

Analog Fundamentals of the ECG Signal Chain

Prepared by

Matthew Hann,

Texas Instruments

Precision Analog Applications Manager

Presented by

Jose Duenas,

Precision Analog Product Marketing Engineer

1

Objectives

- Introduce Basic ECG Concepts
- Motivate the Need for TINA and SPICE Simulation for ECG Analysis
- Introduce Discrete Analog Functions of the ECG Signal Chain
- Motivate Need for Low Cost Integrated ECG Conditioning System
- Introduce the ADS1298 and Its Embedded ECG Circuitry and Functions

Analog Fundamentals of the ECG Signal Chain

- What is a Biopotential?
- What is ECG?
- The Einthoven Triangle
- Analog Lead Definitions, Derivations, and Purpose
- Modeling the Electrode Interface
- Input Filtering and Defibrillation Protection
- The INA front end
- AC vs. DC coupling
- Right Leg Drive (RLD) Amplifier Selection and Design
- The ECG Shield Drive
- Lead Off Detection
- PACE Detection
- INA post Gain + Analog Filtering
- A/D Conversion Options and Filtering
- ADS129x Introduction, Features, and Advantages

An electric potential measured between living cells

Every cell is like a little battery

Every cell is like a little battery

Every cell is like a little battery

8

Biopotentials from cells — electrodes

A measure of the electrical activity of the heart

11

ECG and blood pressure waves

What is ECG? **Actual ECG-normal**

ECG irregular tracings due to external artifacts

Modeling the electrode interface

Electrical characteristics include a **DYNAMIC** resistance,

capacitance, and offset voltage

15

Lead I RA JA Lead III Lead II UN **Right Leg** Reference, RL

Analog Lead Derivation

ECG Einthoven Triangle, 1907

3 Body **Electrodes**, 3 Derived **Leads** = I, II, III

 $\begin{array}{rll} \textbf{LEAD I} &= \textbf{V}_{LA-RL} - \textbf{V}_{RA-RL} \\ \textbf{LEAD II} &= \textbf{V}_{LL-RL} - \textbf{V}_{RA-RL} \\ \textbf{LEAD III} &= \textbf{V}_{LL-RL} - \textbf{V}_{LA-RL} \end{array}$

Einthoven's Law

In electrocardiogram at any given instant the potential of any wave in Lead II is equal to the *sum* of the potentials in Lead I and III.

The **Wilson Central** (WCT) Provides Chest Lead Reference at Center of Einthoven Triangle

*Drawing Taken From Bioelectromagnetism, Jaako Malmivuo and Robert Plonsey

The Wilson Central is the AVERAGE potential between RA, LA, and LL

Chest Lead Signals Provide Different Information at Different Cross-Sectional Angles

Different Chest Leads Provide: *Unique ECG Signature *Enhanced Pattern Recognition *Isoelectric Point @ V₃-V₄

Augmented Leads Derived via WCT to Provide Enhanced Vector Information

✓ Each lead provides
 unique information about
 the ECG Output Signal

 ✓ Multiple Angles Give a Better Than 2-D *Picture* of the ECG Output

✓ AVR, AVL, AVF derived
 via midpoint of 2 limbs
 (resistor divider) with
 Respect to 3rd limb

Analog Lead Derivation IEC60601-2-51—Diagnostic

Table 109 - Connection of ELECTRODES for a particular LEAD

LEAD	Positive electrode	Negative ELECTRODE	
I	L	R	
II	F	R	
	F	L	
Vi (I = 16)	Ci (I = 16)	L, R, F	
-a∨R ^a	L, F	R	
aVR	R	L, F	
aVL	L	R, F	
aVF	F	R, L	
^a Other negative LEADS may be used too.			

Standards	Electrodes Needed
1 Lead	LA, RA

3 Lead	LA, RA, LL
6 Leads	LA, RA, LL
12 Leads	LA. RA. LL. V1-6

Table 110 - LEADS and their identification (nomenclature and definition)

Code 1 LEAD Nomenclature ^a	Definition ^b	Name of the LEAD
I	I = L-R	
П	II = F-R	Bipolar extremity LEADS
III	III = F-L	(Limb LEADS Einthoven)
aVR	aVR = R-(L+F)/2	Augmented LEADS Goldberger
a∨L	aVL = L-(R+F)/2	(From one of the ELECTRODES on the limbs to a REFERENCE POINT ACCORDING TO Goldberger)
a∨F	aVF = F-(L+R)/2	
V1	V1 = C1-CT	
V2	V2 = C2-CT	Unipolar chest LEADS Wilson
V3	V3 = C3-CT	From one of the ELECTRODES on the chest to the CENTRAL TERMINAL ACCORDING TO WILSON (CT) CT= (L+R+F)/3
V4	V4= C4-CT	
V5	V5 = C5-CT	
V6	V6 = C6-CT	

Different Lead Combinations Reveal Axis Deviation

Mean QRS Vector Points Toward Area of Infarction (Damage)

Different Lead Combinations Reveal Axis Deviation

ECG Input Filtering, Defibrillation Protection, and Isolation

Example: LEAD I Protection with Input Filtering

System Block Diagram

System Block Diagram

Key Features of the INA Front End

Important

Input Bias Current
Input Impedance
Input Current Noise
Input Voltage Noise
Power Consumption
DC/AC CMRR

Less Important

Input Offset Voltage
Input Offset Voltage Drift
Gain Error
Nonlinearity
PSRR

*DC Errors such as VOS are swamped out by the Offsets Introduced by the **Skin-Electrode** Contacts

Ideal Simulation Circuit with Current and Voltage Noise Sources

Simulation Showing Output-Referred Total RMS Noise vs. Bandwidth (G = 1-10)

TINA Simulations Showing Output-Referred ECG Signal (G = 1-10)

What is the MAX gain on the INA When Using a DC Removal Circuit?

(1) Electrode Offset MAX = +/- 300mV

(2) Swing of INA = V(+) - 50mV

(3) Integrator Compliance = (ECGp + ECGn + VOS + VOS_{electrode})* Gain < V_{CC} - V_{ref}

Simulation Circuit with Ideal INA and $V_{ref} = 2.5V$ as Integrator Input

ECG + Integrator Output of INA vs. Gain for $V_{ref} = 2.5V$

If it is Advantageous to Maximize Gain with a Low Noise INA up Front, Why not AC Couple?

TINA Simulation Circuit to Show AC-Coupled INA Gain Sweep

The INA Front End INA Gain = 1-1000 with $V_{REF} = 2.5V$ AC Coupled

Ę.

What is CMRR? Why is it Important in ECG?

What is CMRR? Why is it Important in ECG?

50/60Hz Common Mode Simulation Circuit with 1µF Coupling Capacitors Mismatched

Plot of CMRR vs. Frequency for .01 - .5% Coupling Capacitor Mismatch

Plot of ECG Response to 5Hz CM Input Signal (0%-.5%) CC Mismatch

Plot of ECG Response to 50/60 Hz CM Input Signal

The Right Leg Drive Amplifier

The RL Drive Amplifier Serves 2 Purposes: (1) Common Mode Bias (2) Noise Cancellation

Simulation Circuit for Response to 50/60 Hz CM Noise

The RL Drive Amplifier TINA

Simulation with NO RL Drive; CM Noise is Coupled to Output

TINA Simulation with RL Drive; Output Noise is Reduced

Analyzing the RLD Amplifier Loop

ē.

Simulation Circuit for CMRR of RLD Loop

CMRR Plots vs. Gain in RLD Loop

RL Drive Stability Simulation Circuit

RL Drive Simulation Showing Instability in the RLD Feedback Loop

Using RLD Simulation to Compensate for 1/Beta Variation With Electrode Resistance

£____

RL Drive Stability Simulation Circuit of Feedback #1

ē.

RL Drive Stability Simulation Circuit of Feedback #2

58

INSTRUMENTS

ē.

RLD Stability Circuit with Compensated Amplifier

RL Drive Stability Simulation of Separate Feedback

Paths

Compensated RLD Circuit Simulation of 1/Beta and AOL Intersection

Gain and Phase Margin Plots of Compensated RLD Amplifier

Step Response of RLD Amplifier and ECG Output

Shield drive eliminates leakage to ECG Inputs

Capacitance of cable can be 500 pF to 1.5 nF

• Isolation resistor Necessary for improved EMI/RFI filtering

ē.

AC Stability Simulation Circuit for OPA333 as Shield Driver

AOL + 1/Beta Response of OPA333 Shield Drive and 1nF Cable Capacitance

TINA Simulation Circuit for Stabilized OPA333 Shield Driver

TINA Simulation Shows > 45 Degrees Phase Margin for OPA333 Shield Driver

Lead Off Detection

Lead Off Detection

Lead Off Differentiates a Bad Lead from an Arrythmia

•Pull up Resistors Force +IN to Comparator High When Lead is Removed

•Comparator Voltage triggers ALERT

•Lead Off Indicative of "Weak Lead"

Lead Off Detection

TINA Simulation Circuit for Lead Off Detect

TEXAS INSTRUMENTS

Lead Off Detection

TINA Simulation Results for Lead Off Detect

Pace Detection

Pace Detect

Pace Maker Pulse Specifications

a_p = Amplitude (2-700mV)

a_o = Overshoot

d_p = Pulse Width (.1-100us)

t₀ = Overshoot Time Constant (4-100ms)

Rise Time = 100us

Pace Detect

Pace Detect Circuitry in Parallel with ECG Signal Path

Pace Detect

PACE Signal Extracted From PACE + ECG Waveform

77

Choice of High Gain + SAR ADC OR Low Gain + 24 bit Delta Sigma ADC

a) Using a low resolution ADC

b) Using a high resolution ADC

SAR + filter Option Results in Same Input-Referred Noise as the DC Coupled Delta-Sigma, but at what COST?

INA + Post Gain Amp With Differential Noise Source

80

Noise Coupled Differentially Translates to Output

Use Filter Pro to Design a 50/60 Hz Notch

ECG Circuit with Added 50/60Hz Notch + Post Gain

Line Cycle Sampling with SAR converter on 'T' Wave at Common Frequency Multiples of 50/60Hz

Comparison of Delta Sigma ADC vs. Lower Resolution SAR ADC

Using a low resolution ADC00

Block Diagram of INA Gain, Simple RC Filter, and ADS1258

A single ADC in the MUX approach does not necessarily mean lower power due to the higher speed needed to perform MUX switching

ADS1298 Introduction

The ADS129x

The All-In-One ECG Chip

Input Amplifier Specifications for Single Channel AFE

- Noise is optimized with amplifier gain=4
- The 4uV p-p includes the crest factor of 6.6 to convert rms to pk-pk
- Noise is referred to the input

Programmable Data Rates for Low Power and High Resolution Modes

DR BITS OF CONFIG1 REGISTER	OUTPUT DATA RATE (SPS)	–3dB BANDWIDTH (Hz)	PGA GAIN = 1	PGA GAIN = 2	PGA GAIN = 3	PGA GAIN = 4	PGA GAIN = 6	PGA GAIN = 8	PGA GAIN = 12
000	32000	8398	521/5388	260/2900	173/1946	130/1403	87/917	65/692	44/483
001	16000	4193	86/1252	43/633	29/402	22/298	15/206	11/141	7/91
010	8000	2096	17/207	9/112	6/71	4/57	3/36	3/29	2/18
011	4000	1048	6.4/48.2	3.4/25.9	2.417.7	1.9/15.4	1.5/11.2	1.3/9.6	1.1/8.2
100	2000	524	4.2/29.9	2.3/15.9	1.6/11.1	1.3/9.3	1.0/7.5	0.9/6.6	0.8/5.8
101	1000	262	2.9/18.8	1.6/10.4	1.1/7.8	0.9/6.1	0.7/4.9	0.6/4.7	0.6/3.9
110	500	131	2.0/12.8	1.1/7.2	0.8/5.2	0.7/4.0	0.5/3.3	0.5/3.3	0.4/2.7

Table 3. Input-Referred Noise (μ Vrms/ μ V_{PP}) in High-Resolution Mode 5V Supply and 4V Reference

Table 4. Input-Referred Noise (μ Vrms/ μ V_{PP}) in Low-Power Mode 5V Supply and 4V Reference

DR BITS OF CONFIG1 REGISTER	OUTPUT DATA RATE (SPS)	–3dB BANDWIDTH (Hz)	PGA GAIN = 1	PGA GAIN = 2	PGA GAIN = 3	PGA GAIN = 4	PGA GAIN = 6	PGA GAIN = 8	PGA GAIN = 12
000	16000	4193	526/5985	263/2953	175/1918	132/1410	88/896	66/681	44/458
001	8000	2096	88/1201	44/619	29/411	22/280	15/191	11/139	7/83
010	4000	1048	17/208	9/103	6/62	4/52	3/37	2/25	2/16
011	2000	524	6.0/41.1	3.3/23.3	2.2/15.5	1.8/12.3	1.3/9.8	1.1/7.8	0.9/6.5
100	1000	262	4.1/27.1	2.3/14.8	1.5/10.1	1.2/8.1	0.9/6.0	0.8/5.4	0.7/4.4
101	500	131	2.9/17.4	1.6/9.6	1.1/6.6	0.9/5.9	0.7/4.3	0.6/3.4	0.5/3.2
110	250	65	2.1/11.9	1.1/6.6	0.8/4.6	0.6/3.7	0.5/3.0	0.4/2.5	0.4/2.2

MUX Selects Inputs to Front End PGA

- Normal Electrode
- Input Shorted
- RLD Input
- VDD
- TMP Sensor
 - Input Test Signal

Wilson Central Terminal

*The Same Amplifiers Used to Derive the WCT Voltage Can be Switched to Obtain the Augmented Leads

Input Amplifier and RLD Selection

*Compensation of RLD Amplifier is Based on the Gain Selected and the Number of Amplifiers in the Loop

Cext

ADS129x

RLD Selection—8 Channel Case

ADS129x RLD with Multiple Devices

*With Multiple Devices the RLD Output Becomes the Amplified Difference Between RLD REF and the Summation of Multiple Lead Outputs

97

Pace Detect

Lead Off Detection

Respiration Testing Measures the Change in Thoracic Impedance with Inhalation of O₂

*AC Current is injected into the Patient's Thorax and the Change in Voltage is Measured to Calculate Change in Impedance

Respiration Functions

Changing Phase Allows Measurement/Compensation for Complex Impedance Phase Shifts Between Modulator and Demodulator

Internal Voltage Reference

Simplified ADS129x internal reference block diagram

The Internal Band Gap Accuracy = 1% Internal REF can be Powered Down VREFP Can Be Supplied Externally

Thank You

Contact Information: hann_matthew@ti.com

Questions?

Acknowledgements

- Beraducci, Mark and Soundarapandian, Karthik. Sbaa160, Application Report: Analog Front End Design of ECG Systems Using Delta-Sigma ADCs. March 2009.
- Brown, John --Burr Brown Strategic Marketer, general information
- Brown, John and Joseph Carr. Introduction to Biomedical Equipment Technology. Prentice Hall Inc. New Jersey. 1981, 1993.
- Dubin, Dale. *Rapid Interpretation of EKG's.* Cover Publishing Company. Fort Myers. 2000.
- Fraden, Jacob. *Handbook of Modern Sensors—Physics, Designs, and Applications.* Advanced Monitors Corporation. San Diego. 2004.
- Franco, Sergio. Design with Operational Amplifiers. McGraw-Hill Inc. NY. 1988.
- Fredericksen, Thomas M. Intuitive Operational Amplifiers. McGraw-Hill Inc. 1988.
- Graeme, Toby, Huelsman. *Operational Amplifiers—Design and Applications*. McGraw-Hill Publishing Company. New York. 1971.
- Gray, Paul R. and Meyer, Robert G. *Analysis and Design of Analog Integrated Circuits.* John Wiley & Sons. New York. 1977
- Green, Timothy Linear Applications Manager, general information
- Kuehl, Thomas--Linear Applications Engineer, general information
- Norton, Harry N. Sensor and Analyzer Handbook. Prentice Hall Inc. New Jersey. 1982.
- Soundarapandian, Karthik--Over sampling Manager, general information

