Precision DAC Essentials

Precision DAC Applications

What is this presentation?

- A guide to understanding fundamental DAC specifications
- An explanation of DAC architectures to leverage when making device selection
- How TI measures each specification to provide an 'apples to apples' comparison to competitors devices

Presentation Agenda

- TI DAC Landscape & Precision DACs
- The Ideal DAC
- DAC Architectures
 - String
 - -R2R MDAC
 - -R2R BDAC
- Static DAC Specifications
 - TUE & Calibration
- Dynamic Specifications
- Closing the Loop

DAC Architectures & Applications

Precision DAC Strategy and Growth Areas

Industrial

Applications:

Industrial Automation - Sensors/PLC -**Motor Control -**

Test & Measurement Equipment

Products:

DAC8750/60 with 4-20mA and ±10V **DAC8770** with Power Management

DAC874x loop powered w. HART

Communications

Applications:

Basestation Analog Monitor and Control (AMC) -

WI - Backhaul - Optical Networking

Products:

AMC7832 12 bit integrated ADC & DAC AMC7834: 12 bit integrated ADC & DAC

AMC7812 12 bit integrated ADC & DAC

Catalog & Automotive

Applications:

Medical -Automotive - Consumer -Computer

Products:

DAC8562 smallest 2-channel DAC DAC7311 1-channel DAC in SC70 DAC8568

8-channel 16-Bit DAC

*Devices in **RED** are not yet released

> 1500 customers

Where are Precision DACs used?

- DC Bias and offset control
- Closed loop control systems
- Driving a voltage controlled oscillator
- Automated test equipment
- Industrial Communication

Presentation Agenda

- TI DAC Landscape & Precision DACs
- The Ideal DAC
- DAC Architectures
 - String
 - -R2R MDAC
 - -R2R BDAC
- Static DAC Specifications
 - TUE & Calibration
- Dynamic Specifications
- Closing the Loop

Ideal Transfer Function

Resolution = n – The number of bits used to quantify the output

Codes = 2^n – The number of input code combinations

Full Scale code = 2^n-1 – The largest code that can be written

Reference Voltage = Vref – Sets the LSB voltage or current size and converter range

LSB = **Vref** / **2**ⁿ – The output voltage or current step size of each code

Full Scale Voltage = Vref - 1LSB - Full scale output voltage of the DAC

Transfer Function =

Vref x (code/ 2ⁿ) – Relationship between input data word and output voltage or current

Example DAC Transfer Function

Ideal DAC Properties

- Near rail-to-rail output set by the reference input
 - Remember the full scale output voltage is Vref 1 LSB
- Any two sequential codes are exactly 1 LSB apart
- No missing codes
- Instantaneous transition from code-to-code
- Fully monotonic

But what's Monotonicity?

In a monotonic DAC

 Analog output always increases or remains constant as the digital input increases.

Presentation Agenda

- TI DAC Landscape & Precision DACs
- The Ideal DAC
- DAC Architectures
 - String
 - -R2R MDAC
 - -R2R BDAC
- Static DAC Specifications
 - -TUE & Calibration
- Dynamic Specifications
- Closing the Loop

String DAC / Kelvin Divider DAC

The String DAC Architecture

String DAC

Advantages

- Inexpensive
- Low glitch energy
- Inherently monotonic
- Low power
- Small package

Disadvantages

- Limited resolution
- Linearity
- Buffer required to isolate from point of load

Applications

Portable equipment

Closed Loop Systems

Adjustable Reference

DC Biasing

•Example parts: DAC8562, DAC8560, DAC8568, DAC7678, DAC8411, DAC8718, DAC8728

R-2R DAC / Back DAC

R-2R Back DAC

R-2R DAC

Advantages

- Strong linearity
- Low noise

Disadvantages

- Code dependent reference loading
- High glitch impulse
- Longer settling
- Output buffer requirements

Applications

Precision Instrumentation

Industrial Control & Automation

Test Equipment

•Example parts: DAC7644, DAC7654, DAC8881, DAC9881

MDAC / R-2R Multiplying DAC

R-2R Multiplying DAC Architecture

MDAC

Advantages

- Strong linearity
- Low noise
- Fastest switching
- Lower glitch vs R-2R
- Constant reference loading

Disadvantages

- Transimpedance output stage
- Output is inverted referred to the reference

Applications

Industrial Control PLCs

Waveform Generation

AC Applications

•Example parts: DAC8801, DAC8811, DAC8814, DAC8822, DAC8734

Presentation Agenda

- TI DAC Landscape & Precision DACs
- The Ideal DAC
- DAC Architectures
 - String
 - -R2R MDAC
 - -R2R BDAC
- Static DAC Specifications
 - TUE & Calibration
- Dynamic Specifications
- Closing the Loop

Offset & Zero Code Error

Offset Error(mV):

- Difference between measured and ideal output voltage in the linear region of the transfer function
- Indicates how much the entire transfer function is shifted from the ideal transfer function

Zero Code Error (mV):

- Output when loading all zeros into the DAC register
- Error is created from the internal op amp headroom from the negative rail.

Offset error	Extrapolated from two-point line ⁽¹⁾ , unloaded	±1	±4	mV
Zero-code error	DAC register loaded with all '0's	1	4	mV

Gain Error

Gain Error

Gain error (% FSR):

The deviation in slope of the DAC's measured transfer function from it's ideal transfer function, usually expressed in %FSR

Gain error	Extrapolated from two-point line ⁽¹⁾ , unloaded	±0.01 ±0.15	% of FSR

Differential Non Linearity (DNL)

- Ideally LSB width stays constant for every sequential code transition - DNL = 0
- Actual DAC sequential code transitions are not all equal to 1 LSB - DNL = +/- 1, 2,
 etc
- DNL expresses the difference between measured LSB size and ideal LSB size for sequential DAC codes

$$DNL = \frac{V_{n+1} - V_n}{V_{lsh}} - 1$$

Resolution		16	Bits
Relative accuracy	Measured by the line passing through codes 485 and 64714	±4 ±12	LSB
Differential nonlinearity	16-bit monotonic	±0.2 ±1	LSB

Integral Non Linearity (INL)

INL is the **maximum** deviation between the ideal output of a DAC and the actual output level (corrected for offset and gain)

INL is often referred to as "Relative Accuracy"

Low max INL (≤1 LSB) is important in high accuracy applications

$$INL \cong \frac{V_n - V_{zero-scale}}{V_{lsh}} - n$$

Resolution		16	Bits
Relative accuracy	Measured by the line passing through codes 485 and 64714	±4 ±12	LSB
Differential nonlinearity	16-bit monotonic	±0.2 ±1	LSB

INL & DNL Graphs

DAC7311 12-BIT LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE (-40°C)

Comparing Specifications

	LSB	Volts	% FSR	PPM
LSB	***	$\frac{\mathit{LSB}}{2^N} {\times} V_\mathit{REF}$	$\frac{LSB}{2^N} \times 100$	$\frac{LSB}{2^N} \times 10^6$
Volts	$\frac{V \times 2^N}{V_{REF}}$	***	$rac{V}{V_{\it REF}}{ imes 100}$	$\frac{V}{V_{\it REF}}{ imes}10^6$
% FSR	$\frac{\%}{100}$ × 2 N	$\%$ o $ imes V_{\it REF}$	***	% × 10 ⁴
PPM	$\frac{PPM}{10^6} \times 2^N$	$rac{PPM}{10^6}{ imes}V_{ extit{ ilde{REF}}}$	PPM 10 4	***

Total Unadjusted Error

- Static specifications likely carry the largest impact on total unadjusted error in any system
 - INL/DNL
 - Offset Error
 - Gain Error
- Reference accuracy in any data conversion is key
- A root-sum-squared approach is appropriate to summarize the TUE

$$TUE = \sqrt{inlError^2 + gainError^2 + offsetError^2}$$

Total Unadjusted Error

$$TUE = \sqrt{inlError^2 + gainError^2 + offsetError^2}$$

- DAC8562 16 bit, 0-5V output
 - INL Error: +/- 12 LSB 12 LSBs
 - Offset Error: +/- 4mV
 52 LSBs
 - Gain Error: +/- 0.15% FSR98 LSBs
- Probable Maximum TUE = +/-111 LSBs, +/-8.5mV, or 0.17% FSR
- Typical TUE = +/- 23 LSBs, 1.78 mV, or 0.0356%
 FSR
- Absolute Maximum TUE = 150 LSBs

Calibration & Total Unadjusted Error

$$TUE = \sqrt{inlError^2 + gainError^2 + offsetError^2}$$

- INL errors are unavoidable
- Digital calibration can remove offset & gain error
- First, calibrate offset error by taking a two point measurement to determine system offset error

$$AdjustedCode = Code + OffsetCalCode$$

 Next, determine the required scalar to set the offset corrected DAC output full scale output to the ideal full scale output voltage

$$AdjustedCode = GainCalRatio * Code + OffsetCalCode$$

- TUE is greatly improved by removal of offset & gain error
 - Max calibrated TUE: 12 LSBs, 0.91mV, or 0.01% FSR
 - Typ calibrated TUE: 4 LSBs, 0.305mV, or 0.006% FSR

Presentation Agenda

- TI DAC Landscape & Precision DACs
- The Ideal DAC
- DAC Architectures
 - String
 - -R2R MDAC
 - -R2R BDAC
- Static DAC Specifications
 - TUE & Calibration
- Dynamic Specifications
- Closing the Loop

Settling Time

Settling Time in Real Devices

Time (2µs/div)

DYNAMIC PERFORMANCE(2)	Timo (Zgo/div)		
Settling time	To ±0.003% FS, $R_L = 10k\Omega$, $C_L = 50pF$, code 04000h to 3C000h	5	μs

DAC9881

Settling Time in Real Devices

150mV Output Voltage Step Code 0x02000 to 0x04000

Glitch

Glitch-impulse = $G_2 - G_1$

a.) Two Lobe Glitch

Glitch-impulse = G₁ b.) Single Lobe Glitch

Glitch Sources

- Two main sources
 - Switches switching!
 - When the switches transition the current has to take a new path
 - Switch synchronization
 - The switches will not be perfectly synchronized
- Major Carry Transition
 - Code changes that cause a majority of switches to transition in an R-2R or MDAC
 - This is the worst case possible
 - $-0111 \rightarrow 1000$
 - $-0100 \rightarrow 1011$

Major Carry Transition

Major Carry Transition

Code to Code Glitch

0x1FFFF to 0x20000

(major carry transition)

0x20000 to 0x20001

Glitch vs. DAC structure

- R2R DAC DAC9881
 - Simultaneous switching
 - Synchronization
 - Large glitch amplitude
 - Settling of Internal Amplifier
- String DAC DAC8562
 - Simple switch network
 - Tap into resistor string
 - Single Lobe glitch
 - Small glitch amplitude

Graphs: 500ns/div 50mV/div

Glitch Reduction - RC Filter

- Attenuate glitch at cost of increased settling time
- Easy to implement
 - Cost effective
 - Uses minimal board space
- Voltage loss across resistor in network
 - Voltage dependent on output load
- RC value determined by period of the glitch
 - Period = $2\pi RC$
 - Select 3dB point a decade prior to glitch

$$F_C = \frac{1}{2\pi RC}$$

Glitch Reduction - RC Filter cont.

Texas Instruments DAC8881

Conditions: Vref = 5V, AVDD = 5V, Code transition 0x7FFF to 0x8000

R = 20 ohm, C = 100nF

Glitch Reduction – Sample and Hold

- Eliminate Glitch from R2R ladder
 - No increase to settling time
 - Small transient from S/H switch
- Complex implementation Strict timing
- Cost, board space, etc.

Glitch Reduction – S/H cap cont.

DAC7644 – without S/H amp

Glitch Reduction – S/H cap cont.

DAC7654 – Includes S/H amp

Glitch Reduction Techniques

- RC filter
 - Easy to implement
 - Not a complete removal of the glitch
 - Decrease glitch amplitude
 - Increased settling time

- Switch cap solution
 - Completely remove glitch
 - Strict timing
 - Difficult to implement
 - Slower update rates

DAC Output Noise sources

- Internal resistor string
- Output amplifier
- Reference voltage

Internal Resistor String Noise

Internal Resistor String Noise

Thermal Resistor noise

$$e_n = \sqrt{4 \times K \times T \times R \times B}$$

- K = Boltzman constant = 1.3806503e-23
- T = Temperature = 300 deg K for room temperature
- R = Equivalent Resistance of Resistor String
- B = Normalized Bandwidth = 1 Hz

Resistor Noise

Verification using DAC8801 current output DAC

- Simple R2R resistor string
- No Internal Op amp
- Full scale equivalent resistance = 5K

$$e_n = \sqrt{4 \cdot 1.38e - 23 \cdot 300 \cdot 5000 \cdot 1} = 9.1 \frac{nV}{\sqrt{Hz}}$$

$$\sqrt{2 \bullet e_n^2} = \sqrt{9.1^2 + 9.1^2} = 12.87 \frac{nV}{\sqrt{Hz}}$$

Does not include feedback resistor

Use Sum squared to account for feedback resistor

PARAMETER	CONDITIONS	DAC8801			UNITS
		MIN	TYP	MAX	UNITS
Total harmonic distortion	V _{REF} = 5 V _{PP} , Data = 3FFFh, f = 1 kHz		-105		dB
Output spot noise voltage	f = 1 kHz, BW = 1 Hz		12		nV/√Hz

DAC Amplifier Output Noise

DAC Amplifier Output Noise

Source: Art Kay, Op Amp Noise 2006

Output Amplifier Noise

- For external output amplifiers, follow Art Kay's noise presentation for complete noise analysis
 - In general, search for amplifiers with low 1/f noise
- For the internal case, a typical DAC datasheet does a lot of this work for you
 - Usually a number provided in the electrical characteristics table
 - Sometimes a figure to illustrate the noise spectrum

AC PERFORMANCE ⁽²⁾						
DAC output noise density	T _A = 25°C, at mid-scale input, f _{OUT} = 1 kHz	90	nV/√Hz			
DAC output noise	T _A = 25°C, at mid-scale input, 0.1 Hz to 10 Hz	2.6	μV_{PP}			

Voltage Reference Selection

Noise Contribution

Internal vs. External Voltage References

<u>Device</u>	Initial Accuracy (%)	Tmp. Coe	Tmp. Coef. (ppm/C)		uracy (%)
	Max	Тур	Max	Тур	Max
MSP430F167	+/-4		+/-100		+/-4.60
TLV5638	+/-4				
DAC7678	+/-0.2	+/-5	+/-25	+/-0.23	+/-0.35
DAC8562	+/-0.2	+/-4	+/-10	+/-0.22	+/-0.26
DAC8564/8	+/-0.1	+/-2	+/-5	+/-0.11	+/-0.13
REF30xx	+/-0.2	+/-20	+/-50	+/-0.32	+/-0.50
REF31xx	+/-0.2	+/-10	+/-20	+/-0.26	+/-0.32
REF32xx	+/-0.2	+/-4.0	+/-7.0	+/-0.22	+/-0.24
REF33xx	+/-0.15	+/-30	+/-30	+/-0.33	+/-0.33
REF50xx	+/-0.05	+/-2.5	+/-3.0	+/-0.07	+/-0.09

Voltage Reference Selection

- Design issues to consider
 - Noise
 - Initial Accuracy
 - Power Consumption
 - Source and Sink Current Capability
 - Temperature Drift
 - Long Term Stability

Basic Selection Criteria

- Primary Criteria¹
 - Resolution
 - Channels
 - Interface
 - Current/Voltage Output
 - Settling Time
 - DNL, INL, Offset, Gain Errors
 - Output Voltage Range
 - Power
 - Package

- Secondary Criteria²
 - Reset to mid-scale/zero scale
 - Supply Range
 - Operating Temp Range
 - Integrated Reference (reference drift, accuracy, drive capability)
 - Glitch Energy
 - IntegratedAmplifiers/Multiplying DACs

Conclusion

- What does your Application look like?
- Leverage architectural tendencies to narrow the DACs under consideration
- Understand how specifications are measured, what they mean, and how to apply them into application specific circumstances

Precision DAC Applications

Application#1 – ATM, Currency Counters Automated fair collectors

IR LED Driver

Application#2 – Digital Walkie-Talkie

Automatic Power Control
PA Bias Control

TCXO Bias (PLL Ref Clock)

- ✓ DAC Key Care about
 - √ 12-bit accuracy
 - Multichannel
 - ✓ Low power, area

Architecture → String

Application#3 – Power Supply Testing DC Load

Application#4 – High End Analog Output Modules

Create V/I Outputs

- DAC Key Care about
 - √ 16-bit
 - √ Single/Dual/Quads
 - ✓ <0.05% Total Error

Architecture → R2R, High performance string

Application#5 – Pressure Sensors

Create 4-20mA current

- DAC Key Care about
 - √ 16-bit
 - √ <0.05% Total error
 </p>
 - ✓ Low Power

Architecture → High performance string

Application#6 – MRI Machines

Control Coil gradient

- / DAC Key Care about
 - ✓ ≥16-bit
 - ✓ High Accuracy, speed
 - ✓ ≤1LSB-INL

Architecture → MDACs, Unbuffered R2R

Application#7 – Tunable State Variable Filter

ω (Frequency) Control

Q (Quality Factor) Control

A_v (Gain) Control

- ✓ DAC Key Care about
 - √ 8-bit, Multichannel
 - ✓ Tunable resistor
 - ✓ Matching

Architecture → MDACs, Unbuffered R2R

68

Application#7 – Tunable State Variable Filter

