

TMS470M Safety Features

STC

DBIST

CNTRL

CPU1

ROM

Clock

controller

ESM

PCR

Test

controller

CPU_nRESET

ERR

ROM

 interface FSM

 Clock cntrl

STC BYPASS/

ATE Interface

REG Block

&

Compare

Block
 VBUSP

 interface

• Provides High Diagnostic Coverage

• Significantly Lowers S/W and Runtime Overhead

• No SW BIST (Built In Self Test) Code overhead in Flash

• Simple to configure and start BIST via register

CPU Self Test Controller (STC/LBIST)

Flash / RAM ECC Protection

Cortex-M3

Flash
RAM

• ECC evaluated in the Memory Wrapper Logic

– Single Bit Error Correction and Double Bit Error Detection

64 Data Bits

64b Inst.

ECC Logic

3 stage pipeline

64 Data

8 ECC Bits

ECC Logic

64 Data Bits

8 ECC Bits

Safety Aspects of Network Interfaces

• Networked peripherals (DCAN, and SCI/LIN) are considered grey-channel /
black-channel communications

• In such communications application level protocols (time redundancy, CRC in
data packet, etc.) are necessary

• When such assumption is made, the Dangerous Undetected Failure from the
network is effectively not measurable (<0.001 Failure In Time (FIT))

• Detailed fault data available upon request

Error Signaling Module (ESM)

INTEN INTLVL

Low-Level

Interrupt Handling

High-Level

Interrupt Handling

Errors for

Errors for

Low-Level

Interrupt

High-Level

Interrupt

F
ro

m
 m

o
d
u
le

s

T
o
 in

te
rru

p
t m

a
n
a
g
e
r, M

3
V

IM

error _group1

error_group2

TMS470M ESM Features

• ESM functions

– Up to 64 error channels, divided into 2 different groups

• 32 channels with configurable output for interrupt and error
behavior

• 32 channels with predefined output for interrupt and error behavior

– Error forcing capability for self test

• ESM hardware

– Hardware assistance for prioritizing error sources

Additional Safety Features

• On chip voltage regulator (VReg)

– Regulates core supply voltage (VCC) from digital I/O supply (VCCIOR)

– Required operating range
• 3.0-3.6 V (nom=3.3 V) for VCCIOR

• 1.4-1.7 V (nom=1.55 V) for VCC

• Clock monitoring

– Oscillator monitor

• Detects failure if oscillator frequency exceeds defined min/max
thresholds

• Selectable hardware response on oscillator fail

– PLL slip detector

• Indicates PLL slip if phase lock is lost

• Selectable hardware response on PLL slip

• Internal backup „low power oscillator‟ (LPO) clock source

– External clock prescaler

• Allows external monitoring of CPU clock frequency

• CPU with dedicated Memory Protection Unit (MPU)

Programmable Memory BIST (MBIST)

• All on-chip RAMS
can be tested

• Run at startup

• Multiple Memory Test
Algorithms

• Detects multiple failure
modes

PBIST

Controller

Data

Logger

Ext
block

Cfg
block

VBUS I/f

Tester I/f

RAM

Data

path/

Collars

To / From

Memories

(RAM

groups)

ROM
block

ROM I/f

Functional

Read/Write

Datapath

LAB 1: TMS470M Safety Features Demo

Lab1: TMS470M Safety MCU Demos

TMS470M Architecture Overview:

Memory Map, Clocking, Exceptions

Architecture Overview

Bus Matrix masters

Peripherals Arbitration logic

Memory related logic

D
C

A
N

s

M
ib

S
P

Is

M
ib

A
D

C

H
E

T

G
IO

E
C

P

Peripheral Bus

RTI SYS

Bus Matrix

CRC RAM

Peripheral Library

L
IN

/S
C

I

DAP
Cortex M3

FLASH

D S

VIM

N
V

IC

MPU

• Cortex M3 Features

– 32 bit CPU

– 3 stage pipeline

– Harvard Architecture

– ARM v7M instruction set
• Thumb-2 mode (16/32-bit instruction)

– 32x32 single cycle multiplier

– Single cycle Shift and ALU operation

– Hardware Divider

– 3 x 32-bit bus interface (AHB)

– Built in MPU
– 1 background region

– 8 memory regions

– Built in NVIC
– 2 interrupt levels

• NMI

• Vectorized IRQ

• Performance

– 1.25 DMIPS/MHz

I

Memory Map

0x00000000

0x0007FFFF

0x08000000

0x0800FFFF

0xFE000000

0xFEFFFFFF

0xFF000000

0xFFF7FFFF

0xFFF80000

0xFFFFFFFF

0x00400000

0x0043FFFF

0x08400000

0x0840FFFF

0x00080000

0x0009FFFF

0x00440000

0x0044FFFF

0x08080000

0x0808FFFF

0x08100000

0x0810FFFF

0x00000000

0x0005FFFF

0x08000000

0x08005FFF

0xFE000000

0xFEFFFFFF

0xFF000000

0xFFF7FFFF

0xFFF80000

0xFFFFFFFF

0x00400000

0x0042FFFF

0x08400000

0x08405FFF

0x00080000

0x0008FFFF

0x00440000

0x00447FFF

0x08080000

0x08085FFF

0x08100000

0x08105FFF

TMS470MF066xx TMS470MF04xxx/03xxx

SYSTEM Modules

Peripherals

CRC

RAM ECC

RAM CLEAR

RAM SET

RAM (64kB)

Flash Bank 1 ECC

Flash Bank 0 ECC

Flash Bank 1 (128kB)

Flash Bank 0 (512kB)

SYSTEM Modules

Peripherals

CRC

RAM ECC

RAM CLEAR

RAM SET

RAM (24kB)

Flash Bank 1 ECC

Flash Bank 0 ECC

Flash Bank 1 (64kB)

Flash Bank 0 (384kB)

Clock Sources and Domains

MibSPI,

SPI
LIN/SCI

ADC

HET

External

Clock

CAN (DCAN1 and DCAN2)

AVCLK1

CAN Baud Rate

<= 1MBaud

16MHz OSCIN

SPI Baud Rate

<= VCLK/2

LIN Baud Rate

<= 20kB/s

SCI Baud Rate

<=115.2 kB/s

ADCLK

<= 20 MHz

HET

Loop

CLK

HET

HiRes

CLK

ECLK

<= 20 MHz

OSC

/1..64 X92..184 /1..8 /1..32

LPO

/1,2,4,8

/1..16

/1..1024

Prop_

Seg

Phase

_Seg2

Phase

_Seg1

/1,2,…256 /2,3,..224
/1,2,..65536

0

1

4

5

VCLK (to Peripherals)

VCLK2 (to HET)

GCLK (to CPU)

HCLK (to SYSTEM)

RTICLK (to RTI)

LF OSC

HF OSC

OSCOUT

OSCIN

(5-20MHz)

FMzPLL

/1..16

HRP

/1..64

•/20..25

/1,2,…256

Frequency Modulated PLL (FMzPLL)

REFCLKDIV PLLDIV

PLLMUL

ODPLL PLLCTL2

PLLCTL1

PLLCLK, fPLL OSCIN, fOSCIN

Where

NR – Reference Clock Divider ratio (REFCLKDIV)

NF – PLL feedback divider ratio (PLLMUL), 92 .. 184

ODPLL – PLL output divider ratio (ODPLL), 1 .. 8

R – PLL Divider Ratio (PLLDIV), 1 .. 32

Configure FMzPLL using PLLCTL1(0x70) and PLLCTL2 (0x74) registers of System frame1 (0xFFFF_FF00)

The output frequency of the FMzPLL is given by:

NR

/1..64

NF

X92..184

ODPLL

/1..8

R

/1..32

PLL

FMzPLL Calculator

• Can be used to determine PLLCTL1 and 2 register values based on the entered PLL and FM option settings

• Can be used to determine the PLL and FM settings based on the entered PLLCTL1 and 2 register values

Low Power Modes

• Doze Mode

– Highest power consumption among low power modes

– Fastest from wake up event to full-speed operation

– Main oscillator remains active and clocks RTI module

– Wake up from RTI or external sources (CAN, LIN, SCI, GIO,
reset)

– On chip Vreg in LPM1

• Sleep Mode

– Lowest power consumption among low power modes

– Slowest from wake up event to full-speed operation

– All clock sources and clock domains are disabled

– Wake up only from external sources (CAN, LIN, SCI, GIO,
reset)

– On chip Vreg in LPM1

Low Power Modes Summary

Vreg High freq.

oscillator

Internal low

freq. clock

RTI

clock

GCLK HCLK VCLKP VCLK2 VCLKA1 PLL Flash

banks

Flash

pumps

LPM1 on on on off off off off off off off off

Vreg LPO Internal low

freq. clock

RTI

clock

GCLK HCLK VCLKP VCLK2 VCLKA1 PLL Flash

banks

Flash

pumps

LPM1 off off off off off off off off off off off

Doze Mode:

Sleep Mode:

Reset Sources

• Power-on Reset

– Asserted by external voltage supervisor or by internal voltage regulator

• Oscillator fail

– Asserted by internal clock monitor when enabled by software

• CPU Reset

– Asserted by CPU self-test controller after LBIST operation completes

• Software Reset

– Asserted by software writing to the exception control register

• External Reset

– Asserted by external circuitry driving the warm reset (nRST) signal LOW

• Debug Reset

– Asserted by ICEPICK JTAG module

TMS470M: Flash Tools

nowECC

<return_value> nowECC [options] -i <input_file> [-o <output_file>]

• Generates ECC data for program flash

• Command-line executable

• Return value = 0 indicates no error during operation

– Separate error codes to differentiate each type of error

• Input_file is only required parameter

– Can be Extended Tektronix, Intel Hex, Motorola-S, COFF or ELF
format

• Output_file specifies the name of the output file to be generated

– If no name is specified, ECC is appended to input file specified

Options for Flash Programming

• On-board programming using nowFlash/Code Composer Studio v4.x

– Requires JTAG connection

– Emulators Supported:

• Blackhawk BHUSB560M

• Spectrum Digital XDS510PP, XDS510PP+, XDS510USB,
XDS560RUSB

• Signum JTAGjet

• Texas Instruments SPI525, XDS100v2, XDS560

• On-board programming via customer boot-loader code

– Must use Texas Instruments released API routines

– Multiple communication interfaces can be used

– Necessary to validate program and erase routines

• Off-board programming

– Single-device or Concurrent programming

– Supports high degree of automation

nowFlash

• PC-based software tool: GUI + command line executable

• Communicates with microcontroller via JTAG

• Can be used to program, erase, read, or verify flash memory

• Also supports execution of custom code out of RAM (from command line
only)

Flash Application Programming Interface

• Distributed only as an object library file

• Supports flash operations out of on-chip RAM

• Supports operations at max specified device clock frequency

• Library routines for

– Blank check

– Compaction

– Erase

– Program zeros

– Program data

– Calculate checksum

– Verify

• Routines also manage ECC

TMS470M: Real-Time Interrupt Module (RTI)

RTI: Block Diagram

RTI: Main Features

• Two independent counter blocks for generating different time bases

• Each block consists of

– One 32-bit prescale counter

– Two 32-bit free-running counters

– Two capture registers for capturing the prescale and free-running counters

• Four compare interrupts

– Each can use either of the two available free-running counters

– Automatic update of compare values to minimize CPU intervention

• Two counter-overflow interrupts

– Generated when a free-running counter overflows and goes to zero

• Four compare interrupts

• Digital Watchdog

TMS470M: Cortex M3 Vectored Interrupt

Manager (M3VIM)

M3VIM: Interrupt Handling Block Diagram

M3VIM: Block Diagram

Minimum 32 lines, maximum 128, TMS470M 64

M3VIM: Main Features

• VIM Hardware
– Dedicated Vector Interrupt interface to Cortex M3 CPU

– INTNMI (non-maskable interrupt) and INTISR (maskable interrupt)
connection on Cortex M3.

– 48 interrupt request lines

– Up to 8 levels of nesting.

• VIM Functions
– Map interrupt request to interrupt channel via programming.

– Provides programmable priority through interrupt request mapping

– Prioritizes the interrupt channels to the CPU

– Provides the CPU with the address of the interrupt service routine (ISR)

M3VIM: Why M3VIM needed (M3VIM vs NVIC)?

• NVIC is part of M3 core. Therefore its configuration can‟t be changed

without redesigning the entire core

• NVIC doesn‟t support non-nested mode (required by some

applications)

• NVIC doesn‟t support SW mode of previous VIMs. M3VIM is needed

to do this

• M3VIM is more flexible than M3 NVIC

M3VIM: Channel Mapping - Default State

• Peripherals are mapped to corresponding channel

• All channels are disabled except for Channel 0 and Channel 1

• Note - INTNMI (Non-Maskable Interrupt): Channel 0 and Channel 1 are called NMI Channels and are non-
maskable. These channels receive INT0 and INT1 and can not be changed

Mapping of

Peripheral Interrupt

Request to Channel

Enable of

Request

Channels

Switch Channel To

NMI or IRQ

Priority

high

low

Peripheral0

.

.

.

CHANMAP0

CHANMAP1

CHANMAP2

CHANMAP3

CHANMAP4

CHANMAP5

CHANMAP62

CHANMAP63

CHAN0

CHAN1

CHAN2

CHAN3

CHAN4

CHAN5

CHAN62

CHAN63

Peripheral1

Peripheral2

Peripheral3

Peripheral4

Peripheral5

Peripheral62

Peripheral63

.

.

.

.

.

.

REQMASK.2

REQMASK.3

REQMASK.4

REQMASK.5

REQMASK.62

REQMASK.63

.

.

.

NMI/ISR.2

NMI/ISR.3

NMI/ISR.4

NMI/ISR.5

NMI/ISR.62

NMI/ISR.63

.

.

.

INTNMI

INTISR[x]

NMI

NMI

M3VIM: Input Channel Management

Write to NMIPR.0 and NMIPR.1 have no effect as channels 0 and 1 are not maskable

M3VIM: Wake-up Generation

Wake-up interrupt generation

detail of the interrupt

request input

(to global clock module)

M3VIM: Vector Table

Vector table starts at 0x0000 0000 by default. This address can be changed in NVIC

M3VIM: Interrupt nesting

• Disabled at reset

• Up to 8 nested interrupts allowed

• Can be disabled/enabled by writing NEST_ENABLE in NESTCTRL
register

• Nesting statistics is reported in NETSTAT register. This is including
highest level reached and overrun.

• If disabled, only INTISR[0] can interrupt core. No other ISRs can
interrupt currently executed ISR.

• INTNMI will still interrupt INTISR[0] even if M3VIM is in nesting
disabled mode.

• If enabled, 8 levels of nesting are supported through INTISR[7:0]
signals.

M3VIM: Interrupt nesting example

Interrupt 1 is generated

Interrupt 1 is served

Interrupt 2 is generated

Interrupt 2 is served

Interrupt 2 is higher priority than Interrupt 1. Nesting enabled

Interrupt 1 is generated

Interrupt 1 is served

Interrupt 2 is generated

Interrupt 2 is served

Interrupt 2 is higher priority than Interrupt 1. Nesting disabled

TMS470M: General-Purpose I/O (GPIO)

GPIO: Block Diagram

External

pin

GIODSETx

GIODOUTx

GIODINx

GIOPDRx

GIODCLRx

High-level-
interrupt

handling

Low-level-

interrupt

handling GIOLVLSET

High priority

Low priority
Interrupt enable

Interrupt disable

GIOENASET GIOFLG GIOPOL

Rising edge

Falling edge

To

VIM

To

VIM

V
B

U
S

GIOPULDIS

GIOPSL

GIODIRx

GIOENACLR GIOLVLCLR

GIOINTDET

OPEN

DRAIN

LOGIC

GATES

GPIO: Main Features

• Configurable as Input or Output via Direction Register

• Read/Write Registers

• Set Registers

• Clear Registers

• Separate Input Register

• Pull-up/Pull-down Configurability

• Open Drain Capability

• Interrupt Capability

– Configurable Priority

– Configurable Polarity: rising edge, falling edge, or both edges

TMS470M: High-End Timer (HET)

• User-programmable Timing Co-Processor

• Provides high level and complex timing
functions with low CPU overhead

• 96-bit instruction word RAM with Parity
protection

– 64 Word Instruction RAM for TMS470M066xx

– 128 Word Instruction RAM for TMS470M04x/03x

• Conditional program execution based on pin
conditions and compares

• 16 input/output (I/O) channels (pins) for
complex or classical timing functions such as
capture, compare, PWM, GPIO

– 12 additional internal channels

• Multiple 20-bit virtual counters for timers, event
counters, and angle counters

• High Resolution I/Os and coarse resolutions
implemented by sub loops for multiple
resolution capability

High End Timer (HET)

16 I/O Channels

Host

interface

Address/Data Bus

Timer

RAM

Execution

Unit

Input/

Output

Unit

Compare

25 bit ALU

 Register A, B, T

Instruction Register

Address Register

Interrupt Control

Operation Control

Program RAM Control RAM Data RAM

CPU wait control

Shadow registers Prescaler

Global & prescale control

register

I/O Control

Register
Synchronizers

22 High Resolution

Channels

6 Standard

Resolution Channels

HET: Application Examples

Pulse Width Modulation

• Single / multi channel PWMs

• PWM with synchronous / asynchronous duty

 cycle update

• PWM with synchronous period update

• Phase shift PWM's using RADM64 instruction

Other Features

• Frequency Modulated Output

• Pulse width count (using PWCNT)

• Time stamp (using WCAP)

• Event counter (using ECNT)

• Pulse accumulator example (using ECNT)

• Multi-resolution scheme

Frequency and Pulse Measurements

• Pulse width and period measurement (using

PCNT)

• Period measurement using PCNT in HR mode,

HRshare feature and 64 bit read access with

“auto read/clear” bit set

HET: Timer RAM

• Timer RAM supports

Dual Port Access (one

RAM address may be

written while another

address is read)

• RAM words are 96-bits

wide (3*32bit, program,

control, data)

• Write access by word

(32bit) only

HETDSET

 HET[x]

HETDIR

HETDCLR

HETDOUT

 Timer data out

Timer data in

 HETDIN

Loop

Resolution

Clock

HET: I/O Structure

HETPDR

HETPULDIS

HETPSL

HET Pull Control Logic

HR control logic

HR flags, HR register

HR up / down counter (5 bits)

Timer data in

HR prescale driver

High resolution clock

HR compare data

HET: Instruction Set Overview
Mnemonic Instruction Name Cycles

ACMP Angle Compare 1

ACNT Angle Count 2

ADCNST Add Constant 2

ADM32 Add Move 32 1 or 2

APCNT Angle Period Count 1 or 2

BR Branch 1

CNT Count 1 or 2

DADM64 Data Add Move 64 2

DJNZ Decrement and Jump if Non-Zero 1

ECMP Equality Compare 1

ECNT Event Count 1

MCMP Magnitude Compare 1

MOV32 Move 32 1 or 2

MOV64 Move 64 1

PCNT Period/Pulse Count 1

PWCNT Pulse Width Count 1

RADM64 Register Add Move 64 1

SCMP Sequence Compare 1

SCNT Step Count 3

SHFT Shift 1

WCAP Software Capture Word 1

HET: Command Line Assembler

• Invoking the NHET assembler (hetp.exe): hetp [options] input file

• Options:

– -c32 produces an output file containing assembler directives for the TMS570

 CodeGen Tools

– -hc32 produces a C file and a header file. (used together with the -nx option)

– -nx specifies the x-th HET module on the device (used together with -hc32

 option)

– -l (lowercase L) produces a listing file with the same name as the input file

 with a .lst extension.

– -x produces a cross-reference table and appends it to the end of listing file.

• Example: hetp -hc32 -n0 pwm.het

• Input: pwm.het contains the assembly source of the HET program

• Output: pwm.c provides a C array, which contains the HET

 program opcode

 pwm.h provides a C structure, which allows a simple

 access to the NHET fields from other C code

HET: Time Base

• VCLK2 is used as base clock for the High End Timer

• A 6-bit prescaler dividing the system clock by a user-defined high-resolution
(HR) prescale divide rate (hr) stored in the 6-bit HR prescale factor code (with
a linear increment of codes).

• A 3-bit prescaler dividing the HR clock by a user-defined loop-resolution
prescale divide rate (lr) stored in the 3-bit loop-resolution prescale factor code
(with a power of 2 increment of codes).

High Resolution (HR)

 prescaler (6 bits)
Loop Resolution (LR)

 prescaler (3 bits)
VCLK2

Loop

Resolution

clock

 High

Resolution

clock

Exercise: Using HET as GIO

Overview

• In this project we will:

– Set up the workspace in Code Composer Studio 4 (CCS4)

– Import legacy code into CCS4

– Write code to turn on the LED on HET pin 1

– Build and Deploy our code to the microcontroller

Setting up Code Composer Studio 4

(CCS4)

• Launch CCS4

– Start > Programs > Texas Instruments >

Code Composer Studio v4 > Code

Composer Studio v4

• When it launches, CCS will ask you to select a

workspace, we will chose “C:\myWorkspace”

• Once it loads, go to:

 File > Import > CCS > Legacy CCSv3.3 Projects

• Browse to select the project file

(.\workspace\HET31_gpio_M3\devices\TMS470

M\M3\HET1\HET\HET31_gpio.pjt) NEXT

• Select Code Generation Tools (default should

be ARM, 4.6.3) NEXT

• Select Advanced Options (nothing to select)

Finish

Writing the Code

• On the left hand side in the “C/C++ Projects” explorer, open “HET31_gpio.c”

• Fill in HET register entries to match the comments

void main ()

{

 /* HET 1 Pin Direction - o/p*/

 HET_Ptr->CCDIR = ___________;

 while (1) /* Loop forever... */

 {

 /* Set HET1 output - HET1 --> high*/

 HET_Ptr->CCDSET = ___________;

 delay(10000);

 /* Clear HET 1 output - HET1 --> Low */

 HET_Ptr->CCDCLR= ___________;

 delay(10000);

 }

}

Writing the Code

• Writing a 1 to corresponding channel number will set the channel/pin

to an output. Writing as 0 sets the pin as an input. Bits for channels

without associated IO pins have no affect.

• Writing a 1 to corresponding channel number will set the channel/pin

output high. Writing as 0 has no affect. Bits for channels without

associated IO pins have no affect.

• Writing a 1 to corresponding channel number will clear the

channel/pin output to a low. Writing as 0 has no affect. Bits for

channels without associated IO pins have no affect.

Writing the Code

• Complete the code per the register definitions:

void main ()

{

 /* HET 1 Pin Direction - o/p*/

 HET_Ptr->CCDIR = 0x00000002;

 while (1) /* Loop forever... */

 {

 /* Set HET1 output - HET1 --> high*/

 HET_Ptr->CCDSET = 0x00000002;

 delay(10000);

 /* Clear HET 1 output - HET1 --> Low */

 HET_Ptr->CCDCLR= 0x00000002;

 delay(10000);

 }

}

Compiling the Project

• The code is now complete and we are ready to build our project.

– Go to Project > Build Active Project

• Now that we have our .out file, we need to program the microcontrollers Flash

memory.

Creating a Target Configuration

• Before we begin, we must make a new target configuration, this tells CCS4

what device this project is designed for.

– Target > New Target Configuration

• A new window will appear, we will make our file name “TMS470M.ccsxml”

• Click Finish

Creating a Target Configuration…

• A new tab will appear with a list of emulators and devices.

– Connection: Texas Instruments XDS100v2 USB Emulator

– In the text box labeled “Type Filter Text”, type “TMS470M”.

• This will narrow the search down to just TMS470M devices, select

TMS470MF06607

– Click “Save” on the right

Flash Programming Configuration

• It is possible to make the flash programming process much faster

by only erasing and programming the necessary regions of flash

memory.

– To do so, go to Tools > On-Chip Flash
• If „On-Chip Flash‟ option is not available, select Target > Launch TI

Debugger. Then go to Tools > On-Chip Flash

– In the window that appears on the right, under Erase Options,

check “Necessary Sectors Only (for Program Load)”

Programming the Flash

• We are now ready to program the flash.

– Go to Target > Debug Active Project

– A new window should appear as it programs the flash memory.

• This may take a few moments.

Testing our Program

• Click the green arrow on the debug tab to run our program

Alternatively the program can be run without the debugger connected by:

• Clicking the red square on the debug tab to terminate the debugger‟s connection

• Hit the reset button on the board and the NHET[1] LED should illuminate.

• Congratulations! You have completed the lab.

TMS470M: Multi-Buffered Serial Peripheral

Interface (MibSPI)

SPI / MibSPI Features

• The SPI / MibSPI has the following attributes:

– 16-bit shift register
Receive buffer register

– 8-bit baud clock generator
Serial Clock (SPICLK) I/O pin

– SPI Enable (SPIENA) I/O pin (4 or 5-pin mode only)

– Slave Chip Select (SPISCS[7:0]) I/O pin (4 or 5-pin mode only)

• The SPI / MibSPI allows software to program the following options:

– SPISOMI / SPISIMO pin direction configuration

– SPICLK pin source (external/internal)

– MibSPI pins as functional or digital I/O pins

• For each Buffer, following features can be selected from 4 different
combinations of Formats using the control fields in the buffer:

– SPICLK frequency ([VBUSPCLK]/2 through /256)

– Character length (2 to 16 bits)

– Phase (delay/no delay), Polarity (high or low)

– Enable/Disable Parity for transmit & receive

– Enable/Disable timers for ChipSelect Hold & Setup timers

– Direction of shifting, MSBit first or LSBit first

SPI / MibSPI Features

SPI / MibSPI Features

• In Multibuffer Mode (uses the Multibuffer RAM (up to 64 Buffers)), in addition to
the above, many other features are configurable:

– Number of buffers for each peripheral (or data source/destination) or
group (up to 16 transfer groupings)

– Triggers for each groups, trigger types, trigger sources for individual
groups (up to 14 external trigger sources & 1 internal trigger source)

SPI / MibSPI Additional Features

• Multibuffer RAM Fault Detection (MibSPI only):

– Parity circuit to detect memory faults

• SPI / MibSPI Multiple Chip Select (Master only):

– The SPI / MibSPI supports multi chip select (multiCS) modes

• SPI / MibSPI Internal Loop-Back Test Mode (Master only):

– To test the SPI / MibSPI transmit path and receive path including the buffers and the parity
generator

• SPI / MibSPI Transmission continuous self-test (Master/Slave):

– During data transfer SPI / MibSPI compares its own internal transmit data with its transmit data
on the bus

• SPI / MibSPI Variable Chip Select Setup and Hold Timing (Master only):

– To support slow slave devices a counter can be configured to delay the data transmission after
the chip select is activated

• MibSPI Lock transmission (Multibuffer mode Master only):

– To enable consecutive transfer without being interrupted by another higher priority group
transfer

• SPI /MibSPI Detection of Slave de-synchronization (Master only)

• SPI / MibSPI ENA Signal Time-out (Master only):

– To avoid stalling the MibSPI by a non-responsive slave device

• SPI/MibSPI Data Length Error:

– To detect any mismatch in length of received/ transmitted data with the programmed character
length

• Modulo Count Parallel Mode (Optional mode):

– Special parallel mode to accommodate some specific slave devices

Standard SPI Mode - Block Diagram
VBUS Write VBUS Read

TX SHIFT REGISTER

 TX BUF

 RX BUF

 nSPISCS[7:0]

 nSPIENA

 SPICLK

SPISIMO

SPISOMI P
re

s
c
a
le

C
lo

c
k
 P

o
la

ri
ty

C
lo

c
k
 P

h
a
s
e

CLKMOD

Mode

Generation

Logic

RXOVRN

RXEMPTY

 SPI BUF

SPI CLOCK GENERATION LOGIC

VBUS Clock

INT_LVL

RXOVR INT ENA

RX INT ENA

TX INT ENA

Kernel FSM

TXFULL

RX SHIFT REGISTER

16

16

16

SPIDAT0 SPIDAT1

 16

CHARLEN

16

16

INT_REQ0

INT_REQ1

MibSPI Multibuffer Mode - Block Diagram

VBUS

TX SHIFT REGISTER

Multibuffer Control

 nSPISCS[7:0]

 nSPIENA

 SPICLK

SPISIMO

SPISOMI P
re

s
c
a
le

C
lo

c
k
 P

o
la

ri
ty

C
lo

c
k
 P

h
a
s
e

CLKMOD

Mode

Generation

Logic

 Ctrl Field

SPI CLOCK GENERATION LOGIC VBUS Clock

Kernel FSM

RX SHIFT REGISTER

CHARLEN

16

Sequencer

FSM

 SPIBUF Status

 16

 16

 16

 16

16

Interrupt

Generator

Trigger CONTROL LOGIC

Crtl

Field

TX

Buffer

Stat

Field

RX

Buffer

Multibuffer RAM

 Tick Counter

TRG_SRC[13:0]

 2

INTREQ[1:0]

SPI Kernel

Multibuffer Logic

MASTER SLAVE

(MASTER = 1 ; CLKMOD = 1) (MASTER = 0 ; CLKMOD = 0)

SPIDAT1 SPIDAT0

MSB LSB MSB LSB

WRITE TO SPIDAT1

 SOMI

SIMO

SOMI

SIMO

 SPICLK SPICLK

 nSCS[7:0] nSCS

 nENABLE nENABLE

WRITE TO SPIDAT0

SPICLK

SIMO

SOMI

WRITE TO SPIDAT0 (SLAVE)

nENABLE

WRITE TO SPIDAT1 (MASTER)

nSCS

Transfer Mode - Five Pin Option:

Hardware Handshake

SPI / MibSPI Data Formats

• Data word length must be programmed in master mode and in slave mode

• For words with fewer than 16 bits Data must be right-justified when it is
written to the MibSPI for transmission irrespective of its character length or
word length

• The figure below shows how a 12-bit word (0xEC9) needs to be written to
the transmit buffer in order to be transmitted correctly:

• The Received data is always stored right justified irrespective of the
character length or direction of Shifting and is padded with leading „0‟s
when character length is less than 16.

• SPI / MibSPI supports automatic right-alignment of receive data
independent from shift direction and data word length

• 2 consecutive accesses to the same slave are possible

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 1 1 1 1 0 0 1 0 0 1 x x x x

CLOCK POLARITY = 0, CLOCK PHASE = 0

WRITE SPIDAT

SPICLK

SPISIMO

SPISOMI

SAMPLE IN

RECEPTION

MSB D6 D5 D4 D3 D2 D1

D0

LSB

D6 D5 D4 D3 D2 D1 D7

CLOCK PHASE = 0 (SPICLK WITHOUT DELAY)

 - DATA IS OUTPUT ON THE RISING EDGE OF SPICLK

 - INPUT DATA IS LATCHED ON THE FALLING EDGE OF SPICLK

 - A WRITE TO THE SPIDAT REGISTER STARTS SPICLK

1 2 3 4 5 6 7 8

Clock Options

Multibuffer RAM

• Size depends on the implementation

– Number of buffers: 0..63

• Divided into different groups with
individual configuration

• For each group a trigger event can be
chosen

– One shot or continuous option

– Trigger event conditions can be
set up (e.g. rising edge)

• Up to 15 trigger sources are available

– External events, tick counter,
buffer array management

• Interrupt generation

– Upon finishing transfer group

– Suspend (provide new data or
consume received data)

Buffer 0

Buffer 1

Buffer 17

Buffer 18

Buffer 31

Buffer 32

Buffer 63

Transfer group0 :
18 buffers

PSTART0 = 0

Transfer group1 :
14 buffers

PSTART1 = 18

Next (3rd) transfer group

OR (if last possible transfer group is used)

LPEND = 32

Buffers 32 .. 63 are unused or undefined

Example for a 32 buffers dual transfer group (64buffer RAM size)

tC2TDELAY = (C2TDELAY / VCLK) + 2

tC2EDELAY = (C2EDELAY /

SPICLK)

tT2CDELAY = (T2CDELAY / VCLK) + 1

Timing Setup – Delay Register (SPIDELAY)

SCSx

ENAx

SPICLK

VBUSPCLK

SOMI

tT2EDELAY = (T2EDELAY /

SPICLK)

CSHOLD = 1 (held active/ dotted line)

CSHOLD = 0 (set CS high after transmission)

 WDELAY

DATA

