
 1

Sensorless Trapezoidal Control of BLDC Motors
using BEMF Integration (InstaSPIN

TM
-BLDC)

Jon Warriner D3 Engineering

Abstract

This application note presents a solution for sensorless control of Brushless DC motors using the
TMS320F2803x microcontrollers. TMS320F280x devices are part of the family of C2000 microcontrollers
which enable cost-effective design of intelligent controllers for three phase motors by reducing the system
components and increasing efficiency. Using these devices, it is possible to realize precise control
algorithms.

This application note covers the following:

 Incremental build levels based on modular software blocks.
 Experimental results

Table of Contents

System Overview .. 2

Hardware Configuration .. 6

Software Setup Instructions to Run InstaSPIN_BLDC Project ... 8

Incremental System Build ... 9

Version 1.0 – Aug 2011

 2

System Overview

This document describes the “C” real-time control framework used to demonstrate the trapezoidal control
of BLDC motors. The “C” framework is designed to run on TMS320C2803x based controllers on Code
Composer Studio. The framework uses the following modules

1
:

Macro Names Explanation

BLDCPWM / PWMDAC PWM and PWMDAC Drives

InstaSPIN
TM

-BLDC InstaSPIN-BLDC Library Functions

PID_GRANDO PID Regulators

RC Ramp Controller (slew rate limiter)

RC3 Ramp down Module

SPEED_PR Speed Measurement (based on sensor signal period)

IMPULSE Impulse Generator

MOD6_CNT_DIR Mod 6 Counter with direction control
1
 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each macro

In this system, the sensorless trapezoidal control of BLDC motors will be experimented with and will
explore the performance of the speed controller. The BLDC motor is driven by a DRV830x Three Phase
PWM Motor Driver. The TMS320F2803x control card is used to generate three pulse width modulation
(PWM) signals. The motor is driven by an integrated power module by means of BLDC specific PWM
technique. Phase voltages and DC bus return current (Ifb Ret) is measured and sent to the
TMS320x2803x via analog-to-digital converters (ADCs).

InstaSPIN_BLDC project has the following properties:

C Framework

System Name
Program Memory Usage

2803x

Data Memory Usage
1

2803x

InstaSPIN_BLDC 4597 words
2
 1200 words

1
Excluding the stack size

2
Excluding “IQmath” Look-up Tables

 3

CPU Utilization of Trapezoidal BLDC Control (Sensorless)

Name of Modules * Number of Cycles

BLDCPWM 105

InstaSPIN
TM

-BLDC Library 277

PID 91

RC 29

RC3 26 √

SPEED_PR 42

IMPULSE 17 √

MOD6_CNT_DIR 9

Contxt Save, Virtual Timer etc. 153

Pwm Dac (optional)

DataLog (optional)

Total Number of Cycles 749 **

CPU Utilization @ 60 Mhz 25%

CPU Utilization @ 40 Mhz 37.4%

* The modules are defined in the header files as “macros”
** At 20 kHz ISR freq.
√ Not included in the speed loop

System Features

Development /Emulation Code Composer Studio v4.1 (or above) with Real Time debugging

Target Controller TMS320F2803x

PWM Frequency 20kHz PWM (Default), 60kHz PWMDAC

PWM Mode Symmetrical with 4 quadrant switching and programmable dead-band.

Interrupts ADCINT1 EOC

Peripherals Used PWM 1 / 2 / 3 for motor control

PWM 5A, 6A, 6B & 4A for DAC outputs

ADC A2 for low side DC bus return current sensing, B7, A7 and B4 for
Bemf sensing

SPI-B for communication and configuration of the DRV8301 (DRV8302
uses discrete digital and analog I/O for configuration)

 4

The overall system implementing a 3-ph sensorless BLDC control is depicted in Figure 1

PWM-1

F28035 MCU

CAN

UART

I2C

CPU

32 bit

A

B

PWM-2
A

B

PWM-3
A

B

PWM-4
A

B

CAP-1

PWM-1A

PWM-2A

PWM-3A

ADC

12 bit

Vref

1

2

3

4

5

16

2H

3H

2L

3L

2H 3H

2L 3L

1

2

3

1H

1L

DRV830x
DC-Bus

spare

3 Phase

Motor

Voltage

sensing

Inc.

Encoder

/ Taco

QEP /

CAP

3

12V

QEP
3

HOST

Phase

Current

Feedback

3

DC Bus

Current

Feedback

DC Bus

Voltage

Feedback

PWM-1B

PWM-2B

PWM-3B

Figure 1 A 3-ph BLDC drive implementation

 5

The software flow is described in the Figure 2 below.

Interrupt INT1

TINT0_ISR

Save contexts and clear

interrupt flags

Execute ADC

conversion (BEMF and

current)

Execute Mod6 counter

module

Execute InstaSPIN-

BLDC modules

Execute PID module

Execute BLDC PWM

DRV

Update Datalog and

Virtual Timer

Restore context Return

c_ int0

Initialize S /W

modules

Initialize time

bases

Confg ADC EOC

and enable INT1

Initialize other

system and

module parameters

Background

loop
INT 1

Figure 2 Software Flowchart

 6

Hardware Configuration (DRV830x-HC-C2-KIT)

Please refer to the DRV830x-HC-EVM How to Run Guide and HW Reference Guide found:

C:\TI\controlSUITE\development_kits\DRV830x-HC-C2-KITv*\~Docs

for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup
instructions are captured below for quick reference.

HW Setup Instructions

1. Unpack the DIMM style controlCARD and verify that the DIP switch settings match Figure 3

Figure 3 controlCARD DIP Switch Settings

2. Place the controlCARD in the connector slot of J1. Push vertically down using even pressure from
both ends of the card until the clips snap and lock. (to remove the card simply spread open the
retaining clip with thumbs)

3. Connect a USB cable to connector J1 on the controlCARD. This will enable isolated JTAG emulation
to the C2000 device. LD4 should turn on. If the included Code Composer Studio is installed, the
drivers for the onboard JTAG emulation will automatically be installed. If a windows installation
window appears try to automatically install drivers from those already on your computer. The
emulation drivers are found at http://www.ftdichip.com/Drivers/D2XX.htm. The correct driver is the
one listed to support the FT2232.

4. Connect a power supply (60V max) to the PVDD and GND terminals of the DRV830x-HC-EVM. Now
LED1 and LED3 should turn on. Notice the control card LED would light up as well indicating the
control card is receiving power from the board.

5. Note that the motor should be connected to the OUTA, OUTB and OUTC terminals after you finish
with the first incremental build step. For more details on motor wiring please refer to the datasheet
provided with your motor.

 7

 CAUTION: The inverter bus capacitors remain charged for a long time after the high
power line supply is switched off/disconnected. Proceed with caution!

For reference the pictures below show the jumper and connectors that need to be connected for this lab.

Figure 4 DRV830x-HC-EVM Connections and Settings

 8

Software Setup Instructions to Run InstaSPIN_BLDC Project
Please refer to the “Generic Steps for Software Setup for DRV830x-HC-C2-KIT Projects” section in the
DRV830x-HC-EVM How To Run Guide

C:\TI\controlSUITE\development_kits\DRV830x-HC-C2-KITv*\~Docs

This section goes over how to install CCS and set it up to run with this project.

The remainder of this application note will specifically discuss a hardware configuration
consisting of a DRV8301-HC-EVM with a TMS320F2803x controlCARD installed. The process for
other configurations, such as a DRV8302-HC-EVM, would be similar except the corresponding
build configuration would need to be chosen in Code Composer Studio.

The default configuration of this project is optimized for running low to medium current motors.
The gain of the DRV830x built-in current sense amplifiers is set to 40 giving a measurable current
range of +/-20.625A. The gain can be changed by choosing the desired #define for DRV_GAIN in
the file BLDC_Int-Settings.h. Note that there are four possible settings for the DRV8301 while the
DRV8302 is limited to gains of 10 or 40.

Select the InstaSPIN_BLDC as the active project. Verify that the build level is set to 1, and then right click
on the project name and select “Rebuild Project”. Once build completes, launch a debug session to load
the code into the controller. Now open a watch window and add the variables shown in the table below
and select the appropriate Q format for them.

Figure 5 Watch Window Setup

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location C:\TI\ControlSUITE\developement_kits\DRV830x-HC-C2-KITv*\InstaSPIN_BLDC Click on

Continuous Refresh button on the top left corner of the graph tab to enable periodic capture of data
from the microcontroller.

 9

Incremental System Build for InstaSPINTM-BLDC project

The system is gradually built up in order so that the final system can be confidently operated. Eight
phases of the incremental system build are designed to verify the major software modules used in the
system. The table below summarizes the modules testing and using in each incremental system build.

Testing modules in each incremental system build

Software Module Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

PWMDAC_MACRO √√ √√ √ √ √ √ √

RC3_MACRO √√ √ √ √ √ √ √

MOD6_CNT_DIR_MACRO √√ √ √ √ √ √ √

IMPULSE_MACRO √√ √ √ √ √ √ √

BLDCPWM_MACRO √√ √ √ √ √ √ √

ADC Offset Calibration √√ √ √ √ √ √

InstaSPIN
TM

-BLDC Lib √√ √ √ √ √

SPEED_PR_MACRO √√ √ √ √ √

PID_MACRO (IDC) √√ √ √

RC_MACRO √

PID_MACRO (SPD) √√ √

Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

 10

Level 1 Incremental Build

Assuming the load and build steps described in the “DRV830x-HC-C2-KIT How To Run Guide” completed
successfully, this section describes the steps for a “minimum” system check-out which confirms operation
of system interrupts, some peripheral & target independent modules and one peripheral dependent
module. Open BLDC_Int-Settings.h and select level 1 incremental build option by setting the
BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.
In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 DfuncStartup: for changing the PWM duty cycle in per-unit.

The key explanations and steps are given as follows:

 The start-up and the initial speed up of the BLDC motor is controlled by the RMP3CNTL module. This
module generates a ramp down function. This ramp down feature of RMP3CNTL module allows speed
up of the BLDC motor from stand still in an open loop configuration (like a stepper motor).

 One of the inputs to RMP3CNTL module, DesiredInput, determines the final speed at the end of the
motor speed up phase. This input is provided from the system using the system variable
CmtnPeriodTarget. User initializes this system variable with appropriate value depending on the type of
the BLDC motor. The second input to RMP3CNTL module is rmp3_dly, which is also user initialized by
using the system variable RampDelay. This determines the rate at which the motor speeds up. The
output of RMP3CNTL module is Out, which provides a variable time period gradually decreasing in
time. The Out terminal is initialized by the system variable CmtnPeriodSetpt which sets the initial
startup speed of the motor. CmtnPeriodTarget and CmtnPeriodSetpt are both initialized by the #defnes
for RAMP_END_RATE and RAMP_START_RATE respectively. These #defines are located in
BLDC_Int-Settings.h and set the initial and final speed of the startup ramp. The #defines allow these
quantities to be entered in units of RPM. The second output of RMP3CNTL module is
Ramp3DoneFlag, which, when set to 0x7FFF, indicates the end of the ramp down (or motor speed up)
phase.

 Out is used to provide the input Period for the IMPULSE module. This module generates periodic
impulses with period specified by its input Period.

 The DATALOG module is used to view the output variables of the modules. The initialization required to
perform this, is done in the level 1 incremental build initialization routine. During this initialization, one of
the inputs of DATALOG module is configured to point to mod1.Counter. Thus Out signal is shown in the
graph in CCS.

 The periodic impulse output, Out, is applied to the input TrigInput of the MOD6_CNT module. The
output of this module is Counter, which can assume one of the 6 possible values 0, 1, 2, 3, 4 or 5. This
output changes from one state to the next when a trigger pulse is applied to the input. This Counter is
finally used as the pointer input, CmtnPointer, for the module BLDC_3PWM_DRV. These 6 values of
the pointer variable, CmtnPointer , are used to generate the 6 commutation states of the power inverter
driving the BLDC motor. The duty cycle of the generated PWM outputs (according to the 6 commutation
states) during the motor speed up phase are determined by the input DfuncStartup.

 11

 Now, compile/load/run program with real time mode and set “EnableFlag” to 1 in the watch window.
Initially when RMP3CNTL ramps down, Period (the period of Out) will also gradually go down. At the
end of ramp period (when Out equals DesiredInput) Period will become constant and Ramp3DoneFlag
will set to 0x7FFF.

 Check MOD6_CNT_DIR output variable Counter in the watch window and graph window. This will vary
between 0 and 5.

 Use a scope to check the PWM outputs controlled by the peripheral dependent module
BLDC_3PWM_DRV.

 The output states of all the 6 PWM outputs will be such that together they generate the 6 commutation
states of the power inverter driving the BLDC motor.

 After verifying this take the controller out of real time mode (disable), reset the processor and then
terminate the debug session.

While running this level, the Graph windows should look similar to Figure 6

Figure 6 Graph Windows for Build Level 1 (a) mod6 counter, (b) BemfA, (c) BemfB and (d)BemfC

While running this level, the PWM outputs should appear as in Figure 7

 12

Figure 7 The PWM outputs , PWM 1 (Yellow) , PWM 2 (Pink) and PWM 5 (Green), PWM 6 (Blue)

 13

RampDelay

CmtnPeriodTarget DesiredInput
Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO

Counter State

DFuncStartup

Watch

Window

Level 1 Incremental System Build Block Diagram

RC3

MACRO
Duty

Level 1 describes the steps for a “minimum” system check-out which confirms operation of system interrupts, some peripheral &

target independent modules and one peripheral dependent module.

 14

Level 2 Incremental Build

Assuming the previous section is completed successfully, this section verifies the open loop motor
operation and current measurement. Open BLDC_Int-Settings.h and select level 2 incremental build
option by setting the BUILDLEVEL to LEVEL2 (#define BUILDLEVEL LEVEL2). Now Right Click on the
project name and click Rebuild Project. Once the build is complete click on debug button, reset CPU,
restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named
“IsrTicker” will be incrementally increased as seen in watch windows to confirm the interrupt working
properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 DfuncStartup: for changing the PWM duty cycle in per-unit.

The key steps can be explained as follows:

Open Loop Test

 Compile/load/run program with real time mode. Now the motor is running with default DFuncStartup
value.

 If the open loop commutation parameters are chosen properly then the motor will gradually speed up
and finally run at a constant speed in open loop commutation mode.

 The final speed of the motor will depend on the parameter CmtnPeriodTarget. The lower the value for
this variable the higher will be the motor final speed. Since the motor Bemf depends on its speed, the
value chosen for CmtnPeriodTarget will also determine the generated Bemf.

 The average applied voltage to the motor during startup will depend on the parameter DfuncStartup.
The parameters DfuncStartup and CmtnPeriodTarget should be such that, at the end of motor speed up
phase, the generated Bemf is lower than the average voltage applied to motor winding. This will prevent
the motor from stalling or vibrating. The motor speed up time will depend on RampDelay, the time
period of the main sampling loop and the difference between CmtnPeriodTarget and CmtnPeriodSetpt.

Note: This step is not meant for wide speed and torque range operation; instead the overall system is
tested and calibrated before closing the loops at a certain speed under no-load.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

After verifying this, set EnableFlag to 0, take the controller out of real time mode (disable), reset

the processor (see “DRV830x-HC-C2-KIT How To Run Guide” for details). Note that after
each test, this step needs to be repeated for safety purposes. Also note that improper shutdown might
halt the PWMs at some certain states where high currents can be drawn, hence caution needs to be
taken.

 15

During running this level, the waveforms in the CCS graphs should appear as follows:

Figure 8 Graph Windows for Build Level 2 (a) mod6 counter, (b) BemfA, (c) BemfB and (d)BemfC

 16

RampDelay

CmtnPeriod

Target
DesiredInput

Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO

Counter State

DFuncStartup

Watch

Window

3-Phase

Inverter

ADCB7ADCResult4

ADC

CONV

ADC

HW

Bemf A

ADCA7

ADCB4

ADCA2

ADCResult5Bemf B

ADCResult6Bemf C

ADCResult7I_Shunt

BLDC

Motor

Level 2 Incremental System Build Block Diagram

Duty

RC3

MACRO

Dlog 1

Dlog 2

Dlog 3

Dlog 4

CCS Graph

Window

DLOG

MACRO

Level 2 verifies the open loop motor operation and current measurement.

PWMDAC
MACROScope

PwmDacPointer0

PwmDacPointer1

PwmDacPointer2

DAC 1

DAC 2

DAC 3

Pwm5A

Pwm6A

Pwm6B

DAC 4

Low
Pass
Filter
Cct

Pwm4A PwmDacPointer3

Scope

 17

Level 3 Incremental Build

Assuming the previous section is completed successfully, this section performs automatic calibration of
the current sensor offsets.

Open BLDC_Int-Settings.h and select level 3 incremental build option by setting the BUILDLEVEL to
LEVEL3 (#define BUILDLEVEL LEVEL3). Now right click on the project name and click Rebuild Project.
Once the build is complete click on debug button, reset CPU, restart, enable real time mode and run. Set
“EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will now keep on increasing,
confirm this by watching the variable in the watch window. This confirms that the system interrupt is
working properly.

In the software, the key variables to be adjusted are summarized below.

 IDC_offset: for changing the DC Bus current sensor offset in per-unit.
 BemfA_offset: for changing the Phase A BEMF offset.
 BemfB_offset: for changing the Phase B BEMF offset
 BemfC_offset: for changing the Phase C BEMF offset

Note that especially the low power motors draw low amplitude current after closing the speed loop under
no-load. The performance of the control algorithm becomes prone to phase current offset which might
stop the motors or cause unstable operation. Therefore, the phase current offset values need to be
minimized at this step. The offsets will be automatically calculated by passing the measured currents
through a low-pass filter to obtain the average value when zero current is flowing through the sensors.

Initialize IDC_offset to 0.5 in the code and initialize the three BEMF offsets to 0,0, recompile and run the
system and watch the offset values from the watch window. Ideally the measured phase current offsets
should be 0.5 and the BEMF offsets should be 0.0. Note the value of Ithe offsets in the watch window and
change their values in the code by going to:

_iq BemfA_offset = _IQ15(0.0);

_iq BemfB_offset = _IQ15(0.0);

_iq BemfC_offset = _IQ15(0.0);

_iq IDC_offset = _IQ15(0.5000);

and changing IQ15(0.5000) offset value (e.g. IQ15(0.5087) or IQ15(0.4988)

depending on the value observed in the watch window). Try to enter an offset with 4 significant digits.

These offset values will now be used for the remaining build levels.

Note: Piccolo devices have 12-bit ADC and 16-bit ADC registers. The AdcResult.ADCRESULT

registers are right justified for Piccolo devices; therefore, the measured phase current value is firstly left
shifted by three to convert into Q15 format (0 to 1.0), and then converted to ac quantity (± 0.5) following
the offset subtraction. Finally, it is left shifted by one (multiplied by two) to normalize the measured phase
current to ± 1.0 pu.

Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out of
realtime mode and reset.

 18

Level 4 Incremental Build

Assuming the previous section completed successfully, this section verifies the peripheral independent
InstaSPIN

TM
-BLDC library functions. Open BLDC_Int-Settings.h and select level 4 incremental build

option by setting the BUILDLEVEL to LEVEL4 (#define BUILDLEVEL LEVEL4). Now Right Click on the
project name and click Rebuild Project. Once the build is complete click on debug button, reset CPU,
restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named
“IsrTicker” will be incrementally increased as seen in watch windows to confirm the interrupt working
properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 DfuncStartup: for changing the PWM duty cycle in per-unit.

The key steps can be explained as follows:

 Compile/load/run program with real time mode. Now the motor will gradually speed up and finally run at
a constant speed in open loop commutation mode with default DFuncTesting value.

 View the MOD6_CNT_DIR output as well as the InstaSPIN
TM

-BLDC output variables Sense, Vphase
and V_int from either from graphs window or scope.

 The Sense variable will indicate which of the three motor phases inactive. This BEMF of this phase is
pointed to by the Vphase variable. The V_int variable shows the integrated BEMF that will be used for
commutation in the next build-levels.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

During this level, the graph waveforms should look similar to Figure 9

Figure 9 Graph Windows for Build Level 4 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 19

RampDelay

CmtnPeriod

Target DesiredInput
Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4Vag
ADCA7

ADCB4

ADCA2

ADCResult5Vbg

ADCResult6Vcg

ADCResult7

BLDC

Motor

Level 4 Incremental System Build Block Diagram

RC3

MACRO

Duty

DfuncStartup

ADC

CONV

ADC

HW

V_int

Comm_Trig

Vphase

Vint_lockout

InstaSPIN-

BLDC

State

Level 4 verifies the peripheral independent InstaSPIN-BLDC library functions

Int_Threshold

 20

Level 5 Incremental Build

Assuming the previous section is completed successfully, this section verifies the sensorless motor
commutation based on InstaSPIN

TM
-BLDC. Open BLDC_Int-Settings.h and select level 5 incremental

build option by setting the BUILDLEVEL to LEVEL5 (#define BUILDLEVEL LEVEL5) and save the file.
Now Right Click on the project name and click Rebuild Project. Once the build is complete click on debug
button, reset CPU, restart, enable real time mode and run. Set “EnableFlag” to 1 in the watch window.
The variable named “IsrTicker” will be incrementally increased as seen in watch windows to confirm the
interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 DfuncStartup: for changing the startup PWM duty cycle in per-unit.
 DFuncTesting: changing the PWM duty function in per-unit.
 InstaSPIN_BLDC1.Int_Threshold: for changing the BEMF integration threshold in per-unit

The key steps can be explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 The switch over from open loop commutation to closed loop commutation occurs when
Ramp3DoneFlag is set to 0x7FFFFFFF indicating the end of motor speed up phase. Until this switch
over occurs MOD6_CNT module is triggered by the output of IMPULSE module. After the switch over,
MOD6_CNT module is triggered by the output of the InstaSPIN

TM
-BLDC module.

 When the speed up phase is over, vary the motor speed by changing DFuncTesting. This varies the
power delivered to the motor and hence it’s speed.

 Adjust InstaSPIN_BLDC1.Int_Threshold to achieve the desired commutation.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

Figure 10 Graph Windows for Build Level 5 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 21

Level 5 Incremental System Build Block Diagram

DFuncTesting

DfuncStartup

RampDelay

CmtnPeriod

Target
DesiredInput

Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4

Vag

ADCA7

ADCB4

ADCA2

ADCResult5

Vbg

ADCResult6

Vcg

ADCResult7

BLDC

Motor

RC3

MACRO

Duty

ADC

CONV

ADC

HW

Comm_Trig

V_int

Vphase

Vint_lockout

State

InstaSPIN-

BLDC

Ramp3DoneFlag=0x7FFF

Level 5 verifies the closed loop motor operation based on InstaSPIN-BLDC and the resulting commutation trigger

points.

Ramp3DoneFlag=0x7FFF

RC

MACRO
SetPointValueTarget Value

Vint_Threshold

 22

Level 6 Incremental Build

Assuming the previous section is completed successfully, this section verifies the closed current loop and
current PI controller. Open BLDC_Int-Settings.h and select level 6 incremental build option by setting the
BUILDLEVEL to LEVEL6 (#define BUILDLEVEL LEVEL6). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 RampDelay (Q0 format): for changing the ramping time.
 CmtnPeriodTarget (Q0 format): for changing the targeted commutation interval.
 CmtnPeriodSetpt (Q0 format): for changing the initial startup commutation interval.
 CurrentStartup: for changing the startup current in per-unit.
 IRef: changing the running current in per-unit.
 InstaSPIN_BLDC1.Int_Threshold: for changing the BEMF integration threshold in per-unit

The steps are explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable IRef to specify the reference current for the PI controller. The PI controller will
start to regulate the DC bus current and hence the motor current. Gradually increase/decrease the
command current (IRef value) to change the torque command and adjust PI gains. Note that the speed
is not controlled in this step and a non-zero torque reference will keep increasing the motor speed.
Therefore, the motor should be loaded using a brake/generator (or manually if the motor is small
enough) after closing the loop. Initially apply relatively light load and then gradually increase the amount
of the load. If the applied load is higher than the torque reference, the motor cannot handle the load and
stops immediately after closing the current loop.

 Verify the motor speed (both pu and rpm) calculated by SPEED_PR. View the following variables in the
Watch Window.

o speed1.Speed (pu)

o speed1.SpeedRpm (rpm)

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

 23

Figure 11 Graph Windows for Build Level 6 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 24

Level 6 Incremental System Build Block Diagram

RampDelay

CmtnPeriod

Target
DesiredInput

Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4
ADCA7

ADCB4

ADCA2

ADCResult5

ADCResult6

ADCResult7

BLDC

Motor

RC3

MACRO

Duty

VIRTUAL

TIMER

ADC

CONV

ADC

HW

Ramp3DoneFlag=0x7FFF

Ref

IRef

PID

 MACRO

Idc Reg.

Fdb

SPEED_PR

MACRO

TimeStampSpeed

Level 6 verifies the closed current loop and current PI controller.

Vag

Vbg

Vcg

Comm_Trig

V_int

Vphase

Vint_lockout

State

InstaSPIN-

BLDC

Vint_Threshold

CurrentStartup

Ramp3DoneFlag=0x7FFF

 25

Level 7 Incremental Build

Assuming the previous section is completed successfully, this section verifies the closed speed loop and
speed PI controller. Open BLDC_Int-Settings.h and select level 7 incremental build option by setting the
BUILDLEVEL to LEVEL7 (#define BUILDLEVEL LEVEL7). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 SpeedRef (GLOBAL_Q format): for changing the reference Speed in per-unit.

The steps are explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable SpeedRef to specify the reference speed for the PI controller PID_REG3. The
SpeedLoopFlag is automatically activated when the PI reference is ramped up from zero speed to
SpeedRef. Once this is done, the PI controller will start to regulate the motor speed. Gradually increase
the command speed (SpeedRef value) to increase the motor speed.

 Adjust speed PI gains to obtain the satisfied speed responses, if needed.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

Figure 12 Graph Windows for Build Level 7 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 26

Level 7 Incremental System Build Block Diagram

DFuncStartup

RampDelay

CmtnPeriod

Target DesiredInput
Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4

Vag

ADCA7

ADCB4

ADCA2

ADCResult5

Vbg

ADCResult6

Vcg

ADCResult7

BLDC

Motor

RC3

MACRO

Duty

ADC

CONV

ADC

HW

Comm_Trig

V_int

Vphase

Vint_lockout

State

InstaSPIN-

BLDC

Ramp3DoneFlag=0x7FFF

Ref PID

 MACRO

Spd Reg.

Fdb

SPEED_PR

MACRO

TimeStampSpeed

SpeedRed

Level 7 verifies the closed speed loop and speed PI controller.

Ramp3DoneFlag=0x7FFF

VIRTUAL

TIMER Int_Threshold

 27

Level 8 Incremental Build

Assuming the previous section is completed successfully, this section verifies the cascaded closed speed
and current loops. Open BLDC_Int-Settings.h and select level 8 incremental build option by setting the
BUILDLEVEL to LEVEL8 (#define BUILDLEVEL LEVEL8). Now Right Click on the project name and
click Rebuild Project. Once the build is complete click on debug button, reset CPU, restart, enable real
time mode and run. Set “EnableFlag” to 1 in the watch window. The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

 SpeedRef (GLOBAL_Q format): for changing the reference Speed in per-unit.

The steps are explained as follows:

 Compile/load/run program with real time mode.

 The motor will gradually speed up and finally switch to closed loop commutation mode.

 Now use the variable SpeedRef to specify the reference speed for the PI controller PID_REG3. The
SpeedLoopFlag is automatically activated when the PI reference is ramped up from zero speed to
SpeedRef. Once this is done, the PI controller will start to regulate the motor speed. Gradually increase
the command speed (SpeedRef value) to increase the motor speed.

 Adjust speed PI gains to obtain the satisfied speed responses, if needed.

 Bring the system to a safe stop as described below by setting EnableFlag to 0, taking the controller out
of realtime mode and reset.

Figure 13 Graph Windows for Build Level 8 (a) mod6 counter, (b) V_int, (c) Vphase and (d)Vag

 28

Level 8 Incremental System Build Block Diagram

RampDelay

CmtnPeriod

Target DesiredInput
Out

Ramp3DoneFlag

Period

Ramp3Delay

IMPULSE

MACRO
Out TrigInput

BLDC

PWM

DRV

EV

HW

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

MOD6_CNT

MACRO
Counter State 3-Phase

Inverter

ADCB7

ADCResult4

Vag

ADCA7

ADCB4

ADCA2

ADCResult5

Vbg

ADCResult6

Vcg

ADCResult7

BLDC

Motor

RC3

MACRO

Duty

ADC

CONV

ADC

HW

Comm_Trig

V_int

Vphase

Vint_lockout

State

InstaSPIN-

BLDC

Ramp3DoneFlag=0x7FFF

Ref PID

 MACRO

Spd Reg.

Fdb

SPEED_PR

MACRO

TimeStampSpeed

SpeedRed

Level 8 verifies the cascaded closed speed and current loops.

VIRTUAL

TIMER Int_Threshold

Ref PID

 MACRO

Idc Reg.

Fdb
CurrentStartup

Ramp3DoneFlag=0x7FFF

Out
Out

