
 Subtract out a reference value which can be used to automatically

calculate an error from a set-point or expected value
 Reduces the sample to output latency and software overhead

 Limit and Zero-Crossing Detection
 Automatically perform a check against a high/low limit or zero-

crossing and can generate a trip to the ePWM and/or an interrupt
 Decreases the sample to ePWM latency and reduces software overhead;

trip the ePWM based on an out of range ADC conversion without CPU
intervention

 Trigger-to-Sample Delay Capture
 Capable of recording the delay between when the SOC is

triggered and when it begins to be sampled
 Allows software techniques to reduce the delay error

 Analog Subsystem

C2000 MCU 1-Day Workshop 53

Post Processing Block - Diagram

Delay Capture

latch

Threshold Compare

Error/Bipolar Calculation

Offset Correction
w/ Saturation

ADCPPBxTRIPHI

ADCPPBxTRIPLO

Σ
ADC Output

ADCPPBxOFFCAL

ADCRESULTy

ADCPPBxOFFREF

saturate

Σ ADCPPBxRESULT

EVENTx

-
+

-
+ Twos

Comp
Inv

Enable

INTx

ADCEVTSTAT.PPBxZERO

Zero
Crossing
Detect

ADCPPBxCONFIG.TWOSCOMPEN

ADCEVTSTAT.PPBxTRIPHI

ADCEVTSTAT.PPBxTRIPLO

ADCEVTSEL.PPBxZERO

ADCEVTSEL.PPBxTRIPHI

ADCEVTSEL.PPBxTRIPLO

ADCEVTINTSEL.PPBxZERO

ADCEVTINTSEL.PPBxTRIPLO

ADCEVTINTSEL.PPBxTRIPHI

FREECOUNT

REQSTAMPx DLYSTAMPx

SOC
Trigger
Detect

SOC
Start

Detect

SOC Control Signals

Σ

-

+

latch

+

-

+

Post Processing Block Interrupt Event
 Each ADC module contains four (4) Post Processing

Blocks
 Each Post Processing Block and be associated with

any of the 16 ADCRESULTx registers
Post Processing Block 1

EVENTx

INTx

Post Processing Block 2
EVENTx

INTx

Post Processing Block 3
EVENTx

INTx

Post Processing Block 4
EVENTx

INTx

ADCEVT1

ADCEVT2

ADCEVT3

ADCEVT4

ADCEVTINT

Analog Subsystem

54 C2000 MCU 1-Day Workshop

Comparator Subsystem

Comparator Subsystem
 Eight Comparator

Subsystems (CMPSS)
 Each CMPSS has:

 Two analog comparators
 Two programmable 12-bit

DACs
 Two digital filters
 Ramp generator

 Digital filter used to
remove spurious trip
signals (majority vote)

 Ramp generator used
peak current mode control

 Ability to synchronize
with PWMSYNC event

CMPIN3P/ADCINB2
CMPIN3N/ADCINB3

ADC-A

2
3
4
5

14
15

CMPIN1P/ADCINA2
CMPIN1N/ADCINA3
CMPIN2P/ADCINA4
CMPIN2N/ADCINA5

ADC-B2
3

ADC-C
2
3
4
5

CMPIN6P/ADCINC2
CMPIN6N/ADCINC3
CMPIN5P/ADCINC4
CMPIN5N/ADCINC5

ADC-D
0
1
2
3

CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3

CMPIN4P/ADCIN14
CMPIN4N/ADCIN15

Comparator Subsystem Block Diagram

DACxVALA * DACREF
4096

VDACx =

DAC Reference Comparator Truth Table
Voltages Output
Voltage A < Voltage B 0
Voltage A > Voltage B 1

+

COMPH

-
Digital
Filter

12-bit
DAC

1

0

CTRIPH

0

1

CTRIPOUTH
DACH
VALA

0

1

DACH
VALS

+

COMPL

-
Digital
Filter

12-bit
DAC

1

0

CTRIPL

0

1

CTRIPOUTL
DACL
VALA

DACL
VALS

ePWM
Event

Trigger
&

GPIO
MUX

CMPINxP

CMPINxN

COMPHINV

COMPLINV

COMPDACE

COMPHSOURCE

COMPLSOURCE

DACSOURCE

 Analog Subsystem

C2000 MCU 1-Day Workshop 55

Digital-to-Analog Converter

Digital-to-Analog Converter

 Three buffered 12-bit DACs

 Provides a programmable
reference output voltage

 Capable of driving an
external load

 Ability to be synchronized
with PWMSYNC events

 Selectable reference voltage

ADC-A

0
1

12

DACOUTA/ADCINA0
DACOUTB/ADCINA1

DACOUTA

ADC-B
1

12

DACOUTC/ADCINB1

DACOUTA

ADC-C
12DACOUTA

ADC-D
12DACOUTA

Buffered DAC Block Diagram

DACVALA * DACREF
4096

VDACOUT =

Ideal Output
VREFHIA can supply reference
for DAC A and DAC B; VREFHIB
can supply reference for DAC C

0

1

AMP12-bit
DAC

DACV
ALS

DACREFSEL

VDAC

VREFHI

VSSA

VDDA DACOUTEN

VDACOUTDACV
ALA

0

1

DACREFSEL

VSSA

VREFLO

Analog Subsystem

56 C2000 MCU 1-Day Workshop

Sigma Delta Filter Module (SDFM)

Sigma Delta Filter Module (SDFM)

 SDFM is a four-channel digital filter designed
specifically for current measurement and resolver
position decoding in motor control applications

 Each channel can receive an independent modulator
bit stream

 Bit streams are processed by four individually
programmable digital decimation filters

 Filters include a fast comparator for immediate
digital threshold comparisons for over-current
monitoring

 Filter-bypass mode available to enable data logging,
analysis, and customized filtering

SDFM Block Diagram

Filter Module 1
Direct

SDFM- Sigma Delta Filter Module

IN3
CLK3

Input
Ctrl

IN1

CLK1

ΣΔ
Streams

IN4
CLK4

VBUS32Register
Map

SDINT

Interrupt
Unit

PIE

SDFILRESn

R

R

IN2
CLK2

Comparator
Filter

Sinc Filter

PWMPWM

CMPC/D

FILRES

Clk_out

Sync

Filter Module 4

Filter Module 3

Filter Module 2
Sync

Sync

Sync

 Lab 2: Analog-to-Digital Converter

C2000 MCU 1-Day Workshop 57

Lab 2: Analog-to-Digital Converter
 Objective

The objective of this lab exercise is to demonstrate and become familiar with the operation of the
on-chip analog-to-digital converter. In this lab exercise all the code will run on CPU1 (CPU2 will
not be used). The ADC will be configured to sample a single input channel at a 50 kHz sampling
rate. We will use ePWM2A to automatically trigger the SOCA signal at the desired sampling rate
(ePWM period match CTR=PRD SOC). The ADC end-of-conversion interrupt will be used to
prompt CPU1 to copy the results of the ADC conversion into a circular memory buffer
(AdcaResults).

In order to generate an interesting input signal, the code also alternately toggles a GPIO pin high
and low in the ADC interrupt service routine. This pin will be connected to the ADC input pin by
means of a jumper wire. Using Code Composer Studio the sampled data will be viewed in
memory and displayed with the graphing feature. We will then configure one of the internal DACs
to generate a fixed frequency sine wave with programmable offset and measure this signal in the
same way.

Lab 2: Analog-to-Digital Converter

ADC

ADCINA0

RESULT0

...

data
memory

CPU copies result
to buffer during
ADC ISR

ePWM2

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

DACB
Toggle

(GPIO18)

connector
wire

View ADC
buffer PWM
Samples

Code Composer
Studio

 Procedure

Open the Project
1. A project named Lab2_cpu01 has been created for this lab. Open the project by clicking on

Project  Import CCS Projects. The “Import CCS Eclipse Projects” window will
open then click Browse… next to the “Select search-directory” box. Navigate to:
C:\F2837xD\Labs\Lab2\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab.

Click on the project name in the Project Explorer window to set the project active. Then click
on the plus sign (+) to the left of Lab2_cpu01 to expand the file list.

Lab 2: Analog-to-Digital Converter

58 C2000 MCU 1-Day Workshop

Inspect the Project
2. Open and inspect Lab2_cpu01.c. The initialization code immediately following main() is

similar to that used in lab 1. Notice the inclusion of the following four functions which set up
the ADC, PWM and DAC. The last function configures the ADC to be triggered by an EPWM
event and to generate a CPU interrupt.

ConfigureADC()

ConfigureEPWM()

ConfigureDAC()

SetupADCEpwm()

The code for these functions is located further down in the same file.

3. At the bottom of the file is the Interrupt Service Routine (ISR) adca1_isr. This is triggered
by an end-of-conversion event from ADC-A. The ISR code reads and stores the newest ADC
result in the buffer AdcaResults. The variable resultsIndex keeps track of the last entry
in the buffer and wraps around to the first entry when the end of the buffer is reached. This
implements a circular buffer to store a continuous stream of incoming ADC data.

Also, the ISR contains code to toggle the GPIO18 pin which be measured with the ADC. This
pin toggles between 0V and +3.3V every sixteen interrupts. If everything works as expected,
the AdcaResults buffer should contain a repeating sequence of 16 readings of close to
0x0000 followed by another 16 readings close to 0x0FFF (i.e. full scale).

The last two lines in the ISR clear the interrupt flag at the ADC and acknowledge the PIE
level group interrupt so that the next ADC EOC event will trigger an interrupt.

Jumper Wire Connection
In order to have a meaningful input signal to the ADC, a jumper wire will connect the ADC input
pin to the GPIO18 pin. This pin has been set up in the ADC ISR to alternately toggle between 0V
and +3.3V.

4. On the LaunchPad locate connector J3, pin #30 (ADCINA0). Connect one end of the jumper
wire to this pin, and the other end of the jumper wire to the adjacent connector J1, pin #4
(GPIO18). Refer to the following diagram for the pins that need to be connected using the
jumper wire.

 Lab 2: Analog-to-Digital Converter

C2000 MCU 1-Day Workshop 59

Build and Load the Project
5. Click the “Build” button and watch the tools run in the Console window. Check for any errors

in the Problems window.

6. Click the “Debug” button (green bug). A Launching Debug Session window will open. Select
only CPU1 to load the program on, and then click OK. The “CCS Debug” perspective view
should open, the program will load automatically, and you should now be at the start of
main().

7. After CCS loaded the program in the previous step, it set the program counter (PC) to point to
_c_int00. It then ran through the C-environment initialization routine (runtime support library)
and stopped at the start of main(). CCS did not do a device reset, and as a result the
bootloader was bypassed.

In the event the device undergoes a reset, the proper boot mode needs to be set. Therefore,
we must configure the device by loading values into EMU_KEY and EMU BMODE so the
bootloader will jump to “M0 SARAM” at address 0x000000. Set the bootloader mode using
the menu bar by clicking:

Scripts  EMU Boot Mode Select  EMU_BOOT_SARAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to re-
configure the boot mode to EMU_BOOT_SARAM.

View the ADC Results
8. Click the “Expressions” tab near the top of the CCS window. In the empty box in the

“Expression” column (click on the text “Add new expression”), type AdcaResults and then
enter. This will add the ADC results buffer to the watch window. Click on the “+” symbol to
the left of the buffer name. Notice the buffer is divided into three separate groups of 100
elements or less. Expand the first of these so we can inspect the ADC results later.

Lab 2: Analog-to-Digital Converter

60 C2000 MCU 1-Day Workshop

Run the Code
9. Run the code by using the “Resume” button on the toolbar, or by using Run  Resume on

the menu bar (or F8 key). LED D10 should be blinking at a period of approximately 1
second.

10. Halt the code after a few seconds by using the “Suspend” button on the toolbar, or by using
Run  Suspend on the menu bar (or Alt-F8 key).

11. Observe the contents of the AdcaResults buffer in the Expressions window. If the code is
running as expected, you should see a series of sixteen readings close to 0, followed by
another series close to full scale (4095).

View the ADC Results Buffer in Memory
12. Open a memory browser by clicking View  Memory Browser.

13. In the box marked “Enter location here”, type &AdcaResults and then enter. The memory
browser will display the contents of the ADC results buffer. The browser should contain a
series of entries of 0x0FFF and 0x0000, indicating the data is from the toggling GPIO pin.

Graph the ADC Data
CCS can display the ADC results in the form of a time graph. This provides a clear visualization
of the signal at the ADC input.

14. Open and set up a graph to plot a 256-point window of the ADC results buffer. Click:
Tools  Graph  Single Time and set the following values:

Acquisition Buffer Size 256

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcaResults

Display Data Size 256

Time Display Unit sample

Select OK to save the graph options.

The graph view should look like:

 Lab 2: Analog-to-Digital Converter

C2000 MCU 1-Day Workshop 61

Using Real-Time Emulation Mode
Real-time emulation is a special emulation feature that allows the windows within Code
Composer Studio to be updated at up to a 10 Hz rate while the MCU is running. This not only
allows graphs and watch windows to update, but also allows the user to change values in watch
or memory windows, and have those changes affect the MCU behavior. This is very useful when
tuning control law parameters on-the-fly, for example.

15. We need to enable the graph window for continuous refresh. Select the Single Time graph.
In the graph window toolbar, left-click on the yellow icon with the arrows rotating in a circle
over a pause sign. Note when you hover your mouse over the icon, it will show “Enable
Continuous Refresh”. This will allow the graph to continuously refresh in real-time while
the program is running.

16. Enable the Memory Browser and Expressions window for continuous refresh using the same
procedure as the previous step.

17. Run the code and watch the windows update in real-time mode. Click:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

18. Carefully remove and replace the connector wire from the ADC input. Are the values
updating as expected? The ADC results should be zero when the jumper wire is removed.

19. Fully halt the CPU in real-time mode. Click:

Scripts  Realtime Emulation Control  Full_Halt

Sampling a Sine Wave
Next, we will configure DAC-B to generate a fixed frequency sine wave. This signal will appear
on an analog output pin of the device (DACOUTB/ADCINA1). Then using the jumper wire we will
connect the DAC-B output to the ADC-A input (ADCINA0) and display the sine wave in a graph
window.

20. Notice the following code lines in the adca1_isr()in Lab2_cpu01.c source file:

The variable dacOffset allows the user to adjust the DC output from DAC-B from an
Expressions window in CCS. The variable sineEnable is a switch which adds a fixed
frequency sine wave to the DAC offset. The sine wave is generated using a 32-point look-up
table contained in the source file sinetab.c. We will plot the sine wave in a graph window
while manually adjusting the offset.

Lab 2: Analog-to-Digital Converter

62 C2000 MCU 1-Day Workshop

21. Open and inspect sinetab.c. (If needed, open the Project Explorer window in the “CCS
Debug” perspective view by clicking View  Project Explorer). The file consists of an
array of 40 signed integer points which represent five quadrants of sinusoidal data. The first
32 points are a complete cycle. In the source code we need to sequentially access each of
the first 32 points in the array, converting each one from signed 16-bit to un-signed 12-bit
format before writing it to the DACVALS register of DAC-B.

22. In the Expressions window collapse the AdcaResults buffer variable by clicking on the “-“
symbol to the left of the variable name. Then add the following variables to the Expressions
window:

• sineEnable
• dacOffset

23. Remove the jumper wire from connector J1, pin #4 (GPIO18) and connect it to connector J7,
pin #70 (DACOUTB). Refer to the following diagram for the pins that need to be connected
using the jumper wire.

24. Run the code (real-time mode) using the Script function: Scripts  Realtime

Emulation Control  Run_Realtime_with_Reset

25. At this point the graph should be displaying a DC signal near zero. Click on the dacOffset
variable in the Expressions window and change the value to 800. This changes the DC
output of the DAC which is applied to the ADC input. The level of the graph display should
be about 800 and this should be reflected in the value shown in the memory buffer (note: 800
decimal = 0x320 hex).

26. Enable the sine generator by changing the variable sineEnable in the Expressions window
to 1.

27. You should now see sinusoidal data in the graph window.

28. Try removing and re-connecting the jumper wire to show this is real data is running in real-

time emulation mode. Also, you can try changing the DC offset variable to move the input
waveform to a different average value (the maximum distortion free offset is about 2000).

29. Fully halt the code (real-time mode) by using the Script function: Scripts  Realtime
Emulation Control  Full_Halt

 Lab 2: Analog-to-Digital Converter

C2000 MCU 1-Day Workshop 63

Terminate Debug Session and Close Project
30. Terminate the active debug session using the “Terminate” button. This will close the

debugger and return CCS to the “CCS Edit” perspective” view.

31. Next, close the project by right-clicking on Lab2_cpu01 in the Project Explorer window and
select Close Project.

End of Exercise

Control Peripherals

64 C2000 MCU 1-Day Workshop

Control Peripherals

ePWM Module Signals and Connections

ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIE
CLAEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADCePWM
X-Bar

EMUSTOP – TZ6

CLOCKFAIL – TZ5

EQEPERR – TZ4

CPU

SYSCTRL

eQEP
EPWMxA

EPWMxB
GPIO
MUX

INPUT
X-Bar

ePWM Block Diagram

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

INPUT X-Bar
ePWM X-Bar

EPWMCLK

Compare
Registers

Event Trigger

Compare
Registers

 Control Peripherals

C2000 MCU 1-Day Workshop 65

ePWM Time-Base Sub-Module

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn

To eCAP1
SyncIn

* Extended selection for CMPC and CMPD available

Control Peripherals

66 C2000 MCU 1-Day Workshop

ePWM Compare Sub-Module

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Sub-Module

. . .
. . .

. . .
...

. .
...

.

.

CMPC and CMPD available for use as event triggers

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Actions
for EPWMA and EPWMB

SW
↓

SW
↑

SW
X

SW
T

S/W
Force

Do Nothing

Clear Low

Set High

Toggle

EPWM
Output
Actions

Time-Base Counter equals:

Z
↓

Z
↑

Z
X

Z
T

Zero

CA
↓

CA
↑

CA
X

CA
T

CMPA

CB
↓

CB
↑

CB
X

CB
T

CMPB

P
↓

P
↑

P
X

P
T

TBPRD

T1
↓

T1
↑

T1
X

T1
T

T1

T2
↓

T2
↑

T2
X

T2
T

T2

Trigger Events:

Tx Event Sources = DCAEVT1, DCAEVT2, DCBEVT1, DCBEVT2, TZ1, TZ2, TZ3, EPWMxSYNCIN

 Control Peripherals

C2000 MCU 1-Day Workshop 67

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

.
. . .

EPWMA

EPWMB

.

. .

. .
CMPA

CMPB

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB

CMPA

. . .

Control Peripherals

68 C2000 MCU 1-Day Workshop

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

TBCTR

TBPRD
CMPB
CMPA

. . .

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB
CMPA

. . .

 Control Peripherals

C2000 MCU 1-Day Workshop 69

ePWM Dead-Band Sub-Module

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

ePWM Dead-Band Block Diagram

Rising
Edge
Delay

In Out
(14-bit

counter)

Falling
Edge
Delay

In Out
(14-bit

counter)

°
° °
0

1

°
° °
0

1

°
° °
0

1

°
° °
1

0
°

°

.

.

.

.
PWMxA

PWMxB

PWMxB

PWMxA
S1

S0

S2

S3 FED

RED

OUT-MODEPOLSEL

°
° °
0

1

°
° °
0

1

S4

S5

IN-MODE

HALFCYCLE

°
° °
0

1

°
° °
0

1

S6

S7

OUTSWAP

.
°
° °

1

0

S8

°
°°

0

1S8
DEDB-
MODE

.

.

Control Peripherals

70 C2000 MCU 1-Day Workshop

ePWM Chopper Sub-Module

Purpose of the PWM Chopper

Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

Used with pulse transformer-based
gate drivers to control power
switching elements

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

 Control Peripherals

C2000 MCU 1-Day Workshop 71

ePWM Trip-Zone and Digital Compare Sub-Module

Trip-Zone and Digital Compare Inputs

GPIO
MUX

INPUT
X-BAR

ePWM
X-BAR

Trip-
Zone
Sub-

Module

Digital
Compare

Sub-
Module

TRIPIN1 & TZ1
TRIPIN2 & TZ2
TRIPIN3 & TZ3

TRIPIN6
TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12

TRIPIN1 & TZ1
TRIPIN2 & TZ2
TRIPIN3 & TZ3

TRIPIN6
TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12 TZ4 TZ5 TZ6

TRIP COMBO TRIPIN14
TRIPIN15

12

DCAHTRIPSEL
DCALTRIPSEL
DCBHTRIPSEL
DCBLTRIPSEL

ePWM X-Bar

EPWM/ECAP sync

ADCSOCAO

ADCSOCBO

ECAP1
ECAP2
ECAP3
ECAP4
ECAP5
ECAP6

ADCA
ADCB
ADCC
ADCD

All
ePWM

Modules

CMPSS1

CMPSS8

INPUT X-Bar

ePWM
X-Bar

SD1

SD2

TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12

INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6

EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4

ECAP1.OUT
ECAP2.OUT
ECAP3.OUT
ECAP4.OUT
ECAP5.OUT
ECAP6.OUT

ADCSOCA

ADCSOCB

EXTSYNCOUT

CTRIPOUTH
CTRIPOUTL

CTRIPOUTL
CTRIPOUTH

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

Control Peripherals

72 C2000 MCU 1-Day Workshop

ePWM X-Bar Architecture

MUX 0 1 2 3
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
17 SD1FLT1.COMPL
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
19 SD1FLT2.COMPL
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
21 SD1FLT3.COMPL
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
23 SD1FLT4.COMPL
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
25 SD2FLT1.COMPL
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
27 SD2FLT2.COMPL
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
29 SD2FLT3.COMPL
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
31 SD2FLT4.COMPL

MUX 0 1 2 3
0 CMPSS1.CTRIPOUTH CMPSS1.CTRIPH_OR_CTRIPL ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPOUTL INPUTXBAR1 ADCCEVT1
2 CMPSS2.CTRIPOUTH CMPSS2.CTRIPH_OR_CTRIPL ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPOUTL INPUTXBAR2 ADCCEVT2
4 CMPSS3.CTRIPOUTH CMPSS3.CTRIPH_OR_CTRIPL ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPOUTL INPUTXBAR3 ADCCEVT3
6 CMPSS4.CTRIPOUTH CMPSS4.CTRIPH_OR_CTRIPL ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPOUTL INPUTXBAR4 ADCCEVT4
8 CMPSS5.CTRIPOUTH CMPSS5.CTRIPH_OR_CTRIPL ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPOUTL INPUTXBAR5 ADCDEVT1

10 CMPSS6.CTRIPOUTH CMPSS6.CTRIPH_OR_CTRIPL ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPOUTL INPUTXBAR6 ADCDEVT2
12 CMPSS7.CTRIPOUTH CMPSS7.CTRIPH_OR_CTRIPL ADCBEVT3
13 CMPSS7.CTRIPOUTL ADCSOCA ADCDEVT3
14 CMPSS8.CTRIPOUTH CMPSS8.CTRIPH_OR_CTRIPL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPOUTL ADCSOCB ADCDEVT4

0
0.1
0.2
0.3
0.4

1
1.1
1.2
1.3
1.4

31
31.1
31.2
31.3
31.4

TRIPINx

TRIPOUTPUTINV

TRIPxMUXENABLE

TRIPxMUX0TO15CFG.MUX0

TRIPxMUX0TO15CFG.MUX1

TRIPxMUX16TO31CFG.MUX31

This block diagram is replicated 8 times

Trip-Zone Features
 Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
 Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
 Supports: #1) one-shot trip for major short circuits or over

current conditions

#2) cycle-by-cycle trip for current limiting operation

CPU
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

TZ6
TZ5
TZ4
ePWM X-Bar
INPUT X-Bar Cycle-by-Cycle

Mode

One-Shot
Mode

EPWMxA

EPWMxB

Digital
Compare

CPU
SYSCTRL

eQEP1

EMUSTOP
CLOCKFAIL

EQEP1ERR

Over
Current
Sensors

 Control Peripherals

C2000 MCU 1-Day Workshop 73

Purpose of the Digital Compare
Sub-Module

Generates ‘compare’ events that can:
 Trip the ePWM
Generate a Trip interrupt
 Sync the ePWM
Generate an ADC start of conversion

 Digital compare module inputs are:
 Input X-Bar
 ePWM X-Bar
 Trip-zone input pins

 A compare event is generated when one or more
of its selected inputs are either high or low

Optional ‘Blanking’ can be used to temporarily
disable the compare action in alignment with
PWM switching to eliminate noise effects

Digital Compare Sub-Module Signals

Digital Trip
Event A1
Compare

Digital Trip
Event A2
Compare

Digital Trip
Event B1
Compare

Digital Trip
Event B2
Compare

Generate PWM Sync
Time-Base Sub-Module

Generate SOCA
Event-Trigger Sub-Module

Trip PWMA Output

Generate Trip Interrupt

Trip-Zone Sub-Module

Generate PWM Sync
Time-Base Sub-Module

Generate SOCB
Event-Trigger Sub-Module

Trip PWMB Output

Generate Trip Interrupt

Trip-Zone Sub-Module

DCAH

DCAL

DCBH

DCBL

DCTRIPSEL TZDCSEL DCACTL / DCBCTL

DCAEVT1

DCAEVT2

DCBEVT1

DCBEVT2

blanking

blanking

TRIPIN1 & TZ1

TRIPIN2 & TZ2

TRIPIN3 & TZ3

TRIPIN4

TRIPIN12

TRIPIN15

TRIPIN14

TRIP COMBO

●
●
●

Control Peripherals

74 C2000 MCU 1-Day Workshop

Digital Compare Events
 The user selects the input for each of

DCAH, DCAL, DCBH, DCBL
 Each A and B compare uses its

corresponding DCyH/L inputs (y = A or B)
 The user selects the signal state that

triggers each compare from the following
choices:

i. DCyH  low DCyL  don’t care

ii. DCyH  high DCyL  don’t care

iii. DCyL  low DCyH  don’t care

iv. DCyL  high DCyH  don’t care

v. DCyL  high DCyH  low

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Interrupts and SOC
TBCTR
TBPRD
CMPD

CMPA

CTR = 0
CTR = PRD

CTRU = CMPA
CTRD = CMPA
CTRU = CMPB
CTRD = CMPB

CTR = 0 or PRD

CMPC
CMPB

CTRU = CMPC
CTRD = CMPC
CTRU = CMPD
CTRD = CMPD

. .
. .
.

. .
.

 Control Peripherals

C2000 MCU 1-Day Workshop 75

Hi-Resolution PWM (HRPWM)

Hi-Resolution PWM (HRPWM)

 Significantly increases the resolution of conventionally derived digital PWM
 Uses 8-bit extensions to Compare registers (CMPxHR), Period register

(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control
 Typically used when PWM resolution falls below ~9-10 bits which occurs at

frequencies greater than ~200 kHz (with system clock of 100 MHz)
 Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 100 MHz)

Regular
PWM Step
(i.e. 10 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

(fixed Time-Base/2)

Capture Module (eCAP)

Capture Module (eCAP)

 The eCAP module timestamps transitions on a
capture input pin
Can be used to measure the time width of a pulse

 Auxiliary PWM generation

Timer

Timestamp
Values

Trigger

pin

t1
t2

Control Peripherals

76 C2000 MCU 1-Day Workshop

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

CPUx.SYSCLK

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

immediate
mode

shadow
mode

shadow
mode

immediate
mode

CPUx.SYSCLK

 Control Peripherals

C2000 MCU 1-Day Workshop 77

Quadrature Encoder Pulse Module (eQEP)

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

Control Peripherals

78 C2000 MCU 1-Day Workshop

eQEP Module Block Diagram

Quadrature
Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

CPUx.SYSCLK

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

Strobe
from homing sensorCPUx.SYSCLK

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 79

Lab 3: Control Peripherals
 Objective

The objective of this lab exercise is to demonstrate and become familiar with the operation of the
PWM modules. In this lab exercise all the code will run on CPU1 (CPU2 will not be used).
PWM1A will be configured to generate a PWM waveform with programmable frequency and duty
cycle. PWM5A will be phase locked to PWM1A and will share the same period, however its duty
cycle and phase offset are also programmable. PWM2 will be configured to generate a fixed 50
kHz sample trigger for ADC-A and ADC-C. These ADCs will sample the two PWM waveforms
and the results will be stored in two circular buffers in data memory. We will open two time graph
windows in CCS to observe the contents of these buffers while the PWM variables are adjusted.

Lab 3: Control Peripherals

ADCC

...

CPU copies
results to
buffers during
ADC ISR

PWM2

connector
wire

ADCC3

Phase
TB Counter
Compare

Action Qualifier

PWM5A

View both
ADC buffers

Code Composer
Studio

PWM2 triggering
ADC on period match

using SOCA trigger every
20 µs (50 kHz)

ADCA

...

connector
wire

ADCA0

TB Counter
Compare

Action Qualifier

PWM1A

RESULT0

RESULT0

AdcaResults

AdccResults

PWM1 period = programmable
PWM1 duty = programmable
PWM5 period = synchronized
PWM5 duty = programmable
PWM5 phase = programmable

 Procedure

Open the Project
1. A project named Lab3_cpu01 has been created for this lab. Open the project by clicking on

Project  Import CCS Projects. The “Import CCS Eclipse Projects” window will
open then click Browse… next to the “Select search-directory” box. Navigate to:
C:\F2837xD\Labs\Lab3\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab.

Click on the project name in the Project Explorer window to set the project active. Then click
on the plus sign (+) to the left of Lab3_cpu01 to expand the file list.

Inspect the Project
2. Open and inspect Lab3_cpu01.c. The initialization code immediately following main() is

similar to that used in lab 2. Notice the inclusion of the following three functions which
configure the PWM modules.

Lab 3: Control Peripherals

80 C2000 MCU 1-Day Workshop

InitEPwm1()

InitEPwm2()

InitEPwm5()

The code for these functions is located further down in the same file.

3. Scroll down the file and locate the function InitEPwm1(). Inspect the code and notice the
following line:

EPwm1Regs.TBCTL.bit.SYNCOSEL = 1;

This configures the TB module to generate a SYNC output on a CTR = 0 match. Notice also
the setting of the PHSEN bit in the same register. This bit disables the SYNC input to this
module.

4. Scroll further down the file and locate the function InitEPwm5(). Inspect the code and
notice the setting of the PHSEN bit in this module. This bit enables synchronization from the
SYNC input from EPWM1.

At the bottom of this function are the following lines used to configure the AQ module:
EPwm5Regs.AQCTLA.bit.ZRO = 2;

EPwm5Regs.AQCTLA.bit.CAU = 1;

These define a HIGH output on a CTR = zero event and a LOW output on a compare match
when counting UP. The result is an asynchronous PWM with trailing edge duty cycle
modulation. ePWM1 is configured in the same way.

5. At the bottom of the file is the ADC Interrupt Service Routine adca1_isr(). As in the
previous lab exercise, this interrupt is triggered by an end-of-conversion (EOC) event from
ADC-A. The ISR code reads and stores the newest ADCINA0 result in the buffer
AdcaResults and the newest ADCINC3 result in buffer AdccResults. Since ADC-A and
ADC-C are configured similarly, their conversion time will be the same and we only need one
ISR to collect both readings.

6. Notice the code near the bottom of the ISR which manipulates the variables pretrig and
trigger. The ISR code has been written so that the first sample in both buffers is taken on
a rising edge of PWM1A. When we view the results in a graph window, this makes it easier
to see the effects of changes to PWM duty cycle and phase offset.

Jumper Wire Connection
7. We now need to connect the PWM1A output pin to the ADCINA0 input pin, and the PWM5A

output pin to the ADCINC3 input pin. From Lab 2, one end of the jumper wire should still be
connected to connector J3, pin #30 (ADCINA0). Connect the other end of the jumper wire to
connector J4, pin #40 (PWM1A).

8. Using another jumper wire, carefully make a connection between connector J3, pin #24
(ADCINC3) and connector J8, pin #78 (PWM5A). Refer to the following diagram for the pins
that need to be connected using the jumper wires.

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 81

Build and Load the Project
9. Click the “Build” button and watch the tools run in the Console window. Check for any errors

in the Problems window.

10. Click the “Debug” button (green bug). A Launching Debug Session window will open. Select
only CPU1 to load the program on, and then click OK. The “CCS Debug” perspective view
should open, the program will load automatically, and you should now be at the start of
main(). If the device has been power cycled since the last lab exercise, be sure to configure
the boot mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code
11. Run the code by using the “Resume” button on the toolbar, or by using Run  Resume on

the menu bar (or F8 key). LED D10 should be blinking at a period of approximately 1
second.

12. Halt the code after a few seconds by using the “Suspend” button on the toolbar,or by using
Run  Suspend on the menu bar (or Alt-F8 key).

View the ADC Results
13. The Memory Browser should still be open from the previous lab exercise. If not, then open a

memory browser by clicking View  Memory Browser. In the box marked “Enter
location here”, type &AdcaResults and then enter.

Observe the contents of the AdcaResults buffer in the Memory Browser. If the code is
running as expected, you should see a series of readings close to 0, followed by another
series close to full scale (4095), similar to the first part of lab 2. This is the output from
PWM1A.

14. If the graph from the previous lab exercise is still open, close it now. Open and set up a Dual
Time graph to plot a 256-point window of both ADC results buffers. Click:
Tools  Graph  Dual Time and set the following values:

Acquisition Buffer Size 256

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address A AdcaResults

Start Address B AdccResults

Display Data Size 256

Time Display Unit sample

Select OK to save the graph options.

15. We would like to be able to view both graphs at the same time. To do this, position the
mouse cursor on the tab of the graph DualTimeA-0, then click and hold down the left mouse
button while dragging the graph to a different part of the workspace. Choose an area where
both graphs can be viewed simultaneously before releasing the mouse button. The graphs
view should look like:

Lab 3: Control Peripherals

82 C2000 MCU 1-Day Workshop

16. The Expressions window should still be open from the previous lab exercise. If not, then click

the “Expressions” tab near the top of the CCS window. Add the following variables to the
Expressions window:

• period1
• dutyCycle1
• dutyCycle5
• phaseOffset5

The other expressions are not needed for this lab exercise and can safely be deleted from
the Expression list, if desired.

Run the Code - Real-Time Emulation Mode
17. We need to enable the graph windows for continuous refresh. On the graph window toolbar,

left-click on “Enable Continuous Refresh” (the yellow icon with the arrows rotating in a
circle over a pause sign). This will allow the graph to continuously refresh in real-time while
the program is running.

18. Enable the Expressions window for continuous refresh using the same procedure as the
previous step.

19. Run the code and watch the windows update in real-time mode. Click:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

20. Carefully remove and replace the connector wire to the ADCINA0 input (connector J3, pin
#30). The ADC results graph A should be zero when the jumper wire is removed.

Next, carefully remove and replace the connector wire to the ADCINC3 input (connector J3,
pin #24). The ADC results graph B should be zero when the jumper wire is removed. This
confirms both buffers are updating in real-time.

Adjust the PWM Settings
21. We will adjust the PWM settings and check the effects in the graph. First, click on the

period1 variable value in the Expressions window and change its value to 30000. What
effect did this have on the PWM signals?

22. Restore the period1 variable to its original value of 50000.

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 83

23. Next, change the duty cycle variables dutyCycle1 and dutyCycle5 while observing the
PWM signals. In both cases be careful to choose a number between about 1000 and 49000.
Were the changes to the PWM signals as expected?

24. Now change the phaseOffset5 variable to a positive number between 0 and 49000. What
effect did this have?

25. Set the PWM variables as follows:
period1 = 50000
dutyCycle1 = 25000
dutyCycle5 = 25000
phaseOffset5 = 25000

What is the relationship between these PWM waveforms called?

26. Finally, set the variable period1 to 75000. What happened and why?

27. Fully halt the CPU in real-time mode. Click:

Scripts  Realtime Emulation Control  Full_Halt

28. Run the code in real-time mode. Click:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

Notice the original waveforms should now be displayed.

29. Again, fully halt the CPU in real-time mode. Click:

Scripts  Realtime Emulation Control  Full_Halt

Terminate Debug Session and Close Project
30. Terminate the active debug session using the “Terminate” button. This will close the

debugger and return CCS to the “CCS Edit” perspective” view.

31. Next, close the project by right-clicking on Lab3_cpu01 in the Project Explorer window and
select Close Project.

End of Exercise

Inter-Processor Communications (IPC)

84 C2000 MCU 1-Day Workshop

Inter-Processor Communications (IPC)

IPC Features

Message RAMs

 IPC flags and interrupts

 IPC command registers

Flash pump semaphore

Clock configuration semaphore

Free-running counter

Allows Communications Between the
Two CPU Subsystems

All IPC features are independent of each other

IPC Global Shared SARAM and Message SARAM

Global Shared RAM
 Device contains up to 16 blocks of global shared RAM

 Blocks named GS0 – GS15
 Each block size is 4K words
 Each block can configured to be used by CPU1 or CPU2

 Selected by MemCfgRegs.GSxMSEL register
 Individual memory blocks can be shared between the

CPU and DMA

Ownership
CPU1 Subsystem CPU2 Subsystem

CPU1 CPU1.DMA CPU2 CPU2.DMA

CPU1 Subsystem* R/W/Exe R/W R R

CPU2 Subsystem R R R/W/Exe R/W

* default

There are up to 16 blocks of shared SARAM on F2837xD devices. These shared SARAM blocks
are typically used by the application, but can also be used for transferring messages and data.

 Inter-Processor Communications (IPC)

C2000 MCU 1-Day Workshop 85

Each block can individually be owned by either CPU1 or CPU2.

CPU1 core ownership:
At reset, CPU1 owns all of the shared SARAM blocks. In this configuration CPU1 core can freely
use the memory blocks. CPU1 can read, write or execute from the block and CPU1.DMA can
read or write.

On the CPU2 core, CPU2 and CPU2.DMA can only read from these blocks. Blocks owned by the
CPU1 core can be used by the CPU1 to send CPU2 messages. This is referred to as “C1toC2”.

CPU2 core ownership:
After reset, the CPU1 application can assign ownership of blocks to the CPU2 subsystem. In this
configuration, CPU2 core can freely use the blocks. CPU2 can read, write or execute from the
block and the CPU2.DMA can read or write. CPU1 core, however can only read from the block.
Blocks owned by CPU2 core can be used can be used to send messages from the CPU2 to
CPU1. This is referred to as “C2toC1”.

IPC Message RAM
 Device contains 2 blocks of Message RAM
 Each block size is 1K words
 Each block is always enabled and the

configuration is fixed
 Used to transfer messages or data between

CPU1 and CPU2

Message RAM
CPU1 Subsystem CPU2 Subsystem

CPU1 CPU1.DMA CPU2 CPU2.DMA

CPU1 to CPU2 (“C1toC2”) R/W R/W R R

CPU2 to CPU1 (“C2toC1”) R R R/W R/W

The F2837xD has two dedicated message RAM blocks. Each block is 1K words in length. Unlike
the shared SARAM blocks, these blocks provide communication in one direction only and cannot
be reconfigured.

CPU1 to CPU2 “C1toC2” message RAM:
The first message SARAM is the CPU1 to CPU2 or C1toC2. This block can be read or written to
by the CPU1 and read by the CPU2. CPU1 can write a message to this block and then the CPU2
can read it.

CPU2 to CPU1 “C2toC1” message RAM:
The second message SARAM is the CPU2 to CPU1 or C2toC1. This block can be read or written
to by CPU2 and read by CPU1. This means CPU2 can write a message to this block and then
CPU1 can read it. After the sending CPU writes a message it can inform the receiver CPU that it
is available through an interrupt or flag.

Inter-Processor Communications (IPC)

86 C2000 MCU 1-Day Workshop

IPC Message Registers

 Provides very simple and flexible messaging
 Dedicated registers mapped to both CPU’s

 The definition (what the register content
means) is up to the application software

 TI’s IPC-Lite drivers use the IPC message
registers

Local Register
Name

Local
CPU

Remote
CPU

Remote Register
Name

IPCSENDCOM R/W R IPCRECVCOM

IPCSENDADDR R/W R IPCRECVADDR

IPCSENDDATA R/W R IPCRECVDATA

IPCREMOTEREPLY R R/W IPCLOCALREPLY

Interrupts and Flags

IPC Flags and Interrupts
 CPU1 to CPU2: 32 flags with 4 interrupts (IPC0-3)
 CPU2 to CPU1: 32 flags with 4 interrupts (IPC0-3)

Register
IPCSET Message waiting (send interrupt and/or set flag)
IPCFLG Bit is set by the “SET” register
IPCCLR Clear the flag

Requesting CPU  Set, Flag and Clear registers

Register
IPCSTS Status (reflects the FLG bit)
IPCACK Clear STS and FLG

Receiving CPU  Status and Acknowledge registers

When the sending CPU wishes to inform the receiver that a message is ready, it can make use of
an interrupt or flag. There are identical IPC interrupt and flag resources on both CPU1 core and
CPU2 core.

 Inter-Processor Communications (IPC)

C2000 MCU 1-Day Workshop 87

4 Interrupts:
There are 4 interrupts that CPU1 can send to CPU2 through the Peripheral Interrupt Expansion
(PIE) module. Each of the interrupts has a dedicated vector within the PIE.

28 Flags:
In addition, there are 28 flags available to each of the CPU cores. These flags can be used for
messages that are not time critical or they can be used to send status back to originating
processor. The flags and interrupts can be used however the application sees fit and are not tied
to particular operation in hardware.

Registers: Set, Flag, Clear, Status and Acknowledge
The registers to control the IPC interrupts and flags are 32-bits:

Bits [3:0] = interrupt & flag
Bits [31:4] = flag only

Messaging with IPC Flags and Interrupts

CPU2 Memory MapCPU1 Memory Map

IPCCLR

IPCFLG IPCSTS

IPCACK

IPCSET

IPCCLR

IPCFLG CPU2

Set

Clear

Q
PIE

(IPC0-3)

PIE
(IPC0-3)

CPU1

Set

Clear

Q

IPCSTS

IPCACK

IPC Registers

IPCSET
IPC Registers

R/W

R/W

CPU1 to CPU2

CPU2 to CPU1

Inter-Processor Communications (IPC)

88 C2000 MCU 1-Day Workshop

IPC Data Transfer

Basic IPC Data Transfer
 Basic option – no software drivers needed

and easy to use!
Use the Message RAMs or global shared RAMs to

transfer data between processors at a known
address

Use the IPC flag registers to tell the other
processor that the data is ready

C1toC2 MSG RAM

C2toC1 MSG RAM

GSx Shared
SARAM’s

CPU1 Application CPU2 Application

Message1: Write a message to
C1toC2 MSG RAM

C1TOC2IPCFLG C1TOC2IPCSTS

2: Write 1 to
C1TOC2IPCSET bit

3: sees C1TOC2IPCSTS
bit is set

4: read message

5: write 1 to
C1TOC2IPCACK bit

The F2837xD IPC is very easy to use. At the most basic level, the application does not need
ANY separate software drivers to communicate between processors. It can utilize the message
RAM’s and shared SARAM blocks to pass data between processors at a fixed address known to
both processors. Then the sending processor can use the IPC flag registers merely to flag to the
receiving processor that the data is ready. Once the receiving processor has grabbed the data, it
will then acknowledge the corresponding IPC flag to indicate that it is ready for more messages.

As an example:
1. First, CPU1 would write a message to the CPU2 in C1toC2 MSG RAM.
2. Then the CPU1 would write a 1 to the appropriate flag bit in the C1TOC2IPCSET

register. This sets the C1TOC2IPCFLG, which also sets the C1TOC2IPCSTS register on
CPU2, letting CPU2 know that a message is available.

3. Then CPU2 sees that a bit in the C1TOC2IPCSTS register is set.
4. Next CPU2 reads the message from the C1toC2 MSG RAM and then
5. It writes a 1 to the same bit in the C1TOC2IPCACK register to acknowledge that it has

received the message. This subsequently clears the flag bit in C1TOC2IPCFLG and
C1TOC2IPCSTS.

6. CPU1 can then send more messages using that particular flag bit.

 Inter-Processor Communications (IPC)

C2000 MCU 1-Day Workshop 89

IPC Software Solutions Summary
 Basic Option

No software drivers needed
Uses IPC registers only (simple message passing)

 IPC-Lite Software API Driver
Uses IPC registers only (no memory used)
 Limited to 1 IPC interrupt at a time
 Limited to 1 command/message at a time
CPU1 can use IPC-Lite to communicate with CPU2

boot ROM
Main IPC Software API Driver

Uses circular buffers message RAMs
Can queue up to 4 messages prior to processing

(configurable)
Can use multiple IPC ISRs at a time
Requires additional setup in application code prior

to use

There are three options to use the IPC on the device.

Basic option: A very simple option that does not require any drivers. This option only requires
IPC registers to implement very simple flagging of messages passed between processors.

Driver options: If the application code needs a set of basic IPC driver functions for reading or
writing data, setting/clearing bits, and function calls, then there are 2 IPC software driver solutions
provided by TI.

IPC-Lite:
• Only uses the IPC registers. No additional memory such as message RAM or shared

RAM is needed.
• Only one IPC ISR can be used at a time.
• Can only process one message at a time.
• CPU1 can use IPC lite to communicate with the CPU2 boot ROM. The CPU2 boot ROM

processes basic IPC read, write, bit manipulation, function call, and branch commands.

Main IPC Software API Driver: (This is a more feature filled IPC solution)
• Utilizes circular buffers in C2toC1 and C1toC2 message RAM’s.
• Allows application to queue up to 4 messages prior to processing (configurable).
• Allows application to use multiple IPC ISR’s at a time.
• Requires additional set up in application code prior to use.

In addition to the above, SYS/BIOS 6 will provide a new transport module to work with the shared
memory and IPC resources on the F2837x.

Lab 4: Inter-Processor Communications

90 C2000 MCU 1-Day Workshop

Lab 4: Inter-Processor Communications
 Objective

The objective of this lab exercise is to demonstrate and become familiar with the operation of the
IPC module. We will be using the basic IPC features to send data in both directions between
CPU1 and CPU2. As in the previous lab exercise, PWM2 will be configured to provide a 50 kHz
SOC signal to ADC-A. An End-of-Conversion ISR on CPU1 will read each result and write it into
a data register in the IPC. An IPC interrupt will then be triggered on CPU2 which fetches this
data and stores it in a circular buffer. The same ISR grabs a data point from a sine table and
loads it into a different IPC register for transmission to CPU1. This triggers an interrupt on CPU1
to fetch the sine data and write it into DAC-B. The DAC-B output is connected by a jumper wire
to the ADCINA0 pin. If the program runs as expected, the sine table and ADC results buffer on
CPU2 should contain very similar data.

Lab 4: Inter-Processor Communications

...

View ADC
buffer

Code Composer
Studio

PWM2 triggers
ADC-A at 50 kHz

...

connector
wire

IPC1

IPC0

Sine Table

ADC Results

RESULT0

ADC-A

Pin 09

DACVALS

DAC-B

IPC1_ISR
1. Reads IPC1 data

and stores in circular
buffer

2. Writes next sine
data to IPC0

CPU1 CPU2

IPC0_ISR
Reads IPC0 data and writes into DAC-B

ADCA1_ISR
Reads ADC result and writes to IPC1

Pin 11

IPCRECVADDR

IPCSENDDATA

IPCSENDADDR

IPCRECVDATA

Toggle GPIO31 D10 @ 5 Hz
Toggle GPIO34 D9 @ 1 Hz

 Procedure

Open the Projects – CPU1 & CPU2
1. Two projects named Lab4_cpu01 and Lab4_cpu02 has been created for this lab. Open

both projects by clicking on Project  Import CCS Projects. The “Import CCS
Eclipse Projects” window will open then click Browse… next to the “Select search-directory”
box. Navigate to: C:\F2837xD\Labs\Lab4 and click OK.

Both projects will appear in the “Discovered projects” window. Click Select All and click
Finish to import the project. All build options for each project have been configured the
same as the previous lab.

 Lab 4: Inter-Processor Communications

C2000 MCU 1-Day Workshop 91

Inspect the Project – CPU1
2. Click on the project name Lab4_cpu01 in the Project Explorer window to set the project

active. Then click on the plus sign (+) to the left of Lab4_cpu01 to expand the file list.

3. Open and inspect Lab4_cpu01.c. This file contains two interrupt service routines – one
(ipc1_isr) to read the incoming sine data over IPC, and the other (adca1_isr) to read the
ADC results. The code for these routines is located near the bottom of the file.

4. In ipc1_isr() incoming data from CPU2 is read via the IPCRECVADDR register. In
adca1_isr() the ADC result to CPU2 is written via the IPCSENDDATA register. These
registers are part of the IPC module and provide an easy way to transmit single data words
between CPUs without using memory.

Inspect the Project – CPU2
5. Click on the project name Lab4_cpu02 in the Project Explorer window to set the project

active. Then click on the plus sign (+) to the left of Lab4_cpu02 to expand the file list.

6. Open and inspect Lab4_cpu02.c. This file contains a single interrupt service routine –
(ipc2_isr) to read the incoming ADC data from CPU1 and write the next sine table point to
CPU1. The code for this routine is located at the bottom of the file.

7. In ipc2_isr() incoming ADC data from CPU1 is read via the IPCRECVDATA register, and
the sine data to CPU1 is written via the IPCSENDADDR register. The IPCSENDDATA and
IPCRECVDATA registers are mapped to the same address on each CPU, as are the
IPCSENDADDR and IPCRECVADDR registers.

Jumper Wire Connection
8. We need to connect the DACOUTB output pin to the ADCINA0 input pin, as was done in the

Lab2 exercise. Using the jumper wire, carefully make a connection between connector J3,
pin #30 (ADCINA0) and connector J7, pin #70 (DACOUTB). Remove all other jumper wires.
Refer to the following diagram for the pins that need to be connected using the jumper wire.

Build and Load the Project
9. In the Project Explorer window click on the “Lab4_cpu01” project to set it active. Then click

the “Build” button and watch the tools run in the “Console” window. Check for any errors in
the “Problems” window. Repeat this step for the “Lab4_cpu02” project.

10. Again, in the Project Explorer window click on the “Lab4_cpu01” project to set it active. Click
on the “Debug” button (green bug). A Launching Debug Session window will open. Select
only CPU1 to load the program on, and then click OK. The “CCS Debug” perspective view
should open, then CPU1 will connect to the target and the program will load automatically.

Lab 4: Inter-Processor Communications

92 C2000 MCU 1-Day Workshop

11. Next, we need to connect to and load the program on CPU2. Right-click at the line “Texas
Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2” and select “Connect Target”.

12. With the line “Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2” still
highlighted, load the program:

Run  Load  Load Program…

Browse to the file: C:\F2837xD\Labs\Lab4\cpu02\Debug\Lab4_cpu02.out and select
OK to load the program.

13. Again, with the line “Texas Instruments XDS100v2 USB Debug Probe_0/C28xx_CPU2” still
highlighted, set the bootloader mode using the menu bar by clicking:

Scripts  EMU Boot Mode Select  EMU_BOOT_SARAM

CPU1 bootloader mode was already set in the previous lab exercise. If the device has been
power cycled since the last lab exercise, be sure to configure the boot mode to
EMU_BOOT_SARAM using the Scripts menu for both CPU1 and CPU2.

Run the Code
14. In the Debug window, click on the line “Texas Instruments XDS100v2 USB Debug

Probe_0/C28xx_CPU1”. Run the code on CPU1 by clicking the green “Resume” button. At
this point CPU1 is waiting for CPU2 to be ready.

15. In the Debug window, click on the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU2”. As before, run the code on CPU2 by clicking the “Resume” button.
Using the IPC, CPU2 communicates to CPU1 that it is now ready. LED D10 connected to
CPU1 on the LaunchPad should be blinking at a period of approximately 1 second. Note that
LED D9 connected to CPU2 will not be used in this lab exercise.

16. In the Debug window select CPU1. Halt the CPU1 code after a few seconds by clicking on
the “Suspend” button.

17. Then in the Debug window select CPU2. Halt the CPU2 code by using the same procedure.

View the ADC Results
18. If the graph from the previous lab exercise is still open, close it now. Open and set up a

graph to plot a 256-point window of the ADC results buffer. Click:
Tools  Graph  Single Time and set the following values:

Acquisition Buffer Size 256

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcaResults

Display Data Size 256

Time Display Unit sample

Select OK to save the graph options.

19. If the IPC communications is working, the ADC results buffer on CPU2 should contain the
sine data transmitted from the look-up table. The graph view should look like:

 Lab 4: Inter-Processor Communications

C2000 MCU 1-Day Workshop 93

Run the Code - Real-Time Emulation Mode
20. We will now run the code in real-time emulation mode. Enable the graph window for

continuous refresh. On the graph window toolbar, left-click on “Enable Continuous
Refresh” (the yellow icon with the arrows rotating in a circle over a pause sign). This will
allow the graph to continuously refresh in real-time while the program is running.

21. In the Debug window highlight the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU1”. Run the code on CPU1 in real-time mode by clicking:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

22. Next, in the Debug window highlight the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU2”. Run the code on CPU2 in real-time mode by using the same
procedure above.

The graph should now be updating in real-time.

23. Carefully remove and replace the connector wire from the DAC-B output (connector J7, pin
#70) or to the ADCINA0 input (connector J3, pin #30). The ADC results graph should
disappear and be replaced by a flat line when the jumper wire is removed. This shows that
the data is being transmitted over the IPC from CPU2, and (after being sent from DAC to
ADC) received from CPU1, also over the IPC.

24. Again, in the Debug window highlight the line “Texas Instruments XDS100v2 USB Debug
Probe_0/C28xx_CPU1”. Fully halt the code on CPU1 in real-time mode by clicking:

Scripts  Realtime Emulation Control  Full_Halt

25. Next, fully halt the code on CPU2 in real-time mode by using the same procedure.

Terminate Debug Session and Close Project
26. The “Terminate” button will terminate the active debug session, close the debugger and

return CCS to the “CCS Edit” perspective view.

Click: Run  Terminate or use the Terminate icon:

Next, close the Lab4_cpu01 and Lab4_cpu02 projects by right-clicking on each project in the
Project Explorer window and select Close Project.

End of Exercise

Support Resources

94 C2000 MCU 1-Day Workshop

Support Resources

C2000 MCU Multi-day Training Course

C2000 MCU Multi-day Training Course
TMS320F28379D Workshop Outline
- Architectural Overview
- Programming Development Environment
- Peripheral Register Header Files
- Reset and Interrupts
- System Initialization
- Analog Subsystem
- Control Peripherals
- Direct Memory Access (DMA)
- Control Law Accelerator (CLA)
- System Design
- Dual-Core Inter-Processor

Communications (IPC)
- Communications
- Support Resources

In-depth hands-on
TMS320F28379D

Design and Peripheral
Training

controlSUITE™

controlSUITE™

 Support Resources

C2000 MCU 1-Day Workshop 95

Experimenter’s Kit

C2000 Experimenter Kit

 Experimenter Kits include
 controlCARD
 USB docking station
 C2000 Applications Software CD

with example code and full
hardware details

 Code Composer Studio
 Docking station features

 Access to controlCARD signals
 Breadboard areas
 Onboard USB JTAG Emulation

 JTAG emulator not required

 Available through TI authorized
distributors and the TI store

 Part Number:
 TMDSDOCK28379D
 TMDSDOCK28075
 TMDSDOCK28069
 TMDSDOCK28035
 TMDSDOCK28027
 TMDSDOCK28335
 TMDSDOCK2808
 TMDSDOCKH52C1
JTAG emulator required for:
 TMDSDOCK28343
 TMDSDOCK28346-168

Perpheral Explorer Kit

F28335 Peripheral Explorer Kit
 Experimenter Kit includes

 F28335 controlCARD
 Peripheral Explorer baseboard
 C2000 Applications Software CD with

example code and full hardware details
 Code Composer Studio

 Peripheral Explorer features
 ADC input variable resistors
 GPIO hex encoder & push buttons
 eCAP infrared sensor
 GPIO LEDs, I2C & CAN connection
 Analog I/O (AIC+McBSP)

 Onboard USB JTAG Emulation
 JTAG emulator not required

 Available through TI authorized
distributors and the TI eStoreTMDSPREX28335

Support Resources

96 C2000 MCU 1-Day Workshop

LaunchPad Evaluation Kit

C2000 LaunchPad Evaluation Kit
 Low-cost evaluation kit

 F28027, F28377S, and F28379D
standard versions

 F28027F version with InstaSPIN-FOC
 F28069M version with InstaSPIN-

MOTION
 Various BoosterPacks available
 Onboard JTAG Emulation

 JTAG emulator not required
 Access to LaunchPad signals
 C2000 Applications Software

with example code and full
hardware details in available in
controlSUITE

 Code Composer Studio
 Available through TI authorized

distributors and the TI store

 Part Number:
 LAUNCHXL-F28027
 LAUNCHXL-F28027F
 LAUNCHXL-F28069M
 LAUNCHXL-F28377S
 LAUNCHXL-F28379D

Application Kits

C2000 controlCARD Application Kits
 Developer’s Kit for – Motor Control,

PFC, High Voltage, Digital Power,
Renewable Energy, LED Lighting, etc.

 Kits includes
 controlCARD and application specific

baseboard
 Code Composer Studio

 Software download includes
 Complete schematics, BOM, gerber

files, and source code for board and
all software

 Quick-start demonstration GUI for
quick and easy access to all board
features

 Fully documented software specific to
each kit and application

 See www.ti.com/c2000 for other kits
and more details

 Available through TI authorized
distributors and the TI eStore

 Support Resources

C2000 MCU 1-Day Workshop 97

XDS100 / XDS200 Class JTAG Emulators

XDS100 / XDS200 Class JTAG Emulators

 Blackhawk
 USB100v2

 Blackhawk
 USB200

 Spectrum Digital
 XDS200

www.blackhawk-dsp.com www.spectrumdigital.com

 Spectrum Digital
 XDS100v2

C2000 Workshop Download Wiki

C2000 Workshop Download Wiki

http://www.ti.com/hands-on-training

Support Resources

98 C2000 MCU 1-Day Workshop

For More Information…

For More Information . . .
 USA – Product Information Center (PIC)

 Phone: 800-477-8924 or 512-434-1560
 E-mail: support@ti.com

 TI E2E Community (videos, forums, blogs)
 http://e2e.ti.com

 Embedded Processor Wiki
 http://processors.wiki.ti.com

 TI Training
 http://training.ti.com

 TI eStore
 http://estore.ti.com

 TI website
 http://www.ti.com

 Appendix A – F28379D Experimenter Kit

C2000 MCU 1-Day Workshop 99

Appendix A – F28379D Experimenter Kit

Overview
This appendix provides a quick reference and mapping of the header pins used on the F28379D
LaunchPad and F28379D Experimenter Kit. This allows either development board to be used
with the workshop.

 Initial Hardware Set Up
• F28379D Experimenter Kit:

Insert the F28379D controlCARD into the Docking Station connector slot. Using the two (2)
supplied USB cables – plug the USB Standard Type A connectors into the computer USB ports
and plug the USB Mini-B connectors as follows:

• A:J1 on the controlCARD (left side) – isolated XDS100v2 JTAG emulation
• J17 on the Docking Station – board power

On the Docking Station move switch S1 to the “USB-ON” position. This will power the Docking
Station and controlCARD using the power supplied by the computer USB port. Additionally, the
other computer USB port will power the on-board isolated JTAG emulator and provide the JTAG
communication link between the device and Code Composer Studio.

Experimenter Kit and LaunchPad Mapping

Function Experimenter Kit LaunchPad

ADCINA0 ANA header, Pin # 09 J3-30

ADCINC3 ANA header, Pin # 33 J3-24

GND GND J2-20 (GND)

GPIO18 Pin # 71 J1-4

DACOUTB ANA header, Pin # 11 J7-70

PWM1A Pin # 49 J4-40

PWM5A Pin # 57 J8-78

Appendix A – F28379D Experimenter Kit

100 C2000 MCU 1-Day Workshop

Stand-Alone Operation (No Emulator)
When the device is in stand-alone boot mode, the state of GPIO72 and GPIO84 pins are used to
determine the boot mode. On the controlCARD switch SW1 controls the boot options for the
F28379D device. Check that switch SW1 positions 1 and 2 are set to the default “1 – on” position
(both switches up). This will configure the device (in stand-alone boot mode) to GetMode. Since
the OTP_KEY has not been programmed, the default GetMode will be boot from flash. Details of
the switch positions can be found in the controlCARD information guide.

	Workshop Topics
	Workshop Introduction
	Outline
	Required Workshop Materials
	F28379D LaunchPad
	F28x7x Piccolo / Delfino Comparison

	Architectural Overview
	F2837xD Block Diagram
	Simplified F28x7x Memory Map
	Interrupt Response Manager
	Direct Memory Access (DMA)
	Control Law Accelerator (CLA)
	Viterbi / Complex Math Unit (VCU)
	Trigonometric Math Unit (TMU)
	External Memory Interface (EMIF)
	Communication Peripherals
	On-Chip Safety Features

	Programming Development Environment
	Programming Model
	Code Composer Studio
	Software Development and COFF Concepts
	Edit and Debug Perspective
	Target Configuration
	CCS Project and Build Options
	CCSv6 Debug Environment
	Dual Subsystem Debug
	Lab File Directory Structure

	Lab 1: Dual-Core Debug with F2837xD
	Start Code Composer Studio and Open a Workspace
	Set Up Target Configuration
	Create a New Project – CPU1
	Add Files to Project – CPU1
	Project Build Options – CPU1
	Inspect the Project – CPU1
	Open a New Project – CPU2
	Inspect the Project – CPU2
	Build and Load the Projects – CPU1 & CPU2
	Debug Environment Windows
	Running the Code – CPU1 & CPU2
	Terminate Debug Session and Close Project
	End of Exercise

	Reset, Interrupts and System Initialization
	Reset Sources
	Boot Process
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Reset Code Flow – Summary
	Interrupt Sources
	Peripheral Interrupt Expansion – PIE
	F2837xD PIE Assignment Table
	PIE Block Initialization
	F2837xD Dual-Core Interrupt Structure
	F28x7x Oscillator / PLL Clock Module
	Watchdog Timer Module
	F28x7x General-Purpose Input-Output
	GPIO Input X-Bar
	GPIO Output X-Bar

	Analog Subsystem
	ADC Subsystem
	ADC Module Block Diagram
	ADC Triggering
	ADC Conversion Priority
	Post Processing Block
	Comparator Subsystem
	Digital-to-Analog Converter
	Sigma Delta Filter Module (SDFM)

	Lab 2: Analog-to-Digital Converter
	Open the Project
	Inspect the Project
	Jumper Wire Connection
	Build and Load the Project
	View the ADC Results
	Run the Code
	View the ADC Results Buffer in Memory
	Graph the ADC Data
	Terminate Debug Session and Close Project
	End of Exercise

	Control Peripherals
	ePWM Module Signals and Connections
	ePWM Block Diagram
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Trip-Zone and Digital Compare Sub-Module
	ePWM Event-Trigger Sub-Module
	Hi-Resolution PWM (HRPWM)
	Capture Module (eCAP)
	Quadrature Encoder Pulse Module (eQEP)

	Lab 3: Control Peripherals
	Open the Project
	Inspect the Project
	Jumper Wire Connection
	Build and Load the Project
	Run the Code
	View the ADC Results
	Terminate Debug Session and Close Project
	End of Exercise

	Inter-Processor Communications (IPC)
	IPC Global Shared SARAM and Message SARAM
	Interrupts and Flags
	IPC Data Transfer

	Lab 4: Inter-Processor Communications
	Open the Projects – CPU1 & CPU2
	Inspect the Project – CPU1
	Inspect the Project – CPU2
	Jumper Wire Connection
	Build and Load the Project
	Run the Code
	View the ADC Results
	Terminate Debug Session and Close Project
	End of Exercise

	Support Resources
	C2000 MCU Multi-day Training Course
	controlSUITE™
	Experimenter’s Kit
	Perpheral Explorer Kit
	LaunchPad Evaluation Kit
	Application Kits
	XDS100 / XDS200 Class JTAG Emulators
	C2000 Workshop Download Wiki
	For More Information…

	Appendix A – F28379D Experimenter Kit
	Overview
	Experimenter Kit and LaunchPad Mapping
	Stand-Alone Operation (No Emulator)

