

VS1005g - Audio Processing Platform IC

Analog Hardware Features

- Three channels of 24-bit audio ADC
- Two 24-bit audio DACs
- Stereo earphone driver for 30 Ω load
- internal microphone amplifiers
- Stereo FM radio receiver with RDS
- 10 bit ADC, 3-5 exteranal inputs
- Operation from single power supply, four programmable internal regulators

Digital Hardware Features

- 100 MIPS VS_DSP⁴ processor core
- 128 kB program RAM (32 kWord)
- 128 kB data RAM (64 kWord)
- Protected 8 Mbit FLASH (Optional)
- USB 2.0 High Speed (480 Mbit/s) Device/Host
- I2S and SPDIF digital audio interfaces
- NAND FLASH interface with EEC
- SD Card interface
- 2 SPI bus interfaces
- 10BaseT Ethernet controller
- UART interface
- All digital pins are user configurable for general purpose IO
- Flexible clock selection, default operation from 12.288 MHz
- Internal PLL clock multiplier for digital logic
- RTC with battery backed memory
- Reed-Solomon error correction
- HW support for debug with VSIDE via JTAG

Firmware and MegaLib Features

- Decoders: MP3, WMA, Ogg Vorbis, AAC, HE-AAC, FLAC, WAV PCM
- Encoders: MP3, Ogg Vorbis, WAV PCM
- File I/O for SD cards and NAND flash
- FM tuner and RDS decoder
- USB host and slave libraries
- Graphical display with resistive touch panel
- Extensive audio DSP library
- IP stack of Ethernet
- Flexible boot options
- Extensive customization with VSIDE

Applications

- Portable Recorders
- Digital Docking Stations
- MP3 Players
- Internet Radio
- Wireless Headphones
- Audio Co-processor

Overview

VS1005 is a flexible audio platform device. It is built around VS_DSP⁴, which is a powerful DSP (Digital Signal Processor) core. The digital interfaces provide flexible access to external devices in stand alone application and flexible digital audio data inputs and outputs when the device is used as an audio signal processor in more complex systems. The analog interfaces provide high quality audio inputs and outputs and the control ADC can be used for example for interfacing a resistive touch panel.

VS1005 has an embedded FLASH memory of 8 Mbits (1 MBytes) for customization by VLSI, customers or third parties. The firmware and hardware are designed to completely prevent access to the FLASH in protected mode. After programming, VS1005 can be booted from the embedded memory as a fully customized stand-alone audio processor.

Product is offered in six different variants. See section 3. for details.

Figure 1: vs1005 photo

Contents

VS	S1005 Front Page 1					
1	Discl	aimer	7			
2	Defin	itions	7			
3	Produ	uct Variants	7			
4	Chara	acteristics & Specifications	7			
	4.1	Absolute Maximum Ratings	7			
	4.2	Recommended Operating Conditions	8			
	4.3	Analog Characteristics of Audio Outputs	9			
	4.4	Analog Characteristics of Audio Inputs	10			
	4.5	SAR Characteristics	10			
	4.6	FM Characteristics	10			
	4.7	Analog Characteristics of Regulators	11			
	4.8	Analog Characteristics of VHIGH voltage monitor	12			
	4.9	Analog Characteristics of CVDD voltage monitor	12			
	4.10	Digital Characteristics	12			
5	Packa	age and Pin Descriptions	13			
	5.1	Packages	13			
	5.2	Pin Assignments	15			
	5.3	Vs1005 Pin Descriptions	16			
		5.3.1 PCB Layout Recommendations	18			
6	Exam	nple Schematic	19			
7	VS10	05 General Description	20			
	7.1	VS1005 Internal Architecture	21			
		7.1.1 Regulator Section	21			
		7.1.2 IO Section	22			

CONTENTS

		7.1.3	Digital Section	22
	7.2	Analog Se	ection	24
8	Oscil	lator and	Reset Configuration	25
9	Firm	ware Oper	ation	26
	9.1	SPI Boot		26
	9.2	NAND FL	ASH Probe	27
	9.3	UART Bo	ot/Monitor	28
	9.4	Default Fi	rmware Features	29
		9.4.1	USB Mass Storage and Audio Device	29
		9.4.2	Default Player Application	29
	9.5	Supported	d Audio Codecs	31
		9.5.1	Supported MP3 (MPEG layer III) Formats	31
10	VS10	05 Periphe	erals and Registers	32
	10.1	The Proce	essor Core	32
	10.2	VS1005 N	Memory Map	32
	10.3	VS1005 F	Peripherals	33
	10.4	Interrupt (Controller	34
		10.4.1	Interrupt Controller Registers	35
		10.4.2	Enable INT_ENABLE[L/H][0/1]	35
		10.4.3	Origin INT_ORIGIN[0/1]	35
		10.4.4	Vector INT_VECTOR	36
		10.4.5	Enable Counter INT_ENCOUNT	36
		10.4.6	Global Disable INT_GLOB_DIS	36
		10.4.7	Global Enable INT_GLOB_EN	36
	10.5	DSP Cloc	k Domain Registers	37
		10.5.1	General Purpose Software Registers	37
		10.5.2	Peripheral IO control	37
		10.5.3	PLL clock control	37

CONTENTS

10.6 XTAL Clock Domain Registers	39
10.6.1 Analog Control Registers	39
10.6.2 Regulator and Peripheral Clock Control Registers	41
10.7 24-bit Digital to Analog Converter (DAC)	43
10.7.1 Configuring Analog DAC Modules	43
10.8 Audio Interfaces	44
10.8.1 DAC volume control	44
10.8.2 DAC Offset Registers	44
10.8.3 Sample Rate Converter (SRC) Registers	45
10.9 SPI Peripherals	47
10.10 Common Data Interfaces	51
10.10.1 Ethernet Controller	54
10.10.2 Reed-Solomon Codec	57
10.10.3 Nand Flash Interface	61
10.10.4 SD Card Interface	63
10.11 USB Peripheral	65
10.11.1 USB Peripheral Registers	66
10.11.2 USB Clocking Modes	69
10.11.3 USB Host	69
10.12 Interruptable General purpose IO ports 0-2	70
10.13 S/PDIF Peripheral	72
10.13.1 S/PDIF Receiver	72
10.13.2 S/PDIF Receiver Registers	73
10.13.3 S/PDIF Transmitter	75
10.13.4 S/PDIF Transmitter Registers	76
10.14 Uart Peripheral	79
10.14.1 Uart Peripheral Registers	79
10.15 Watchdog Peripheral	81
10.15.1 Watchdog Registers	81
10.16 Line and Mic Inputs	82

CONTENTS

10.16.1 Configuring Analog Modules for Mic and Line Input Modes 83
10.16.2 Digital Filter Operation Modes
10.17 FM Receiver
10.17.1 Configuring RF and Analog Modules for FM Receiver Mode 85
10.17.2 Configuring FM Demodulator
10.17.3 Radio Data System (RDS)
10.18 I2S Peripheral
10.18.1 I2S Peripheral Registers
10.19 Timer Peripheral
10.19.1 Timer Peripheral Registers
10.20 Real Time Clock (RTC)
10.20.1 RTC Peripheral Registers
10.21 10-Bit Analog-to-Digital Converter (ADC)
10.22 Pulse Width Modulation Unit
10.23 Special Features
10.23.1 Software Protection
11 VS1005 Debugger 100
12 Document Version Changes103
13 Contact Information 104

List of Figures

1	vs1005 photo	1
2	Top View, LFGA-88	13
3	Bottom View, LFGA-88.	14
4	Side View, LFGA-88	14
5	vs1005 88-pin LFGA Pin Assignment.	15
6	vs1005 default pin usage.	19
7	VS1005 External Interfaces	20
8	VS1005 Block Diagram	21
9	User's Memory Map.	32
10	Vs1005 audio path	44
11	Block Diagram of Data Interfaces	51
12	VS1005 USB Block Diagram.	65
13	VS1005 UTM Functional Block Diagram.	66
14	S/PDIF Frame Format	72
15	S/PDIF Sub-Frame Format.	72
16	RS232 Serial Interface Protocol	79
17	AD and FM signal paths	82
18	Block Diagram of FM Receiver, RF and analog section	85
19	RDS data structure	89
20	I2s Frame format	90
21	JTAG state machine.	00

1 Disclaimer

All properties and figures are subject to change.

2 Definitions

```
B Byte, 8 bits.
```

b Bit.

Ki "Kibi" = 2^{10} = 1024 (IEC 60027-2).

Mi "Mebi" = 2^{20} = 1048576 (IEC 60027-2).

VS_DSP VLSI Solution's DSP core.

W Word. In VS_DSP, instruction words are 32-bit and data words are 16-bit wide.

3 Product Variants

Device ID (Order Code)	Mp3 Encoder	Mp3 decoder	Embedded 8 Mbit Flash
VS1005G-Q		X	
VS1005G-F-Q		Х	X
VS1205G-Q	Х	Х	
VS1205G-F-Q	Х	Х	Х
VS8005G-Q			
VS8005G-F-Q			Х

4 Characteristics & Specifications

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Regulator input voltage	VHIGH	-0.3	5.25	V
Analog Positive Supply	AVDD	-0.3	3.6	V
Digital Positive Supply	CVDD	-0.3	1.95	V
Digital RTC Supply	RTCVDD	-0.3	1.95	V
I/O Positive Supply	IOVDD	-0.3	3.6	V
Voltage at Any Digital Input ³		-0.3	IOVDD+0.3 ¹	V
Voltage at power Button	PWRBTN	-0.3	3.6	V
Voltage at RTC Pins	XTALI_RTC, XTALO_RTC	-0.3	CVDD+0.3 ⁴	V
Total Injected Current on Pins			\pm 200 2	mA
Operating Temperature		-40	+85	°C
Storage Temperature		-65	+150	°C

¹ Must not exceed 3.6 V

- ² Latch-up limit
- ³ Except RTC and pwrbtn pin

 4 Must not exceed 1.95V

VS1005g Datasheet 4 CHARACTERISTICS & SPECIFICATIONS

4.2 Recommended Operating Conditions

Voltage Specification									
Parameter	Symbol	Min	Тур	Max	Unit				
Operating temperature		-40		+85	°C				
Analog and digital ground 1	AGND DGND		0.0		V				
Regulator input voltage ²	VHIGH	AVDD+0.3	4.0	5.25	V				
Analog positive supply ³	AVDD	2.75	2.8	3.6	V				
Digital positive supply 3	CVDD	1.65	1.8	1.95	V				
Digital RTC supply	RTCVDD	1.2	1.5	1.95	V				
I/O positive supply ³	IOVDD	1.8	2.8	3.6	V				

¹ Must be connected together as close the device as possible for latch-up immunity.

² At least 4.0 V is required for compliant USB level.

³ Regulator output of the device.

Oscillator Specification								
Parameter	Symbol	Min	Тур	Max	Unit			
Input clock frequency ¹	XTALI	11	12.288 ²	13	MHz			
Input clock duty cycle		40	50	60	%			
Oscillator frequency tolerance			+/-10		ppm			
Startup time			1		ms			
Internal clock frequency, USB connected	CLKU	60		60	MHz			
Internal clock frequency, USB disconnected	CLKI			98	MHz			
RTC clock frequency ³	XTALI_RTC		32768		Hz			
RTC frequency tolerance			+/-100		ppm			
RTC oscillator startup time			1000		ms			

¹ The maximum sample rate that can be played with correct speed is XTALI/128. With 11 MHz XTALI sample rates over 85937 Hz are played at 85937 Hz.

 2 When full speed (FS) or high speed (HS) USB is used it is recommended that XTAL of 12.0MHz 0r 12.288MHz is used. 3 The 32kHz crystal is optional, but required for RTC time counter.

VS1005g Datasheet 4 CHARACTERISTICS & SPECIFICATIONS

4.3 Analog Characteristics of Audio Outputs

Unless otherwise noted: AVDD=3.6V, CVDD=1.8V, IOVDD=2.8V, Vref=1.6V, TA=+25°C, XTALI=12 MHz, Internal Clock Multiplier $3.0\times$. DAC tested with full-scale output sinewave, measurement bandwidth 20..20000 Hz, analog output load: LEFT to CBUF 30 Ω , RIGHT to CBUF 30 Ω . Microphone test amplitude 50 mVpp, f=1 kHz, Line input test amplitude 2.2 Vpp, f=1 kHz. FM test signal input level -70 dBm, deviation 75 kHz, pre-emphasis 50 us, f=1 kHz.

DAC Characteristics							
Parameter	Symbol	Min	Тур	Max	Unit		
DAC Resolution			24		bits		
Dynamic range (DAC unmuted, A-weighted, min gain)	IDR		100		dB		
S/N ratio (full scale signal, no load)	SNR		92		dB		
S/N ratio (full scale signal, 30 ohm load)	SNRL		90		dB		
Total harmonic distortion, -3dB level, no load	THD		0.01		%		
Total harmonic distortion, -3dB level, 30 ohm load	THDL		0.05		%		
Crosstalk (L/R to R/L), 30 ohm load, without CBUF 1	XTALK1		-75		dB		
Crosstalk (L/R to R/L), 30 ohm load, with CBUF	XTALK2		-54		dB		
Gain mismatch (L/R to R/L)	GERR	-0.5		0.5	dB		
Frequency response	AERR	-0.05		0.05	dB		
Full scale output voltage	LEVEL		1.0		Vrms		
Deviation from linear phase	PH		0	5	0		
Analog output load resistance	AOLR		30 ²		Ω		
Analog output load capacitance	AOLC			100 ³	pF		
DC level, V _{ref} =1.2V (CBUF, LEFT, RIGHT)		1.1		1.3	V		
DC level, V _{ref} =1.6V (CBUF, LEFT, RIGHT)		1.5		1.7	V		
CBUF disconnect current (short-circuit protection)			130	200	mA		

¹ Loaded from Left/Right pin to analog ground via 100 μ F capacitors.

 2 AOLR may be lower than *Typical*, but distortion performance may be compromised. Also, there is a maximum current that the internal regulators can provide.

³ CBUF must have external 10 Ω + 47 nF load, LEFT and RIGHT must have external 20 Ω + 10 nF load for optimum stability and ESD tolerance.

4.4 Analog Characteristics of Audio Inputs

ADC Characteristics								
Parameter	Symbol	Min	Тур	Max	Unit			
ADC Resolution			24		bits			
Microphone input amplifier gain	MICG		20		dB			
Microphone input amplitude			50	140 ¹	mVpp AC			
Microphone Total Harmonic Distortion	MTHD		0.02	0.10	%			
Microphone S/N Ratio, A-weighted	MSNR	50 ²	75		dB			
Line input amplitude			2200	2800 ¹	mVpp AC			
Line input Total Harmonic Distortion	LTHD		0.015	0.10	%			
Line input S/N Ratio	LSNR	80 ²	90	100	dB			
Sample rate		24		192	kHz			
Line and Microphone input impedances			100		kΩ			

 $^{\rm 1}$ Above typical amplitude the Harmonic Distortion increases.

² Limit Min due to noise level of production tester.

4.5 SAR Characteristics

SAR Characteristics									
Parameter	Symbol	Min	Тур	Max	Unit				
SAR resolution			10		bits				
Input amplitude range		0		AVDD	V				
SAR sample rate ¹				100	kHz				
Integral Nonlinearity	INL		+/-2		LSB				
Differential Nonlinearity	DNL		+/-0.5		LSB				

¹ XTAL dependent

4.6 FM Characteristics

FM Characteristics					
Parameter	Symbol	Min	Тур	Max	Unit
Channel frequency range, 10kHz steps		76		108	MHz
FM mono S/N Ratio, deviation 22kHz, Input level -50dBm ¹	LSNR		72		dB
FM stereo S/N Ratio, deviation 45kHz, Input level -50dBm ¹	LSNR		47		dB
FM mono S/N Ratio, deviation 22kHz, Input level -90dBm ¹	LSNR		45		dB
FM stereo S/N Ratio, deviation 45kHz, Input level -90dBm ¹	LSNR		27		dB
Total harmonic distortion, deviation 75kHz	THD		0.1	0.3	%
Stereo separation			40		dB

¹ Measured over whole FM band

4.7 Analog Characteristics of Regulators

Parameter	Symbol	Min	Тур	Max	Unit
IOVDD					
Recommended voltage setting range		1.7		3.6	V
Voltage setting step size		55	60	65	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8/3.6 ³		V
Load regulation			4.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
Continuous current			30 ⁴	60	mA
IOVDD2					
Recommended voltage setting range		1.7		3.6	V
Voltage setting step size		55	60	65	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8/3.6 ³		V
Load regulation			4.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
Continuous current			30 ⁴	60	mA
CVDD					
Recommended voltage setting range		1.65		1.95	V
Voltage setting step size		25	30	35	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8		V
Continuous current			25 ⁴	70	mA
Load regulation			2.0		mV/mA
Line regulation from VHIGH			2.0		mV/V
AVDD					
Recommended voltage setting range		2.6		3.6	V
Voltage setting step size		35	40	45	mV
Default setting, reset mode ¹			2.5		V
Default setting, active mode ²			2.7		V
Continuous current			30 ⁴	70	mA
Load regulation			1.5		mV/mA
Line regulation from VHIGH			2.0		mV/V
PWRBTN					
Minimum startup voltage			0.9		V
Minimum startup pulse			100		ms

¹ Device enters reset mode when XRESET pin is pulled low.

² Device enters active mode when XRESET pin is pulled high after reset mode. Regulator settings can be modified when booted from external memory (see section 9).

³ Depends on GPIO0_7 pin status in boot (see section 9).

 4 Device is tested with a 30 mA load.

4.8 Analog Characteristics of VHIGH voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	AMON		1.07×AVDD		V
Hysteresis			50		mV

4.9 Analog Characteristics of CVDD voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	CMON	1.40	1.45		V
Hysteresis			2		mV

4.10 Digital Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage		$0.7 \times IOVDD$		IOVDD+0.3	V
Low-Level Input Voltage		-0.2		$0.3 \times IOVDD$	V
High-Level Output Voltage, -1.0 mA load ¹		$0.7 \times IOVDD$			V
Low-Level Output Voltage, 1.0 mA load ¹				$0.3 \times IOVDD$	V
XTALO high-level output voltage, -0.1 mA load		$0.7 \times IOVDD$			V
XTALO low-level output voltage, 0.1 mA load				$0.3 \times IOVDD$	V
Input leakage current		-1.0		1.0	μA
Rise time of all output pins, load = 30 pF 1				50	ns

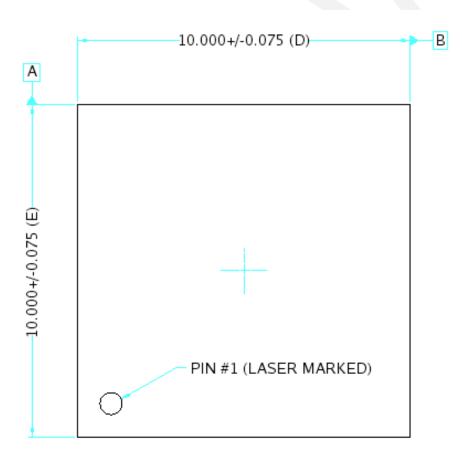
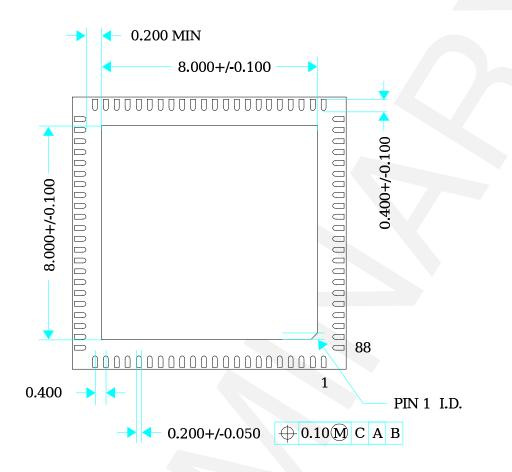
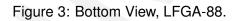
¹ Pins GPIO0_[15:0], GPIO1_[15:0], GPIO2_[13:0].

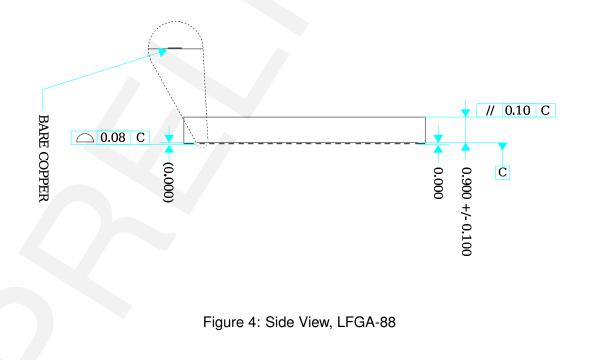
5 Package and Pin Descriptions

5.1 Packages

LFGA-88 is lead (Pb) free and RoHS-compliant package. RoHS is a short name of *Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment.*

LFGA package and pin dimensions are shown in figures 2, 3 and 4. For more information about LFGA-88 package and dimensions visit *http://www.vlsi.fi/*.


Figure 2: Top View, LFGA-88.

VS1005g Datasheet 5 PACKAGE AND PIN DESCRIPTIONS

5 PACKAGE AND PIN DESCRIPTIONS

5.2 Pin Assignments

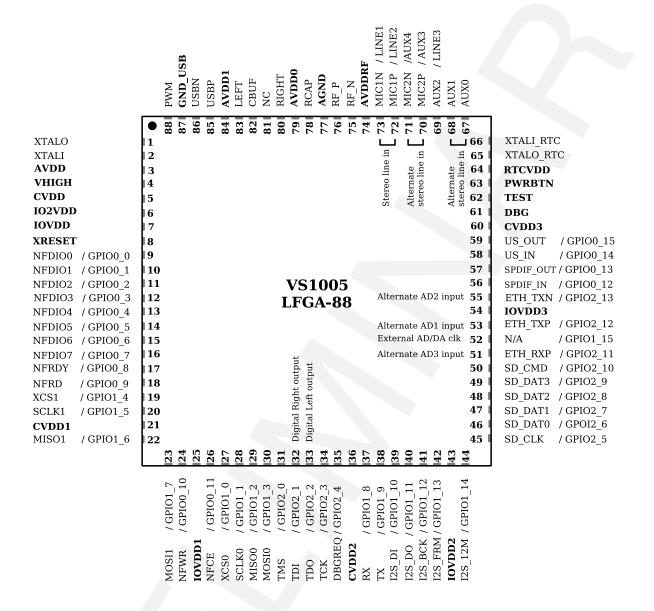


Figure 5: vs1005 88-pin LFGA Pin Assignment.

VS1005g Datasheet 5 PACKAGE AND PIN DESCRIPTIONS

5.3 Vs1005 Pin Descriptions

Pin Name	LFGA Pin	Pin Type	Function
XTALO	1	AO	Crystal output
XTALI	2	AI	Crystal input
AVDD	3	APWR	Analog power supply, Regulator output
VHIGH	4	PWR	Power supply, Regulator input
CVDD	5	CPWR	Core power supply, Regulator output
IO2VDD	6	IO2PWR	Serial Flash power supply, Regulator output
IOVDD	7	IOPWR	I/O power supply, Regulator output
XRESET	8	DI	Active low asynchronous reset, schmitt-trigger input
NFDIO0 / GPIO0_0	9	DIO	Nand-flash IO0 / General-purpose IO Port 0, bit 0
NFDIO1 / GPIO0_1	10	DIO	Nand-flash IO1 / General-purpose IO Port 0, bit 1
NFDIO2 / GPIO0_2	11	DIO	Nand-flash IO2 / General-purpose IO Port 0, bit 2
NFDIO3 / GPIO0_3	12	DIO	Nand-flash IO3 / General-purpose IO Port 0, bit 3
NFDIO4 / GPIO0_4	13	DIO	Nand-flash IO4 / General-purpose IO Port 0, bit 4
NFDIO5 / GPIO0_5	14	DIO	Nand-flash IO5 / General-purpose IO Port 0, bit 5
NFDIO6 / GPIO0_6	15	DIO	Nand-flash IO6 / General-purpose IO Port 0, bit 6
NFDIO7 / GPIO0_7	16	DIO	Nand-flash IO7 / General-purpose IO Port 0, bit 7
NFRDY / GPIO0_8	17	DIO	Nand-flash READY / General-purpose IO Port 0, bit 8
NFRD / GPIO0_9	18	DIO	Nand-flash RD / General-purpose IO Port 0, bit 9
XCS1 / GPIO1_4	19	DIO	SPI1 XCS / General-Purpose I/O Port 1, bit 4
SCLK1 / GPIO1_5	20	DIO	SPI1 CLK / General-Purpose I/O Port 1, bit 5
CVDD1	21	CPWR	Core power supply, connect to regulator CPWR
MISO1 / GPIO1_6	22	DIO	SPI1 MISO / General-Purpose I/O Port 1, bit 6

Pin Name	LFGA Pin	Pin Type	Function
MOSI1 / GPIO1_7	23	DIO	SPI1 MOSI / General-Purpose I/O Port 1, bit 7
NFWR / GPIO0_10	24	DIO	Nand-flash WR / General-purpose IO Port 0, bit 10
IOVDD1	25	IOPWR	I/O power supply, connect to regulator IOPWR
NFCE / GPIO0_11	26	DIO	Nand-flash CE / General-purpose IO Port 0, bit 11
XCS0 / GPIO1_0	27	DIO	SPI0 XCS / General-Purpose I/O Port 1, bit 0
SCLK0 / GPIO1_1	28	DIO	SPI0 CLK / General-Purpose I/O Port 1, bit 1
MISO0 / GPIO1_2	29	DIO	SPI0 MISO / General-Purpose I/O Port 1, bit 2
MOSI0 / GPIO1_3	30	DIO	SPI0 MOSI / General-Purpose I/O Port 1, bit 3
TMS / GPIO2_0	31	DIO	JTAG TMS / General-Purpose I/O Port 2, bit 0
TDI / GPIO2_1	32	DIO	JTAG TDI / General-Purpose I/O Port 2, bit 1
TDO / GPIO2_2	33	DIO	JTAG TDO / General-Purpose I/O Port 2, bit 2
TCK / GPIO2_3	34	DIO	JTAG TCK / General-Purpose I/O Port 2, bit 3
DBGREQ / GPIO2_4	35	DIO	Debug interrupt / General-Purpose I/O Port 2, bit 4
CVDD2	36	CPWR	Core power supply, connect to regulator CPWR
RX / GPIO1_8	37	DIO	UART RX / General-Purpose I/O Port 1, bit 8
TX / GPIO1_9	38	DIO	UART TX / General-Purpose I/O Port 1, bit 9
I2S_DI / GPIO1_10	39	DIO	I2S data in / General-Purpose I/O Port 1, bit 10
I2S_DO / GPIO1_11	40	DIO	I2S data out / General-Purpose I/O Port 1, bit 11
I2S_BCK / GPIO1_12	41	DIO	I2S bit clock / General-Purpose I/O Port 1, bit 12
I2S_FRM / GPIO1_13	42	DIO	I2S frame sync / General-Purpose I/O Port 1, bit 13
IOVDD2	43	IOPWR	I/O power supply, connect to regulator IOPWR
I2S_12M / GPIO1_14	44	DIO	I2S 12.288 MHz clock output (XTALI) / General-
			Purpose I/O Port 1, bit 14

VS1005g Datasheet 5 PACKAGE AND PIN DESCRIPTIONS

Pin Name	LFGA Pin	Pin Type	Function
SD_CLK / GPIO2_5	45	DIO	SD card clock / General-Purpose I/O Port 2, bit 5
SD_DAT0 / GPIO2_6	46	DIO	SD card data line 0 / General-Purpose I/O Port 2, bit 6
SD_DAT1 / GPIO2_7	47	DIO	SD card data line 1 / General-Purpose I/O Port 2, bit 7
SD_DAT2 / GPIO2_8	48	DIO	SD card data line 2 / General-Purpose I/O Port 2, bit 8
SD_DAT3 / GPIO2_9	49	DIO	SD card data line 3 / General-Purpose I/O Port 2, bit 9
SD_CMD / GPIO2_10	50	DIO	SD card cmd line / General-Purpose I/O Port 2, bit 10
ETH_RXP / GPIO2_11	51	DIO	Ethernet RXP / General-Purpose I/O Port 2, bit 11
GPIO1_15	52	DIO	General-Purpose I/O Port 1, bit 15
ETH_TXP / GPIO2_12	53	DIO	Ethernet TXP / General-Purpose I/O Port 2, bit 12
IOVDD3	54	IOPWR	I/O power supply, connect to regulator IOPWR
ETH_TXN / GPIO2_13	55	DIO	Ethernet TXN / General-Purpose I/O Port 2, bit 13
SPDIF_IN / GPIO0_12	56	DIO	S/PDIF data in / General-Purpose I/O Port 0, bit 12
SPDIF_OUT / GPIO0_13	57	DIO	S/PDIF data out / General-Purpose I/O Port 0, bit 13
GPIO0_14	58	DIO	General-Purpose I/O Port 0, bit 14
GPIO0_15	59	DIO	General-Purpose I/O Port 0, bit 15
VDD3	60	CPWR	Core power supply, connect to regulator CPWR
DBG	61	DI	Debug mode enable (active high), connect to DGND
TEST	62	DI	Test mode input (active high), connect to DGND
PWRBTN	63	AIO	Power button for Regulator startup (and Power Key)
RTCVDD	64	RTCPWR	Real time clock power supply
XTALO_RTC	65	AO	Real time clock crystal output
XTALI_RTC	66	AI	Real time clock crystal input

Pin Name	LFGA	Pin Type	Function
- III Hullio	Pin	i ili iypo	
AUX0	67	AI	SAR A/D input 0 / Alternate line input 2
AUX1	68	AI	SAR A/D input 1 / Alternate line input 1
AUX2 / LINE3	69	AI	SAR A/D input 2 / Line input 3
MIC2P / AUX3	70	AI	Microphone 2 positive differential input, self-biasing / SAR A/D input 3 / Alternate line input 2
MIC2N / AUX4	71	AI	Microphone 2 negative differential input, self-biasing / SAR A/D input 4 / Alternate line input 1
MIC1P / LINE1	72	AI	Microphone 1 positive differential input, self-biasing / line input 1
MIC1N / LINE2	73	AI	Microphone 1 negative differential input, self-biasing / line input 2
AVDDRF	74	APWR1V8	1.8V RF power supply, connect to regulator CPWR
RF_N	75	Al	FM antenna negative differential input
RF_P	76	AI	FM antenna positive differential input
AGND ¹	77	APWR	Analog reference ground
RCAP	78	AIO	Filtering capacitance for reference
AVDD0	79	APWR	Analog power supply, connect to regulator APWR
RIGHT	80	AO	Right channel output
N/A	81	N/A	Not connected pin
CBUF	82	AO	Common voltage buffer for headphones
LEFT	83	AO	Left channel output
AVDD1	84	APWR	Analog power supply, connect to regulator APWR
USBP	85	AIO	USB differential + in / out, controllable 1.5k Ω pull-up
USBN	86	AIO	USB differential - in / out
GNDUSB	87	APWR	USB ground, connect to ground network in PCB
PWM	88	DO	PWM output

¹ Connect to RCAP capasitor without vias in pcb board.

5 PACKAGE AND PIN DESCRIPTIONS

Alternate pin functions in vs1005 package					
Pin Name	LFGA	Pin Type	Function		
	Pin				
Analog Line input 1	71	AI	Alternate analog input pin for Line input 1		
Analog Line input 2	70	AI	Alternate analog input pin for Line input 2		
Analog Line input 1	68	AI	Alternate analog input pin for Line input 1		
Analog Line input 2	67	AI	Alternate analog input pin for Line input 2		
Digital DA/AD Clock	52	DO	Digital DA/AD clock output, xtal/2/4		
Digital DAC Right	32	DO	DAC right channel digital output, xtal/2		
Digital DAC Left	33	DO	DAC left channel digital output, xtal/2		
Digital ADC 1	53	DI	Digital ADC 1 input, xtal/2		
Digital ADC 2	55	DI	Digital ADC 2 input, xtal/2		
Digital ADC 3	51	DI	Digital ADC 3 input, xtal/2		
TMS	31	DI	Jtag Test Mode Select		
TDI	32	DI	Jtag Test Data In		
TDO	33	DO	Jtag Test Data Out		
TCK	34	DI	Jtag Test Clock		
DBGREQ	35	DO	Hardware debug state pin		

Pin type descriptions:

Туре	Description	Туре	Description
DI	Digital input, CMOS Input Pad	APWR	Analog power supply pin or ground
DO	Digital output, CMOS Input Pad	APWR1V8	Analog power supply pin, 1.8V
DIO	Digital input/output	RTCPWR	Real time clock power supply pin, 1.8V
AI	Analog input	DGND	Core or I/O ground pin
AO	Analog output	CPWR	Core power supply pin
AIO	Analog input/output	IOPWR	I/O power supply pin

Package bottom plate is a ground net and it is connected to ground network in PCB.

NOTE: Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. At power-up all GPIO is three stated and current leakage from IOVDD is cut. Outputs that are three-statable should only be pulled high or low to ensure signals at power-up and in standby.

5.3.1 PCB Layout Recommendations

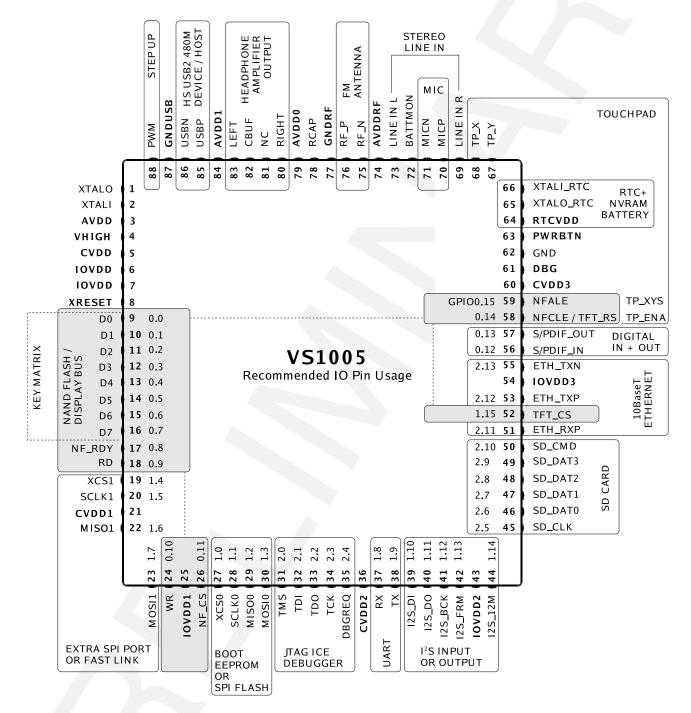
The following recommendations should be followed to ensure reliable operation.

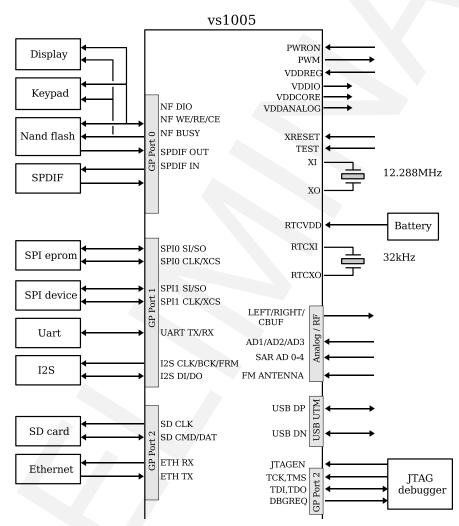
- Analog power nets that are connected to regulator APWR/CPWR output should have bypass capasitors.
- USBP and USBN traces should be kept within 2mm of each other and with preferred length of 20-30mm (max 75mm). A solid ground plane is preferred under USBP and USBN traces.
- USBP and USBN traces should be very close to same length, drawn together and their characteristic differential impedance 90 Ohms
- No vias are allowed in USBP or USBN traces, only 45 degree angles should be used.
- USBP and USBN traces should be isolated from all other signal traces.
- RF_P and RF_N traces should be isolated from all other signal traces.

EXAMPLE SCHEMATIC

6 Example Schematic

Default pin usage is shown in figure 6.

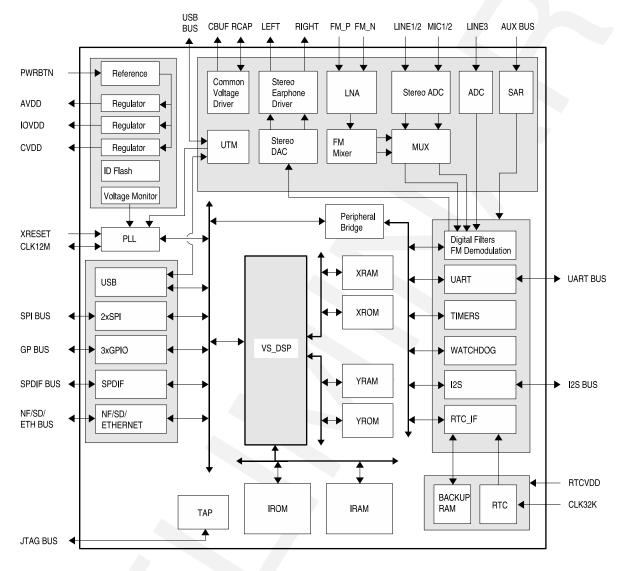


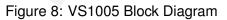

Figure 6: vs1005 default pin usage.

VS1005g Datasheet 7 VS1005 GENERAL DESCRIPTION

7 VS1005 General Description

Vs1005 architecture is based on VS_DSP core. VS_DSP core architecture is described in VS_DSP User's Manual. Chip is powered with internal regulator which provides voltages for three separate power domains. The core and periphery I/O power domains can be driven off separately, allowing simple I/O interfacing and minimizing power consumption. RTC has its own power supply which enables the RTC usage when the rest of the chip is powered down. RTC also includes a small backup ram. Vs1005 has two clock domains which are clocked by PLL. Analog interfaces are clocked with a XTAL clock but the dsp, digital intarfaces and memories are clocked with a multiplied clock. Vs1005 external interfaces are shown in figure 7.





7.1 VS1005 Internal Architecture

Vs1005 block diagram is shown in figure 8.

7.1.1 Regulator Section

The VHIGH pin in the regulator section is used as a common main power supply for voltage regulation. This input is connected to three internal regulators, which are activated when the PWRBTN pin voltage is kept above 0.9V for about one millisecond, so that AVDD starts to rise and reaches about 1.5 V. After the PWRBTN has given this initial start current, the regulators reach their default voltages even if the PWRBTN is released. VHIGH must be sufficiently (about 0.3 V) above the highest regulated power (normally AVDD) so that regulation can be properly performed.

The PWRBTN state can also be read by software, so it can be used as one of the user interface

buttons.

A power-on reset monitors the core voltage and asserts reset if CVDD drops below the CMON level. It is also possible to force a reset by keeping PWRBTN pressed for longer than approximately 5.6 seconds. This feature can be disabled by software. A watchdog counter and the XRESET pin can also generate a reset for the device.

Resets do not cause the regulators to shut down, but they restore the default regulator voltages. After boot the firmware and user software can change the voltages.

Return to power-off is possible only with active software control (VSDSP writes the regulator shutdown bits), or when VHIGH voltage is removed for a sufficiently long time. In the default firmware player the power button has to be pressed for 2 seconds to make the software power-down the system and turn the regulators off.

7.1.2 IO Section

IOVDD is used for the level-shifters of the digital I/O and crystal oscillator. The regulated IO voltage is internally connected. The IOVDD regulator output must be connected to IOVDD1, IOVDD2 and IOVDD3 input pins. Proper bypass capacitors should also be used.

The firmware uses GPIO0_7 to select I/O voltage level. After reset the I/O voltage is 1.8 V. If GPIO0_7 has a pull-down resistor, 1.8 V I/O voltage is used. If GPIO0_7 has a pull-up resistor, 3.3 V I/O voltage is used.

7.1.3 Digital Section

All digital logic except the real time clock is powered from core voltage CVDD. The regulated core voltage is internally connected. The CVDD regulator output must be connected to CVDD1, CVDD2 and CVDD3 input pins. CVDD pins should have proper bypass capacitors.

Real time clock power pin can be connected to CVDD net or it can have its own power supply which enables its use during chip power-down. The inputs and outputs of the RTC logic have level shifters but the RTCVDD voltage should not exceed the CVDD voltage range.

Clock

The crystal amplifier uses a crystal connected to XTALI and XTALO. An external logic-level input clock can also be used. When VS1005 is used with FS USB, 12 MHz crystal allows lower power consumption. With FS/HS USB the input clock of 12 MHz or 12.288 MHz is recommended.

An internal phase-locked loop (PLL) generates the internal clock by multiplying the input clock by $1.0 \times, 1.5 \times, ..., 8.0 \times$. When USB is connected, the clock is $5.0 \times 12 \text{ MHz} = 60 \text{ MHz}$. When the player is active, the clock will be automatically changed according to the requirements of the song being played.

XRESET disables the clock buffer and puts the digital section into powerdown mode.

In usb suspend state the core clock is switced to RTC clock and the clock oscillator is powered down.

$VSDSP^4$

VSDSP⁴ is VLSI Solution's proprietary digital signal processor with a 32-bit instruction word, two 16-bit data buses, and both 16-bit and 32/40-bit arithmetic.

IROM, XROM, and YROM contain the firmware, including the default player application. Most of the instruction RAM and some of the X and Y data RAM's can be used to customize and extend the functionality of the player.

For software customization the firmware supports nand flash and SD card boot. The vs1005xF version can use also the internal serial flash as a boot device.

UART

An asynchronous serial port is used for debugging and special applications. The default speed is 115200 bps. RX and TX pins can also be used for general-purpose I/O when the UART is not required.

SPIs

A synchronous serial port peripheral is used for SPIEEPROM boot, and can be used to access other SPI peripherals (for example LCD or SED) by using another chip select. The SPI0 is only used for boot if the XCS0 pin has a high level after reset (pull-up resistor attached). These pins can also be used for general-purpose I/O when the SPI is not required.

The default player uses MISO0 and MOSI0 for LED outputs.

NAND FLASH Interface

The NAND FLASH peripheral calculates a simple error-correcting code (ECC), and automates some of the communication with a NAND FLASH chip. The firmware uses the peripheral to access both small-page (512+16 B pages) and large-page (2048+64 B pages) NAND FLASH chips. The first sector in the FLASH tells the firmware how it should be accessed.

The NAND FLASH interface pins can also be used as general-purpose I/O. The default firmware uses GPIO0_[4:0] for keys, and GPIO0_[7:6] for other purposes. Pull-up and pull-down resistors must be used for these connections so that the data transfer to and from the NAND FLASH isn't disturbed when keys are pressed.

SD Card Interface

The SD card interface automates some of the communication with an SD card. Peripheral supports 1-bit and 4-bit data transfers.

The SD card interface pins can also be used as general-purpose I/O.

Ethernet Controller

Ethernet Controller is an interface to 10base-t network. The interface uses digital signal levels and external components are required to connect to ethernet. The core clock must be switched to 60 MHz when ethernet peripheral is used.

The ethernet interface pins can also be used as general-purpose I/O.

USB

The USB peripheral handles USB2.0 Full Speed and High Speed harware protocols. Low speed communication is not supported, but is correctly ignored. The USBP pin has a software-controllable $1.5k\Omega$ pull-up.

A control endpoint (1 IN and 1 OUT) and upto 6 other endpoints (3 IN and 3 OUT) can be used simultaneously. Bulk, interrupt, and isochronous transfer modes are selectable for each endpoint. USB receive from USB host to device (OUT) uses a 2 KiB buffer, thus allowing very high transfer speeds. USB transmit from device to USB host (IN) also uses a 2 KiB buffer and allows all IN endpoints to be ready to transmit simultaneously. Double-buffering is also possible, but not usually required.

The firmware uses the USB peripheral to implement both USB Mass Storage Device and USB Audio Device. Which device is activated depends on the state of GPIO0_6 when the USB connection is detected. If GPIO0_6 has a pull-up resistor, VS1005 appears as an USB Audio Device. If GPIO0_6 has a pull-down resistor, VS1005 appears as an USB Mass Storage Device.

7.2 Analog Section

The third regulator provides power for the analog section.

The analog section consists of digital to analog converters, an earphone driver and FM receiver. This includes a buffered common voltage generator (CBUF, around 1.2 V) that can be used as a virtual ground for headphones.

The regulator AVDD output pin must be connected to AVDD1 and AVDD2 pins with proper bypass capacitors, because they are not connected internally. The AVDDRF pin is connected to regulator CVDD pin with proper bypass capacitors or with external regulator from VHIGH.

The USB pins use the internal AVDD voltage, and the firmware configures AVDD to 3.6 V when USB is attached.

AVDD voltage level can be monitored by software. Currently the firmware does not take advantage of this feature.

CBUF contains a short-circuit protection. It disconnects the CBUF driver if pin is shorted to ground. In practise this only happens with external power regulation, because there is a limit to how much power the internal regulators can provide.

VS1005g Datasheet OSCILLATOR AND RESET CONFIGURATION

8 Oscillator and Reset Configuration

The reset module gathers reset sources and controls the system's internal reset signals. Reset Sources are:

- POR : Power-On reset and CVDD voltage monitor
- XRESET : External active low reset pin
- *wdog_rst* : Watchdog timer reset
- *dbg_rst* : Debugger reset
- PWRBTN : Power Button reset after 5 seconds

Two clock sources can be used :

- 11MHz 13MHz Oscillator
- 32kHz RTC oscillator

9 Firmware Operation

The firmware uses the following pins (see the example schematics in Section 6):

Pin	Description
PWRBTN	High level starts regulator, is also read as the Power button Key.
GPIO0_0	external 1 M Ω pull-down resistor, Key 1 connects a 100 k Ω pull-up resistor 1
GPIO0_1	external 1 M Ω pull-down resistor, Key 2 connects a 100 k Ω pull-up resistor
GPIO0_2	external 1 M Ω pull-down resistor, Key 3 connects a 100 k Ω pull-up resistor
GPIO0_3	external 1 M Ω pull-down resistor, Key 4 connects a 100 k Ω pull-up resistor
GPIO0_4	external 1 M Ω pull-down resistor, Key 5 connects a 100 k Ω pull-up resistor
GPIO0_6	external pull-down resistor for USB Mass Storage Device, pull-up for USB
	Audio Device
GPIO0_7	external pull-down resistor for 1.8 V I/O voltage, pull-up resistor for 3.3 V I/O
	voltage
NFCE	external pull-up resistor for normal operation, pull-down to use RAM disk for
	UMS Device
XCS	external pull-up to enable SPI EEPROM boot
SI	Power LED control during firmware operation
SO	Feature LED control during firmware operation
USBN	external 1 M Ω pull-up
USBP	external 1 M Ω pull-up

¹ Smaller pull-down resistors may be needed for keys if the capacitance on the GPIO pins is high.

Boot order:

Stage	Description
Power on	Power button (PWRBTN) pressed when VHIGH has enough volt-
	age
Reset	Power-on reset, XRESET, or watchdog reset causes software
	restart
UART Boot	Almost immediately after power-on UART can be used to enter
	emulator mode.
SPI EEPROM Boot	If XCS is high, SPI Boot is tried.
NAND FLASH probed	If NFCE is high, NAND FLASH is checked.
Default firmware	The firmware in ROM takes control.

9.1 SPI Boot

The first boot method is SPI EEPROM. If GPIO1_0 is low after reset, SPI boot is skipped. If GPIO1_0 is high, it is assumed to have a pull-up resistor and SPI boot is tried.

First the first four bytes of the SPI EEPROM are read using 16-bit address. If the bytes are "VLS5" (for protected host) or "WLS5" (for unprotected host), a 16-bit EEPROM is assumed and the boot continues. If the last 3 bytes are read as "VLS", a 24-bit EEPROM is assumed and boot continues in 24-bit mode. Both 16-bit and 24-bit EEPROM should have the "VLS5" or

"WLS5" string starting at address 0, and the rest of the boot data starting at address 4. If no identifier is found, SPI EEPROM boot is skipped.

Boot records are read from EEPROM until an execute record is reached. Unknown records are skipped using the data length field.

Byte	Description
0	type 0=I-mem 1=X-mem 2=Y-mem 3=execute
1,2	data len lo, hi – data length in bytes
3, 4	address Io, hi – record address
5	data*

9.2 NAND FLASH Probe

If NAND FLASH chip select (NFCE) is high, a NAND FLASH is assumed to be present and the first sector is read. The access methods (nandTypes 0..5) are tried in order to find the "VLN5" identification. If the first bytes are "VLN5", a valid boot sector is assumed. This sector gives the necessary information about the NAND FLASH so that it can be accessed in the right way.

NandFlash Header							
Byte	Value	Description					
0,1,2,3	0x56 0x4c 0x4E 0x35	'V' 'L' 'N' '5' – Identification					
4	0x03	NandType lo (0x0003 = large-page with 3-byte					
		block address), See table					
5	0x00	NandType hi					
6	0x08	BlockSizeBits ($2^8 * 512 = 128$ KiB per block)					
7	0x13	FlashSizeBits ($2^{19} * 512 = 256$ MiB flash)					
8,9	0x00 0x46	NandWaitNs – NAND FLASH access time in ns					
10,11	0x00 0x01	Number of extra blocks for boot (example:					
		0x0001)					
12,13,14,15	0x42 0x6f 0x4f 0x74	'B' 'o' 'O' 't' – Optional boot ident					
16511		code					

	NandFlash Type Configuration							
Low byte (byte 0x4)	Description							
0	512+16 B small-page flash with 2-byte block address (<= 32 MB)							
1	2048+64 B large-page flash with 2-byte block address (<= 128 MB)							
2	512+16B small-page flash with 3-byte block address (> 32 MB $<=$ 8 GB)							
3	2048+64 B large-page flash with 3-byte block address (> 128 MB $<=$ 32 GB)							
4	512+16 B small-page flash with 4-byte block address (> 8 GB)							
5	2048+64 B large-page flash with 4-byte block address (> 32 GB)							

If bytes 12-15 contain "BoOt", the value in bytes 10 and 11 determines how many sectors are read from NAND-flash. Value 1 means two 512-byte sectors are read, value 0 means only

the first block is needed. After the data is read into memory, the boot records in this data are processed, transferring code and data sections into the right places in memory and possibly executed. If an unknown boot record is encountered, the booting is stopped and control returns to the firmware code.

	NandFlash Record Configuration							
Code byte	Description							
17, 16	type 0x8000=I-mem 0x8001=X-mem 0x8002=Y-mem 0x8003=execute							
19, 18	data length in (words -1) : 0 = 1 word, 1 = 2 words, etc.							
21, 20	address – record address							
22	data							

9.3 UART Boot/Monitor

When byte 0xef is sent to RX at 115200 bps, the firmware enters monitor mode and communicates with **vs3emu**. Memory contents can be displayed, executables can be loaded and run, or the firmware code can be restarted or continued.

The UART is also a convenient way to program the NAND FLASH boot sector(s) or the SPI EEPROM.

9.4 Default Firmware Features

9.4.1 USB Mass Storage and Audio Device

When USB cable insertion is detected by the firmware, playing of the current file is stopped and USB handling code is started. The internal clock is configured to $4.0 \times 12 \text{ MHz} = 48 \text{ MHz}$, the analog power is configured to 3.6 V, the USB peripheral is initialized, and the USB pull-up resistor is enabled.

If GPIO0_6 has a pull-up resistor, VS1005 appears as an USB Audio Device. If GPIO0_6 has a pull-down resistor, VS1005 appears as an USB Mass Storage Device.

If during power-on the NAND FLASH contained a valid boot sector, the NAND FLASH disk will be used with the mass storage device. The NAND FLASH disk requires a filesystem-level formatting before it can be used. If NFCE had a pull-down instead of pull-up, or if a valid boot sector was not found, a RAM disk is used instead.

The RAM disk is preformatted and can be used immediately It does not retain its contents between USB detachment and insertion. The RAM disk is only intended for loading software through USB. You can copy a file **VS1005_B.RUN** to RAM disk and it will be automatically run when you disconnect the USB cable. This mechanism can be used to program the NAND FLASH boot sector (perhaps containing custom boot code), and also for programming an SPI EEPROM or micro SD card in case NAND FLASH is not used in the application.

9.4.2 Default Player Application

When the USB cable is detached, the contents of the disk is checked. If the disk seems to contain a FAT16 or FAT32 filesystem, a cleanup of unused sectors is performed. The cleanup makes the disk perform faster the next time something is written on it. If a full disk has been formatted or erased, this cleanup can take considerable time, even 30 seconds or more. After the cleanup is finished the player starts to play files.

Note: normally Windows formats smaller than about 16 MB disks as FAT12. The player has only partial support for FAT12 disks: no cleanup is performed, subdirectories are not allowed, and files are assumed not to be fragmented. If disks as small as or smaller than this are required, it is possible to format them as FAT16 with the following command. format e: /A:512 /FS:FAT

The default player application only decodes mp3 files, but it can be extended to allow some simple codecs, like a WAV decoder.

In addition to the power button, 5 keys are connected to GPIO0_[4:0] so that they connect a 100 k Ω pull-up to the I/O when the button is pressed, and 1 M Ω pull-downs keep the lines low otherwise. The resistors are needed because these lines are also used for NAND FLASH communication. The keys are read approximately 16 times per second.

The key control can be changed by replacing the default key mapping table. The default user interface uses six buttons.

Button	Short Press < 1 second	Long Press >= 1 second
POWER	Power On, Pause / Play	Power off (pressed for 2 seconds)
KEY1	Volume Down	Volume Down
KEY2	Volume Up	Volume Up
KEY3	Previous	Rewind
KEY4	Next	Fast Forward
KEY5	EarSpeaker	Random On / Off

Power Button

A press of the power button turns on the system. After boot the power LED (the LED connected to SI) is turned on. After the startup a short press of the power button toggles between pause and play modes. In pause mode the power LED flashes. When the power button is pressed for 2 seconds, the system powers down.

Volume Buttons

Volume can be turned up or down with 0.5 dB steps using the volume buttons. A short press changes the volume by 0.5 dB, a long press will change the volume by approximately 8 dB every second.

Previous / Next Buttons

A song can be changed using the previous and next buttons. A short press of the *previous* button will restart the song if it has been played for at least 5 seconds, and go to the previous song otherwise. A short press of the *next* button goes to the next song. A long press of *previous* or *next* will rewind and fast forward the song, respectively.

Feature Button

The sixth button controls two features: the EarSpeaker spatial processing and the random play function. A long press of the *feature* button toggles the random play function. When random play becomes activated, a new song is automatically randomly selected. When random play mode is active, the feature LED (the LED connected to SO) will light up. A short press of the *feature* button will select between four EarSpeaker modes: *off, minimal, normal,* and *extreme*.

9.5 Supported Audio Codecs

	Conventions						
Mark	Description						
+	Format is supported						
?	Format is supported but not thoroughly tested						
-	Format exists but is not supported						
	Format doesn't exist						

9.5.1 Supported MP3 (MPEG layer III) Formats

MPEG 1.0¹:

Samplerate / Hz		Bitrate / kbit/s												
	32	40	48	56	64	80	96	112	128	160	192	224	256	320
48000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
44100	+	+	+	+	+	+	+	+	+	+	+	+	+	+
32000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

MPEG 2.0¹:

Samplerate / Hz		Bitrate / kbit/s												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
24000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
22050	+	+	+	+	+	+	+	+	+	+	+	+	+	+
16000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

MPEG 2.5¹:

Samplerate / Hz		Bitrate / kbit/s												
	8	16	24	32	40	48	56	64	80	96	112	128	144	160
12000	+	+	+	+	+	+	+	+	+	+	+	+	+	+
11025	+	+	+	+	+	+	+	+	+	+	+	+	+	+
8000	+	+	+	+	+	+	+	+	+	+	+	+	+	+

¹ Also all variable bitrate (VBR) formats are supported.

All real-life sound sources are external, leaving traces of the acoustic

10 VS1005 Peripherals and Registers

10.1 The Processor Core

VS_DSP is a 16/32-bit DSP processor core that also has extensive all-purpose processor features. VLSI Solution's free VSIDE Software Package contains all the tools and documentation needed to write, simulate and debug Assembly Language or Extended ANSI C programs for the VS_DSP processor core. VLSI Solution also offers a full Integrated Development Environment VSIDE for full debug capabilities.

10.2 VS1005 Memory Map

VS1005's Memory Map is shown in Figure 9.

0x0000	Instruction (32-bit)	X (16-bit)	Y (16-bit)
0x003F	System vectors			
0x1800			X Data RAM	Y Data RAM
0x1880	User Instruction		Stack	Stack
	RAM		X Data RAM	Y Data RAM
0x8000				
0xF400	Instruction ROM		X Data ROM	Y Data ROM
0xF800				USB RX Buffer
0xFC00				USB TX Buffer
0xFFFF				Hardware Registers

Figure 9: User's Memory Map.

10.3 VS1005 Peripherals

System peripherals are located in Y-address space. The peripherals that use PLL clock are in addresses 0xFC00 - 0xFD3F and peripherals that use xtal clock are in addresses 0xFE00 - 0xFEDF.

Peripheral address spaces are summarized in the following table:

	VS1005 Peripheral Addresses						
Address	Device						
PLL clocked pheripherals							
0xFC00 - 0xFC1F	Interrupt controller						
0xFC20 - 0xFC3F	DSP interface registers						
0xFC40 - 0xFC4F	SPI 0						
0xFC50 - 0xFC5F	SPI 1						
0xFC60 - 0xFC65	10base-t ethernet controller						
0xFC66 - 0xFC6C	DSP interface for peripheral data buffer						
0xFC70 - 0xFC76	Reed-Solomon codes						
0xFC77 - 0xFC7A	Nand flash interface						
0xFC7B - 0xFC7F	SD card interface						
0xFC80 - 0xFC9F	High Speed USB						
0xFCA0 - 0xFCBF	16-bit GPIO port 0						
0xFCC0 - 0xFCDF	16-bit GPIO port 1						
0xFCE0 - 0xFCFF	14-bit GPIO port 2						
0xFD00 - 0xFD1F	S/PDIF						
XTAL clocked pher	ipherals						
0xFE00 - 0xFE1F	Uart						
0xFE20 - 0xFE3F	Watchdog						
0xFE40 - 0xFE5F	FM and A/D interface						
0xFE60 - 0xFE7F	12S						
0xFE80 - 0xFE9F	Timers						
0xFEA0 - 0xFEBF	RTC interface						
0xFEC0 - 0xFEDF	Control and configuration registers for 12 MHz clock						

10.4 Interrupt Controller

Vs1005 has 28 maskable interrupt vectors and 33 interrupt sources. The interrupt controller is external to DSP and it prioritizes the requests before forwarding them to the DSP. //

Interrupt controller has three levels of priority for simultaneous requests and a global disable/enable for all of the sources. Interrupt sources are divided so that interrupt sources 15-0 are mapped to low registers and 27-16 to high registers.

For an interrupt handler written in C, an assembly language stub that re-enables interrupts before RETI, should be written. The assembly language stub should call the C language handler routine.

VS1005 interrupt vectors						
Interrupt	Interrupt vector	IRQ	Interrupt device			
source						
INT_SAR	27	32	10-bit ADC (SAR)			
INT_PWM	26	31	Pulse width modulator			
INT_REGU	25	30	Power button			
INT_STX	23	28	S/PDIF transmitter			
INT_SRX	22	27	S/PDIF receiver			
INT_RDS	21	26	FM RDS			
INT_RTC	20	25	RTC time alarm			
INT_OSET	19	24	DAC offset			
INT_SRC	18	23	DAC sample rate converter			
INT_FM	17	22	FM interrupt (192kHz)			
INT_TIM2	16	21	Timer 2			

VS1005 interrupt vectors (continued)						
Interrupt	Interrupt vector	IRQ	Interrupt device			
source						
INT_TIM1	15	20	Timer 1			
INT_TIM0	14	19	Timer 0			
INT_RX	13	18	Uart receive			
INT_TX	12	17	Uart transmit			
INT_I2S	11	16	I2S transmitter/receiver			
INT_MAC2	10	15	A/D 3 (mono AD)			
INT_GPIO2	9	14	Gpio port 2			
INT_GPIO1	8	13	Gpio port 1			
INT_GPIO0	7	12	Gpio port 0			
INT_MAC0	6	11	A/D 1/2 (stereo AD)			
INT_MAC1	5	10	FM decimation filter			
INT_SPI1	4	9	SPI 1			
INT_SPI0	3	8	SPI 0			
INT_XPERIP	2	7	Reed-Solomon Decoder			
INT_XPERIP	2	6	Reed-Solomon Encoder			
INT_XPERIP	2	5	SD Card Controller			
INT_XPERIP	2	4	Nand Flash Controller			
INT_XPERIP	2	3	SPI Slave Controller			
INT_XPERIP	2	2	Ethernet Controller			
INT_USB	1	1	Full/High Speed USB			
INT_DAC	0	0	DAC			

10.4.1 Interrupt Controller Registers

Interrupt controller has three type of registers

- Enable registers, which contain enable/disable bits for each interrupt source. Bit pairs configure the interrupt priority and disable.
- Origin registers, which contain the source flags for each interrupt. A request from an interrupt source sets the corresponding bit. A bit is automatically reset when a request for the source is generated.
- Enable counter register, which contains the value of the General Interrupt Enable counter, and two registers for increasing and decreasing the value.

Interrupt Controller Registers				
Address	Туре	Reset	Abbrev	Description
0xFC00	r/w	0	INT_ENABLEL0	Interrupt Enable Low 0
0xFC01	r/w	0	INT_ENABLEL1	Interrupt Enable Low 1
0xFC02	r/w	0	INT_ENABLEH0	Interrupt Enable High 0
0xFC03	r/w	0	INT_ENABLEH1	Interrupt Enable High 1
0xFC04	r/w	0	INT_ORIGIN0	Interrupt Origin 0
0xFC05	r/w	0	INT_ORIGIN1	Interrupt Origin 1
0xFC06	r	0	INT_VECTOR[4:0]	Interrupt Vector
0xFC07	r/w	0	INT_ENCOUNT[2:0]	Interrupt Enable Counter
0xFC08	W	0	INT_GLOB_DIS[-]	Interrupt Global Disable
0xFC09	W	0	INT_GLOB_EN[-]	Interrupt Global Enable

10.4.2 Enable INT_ENABLE[L/H][0/1]

Interrupt enable registers selectively masks interrupt sources. Enable registers 0 contain sources 0..15 and enable registers 1 contain sources 16..31. Each source has two enable bits: one in the enable low and one in the enable high register. If both bits are zero, the corresponding interrupt source is not enabled, otherwise the bits select the interrupt priority.

High	Low	Priority
0	0	Source disabled
0	1	Priority 1
1	0	Priority 2
1	1	Priority 3

Priorities only matter when the interrupt controller decides which interrupt to generate for the core next. This happens whenever two interrupt sources request interrupts at the same time, or when interrupts become enabled after an interrupt handler routine or part of code where the interrupts have been disabled.

10.4.3 Origin INT_ORIGIN[0/1]

If an interrupt source requests an interrupt, the corresponding bit in the interrupt origin register (ORIGIN0 or ORIGIN1) will be set to '1'. If an interrupt source is enabled (using ENABLE

registers), the interrupt controller generates an interrupt request signal for VSDSP with the corresponding vector value. The bit in the origin registers is reset automatically after the interrupt is requested.

If the source is not enabled, the processor can read the origin register state and perform any necessary actions without using interrupt generation, i.e. polling of the interrupt sources is also possible. The bits in the interrupt origin registers can be cleared by writing '1' to them.

A read from the interrupt origin register returns the register state.

A write to the interrupt origin register clears bits in the interrupt origin register. All '1'-bits in the written value cause the corresponding bits in the interrupt origin register to be cleared. All zerobits cause the corresponding bits in the interrupt origin register to keep their state. For example writing a value 0x00ff will clear the lowest eight bits in the interrupt origin register, while leaving the upper bits as-is.

10.4.4 Vector INT_VECTOR

The last generated vector value can be read from the vector register.

10.4.5 Enable Counter INT_ENCOUNT

The global interrupt enable/disable is used to control whether an interrupt request is sent to the processor or not. Whenever this 3-bit counter value is non-zero, interrupt requests are not forwarded to VSDSP. The counter is increased by one whenever the interrupt controller generates an interrupt request for VSDSP, thus disabling further interrupts.

When read, the enable counter register returns the counter value.

Don't write directly to INT_ENCOUNT. Use INT_GLOB_DIS and INT_GLOB_EN to manipulate the value of this register.

10.4.6 Global Disable INT_GLOB_DIS

A write (of any value) to global disable register increases the global interrupt enable/disable counter by one. If the counter is zero, interrupt signal generation is enabled. When the interrupt arbitrator generates an interrupt request for VS_DSP core, it automatically increases the counter. The user must write to the global enable register (once) to enable interrupts.

If an interrupt is generated in the same cycle as a write to global disable register, the interrupt enable counter is increased by two.

10.4.7 Global Enable INT_GLOB_EN

A write (of any value) to global enable register decreases the global interrupt enable/disable counter by one. If the counter is zero, interrupt generation is enabled.

The user must write to this register once in the end of the interrupt handler to enable further interrupts. This should be done in assembly language.

10.5 DSP Clock Domain Registers

10.5.1 General Purpose Software Registers

SW_REG0, SW_REG1, SW_REG2 and SW_REG3 are software registers for user purposes. They are zeroed in reset and do not control any logic.

	Software Registers						
Address	Address Type Reset Abbrev		Abbrev	Description			
0xFC20	r/w	0	SW_REG0	16-bit general purpose sw register			
0xFC21	r/w	0	SW_REG1	16-bit general purpose sw register			
0xFC22	r/w	0	SW_REG2	16-bit general purpose sw register			
0xFC23	r/w	0	SW_REG3	16-bit general purpose sw register			

10.5.2 Peripheral IO control

VS1005 has three general purpose IO ports. Ports 0 and 1 are 16-bits and port 2 is 14 bits. GPIO pins can be used either in GP mode or they can have also a special peripheral function. GPIO or peripheral function can be defined for each pin separately.

GPIO Mode Registers						
Address	Туре	Reset	Description			
0xFC30	r/w	0	GPMODE0	Mode control for gpio port 0		
0xFC31	r/w	0	GPMODE1	Mode control for gpio port 1		
0xFC32	r/w	0	GPMODE2	Mode control for gpio port 2		

GPMODE0, GPMODE1 and GPMODE2 register are used so select current GPIO mode. By default all vs1005 pins are at GPIO mode and all GPMODE register are reset. If a peripheral mode is required the pin's GPMODE bit must be set ('1').

10.5.3 PLL clock control

Vs1005 has two clock domains, the PLL clock domain and 12MHz clock domain. The PLL is controlled with one register.

Clock Control Register						
Address Type Reset Abbrev Description						
0xFC33	r/w	0	CLK_CF	PLL clock control register		

CLK_CF Bits				
Name Bits type			Description	
CLK_CF_EXTOFF	15	r/w	S/PDIF peripheral clock gate control	
CLK_CF_NFOFF	14	r/w	NF, SD and R-S peripherals clock gate control	
CLK_CF_USBOFF	13	r/w	USB peripheral clock gate control	
CLK_CF_RTCSLP	12	r/w	RTC power down mode enable	
CLK_CF_LCKST	11	r/w	PLL vco lock status	
CLK_CF_GDIV256	10	r/w	Global Clock 256-divider enable	
CLK_CF_GDIV2	9	r/w	Global clock 2-divider enable	
CLK_CF_LCKCHK	8	r/w	PLL vco lock check initialization	
CLK_CF_VCOOUT	7	r/w	Enable PLL clock output pad driver	
CLK_CF_USBCK	6	r/w	High speed usb clock mode control	
CLK_CF_CKSW	5	r/w	PLL clock switch control	
CLK_CF_DIVI	4	r/w	PLL input clock divider control	
CLK_CF_MULT	3:0	r/w	Pll clock multiplier factor	

CLK CF MULT determines the clock multiplier for input clock. Multiplier is value+1 i.e. value 1 means clock is multiplied by 2. Value 0 disables the PLL.

CLK CF DIVI controls the input divider of PLL's vco. If CLK CF DIVI is set the vco input clock is divided by two. If CLK CF DIVI is reset the vco input clock is the xtal oscillator clock. When divider is used the CLK CF MULT can be programmed with values 1-15.

CLK CF CKSW register controls the output clock switch. When set the output clock is PLL's vco clock. When reset the output clock is xtal oscillator clock. It should be noted that the vco must be locked when CLK_CF_CKSW is modified.

CLK_CF_USBCK selects High Speed USB clock (UTM) insted of PLL vco clock. This clock must be selected before CLK_CF_CKSW is modified. CLK_CF_MULT must have some value other than 0 when this clock mode is used. Also the High Speed USB must be configured properly to output 60 MHz clock for core.

CLK_CF_VCOOUT enables the vco clock's output pad driver. The pad must be in peripheral mode in order to output clock. The output driver has glitch removal.

CLK_CF_LCKCHK and CLK_CF_LCKST are used to poll vco lock status. When CLK_CF_LCKCHK is first set and reset the lock status can be read from CLK CF LCKST. If CLK CF LCKST remains set the PLL vco is locked.

CLK CF GDIV256 and CLK CF GDIV2 are the global clock dividers. These divider divide also the 12 MHz clock domain clock. PLL must be disabled when these dividers are used.

CLK CF RTCSLP enables RTC clocking mode.

CLK_CF_EXTOFF, CLK_CF_NFOFF and CLK_CF_USBOFF control peripheral clock gates. CLK CF NFOFF controls Nand flash, SD card, ethernet, Reed-Solomon codecs and peripeheral data buffer clocks. CLK CF EXTOFF controls S/PDIF peripheral clock. CLK CF USBOFF controls USB peripheral clock.

10.6 XTAL Clock Domain Registers

Peripheral control registers control the logic that is clocked with xtal clock (12MHz).

10.6.1 Analog Control Registers

Analog Control Registers						
Reg	Description					
0xFECB	r/w	0	ANA_CF1	Analog Control register 1		
0xFECC	r/w	0	ANA_CF0	Analog Control register		
0xFED2	r/w	0	ANA_CF2	Analog Control register 2		
0xFED3	r/w	0	ANA_CF3	Analog Control register 3		

ANA_CF1 Bits				
Name	Bits	Description		
	15	Reserved, use '0'		
ANA_CF1_VHMON	14	Regulator input voltage monitor (VHIGH)		
ANA_CF1_PWRBTN	13	Power button pin state		
ANA_CF1_BTNDIS	12	Power button reset disable		
	11	Reserved, use '1'		
ANA_CF1_DBG	10	Debug mode pin state		
ANA_CF1_XTDIV	9	Input clock divider for 24 MHz xtal oscillator		
ANA_CF1_SARPD	8	SAR power down		
	7	Reserved, Use '0'		
ANA_CF1_DAPD	6	DAC power down		
ANA_CF1_DAGAIN	5:4	Reserved, use '00'		
ANA_CF1_DRVPD	3	DAC driver power down		
	2	Reserved, use '0'		
	1:0	Reserved, use "00"		

ANA_CF1_XTDIV is the input clock prescaler control register. When register is set the input clock is divided by 2. ANA_CF1_SARPD, ANA_CF1_DAPD and ANA_CF1_DRVPD are analog module's enable signals. When register is set the module is enabled.

	ANA_CF0 Bits				
Name Bits		Description			
	15:11	Reserved, use '00000'			
ANA_CF0_M1LIN	10	Line input mode select for ADC 1			
ANA_CF0_M2LIN	9	Line input mode select for ADC 2			
	8:6	Reserved, use '000'			
ANA_CF0_M2MIC	5	Mic input mode select for ADC 2			
ANA_CF0_LCKST	4	2 GHz vco lock status			
ANA_CF0_LCKCHK	3	2 GHz vco lock check init			
ANA_CF0_M1MIC	2	Mic input mode select for ADC 1			
ANA_CF0_M21	1:0	ADC 2 and 1 RF mode "11" / Alternate line input			
		pin select ("00" default, "01" pins 71/70, "10"			
V		pins 68/67)			

ANA_CF0_LCKCHK and ANA_CF0_LCKST are used to poll 2 GHz vco lock status. When ANA_CF0_LCKCHK is first set and reset the lock status can be read from ANA_CF0_LCKST. If ANA_CF0_LCKST remains set the 2 GHz vco is locked.

ANA_CF2 Bits				
Name	Bits	Description		
	15-14	Reserved		
ANA_CF2_TSTE	13	Hardware debug test enable, read only		
ANA_CF2_VCMST	12	Ground buffer short circuit monitor		
ANA_CF2_VCMDIS	11	Ground buffer driver short circuit protection disable		
ANA_CF2_UTMENA	10	High Speed USB UTM enable		
ANA_CF2_LNAPD	9	Low Noise Amplifier power down		
ANA_CF2_2GPD	8	2 GHz VCO power down		
ANA_CF2_AMP1PD	7	Microphone amplifier 1 power down		
ANA_CF2_AMP2PD	6	Microphone amplifier 2 power down		
	5	Reserved, use '0'		
ANA_CF2_REF	4	Analog reference voltage, 1.2V (0) or 1.6V (1)		
ANA_CF2_REFPD	3	Analog reference powerdown		
ANA_CF2_M3PD	2	ADC 3 power down, active low		
ANA_CF2_M2PD	1	ADC 2 power down, active low		
ANA_CF2_M1PD	0	ADC 1 power down, active low		

ANA_CF2 register controls several analog module power downs. The power downs are active low i.e. the module is enabled when power down register is set.

ANA_CF3 Bits					
Name	Bits	Description			
ANA_CF3_480ENA	15	480 MHz clock enable			
ANA_CF3_UTMBIAS	14	Usb pad bias enable			
ANA_CF3_FMDIV[1:0]	13:12	FM divider selection 16, 20 or 24			
ANA_CF3_DIV[1:0]	11:10	VCO divider select register			
ANA_CF3_GAIN2[2:0]	9:7	ADC 2 gain register			
ANA_CF3_GAIN1[2:0]	6:4	ADC 1 gain register			
ANA_CF3_2GCNTR[3:0]	3:0	VCO center frequency register			

ANA_CF3_FMDIV is the VCO divider selection register for FM receiver. When the register is set the VCO clock is divided by 20 (FM mode). When the register is reset the divider value is 16 (HS USB mode). ANA_CF3_FMDIV2 register selects the divider 24. In this divider mode the ANA_CF3_FMDIV should be set. The VCO frequency is therefore FM tuning frequency multiplied by 16, 20 or 24.

	FM Divider Bits					
	FMDIV[1] FMDIV[0] Divider Description					
	1	1	24	FM frequency is VCO frequency divided by 24		
	0	1	24	Don't Use (reserved)		
	1	0	20	FM frequency is VCO frequency divided by 20		
ĺ	0	0	16	FM frequency is VCO frequency divided by 16		

ANA_CF3_2GCNTR register is used to match VCO's center frequency to programmed value (CCF). ANA_CF3_DIV[1:0] controls the VCO's dividers. These dividers are used to set VCO's output frequency range.

ANA_CF3_480ENA is the 480 MHz clock driver enable for UTM. When set the clock driver is enabled.

ANA_CF3_GAIN1 and ANA_CF3_GAIN2 set the ADC 1 and 2 gains. ADC gain can be adjusted to four values.

ADC Gain					
Register value	Gain				
001	20dB (max)				
010	17dB				
100	14dB				
000	11dB (min), default after reset				

10.6.2 Regulator and Peripheral Clock Control Registers

Vs1005 has four internal regulators, one regulator for each power domain. The voltage can be adjusted in about 50mV step size. To save power some of the peripheral clocks can be switched off.

Regulator and Clock Control						
Reg Type Reset Abbrev Description						
0xFECE	r/w	0	REGU_CF	Regulator control register		
0xFED0	r/w	0	REGU_VOL	Regulator voltage register		

REGU_VOL Bits					
Name Bits Description					
REGU_CF_AVDD[4:0]	14:10	Analog voltage configuration 2.7V-3.6V			
REGU_CF_IOVDD[4:0]	9:5	IO voltage configuration, 1.8V-3.6V			
REGU_CF_CVDD[4:0]	4:0	Core voltage configuration, 1.65V-1.9V			

REGU_CF Bits				
Name Bits Description				
REGU_CF_SNFVOL ¹	11:7	Serial Flash voltage configuration		
REGU_CF_SNFOFF	6	Serial Flash voltage regulator shutdown		
REGU_CF_ADOFF	5	AD filter clock gate control		
REGU_CF_FMOFF	4	FM demodulator clock gate control		
REGU_CF_REGCK	3	Regulator latch enable		
REGU_CF_AOFF	2	Analog voltage regulator shutdown		
REGU_CF_IOOFF	1	IO voltage regulator shutdown		
REGU_CF_COFF	0	Core voltage regulator shut down		

¹ User should not modify this register if embedded serial flash is used.

REGU_CF_ADOFF and REGU_CF_FMOFF control the AD and FM peripheral clocks. When these registers are set the clocks are cut off.

REGU_CF_REGCK is used to latch in the regulator voltage and shutdown bits. Typical values for voltages are calculated from equations:

- CVDD = 1.24V + (30mV * voltage register)
- IOVDD = 1.80V + (60mV * voltage register)
- AVDD = 2.48V + (40mV * voltage register)

10.7 24-bit Digital to Analog Converter (DAC)

Vs1005 has a 24-bit DAC with a programmable sample rate. Sample rates up to 96kHz are supported.

DAC Interface Registers						
Address	Туре	Reset	Abbrev	Description		
0xFC34	r/w	0	DAC_SRCL	DAC sample rate, bits 15-0		
0xFC35	r/w	0	DAC_SRCH[3:0]	DAC sample rate, bits 19-16		
0xFC36	r/w	0	DAC_LEFT_LSB[15:8]	DAC left sample, bits 7-0		
0xFC37	r/w	0	DAC_LEFT	DAC left sample, bits 23-8		
0xFC38	r/w	0	DAC_RIGHT_LSB[15:8]	DAC right sample, bits 7-0		
0xFC39	r/w	0	DAC_RIGHT	DAC right sample, bits 23-8		

The DAC interpolator frequency is defined with registers DAC_SRCH and DAC_SRCL. Output sample rate is derived from the rollover frequency of a 20-bit interpolator accumulator. Its accumulation rate is specified by ifreq.

Input sample rate can be calculated from equation:

 $fs = (f_{clk}/2^{27}) * ifreq$ where

Ifreq can have values from 1 to 1048575 (0xFFFF) and f_{clk} is the xtal clock frequency. Value zero of ifreq places the DAC in idle mode. In idle mode all logic is halted. Also the analog clock is halted.

Note that the DAC clock is not controlled by the PLL.

The exact sample rate is xtal dependent and a sample rate of e.g exactly 48kHz requires that the xtal frequency is 12.288MHz.

24-bit samples are written to registers DAC_LEFT, DAC_LEFT_LSB, DAC_RIGHT and DAC_RIGHT_LSB after each DAC interrupt.

10.7.1 Configuring Analog DAC Modules

Example values of analog configuration registers with 1.6V reference are given in next table.

Analog Control Register example for DAC Operation					
Address Register Value Description					
0xFECB	ANA_CF1	0x0048 DAC and output driver power down			
0xFED2 ANA_CF2 0x0018 Reference voltage select and reference power dow					

10.8 Audio Interfaces

Vs1005 audio path is shown in figure 10.

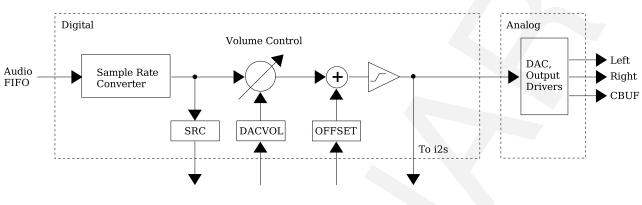


Figure 10: Vs1005 audio path.

10.8.1 DAC volume control

In vs1005 the DAC's volume level can be adjusted in -0.5dB steps.

DAC Volume Registers					
Reg	Reg Type Reset Abbrev Description				
0xFEC0	r/w	0	DAC_VOL	DAC volume control register	

DAC_VOL Bits						
Name Bits Description						
DAC_VOL_LADD[3:0]	15:12	Left channel +0.5dB steps				
DAC_VOL_LSFT[3:0]	11:8	Left channel -6dB steps				
DAC_VOL_RADD[3:0]	7:4	Right channel +0.5dB steps				
DAC_VOL_RSFT[3:0]	3:0	Right channel -6dB steps				

DAC_VOL_LSFT and DAC_VOL_RSFT are the coarse volume control registers. They suppress channel volume by -6dB steps.

DAC_VOL_LADD and DAC_VOL_RADD are the fine volume control registers. They add channel volume level by +0.5dB steps. Allowed values are from 0 to 11, i.e. maximum is +5.5dB. Values between 12-15 equal to 0dB.

10.8.2 DAC Offset Registers

In vs1005 a second audio source can be mixed to DAC output. This is done with DAC offset registers. The sample rate is programmable.

DAC Offset Registers						
Reg	g Type Reset Abbrev			Description		
0xFEC1	r/w	0	DAOSET_CF	DAC offset configuration register		
0xFEC2	r/w	0	DAOSET_LEFT_LSB[15:12]	DAC left offset bits [3:0]		
0xFEC3	r/w	0	DAOSET_LEFT	DAC left offset bits [19:4]		
0xFEC4	r/w	0	DAOSET_RIGHT_LSB[15:12]	DAC right offset bits [3:0]		
0xFEC5	r/w	0	DAOSET_RIGHT	DAC right offset bits [19:4]		

DAOSET_CF Bits						
Name Bits Description						
DAOSET_CF_URUN	14	Data register underrun flag				
DAOSET_CF_FULL	13	Data register full flag				
DAOSET_CF_ENA	12	Enable for DAC offset				
DAOSET_CF_FS	11:0	DAC offset sample rate				

DAOSET_CF_URUN is an underrun flag register. The register is set if data register was read when the full flag was not set.

DAOSET_CF_FULL is a data status register. Flag is set when data is written to DAOSET_LEFT and DAOSET_RIGHT registers and reset when DAC reads the register.

DAOSET_CF_ENA enables DAC offset module.

DAOSET_CF_FS is used to set DAC offset sample rate. This register defines the interval in clock cycles where the samples are added to DAC output. When new samples are read from data registers also an interrupt request is generated.

Sample rate can be calculated from equation:

 $fs = F_{clk}/(dacoffset_cf_fs+1))$ where

dacoffset_cf_fs can have values from 0 to 4095 (0xFFF) and F_{clk} is the xtal clock frequency. E.g. value 0xFFF gives sample rate of 12.288MHz / (0xFFF+1) = 3.0 kHz.

DAC and DAC offset mixing logic uses saturation to limit samples to 20-bit signed values. The mixed values should not exceed 75% of the full scale values or the signal to noise ration is degraded.

10.8.3 Sample Rate Converter (SRC) Registers

Vs1005 has a programmable sample rate converter which can be used to convert DAC's input sample rate to an other sample rate which is higher than the original sample rate.

SRC Characteristics						
Item	Value	Description				
Xtal Clock	11.0MHz - 13.0MHz	Clock frequency				
DAC bit width	24	Input data width				
SRC bit widht	24	Output data width				
DAC sample rate ¹	0Hz - 96kHz	Input sample rate				
Output sample rate ¹	0.97 <i>FS</i> _{in} - 192kHz	Output sample rate				
Filter delay ²	19 input samples					
Gain	0.78					

¹ Assuming 12.288MHz XTAL clock.

² In start-up the SRC output is valid after 19 DAC interrupts.

	SRC Registers						
Reg	Туре	Reset	Abbrev	Description			
0xFEC6	r/w	0	SRC_CF	SRC sampler configuration register			
0xFEC7	r/w	0	SRC_LEFT_LSB[15:12]	SRC left sample bits [7:0]			
0xFED8	r/w	0	SRC_LEFT	SRC left sample bits [23:8]			
0xFED9	r/w	0	SRC_RIGHT_LSB[15:12]	SRC right sample bits [7:0]			
0xFEDA	r/w	0	SRC_RIGHT	SRC right sample bits [23:8]			

SRC_CF Bits					
Name Bits Description					
SRC_CF_ORUN	15	SRC overrun flag			
SRC_CF_RFULL	14	Right data register full flag			
SRC_CF_LFULL	13	Left data register full flag			
SRC_CF_ENA	12	Enable for sample rate convertter			
SRC_CF_FS	11:0	SRC sample rate			

SRC_CF_ORUN is set if data register was full when data registers were modified.

SRC_CF_RFULL and SRC_CF_LFULL status registers for new samples. Flags are set as SRC_LEFT and SRC_RIGHT are modified and reset as they are read.

SRC_CF_ENA enables sample rate converter when set.

SRC_CF_FS is used to set src sample rate. This register defines the interval in clock cycles when the samples are generated. When new samples are stored to data registers also an interrupt request is generated.

Output sample rate can be calculated from equation:

 $fs = F_{clk}/(2 * (src_cf_fs + 1))$ where

src_cf_fs can have values from 0 to 4095 (0xFFF) and F_{clk} is the xtal clock frequency.

E.g. value 0x7FF gives sample rate of 12.288MHz / (2*(0x7FF+1)) = 3.0 kHz.

10.9 SPI Peripherals

Vs1005 has two SPI (serial-to-paralle) peripherals which can be configured as a master or a slave. Before SPIs can be used the vs1005 I/Os must be configured to peripheral mode:

- set I/O pins to peripheral mode : GPMODE1 register selects between spi mode or gpio mode
- *Embedded Serial Flash disabled* : SYSTEMPD_SFENA bit reset when using SPI0 (also boot device)
- Buffered SPI slave disabled : ETH_RXLEN_PMODE bit reset when using SPI1

SPI0 and SPI1 pins are mapped to GPIO1 port. To select peripheral mode the bits in GPMODE register must be set HIGH.

	SPI pins and their GPMODE register							
SPI id	VS1005 pin	Туре	SPI pin	GPMODE register	Description			
SPI0	XCS0/GPIO1[0]	i/o	XCS	GPMODE1[0]	Master/slave chip select			
SPI0	SCLK0/GPIO1[1]	i/o	sclk	GPMODE1[1]	Master/slave clock			
SPI0	MISO0/GPIO1[2]	i/o	miso	GPMODE1[2]	Master input / slave output			
SPI0	MOSI0/GPIO1[3]	i/o	mosi	GPMODE1[3]	Master output / slave input			
SPI1	XCS1/GPIO1[4]	i/o	XCS	GPMODE1[4]	Master/slave chip select			
SPI1	SCLK1/GPIO1[5]	i/o	sclk	GPMODE1[5]	Master/slave clock			
SPI1	MISO1/GPIO1[6]	i/o	miso	GPMODE1[6]	Master input / slave output			
SPI1	MOSI1/GPIO1[7]	i/o	mosi	GPMODE1[7]	Master output / slave input			

The SPIs are mapped in Y addresses 0xFC40 (SPI0) and 0xFC50 (SPI1).

SPI Registers, Prefix SPIx_							
SPI0 address	SPI1 address	Туре	Reset	Abbrev	Description		
0xFC40	0xFC50	r/w	0	CONFIG[10:0]	Configuration		
0xFC41	0xFC51	r/w	0	CLKCONFIG	Clock configuration		
0xFC42	0xFC52	r/w	0	STATUS[7:0]	Status		
0xFC43	0xFC53	r/w	0	DATA	Sent / received data		
0xFC44	0xFC54	r/w	0	FSYNC	SSI Sync data in master mode		
0xFC45	0xFC55	r/w	0	DEFAULT	Data to send (slave) if		
					SPIx_ST_TXFULL='0'		

Main Configuration SPIx_CONFIG Bits				
Name Bits		Description		
SPI_CF_SRESET	11	SPI software reset		
SPI_CF_RXFIFOMODE	10	'0' = interrupt always when a word is received,		
		'1' = Interrupt only when FIFO register full or CS		
		deasserted with receive register full		
SPI_CF_RXFIFO	9	Receive FIFO enable		
SPI_CF_TXFIFO	8	Transmit FIFO enable		
SPI_CF_XCSMODE	7:6	xCS mode in slave mode		
SPI_CF_MASTER	5	Master mode		
SPI_CF_DLEN	4:1	Data length in bits		
SPI_CF_FSIDLE	0	Frame sync idle state		

SPI_CF_XCSMODE selects xCS mode for slave operation. '00' is interrupted xCS mode, '10' is falling edge xCS mode, and '11' is rising edge xCS mode.

SPI_CF_MASTER sets master mode. If not set, slave mode is used.

SPI_CF_DLEN+1 is the length of SPI data in bits. Example: For 8-bit data transfers, set SPI_CF_DLEN to 7.

SPI CF FSIDLE contains the state of FSYNC when SPI ST TXRUNNING is clear. This bit is only valid in master mode.

Clock Configuration SPIx_CLKCONFIG Bits				
Name Bits Description				
SPI_CC_CLKDIV	9:2	Clock divider		
SPI_CC_CLKPOL	1	Clock polarity selection		
SPI_CC_CLKPHASE	0	Clock phase selection		

In master mode, SPI_CC_CLKDIV is the clock divider for the SPI block. The generated SCLK frequency $f = \frac{f_m}{2 \times (c+1)}$, where f_m is the master clock frequency and c is SPI_CC_CLKDIV. Example: With a 12 MHz master clock, SPI_CC_CLKDIV=3 divides the master clock by 4, and the output/sampling clock would thus be $f = \frac{12\overline{M}Hz}{2\times(3+1)} = 1.5MHz.$

SPI CC CLKPOL reverses the clock polarity. If SPI CC CLKPOL is clear the data is read at rise edge and written at fall edge if SPI_CC_CLKPHASE is clear. When SPI_CC_CLKPHASE is set the data is written at rise edge and read at fall edge.

SPI CC CLKPHASE defines the data clock phase. If clear the first data is written when xcs is asserted and data is sampled at first clock edge (rise edge when SPI CC CLKPOL = 0 and fall edge if SPI_CC_CLKPOL = 1). If SPI_CC_CLKPHASE is set the first data is written a the first data clock edge and sampled at second.

VS1005 PERIPHERALS AND REGISTERS

Status SPIx_STATUS Bits			
Name	Bits	Description	
SPI_ST_RXFIFOFULL	7	Receiver FIFO register full	
SPI_ST_TXFIFOFULL	6	Transmitter FIFO register full	
SPI_ST_BREAK	5	Chip select deasserted mid-transfer	
SPI_ST_RXORUN	4	Receiver overrun	
SPI_ST_RXFULL	3	Receiver data register full	
SPI_ST_TXFULL	2	Transmitter data register full	
SPI_ST_TXRUNNING	1	Transmitter running	
SPI_ST_TXURUN	0	Transmitter underrun	

SPI_ST_BREAK is set in slave mode if chip select was deasserted in interrupted xCS mode or a starting edge is encountered in xCS edge modes while a data transfer was in progress. This bit has to be cleared manually.

SPI_ST_RXORUN is set if a received byte overwrites unread data when it is transferred from the receiver shift register to the data register. This bit has to be cleared manually.

SPI_ST_RXFULL is set if there is unread data in the data register.

SPI_ST_TXFULL is set if the transmit data register is full.

SPI_ST_TXRUNNING is set if the transmitter shift register is in operation.

SPI_ST_TXURUN is set if an external data transfer has been initiated in slave mode and the transmit data register has not been loaded with new data to shift out. This bit has to be cleared manually.

Note: Because TX and RX status bits are implemented as separate entities, it is relatively easy to make asynchronous software implementations, which do not have to wait for an SPI cycle to finish.

SPIx_DATA[SPI_CF_DLEN:0] may be written to whenever SPI_ST_TXFULL is clear. In master mode, writing will initiate an SPI transaction cycle of SPI_CF_DLEN+1 bits. In slave mode, data is output as soon as suitable external clocks are offered. Writing to SPI_DATA sets SPI_ST_TXFULL, which will again be cleared when the data word was put to the shift register. If SPI_ST_TXRUNNING was clear when SPI_DATA was written to, data can immediately be transferred to the shift register and SPI_ST_TXFULL won't be set at all.

When SPI_ST_RXFULL is set, SPI_DATA may be read. Bits SPI_CF_DLEN:0 contain the received data. The rest of the 16 register bits are set to 0.

SPIx_FSYNC is meant for generation of potentially complex synchronization signals, including several SSI variants as well as a simple enough automatic chip select signal. SPIx_FSYNC is only valid in master mode.

If a write to SPIx_DATA is preceded by a write to SPIx_FSYNC, the data written to SPIx_FSYNC is sent to FSYNC pin with the same synchronization as the data written to SPIx_DATA is written to MOSI. When SPI_ST_TXRUNNING is clear, the value of SPI_CF_FSIDLE is set to FSYNC pin.

If SPIx_DATA is written to without priorly writing to SPIx_FSYNC, the last value written to SPIx_FSYNC is sent.

SPIx_FSYNC is double-buffered like SPIx_DATA.

The SPI block has one interrupt. Interrupt 0 request is sent when SPI_ST_BREAK is asserted, or when SPI_ST_TXFULL or SPI_ST_TXRUNNING is cleared. This allows for sending data in an interrupt-based routine, and turning chip select off when the device becomes idle.

10.10 Common Data Interfaces

Vs1005 has a 3kB data buffer which is a dedicated peripheral memory. The memory can be configured to be used with:

- Ethernet interface
- Nand Flash Interface
- SD Card Interface
- Reed-Solomon Codecs

Block diagram of the data interfaces is shown in figure 11.

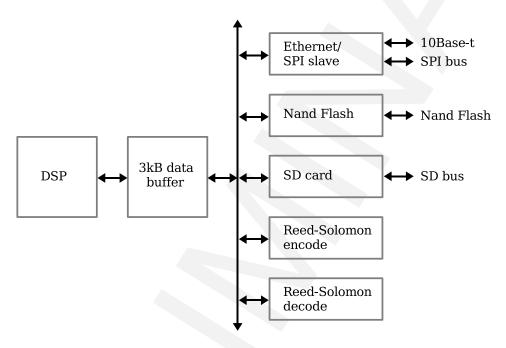


Figure 11: Block Diagram of Data Interfaces.

Each peripheral can be configured to use its own address space. The dsp interface has a read and write port with auto incrementing address register. The read operation is pipelined and requires two reads to fill the pipeline. After that the memory can be read on each instruction cycle. It should be noted that the memory is time multiplexed between the peripherals and some idle cycles are required if several devices are enabled simultaneously. A guideline is that every 16th read cycle is idle. Dsp interface has Error Correctin Code (ECC) registers for nand flash. It uses 2D xor to protect and correct data.

	DSP Interface Registers for Peripheral Memory					
Reg	Туре	Reset	Abbrev	Description		
0xFC66	r	0	LP_LOW	ECC line parity register bits [15:0]		
0xFC67	r	0	CP_LP_HIGH	ECC column parity bits [5:0] and line parity bits [17:16]		
0xFC68	r/w	0	DSPI_CF	Dsp interface control		
0xFC69	r/w	0	DSPI_ADDR	Memory address register for dsp interface, 11 bits		
0xFC6A	r/w	0	DSPI_ODATA	Memory write port for dsp		
0xFC6B	r	0	DSPI_IDATA	Memory read port for dsp		
0xFC6C	r/w	0	DSPI_ST	Interrupt status register for data buffer peripherals		

LP_LOW and CP_LP_HIGH are the error correction code data registers. They are modified when DSPI_ODATA or DSPI_IDATA ports are accessed. The DSPI_CF_ECCENA must be set in order to use ECC.

DSPI_CF Bits				
Name	Bits	Description		
DSPI_CF_ODAT	15:12	RS_ODATA mux control		
DSPI_CF_ECCRST	9	ECC reset		
DSPI_CF_ECCENA	8	ECC enable		
DSPI_CF_WRBUF	1	Data buffer write enable		
DSPI_CF_RDBUF	0	Data buffer read enable		

DSPI_CF_ODAT is a control register for RS_ODATA register.

DSPI_CF_ECCRST and DSPI_CF_ECCENA control the ECC unit. DSPI_CF_ECCRST reset the unit when set. THe register is reset automatically after one clock cycle.

DSPI_CF_ECCENA register enables the ECC calculation. column parity (CP) and line parity (LP) registers are modified when data is read from DSPI_ODATA or written to DSPI_IDATA register and DSPI_CF_ECCENA is set.

DSPI_CF_WRBUF and DSPI_CF_RDBUF enable the dsp access to peripheral data buffer. When either register is set the DSPI_ADDR is incremented on each memory access and data is read (DSPI_ODATA) or written (DSPI_IDATA) to memory.

Data interfaces can generate only one interrupt request for the DSP. The interrupt source is stored in interrupt status register.

DSPI_STATUS register is used to track the interrupt source of the peripherals using data buffer memory. The interrupt requests are reset when the register bit is set by software. Interrupt sources are listed in the table.

DSPI_STATUS Bits				
Name	Bits	Description		
DSPI_ST_IENA	14	Interrupt enable for data buffer peripherals		
DSPI_ST_ETRB1	13	Ethernet transmit ring buffer full		
DSPI_ST_ETRB0	12	Ethernet transmit ring buffer half full		
DSPI_ST_ERRB1	11	Ethernet receive ring buffer emptyl		
DSPI_ST_ERRB0	10	Ethernet receive ring buffer half empty		
DSPI_ST_SPIERR	9	SPI slave error, transfer was interrupted mid-		
		dle of byte		
DSPI_ST_BMCSF	8	Reed-Solomon decode error correction data		
		ready		
DSPI_ST_RSDEC	7	Reed-Solomon decode ready		
DSPI_ST_RSENC	6	Reed-Solomon encode ready		
DSPI_ST_SD	5	SD card interface ready interrupt		
DSPI_ST_NF	4	Nand flash interface ready interrupt		
DSPI_ST_SPISTP	3	SPI slave stop interrupt, chip select to inactive		
		state		
DSPI_ST_SPISTR	2	SPI slave start interrupt, chip select to active		
		state		
DSPI_ST_ETHRX	1	Ethernet receiver new packet interrupt		
DSPI_ST_ETHTX	0	Ethernet transmitter ready interrupt		

DSPI_ST_IENA is the peripheral interrupt enable. When set the interrupt requests are forwarded to interrupt controller. Interrupt requests in DSPI_STATUS register are modified regardless the value of DSPI ST IENA.

The SPI slave error register (DSPI_ST_SPIERR) is a read only register which is reset when SPI start is detected in the SPI bus and set if data transfer was interrupted in the middle of a byte.

10.10.1 Ethernet Controller

Vs1005 has a controller for interfacing 10base-t ethernet bus. Additionally this peripheral can be configured to SPI slave mode to be used with VLSI Solution's RF link. In this mode the SPI1 pins are used and they must be configured to peripheral mode with GPMODE1[7:4] registers.

	Ethernet Controller Registers						
Reg	Туре	Reset	Abbrev	Description			
0xFC60	r/w	0	ETH_TXLEN	Ethernet transmitter packet length			
0xFC61	r/w	0	ETH_TXPNTR	Ethernet transmitter memory address pointer			
0xFC62	r/w	0	ETH_RXLEN	Ethernet receiver packet length			
0xFC63	r/w	0	ETH_RXPNTR	Ethernet receiver memory address pointer			
0xFC64	r/w	0	ETH_RBUF	Ethernet transmitter/receiver ring buffer configuration			
0xFC65	r	0	ETH_RXADDR	Ethernet receiver memory address, 11 bits			

ETH_TXLEN Bits				
Name Bits Description		Description		
ETH_TXLEN_META	15	SPI slave synhronization configuration		
ETH_TXLEN_RBO	14	SPI slave receiver bit order		
ETH_TXLEN_TBO	13	SPI slave transmitter bit order		
ETH_TXLEN[11:0]	11:0	Ethernet transmitter packet size in bytes		

ETH_TXLEN_META register enables the use of higher bit rate. If the SPI slave and master are using same clock source this register can be set. The SPI slave synchronization is then made simpler. It is recommended to keep this register in reset. In ethernet mode this register is don't care.

ETH_TXLEN_RBO and ETH_TXLEN_TBO are used to reverse bit order. When registers are reset the bits are sent/received lsb bit first (i.e. from 0 to 7). When registers are set the bits are sent/received msb bit first (i.e. from 7 to 0). In ethernet mode these registers are don't care.

ETH_TXLEN[11:0] register is loaded with packet length (in bytes) before the transmitter is enabled. When transmitter is enabled this register is decremented after a byte has been sent. When the length register reached zero the transmitter returns to idle state. In SPI slave mode this register is zero.

ETH_TXPNTR Bits				
Name	Bits	Description		
ETH_TXPNTR_SPITE	15	SPI slave transmitter enable		
ETH_TXPNTR_SPIRE	14	SPI slave receiver enable		
ETH_TXPNTR_BUSY	13	Ethernet transmitter busy		
ETH_TXPNTR_START	12	Ethernet transmitter start-to-send packet		
ETH_TXPNTR[10:0]	10:0	Ethernet transmitter memory address pointer		

ETH_TXPNTR_SPITE and ETH_TXPNTR_SPIRE are the SPI slave mode enables for transmitter and receiver. SPI start and stop interrupts are generated even though these registers would be reset. It should be noted that when ETH_TXPNTR_SPIRE is set the transmitter address pointer must be initialized to data start address. In ethernet mode these registers are

don't care.

ETH_TXPNTR_BUSY is the ethernet transmitter busy flag. In SPI slave mode this flag is set if transmitter is enabled and chip select line is in its active state (low).

ETH_TXPNTR_START enables the ethernet transmitter. When this register is set the transmitter changes from idle to busy state and sends ETH_TXLEN[11:0] number of bytes. Before this register is set the packet data must be stored in peripheral memory and tx address pointer and tx packet length registers must be configured. In SPI slave mode this register is zero.

ETH_TXPNTR[10:0] is the ethernet/SPI transmitter memory address pointer. This pointer is loaded with packet start address before transmitter is enabled.

ETH_RXLEN Bits			
Name Bits Description			
ETH_RXLEN_PMODE	15	Peripheral mode select: Ethernet (0) / SPI slave mode (1)	
ETH_RXLEN_STCLK	14	SPI slave transmitter clock configuration	
ETH_RXLEN[11:0]	11:0	Ethernet receiver packet size in bytes	

ETH_RXLEN_PMODE register configures the peripheral to ethernet mode or to SPI slave mode. When register is reset (default state) the peripheral is in ethernet mode.

ETH_RXLEN_STCLK selects SPI slave transmitter clock edge. When register is reset the SPI out data is written after falling SPI clock edge. When register is set the data is written after rise edge. With high SPI bit rates (SPI clock > core clock / 6) the rise edge should be used. It should be noted that the SPI slave clock can not exceed core clock / 4 at any time. In ethernet mode this register is don't care.

ETH_RXLEN[11:0] register is loaded with ethernet/SPI receiver packet length counter when receiver returns from busy state to idle (packet end). Packet length is given in bytes.

ETH_RXPNTR Bits				
Name	Bits	Description		
ETH_RXPNTR_CRCOK	15	Ethernet receiver crc status flag		
ETH_RXPNTR_NEWPKT	14	Ethernet receiver packet received flag		
ETH_RXPNTR_BUSY	13	Ethernet receiver busy		
ETH_RXPNTR_ENA	12	Ethernet receiver enable		
ETH_RXPNTR[10:0]	10:0	Ethernet receiver memory address pointer		

ETH_RXPNTR_CRCOK is the received packet crc status flag. Receiver sets the flag if the received packet crc was correct. Flag must be reset by user (write '1'). In SPI slave mode the crc flag is set if last four bytes were 0xFF.

ETH_RXPNTR_NEWPKT is the flag for incoming packet. The receiver sets the flag when it changes its state from busy to idle. Flag must be reset by user (write '1'). In spi mode this register is zero.

ETH_RXPNTR_BUSY is a busy flag for ethernet/SPI slave receiver. This receiver sets the flag when changes its state from idle to busy state.

ETH_RXPNTR_ENA register places the ethernet receiver on hold for incoming packet when set. When packet start is detected the receiver switches from idle to busy state. Receiver

address pointer must be configured before this register is set. In SPI slave mode this register controls the SPI receiver enable. When register is set the SPI transmit end automatically enables the SPI receiver.

ETH_RXPNTR[10:0] is the ethernet/SPI receiver memory pointer. This pointer is loaded with packet start address before receiver is enabled. When receiver changes it state from idle to busy this register is loaded to memory write address pointer register.

ETH_RBUF Bits				
Name	Bits	Description		
ETH_RBUF_CKCFG	9:8	Reserved, use "00"		
ETH_RBUF_TXENA	7	Ethernet receiver ring buffer enable		
ETH_RBUF_TXCFG	6:4	Ethernet receiver ring buffer configuration		
ETH_RBUF_RXENA	1	Ethernet transmitter ring buffer enable		
ETH_RBUF_RXCFG	2:0	Ethernet transmitter ring buffer configuration		

ETH_RBUF_TXENA and ETH_RBUF_RXENA are ring buffer enable registers for transmitters and receiver respectively. Ring buffer size is defined with ETH_RBUF_TXCFG and ETH_RBUF_RXCFG registers as explained in next table.

Ring buffer configuration bits						
CFG register	Ring buffer size	Locked bits	Incremented bits			
111-100	1024 words	[10]	[9:0]			
011	512 words	[10:9]	[8:0]			
010	256 words	[10:8]	[7:0]			
001	128 words	[10:7]	[6:0]			
000	64 words	[10:6]	[5:0]			

ETH_RXADDR register is the current memory address were receiver stores data. This register is loaded with ETH_RXPNTR[10:0] when new packet start is detected in bus.

Ethernet controller generates an interrupt each time a new packet is received or transmitter has finished sending a packet. When ring buffers are used the interrupt is given also when ring buffer address pointer has reached middle or end of the configured buffer size.

10.10.2 Reed-Solomon Codec

Vs1005 has a Reed-Solomon encoder and decoder for error correction e.g. from nand flash data. Reed Solomon is a forward error correction code which adds redundancy at the end of the message. The code word length n is defined as k + 2*t where k is the maximum number of data symbols (pay load) and 2*t is the number of parity check symbols. The algorithm can fix up to t symbols from code word and detect 2*t errors.

The Reed Solomon codec in vs1005 supports two different code lengths

- NF: n = 1023 symbols and t = 4. This makes 2*t = 8 10-bit parity check symbols. The data symbols are interpreted as 8-bit symbols where the two msb bits are always zero.
- RF: n = 255 symbols and t = 16. This makes 2*t = 32 8-bit parity check symbols. Also the data symbols are 8 bits wide.

	vs1005 Reed Solomon Codecs						
Codec	Data Symbols (k)	Symbol Width	Check Symbols (2*t)	Typical Code Width (n)			
NF	<= 1015	8 / 10 bits	8 (10 bits)	518 + 8			
RF	<= 223	8 bits	32 (8 bits)	223 + 32			

The NF codec is used for multi level cell (MLC) flash error detection and correction. Therefore the symbol width is limited to 8 bits for data symbols. The R-S encoder generates eight 10-bit parity check symbols (80 bits) which are stored with 518-byte user data. These check symbols are organized as 10 8-bit symbols which are stored to memory chip. The code word would therefore be a total of 528 bytes long.

NF Reed Solomon encoder check symbols are outputed as five 16-bit words (80 bits total). These check symbol words can be read from RS_DATA port when the RS encoder has finished calculation. The check symbol organization is as listed in the table.

NF Reed Solomon Encoder Check Symbol Organization					
Check Symbol	RS Encode	er o	utput word bits		
0	word[0](1:0)	&	word[0](15:8)		
1	word[1](11:8)	&	word[0](7:2)		
2	word[1](5:0)	&	word[1](15:12)		
3	word[2](15:8)	&	word[1](7:6)		
4	word[3](9:8)	&	word[2](7:0)		
5	word[3](3:0)	&	word[3](15:10)		
6	word[4](13:8)	&	word[3](7:4)		
7	word[4](7:0)	&	word[4](15:14)		

RF Reed Solomon encoder outputs the 8-bit check symbols as 16 16-bit words. Here the 32 8-bit symbols are organized in big endian format. This codec provides a means to detect 32 symbo errors and to fix 16 symbols.

The NF Reed Solomon decoder makes it possible to detect 8 symbol errors and to fix a maximum of 4 symbols. The decoder first reads the data symbols and then the parity check words.

As the check symbols are 10 bits they must be organized into memory in this format before check symbol decoding is started. The encoder expects them to be in LSB bits (9:0) in consecutive memory locations. The decoder returns the number of total errors and the number of errors in data symbols. Only the data symbol errors are returned as location / magnitude pairs when Reed Solomon decoder has finished the calculation. These errors must be fixed by software to the code word by XORing magnitude to the error location data. The location / magnitude pairs are stored in memory.

Reed Solomon codecs use a shared interrupt source INT_XPERIP. The source of interrupt is stored in register DSPI_ST where the decoder has one bit for Reed Solomon encoder and two bits for Reed Solomon decoder. To enable the interrupts the DSPI_ST_IENA must be set.

Reed Solomon interrupts in DSPI_STATUS Register			
Name	Bits	Description	
DSPI_ST_IENA	14	Interrupt enable, active high	
DSPI_ST_BMCSF	8	Reed-Solomon decode error correction ready	
DSPI_ST_RSDEC	7	Reed-Solomon decode ready	
DSPI_ST_RSENC	6	Reed-Solomon encode ready	

Reed-Solomon Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFC70	r	0	RS_ST	Reed-Solomon status for encoder and decoder		
0xFC71	r/w	0	RS_CF	Reed-Solomon control and configuration register		
0xFC72	r/w	0	RS_EPNTR	Reed-Solomon encoder memory pointer		
0xFC73	r/w	0	RS_ELEN	Reed-Solomon encoder data length		
0xFC74	r/w	0	RS_DPNTR	Reed-Solomon decoder memory pointer		
0xFC75	r/w	0	RS_DLEN	Reed-Solomon decoder data length		
0xFC76	r	0	RS_DATA	Data read port		

RS_ST Bits				
Name	Bits	Description		
RS_ST_DERR	12:8	Number of errors in decoded code word		
RS_ST_DFFAIL	6	Decoder fix algorithm found too many errors		
RS_ST_DFRDY2	5	Decoder fix algorithm completed		
RS_ST_DFBUSY	4	Decoder fix algorithm is calculating magni-		
		tude and location pairs		
RS_ST_DFRDY1	3	Decoder fix algorithm part 1 completed		
RS_ST_DFAIL	2	Code word errors can not be fixed		
RS_ST_DERR	1	Code word has errors		
RS_ST_DOK	0	Code word does not contain errors		

RS_ST_DERR is the error count register. When R-S decoder fix algorithm has completed the number of location/magnitude pairs is stored to this register.

RS_ST_DFFAIL register is set when the decoder algorithm could not fix all the errors in code word.

RS_ST_DFRDY2, RS_ST_DFBUSY and RS_ST_DFRDY1 are monitoring the status of R-S

decoder. When both ready register are set the error correcting agorithm has completed and an interrupt request is generated.

RS_ST_DFAIL is set when a fatal error was encountered. It is not possible to restore code word. RS_ST_DFAIL is modified after code end was given (RS_CF_DEND set by user)

RS_ST_DERR flag is set if code word has errors. RS_ST_DERR is modified after code end was given (RS_CF_DEND was set by user). If this flag was set the error correcting algorithm is started automatically.

RS_ST_DOK flag is set if code word does not has errors. RS_ST_DOK is modified after code end was given (RS_CF_DEND was set by user).

RS_CF Bits				
Name	Bits	Description		
RS_CF_DNF	13	R-S decoder nand flash mode select		
RS_CF_D10B	12	R-S decoder 10-bit input data		
RS_CF_DEND	11	R-S decoder code end		
RS_CF_DSTR	10	R-S decoder code start		
RS_CF_DENA	9	R-S decoder enable		
RS_CF_DMODE	8	R-S decoder mode control		
RS_CF_SEL[3:0]	7:4	R-S encoder parity select for RS_OPORT		
RS_CF_ENF	3	R-S encoder nand flash mode select		
RS_CF_ESTR	2	R-S encoder code start		
RS_CF_EENA	1	R-S encoder enable		
RS_CF_EMODE	0	R-S encoder mode control		

RS_CF_DNF selects between two data input modes. When set the decoder uses nand flash input data register as input. When reset the data is fetched from peripheral memory.

RS_CF_D10B selects between 10-bit and 8-bit input modes. Normally the symbols are 8-bit and two MSB zero bits are added. When RS_CF_D10B is set the symbols are fetched from peripheral memory as 10-bit and the two MSB bits are not zeroed. In 10-bit mode the data is in bits [9:0] and it is fetched from memory in word format. This bit is set when NF parity check symbols are decoded. When decoding the 10-bit check symbols the decoder does not generate RS decoder interrupt DSPI_ST_RSDEC.

RS_CF_DEND is a code end register for decoder. When this register is set the decoder stops decoding current code word and the status can be read from RS_ST register. If code word contained symbol errors the symbol error correction algorithm is started automatically. The location and magnitude pairs needed to fix corrupted symbols are placed in memory from RS_DPNTR address onwards. The RS_DPNTR value is not incremented during calculation and it holds the start address of the location / magnitude pairs in memory. The progress of the calculation is visible in RS_ST register. When the location / magnitude pairs are calculated an DSPI_ST_BMCSF interrupt is generated. RS_CF_DEND register is automatically reset after one clock cycle.

RS_CF_DSTR initializes the R-S decoder i.e. starts a new decoding sequence. This register is reset automatically when first symbol is decoded.

RS_CF_DENA enables the R-S decoder. When RS_CF_DNF is set the decoder is decoding symbols as they are read from nand flash. If RS_CF_DNF is reset the decoder starts read-

ing symbols from peripheral memory from address RS_DPNTR onwards. The symbols are fetched from memory as 8-bit or 10-bit symbols but are always forwarded to decoder as 10-bit symbols where bits [9:8] are zero if RS_CF_D10B is reset. The decoder decodes RS_DLEN number of symbols and then reset RS_CF_DENA. Also an DSPI_ST_RSDEC interrupt request is generated.

RS_CF_DMODE register should be set when decoding nand flash data (10-bit NF). When reset the 8-bit code is used (RF).

RS_CF_SEL is used to select encoded parity symbols. The selected parity symbol can be read from RS_DATA register.

RS_CF_ENF selects between two data input modes. When set the encoder uses nand flash output data register as input. When reset the data is fetched from peripheral memory.

RS_CF_ESTR initializes the R-S encoder i.e. starts a new encoding sequence. This register is reset automatically when first symbol is encoded. The encoder does not need encode-end register as the check symbols are updated on-the-fly and are readable from the RS_DATA port after the current operation has finished.

RS_CF_EENA enables the R-S encoder. When RS_CF_ENF is set the encoder is encoding symbols as they are written to nand flash. If RS_CF_ENF is reset the encoder starts reading symbols from peripheral memory from address RS_EPNTR onwards. The symbols are fetched from memory as 8-bit data but are forwarded to encoder as 10-bit symbols where bits [9:8] are always zero. The big endian byte order is expected. The encoder encodes RS_ELEN number of symbols and then reset RS_CF_EENA. Also an DSPI_ST_RSENC interrupt request is generated.

RS_CF_EMODE register should be set when encoding nand flash data (10-bit). When reset the 8-bit code is used (RF).

RS_EPNTR and RS_DPNTR are the 11-bit address registers for Reed-Solomon encoder and decoder. The start address of data is written to these registers prior the encode or decode is enabled. The big endian byte order is expected.

RS_ELEN and RS_DLEN are the code length registers for the encoder and decoder. The length is given as the number of 8-bit symbols. For decoder the symbols can also be 10-bit parity check symbols.

RS_OPORT Mux Control Bits					
DSPI_CF[15:12] register	Mux input				
1111-1100	Reserved				
1011	R-S decoder total errors (data + check symbols), 5 bits				
1010-0100	Reserved				
0011	R-S decoder CSF index, 10 bits				
0010	R-S decoder BM index, 9 bits				
0001	R-S decoder syndrome index, 10 bits				
0000	R-S encoder parity word as selected with RS_CF[7:4], 16 bits				

RS_DATA is a data read port for several data registers.

10.10.3 Nand Flash Interface

Nand Flash Controller Registers						
Reg	Туре	Reset Abbrev		Description		
0xFC77	r/w	0	NF_CONF	Nand flash configuration register		
0xFC78	r/w	0	NF_CF	Nand flash control register		
0xFC79	r/w	0	NF_PNTR	Nand flash memory pointer		
0xFC7A	r/w	0	NF_LEN	Nand flash data length register (bytes)		

NF_CONF Bits			
Name Bits Description			
NF_CONF_SCKM	9	Slave mode clock active edge select	
NF_CONF_SLV	8	Slave mode enable	
NF_CONF_FLT	7	Nand flash output bus float enable	
NF_CONF_IENA	6	Nand flash interface interrupt enable	
NF_CONF_WS	5:0	Nand flash interface clock configuration	

NF_CONF_SCKM selects slave mode active clock edge. If set the data bus is read at rising edge of ready/busy line, when reset at falling edge.

NF_CONF_SLV configures the nand flash interface to slave input mode. In slave mode the nand flash interface reads data from 8-bit bus and stores it to memory. The clock is the ready/bysy input.

NF_CONF_FLT leaves the data output bus (flash input bus) floating when set. When reset the bus is driven to low or high state.

NF_CONF_IENA enables the nand flash interrupt request when set.

NF_CONF_WS configures the length of nand flash read enable and write enable pulses. The cycle time is $2 \times (NF_CONF_WS + 1) dsp clock cycles.$

NF_CF Bits			
Name	Bits	Description	
NF_CF_RDY	4	Status of nand flash ready line	
NF_CF_RDWRX	2	Read (1) or write (0) select	
NF_CF_ENA	1	Start nand flash read or write	
NF_CF_DBUF	0	Use peripheral memory	

NF_CF_RDY register is monitoring the current state of nand flash ready/busy line. The line has pull-up and when it is in its low state the flash chip is busy.

NF_CF_RDWRX is a read or write select. When this register is set the operation is a nand flash read. When reset the nand flash interface writes to flash.

NF_CF_ENA starts nand flash read or write when set. When all bytes are transferred this register is reset and an interrupt request is generated.

NF_CF_DBUF configures nand flash interface to use peripheral memory when set. If NF_CF_DBUF is reset when nand flash interface is enabled, the data is read from DSPI_IDATA register or written to DSPI_ODATA register. This is a one byte transaction and big endian format is used.

NF_PNTR Bits			
Name Bits Description		Description	
NF_PNTR_RENA	14	Ring buffer enable for slave mode	
NF_PNTR_RCFG	13:11	Ring buffer configuration for slave mode	
NF_PNTR[10:0]	10:0	Nand flash memory pointer	

NF_PNTR[10:0] is the memory pointer register.

NF_PNTR_RENA and NF_PNTR_RCFG configure a ring buffer for slave mode. In ring buffer mode only the lower address bits are modified and higher bits are locked. E.g. when 512 word buffer size is used the ring buffer uses memory addresses 0 - 511 when NF_PNTR[10:9] bits are 0b00, addresses 512-1023 when bits are 0b10 and so on.

Ring buffer configuration bits							
CFG register	Ring buffer size	Locked bits	Incremented bits				
111-100	1024 words	[10]	[9:0]				
011	512 words	[10:9]	[8:0]				
010	256 words	[10:8]	[7:0]				
001	128 words	[10:7]	[6:0]				
000	64 words	[10:6]	[5:0]				

Ring buffer mode generates interrupt in the mid and end addresses of the buffer.

NF_LEN defines the number of bytes that are read from or written to nand flash. The length is given in bytes. In read and write operations the data uses big endian format, i.e. the MSB part is transmitted first.

10.10.4 SD Card Interface

Vs1005 has a SD card interface which supports 1-bit and 4-bit data bus.

SD Card Interface Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFC7C	r/w	0	SD_PNTR	SD card memory address pointer		
0xFC7D	r/w	0	SD_LEN	SD card data length, in bytes		
0xFC7E	r/w	0	SD_CF	SD card configuration register		
0xFC7F	r/w	0	SD_ST	SD card status register		

SD_PNTR is the 11-bit memory pointer register.

SD_LEN defines the number of bytes that are read from or written to SD card. The length is given in bytes.

SD_CF Bits			
Name Bits Description		Description	
SD_CF_NCRCTX	12	Do not send crc (continued operation)	
SD_CF_NCRCRST	11	Do not reset crc register (continued operation)	
SD_CF_4BIT	10	Use 4-bit data bus mode	
SD_CF_ENA	7	Start SD card transfer	
SD_CF_RDWRX	6	Read (1) or write (0) select	
SD_CF_CMDDATX	5	Command or data transfer select	
SD_CF_NOSTR	4	Skip data start bit (continued operation)	
SD_CF_NOSTP	3	Do not add data stop bit (continued operation)	
SD_CF_CRC16	2	Enable crc16 calculation during write	
SD_CF_CRC7	1	Enable crc7 calculation during write	
SD_CF_POLL	0	Poll for start bit when read	

SD_CF_NCRCTX makes the interface to skip crc transfer.

SD_CF_NCRCRST makes the interface to continues crc calculation from previous transfer.

- SD_CF_4BIT forces the interface to use 4-bit data transfer instead of 1-bit if set.
- SD_CF_ENA start SD card read or write transfer when set.
- SD_CF_RDWRX register selects between read and write transfers.
- SD_CF_CMDDATX register selects between command and data transfers.
- SD_CF_NOSTP register forces the interface to skip start bit when set.
- SD_CF_NOSTP register forces the interface to skip stop bit when set.

SD_CF_CRC16 and SD_CF_CRC7 enable the crc calculation. Crc is send automatically if SD_CF_NCRCTX is reset.

SD_CF_POLL forces the SD card interface to search for start bit when reading command response or data. If start bit is not found during 256 SD clock cycles the operation is cancelled and SD_ST_NOSTR error flag is set.

SD_ST Bits			
Name	Bits	Description	
SD_ST_WS	12:8	SD card clock configuration	
SD_ST_RPM	7	Repeat mode enable	
Reserved	6	Use '0'	
SD_ST_CMDBRK	5	cmd response during data transfer	
SD_ST_DAT0	4	SD card dat0 bus state	
SD_ST_NODSTP	3	data stop bit missing error	
SD_ST_CRC16	2	crc16 error when reading data	
SD_ST_CRC7	1	crc7 error when reading command response	
SD_ST_NOSTR	0	timeout error when reading, no start bit	

SD_ST_WS configures the length of SD card clock cycle. The cycle time is 2 x (SD_ST_WS + 1) dsp clock cycles.

SD_ST_RPM register sets the interface into a pattern generation mode. In this mode the SD data lines repeat a 512 byte buffer continuously. The buffer's location in memory can be set with registers SD_PNTR[10:8]. In this mode all other SD_ST and SD_CF registers should be reset. The SD ST WS and SD CF 4BIT have their usual meaning.

SD_ST_CMDBRK is set if a cmd start bit is found during data transfer. This register is reset at the start of each SD card op.

- SD ST DAT0 register samples the SD cards data 0 line.
- SD_ST_NODSTP is set if stop bit was not found when reading data from SD card.
- SD_ST_CRC16 is set if crc16 error was detected when reading data from SD card.
- SD_ST_CRC7 is set if command response had a crc7 error.
- SD_ST_NOSTR is set if start bit was not found during 256 SD clocks.

10.11 USB Peripheral

Vs1005 has a Full Speed / High Speed Universal Serial Bus. The Universal Serial Bus Controller handles USB 2.0 data traffic at 12 Mbit/s signalling speed and high speed USB data at 480 Mbit/s. The devices support a maximum of four endpoints.

The USB implementation is based on transceiver macromodel interface (UTMI). Block diagram of usb modules is shown in figure 12

Serial Interface Engine USB VS DSP **USB 2.0 USB 2.0** Peripheral Transceiver Logic Macromodel SIE Endpoint Control Logic Logic RX ΤX VCO memory memory (480MHz) (2kB) (2kB)

Simplified UTM module diagram is shown in figure 13.

Figure 12: VS1005 USB Block Diagram.

The USB device can handle traffic for the control endpoint (0) plus three input and output endpoints. Bulk, Isochronous and Interrupt transfer modes are supported at Full Speed (12 Mbit/s). The maximum packet size is 1023 bytes.

4 kilobytes of Y data memory is used as the USB packet buffer: 2 KiB for incoming packets (X:0xF400-0xF7FF) and 2 KiB for outgoing packets (X:0xF800-0xFBFF). The input buffer is a ring buffer with incoming packets consisting of a status word and n data words. The output buffer has 16 possible start locations for outgoing packets at 128-byte (64-address) intervals (note that all data addressing in VS1005 is based on 16-bit words).

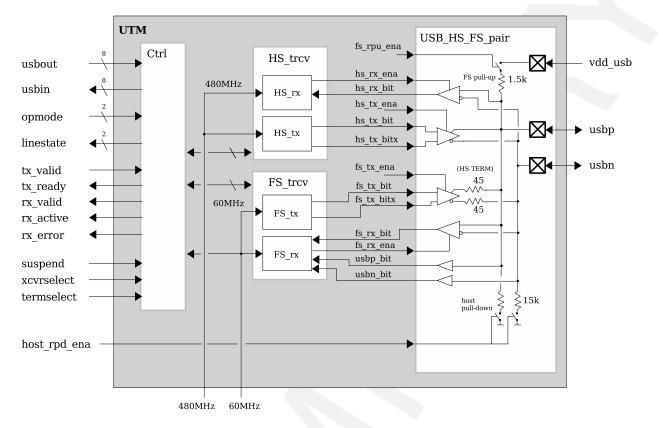


Figure 13: VS1005 UTM Functional Block Diagram.

10.11.1	USB	Peripheral	Registers
---------	-----	------------	-----------

Universal Serial Bus Controller Registers					
Address	Register	Function			
0xFC80	USB_CF	USB Device Config			
0xFC81	USB_CTRL	USB Device Control			
0xFC82	USB_ST	USB Device Status			
0xFC83	USB_RDPTR[9:0]	Receive buffer read pointer			
0xFC84	USB_WRPTR[9:0]	Receive buffer write pointer			
0xFC85	USB_UTMIR	UTM read control			
0xFC86	USB_UTMIW	UTM write control			
0xFC87	USB_HOST	Host control			
0xFC88	USB_EP_SEND0	EP0IN Transmittable Packet Info			
0xFC89	USB_EP_SEND1	EP1IN Transmittable Packet Info			
0xFC8A	USB_EP_SEND2	EP2IN Transmittable Packet Info			
0xFC8B	USB_EP_SEND3	EP3IN Transmittable Packet Info			
0xFC90	USB_EP_ST0	Flags for endpoints EP0IN and EP0OUT			
0xFC91	USB_EP_ST1	Flags for endpoints EP1IN and EP1OUT			
0xFC92	USB_EP_ST2	Flags for endpoints EP2IN and EP2OUT			
0xFC93	USB_EP_ST3	Flags for endpoints EP3IN and EP3OUT			

USB_CF Bits			
Name Bits		Description	
USB_CF_RST	15	Reset Active	
USB_CF_HDTOGG	14	Reset value of host data toggle (set to 0)	
USB_CF_DDTOGG	13	Reset value of device data toggle (set to 0)	
	12:11	Reserved, use '0'	
USB_CF_DTOGG_ERR	10	Data Toggle error control (set to 0)	
	9	Reserved, use '0'	
USB_CF_RSTUSB	8	Reset receiver (set to 0)	
USB_CF_USBENA	7	Enable USB	
USB_CF_USBADDR	6:0	Current USB address	

USB_CTRL Bits			
Name	Bits	Description	
USB_CTRL_BUS_RESET	15	Interrupt mask for bus reset	
USB_CTRL_SOF	14	Interrupt mask for start-of-frame	
USB_CTRL_RX	13	Interrupt mask for receive data	
USB_CTRL_TX	11	Interrupt mask for transmitter empty (idle)	
USB_CTRL_NAK	10	Interrupt mask for NAK packet sent to host	
USB_CTRL_TIME	9	Interrupt mask for bus timeout	
USB_CTRL_SUSP	8	Interrupt mask for suspend request	
USB_CTRL_RESM	7	Interrupt mask for resume request	
USB_CTRL_BR_START	6	Interrupt mask for start of bus reset	
USB_CTRL_DCON	5	Interrupt mask for usb disconnected	
USB_CTRL_CFG	0	USB Configured. $0 \rightarrow 1$ transition loads dtogg-	
		host and dtogg-device	

USB_ST Bits			
Name	Bits	Description	
USB_ST_BRST	15	Bus reset occurred	
USB_ST_SOF	14	Start-of-frame	
USB_ST_RX	13	Receive data	
USB_ST_TX_HLD	12	Transmitter holding register empty	
USB_ST_TX_EMPTY	11	Transmitter empty (idle)	
USB_ST_NAK	10	NAK packet sent to host	
USB_ST_TIME	9	Bus time out	
USB_ST_SUSPI	8	Device suspended	
USB_ST_RES	7	Device resumed	
USB_ST_MTERR	6	Bus reset start / USB master toggle error	
USB_ST_STAT	5	Device disconnected / Status setup	
USB_ST_SPD	4	USB speed	
USB_ST_PID	3:0	Packet id / Endpoint number of last rx/tx trans-	
		action	

The USB_ST_PID can be used mainly for debugging purposes.

USB_RDPTR Bits			
Name Bits Description			
USB_RDPTR	9:0	Packet Read Pointer	

This buffer marks the index position of the last word that the DSP has successfully read from the receive packet buffer. DSP should control this register and update the position after each packet it has read from the receive buffer. After reset this register is zero.

USB_WRPTR Bits			
Name Bits Description			
USB_WRPTR	9:0	Packet Write Pointer	

After a packet has been received from the PC, the USB hardware updates this pointer to the receive buffer memory. USB WRPTR is index location of the next free word location in the USB receive buffer. When USB_RDPTR equals to USB_WRPTR, the packet input buffer is empty. After reset this register is zero.

USB_UTMIR Bits				
Name	Bits	Description		
USB_UTMIR_LSTATE	15:14	USB bus line state		
USB_UTMIR_CNT	13:0	USB frame counter, master mode		

US	B_UTI	MIW Bits
Name	Bits	Description
USB_UTMIW_ORIDE	15	Bus override
	14	Reserved, use '0'
USB_UTMIW_J	6	Drive chirp J
USB_UTMIW_HSHK	5	Reset handshake
USB_UTMIW_K	4	Drive chirp K
USB_UTMIW_RCVSEL	3	Receiver select
USB_UTMIW_TERMSEL	2	Termination select
USB_UTMIW_OPMOD	1:0	Operation mode

USB_HOST Bits					
Name	Bits	Description			
USB_HOST_PID	15:12	USB host packet id			
USB_HOST_ISOC	11	Disable NAK packet send			
USB_HOST_TX	9	USB host send packet			

US	B_EP_S	SENDn Bits
Name	Bits	Description
USB_EP_SENDnt_TXR	15	Packet ready for transmission
USB_EP_SENDn_ADDR	13:10	Starting location of packet
USB_EP_SENDn_LEN	9:0	Length of packet in bytes (01023)

When the DSP has written a packet into the transmit buffer, that is ready to be transmitted to the PC by an endpoint, the DSP signals the USB firmware by setting the value of the USB_EP_SENDn register of the endpoint that should transmit the packet (USB_EP_SEND0 for endpoint 0, USB_EP_SEND1 for endpoint 1 etc).

U	ISB_EP	STn Bits				
Name	Bits	Description				
EPnOUT (PC $ ightarrow$ Device) endpoint (0 3) flags						
USB_EP_STn_OTYP	15:14	00=bulk 01=interrupt 11=isochronous				
USB_EP_STn_OENA	14:13	1=enabled 0=disabled				
USB_EP_STn_OSTL	12	Force STALL				
USB_EP_STn_OSTL_SENT	11	At least 1 STALL sent				
reserved	10:8	Use '0'				
EPnIN (Device	$ extbf{e} ightarrow extbf{PC}$)	endpoint (0 3) flags				
USB_EP_STn_ITYP	7:6	00=bulk 01=interrupt 11=isochronous				
USB_EP_STn_IENA	5	1=enabled 0=disabled				
USB_EP_STn_ISTL	4	Force STALL				
USB_EP_STn_ISTL_SENT	3	At least 1 STALL sent				
USB_EP_STn_INAKSENT	2	At least 1 NAK sent				
USB_EP_STn_IXMIT_EMP	1	Transmitter empty				
reserved	0	Use '0'				

10.11.2 USB Clocking Modes

USB usage requires a special clock setup. The core clock must be set to 60MHz. If only Full Speed USB is used the 60MHz clock can be achieved byt placing the PLL to 5x clocking mode and using 12.000MHz XTAL. When High Speed USB is used the core clock must also be 60MHz but this clock is generated with a PLL which can be programmed with fractional multiplier factors. The xtal oscillator frequencies of 12.000MHz or 12.288MHz are recommended in this mode.

10.11.3 USB Host

USB module can be configured as an USB host. In USB host mode the 1.5kOhm pull up resistor in D+ pin is replaced with 15kOhm pull down resistors in in both the D+ and D- pins.

USB host is capable of:

- Send Start of Frame (SOF) packets
- Send SETUP, IN and OUT packets
- Schedule transfers within 1ms frames
- Signal USB bus reset
- Provide USB power management

10.12 Interruptable General purpose IO ports 0-2

Vs1005 has 3 general purpose IO ports that can operate either in GP mode or in perip mode. In order to use pins as gpio the GPMODEx registers must be reset (default value).

GPIO port 0, 1 and register offsets are 0xFCA0, 0xFCC0 and 0xFCE0 accordingly. GPIO port 0 and 1 are 16-bits wide and GPIO port 2 is 14-bits wide.

	Inter	ruptable	General I/O Reg	isters, Prefix GPIOx_
Reg	Туре	Reset	Abbrev	Description
0	r/w	0	DDR	Data direction
1	r/w	0	ODATA	Data output
2	r	0	IDATA	Data input (I/O pin state)
3	r/w	0	INT_FALL	Falling edge interrupt enable
4	r/w	0	INT_RISE	Rising edge interrupt enable
5	r/w	0	INT_PEND	Interrupt pending source
6	W	0	SET_MASK	Data set (\rightarrow 1) mask
7	W	0	CLEAR_MASK	Data clear ($ ightarrow$ 0) mask
8	r/w	0	BIT_CONF	Bit engine config 0 and 1
9	r/w	0	BIT_ENG0	Bit engine 0 read/write
10	r/w	0	BIT_ENG1	Bit engine 1 read/write

GPIOx_DDR register configure the directions of each of the 16 I/O pins. A bit set to 1 in the DDR turns the corresponding I/O pin to output mode, while a bit set to 0 sets the pin to input mode. The register is set to all zeros in reset, i.e. all pins are inputs by default. The current state of the DDR can also be read.

GPIOx_ODATA register sets the GPIO pin high or low. Only pins that are configured as outputs are affected.

GPIOx_IDATA monitions the current state of a pin. The actual logical levels of the I/O pins are seen in the input data register. Note: The pin state can be read even if the pin is in peripheral mode (i.e. GPMODEx[y] is set).

GPIOx_INT_RISE and GPIOx_INT_FALL configures an interrupt trigger edge. If a bit of the falling edge interrupt enable register (GPIOx_INT_FALL) is set to 1, a falling edge in the corresponding pin (even when configured as output) will set the corresponding bit in the interrupt pending source register (GPIOx_INT_PEND).

If a bit of the rising edge interrupt enable register (GPIOx_INT_RISE) is set to 1, a rising edge in the corresponding pin (even when configured as output) will set the corresponding bit in the interrupt pending source register (GPIOx_INT_PEND).

GPIOx_INT_PEND defines the source of a pending interrupt. If any of the bits in the interrupt pending source register (GPIOx_INT_PEND) are set, an interrupt request is generated. Bits in GPIOx_INT_PEND can be cleared by writing a 1-bit to the bit that is to be cleared.

Note: the interrupt request will remain asserted until all GPIOx_INT_PEND bits are cleared.

GPIOx_SET_MASK register can be used to mask GPIO pins high when GPIOx_ODATA register is written. All bits that are set in the mask register also set the corresponding bit in the data output register. Other bits retain their old values.

GPIOx_CLEAR_MASK register can be used to mask GPIO pins low when GPIOx_ODATA register is written. All bits that are set in the mask clear the corresponding bit in the data output register. Other bits retain their old values.

GPIOx_BIT_CONF is a bit engine configuration register and selects a mapping between an I/O bit and a data output/input register bit for each of the bit engine registers.

GPIOx_BIT_CONF Bits				
Name	Bits	Description		
GPIOx_BE_DAT1	15:12	Data bit selection (015) for bit engine 1		
GPIOx_BE_IO1	11:8	I/O bit selection (015) for bit engine 1		
GPIOx_BE_DAT0	7:4	Data bit selection (015) for bit engine 0		
GPIOx_BE_IO0	3:0	I/O bit selection (015) for bit engine 0		

GPIOx_BIT_ENG0 is a register used to read/write a GPIO pin specified in GPIOx_BIT_CONF register.

When writing a value to the bit engine 0 register, the data bit specified in the configuration register is copied to the data output register bit specified in the same register.

When reading a value from the bit engine 0 register, the data input register bit specified in the configuration register is copied to the data bit specified in the same register, other bits read out as 0.

GPIOx_BIT_ENG1 works just like GPIOx_BIT_ENG0.

10.13 S/PDIF Peripheral

10.13.1 S/PDIF Receiver

S/PDIF receiver interface offers a receiver function for serial digital audio. S/PDIF supports two channels which are multiplexed in one signal line. Synchronizing to S/PDIF input data bit frequency is done by the digital frequency divider the clock of which is generated by the low jitter programmable PLL. Supported sampling frequencies are 32.0 kHz, 44.1 kHz, 48.0 kHz, 96.0 kHz and 192.0 kHz.

S/Pdif Receiver peripheral device supports linear PCM sample recovery up to 24 bits, S/PDIF subframe parity check, biphase channel coding check, subframe, frame, and block integrity checks, and read miss notification. This version does not perform cyclic redundancy check (CRC) for channel status bits in hardware. CRC check can be implemented by software if needed.

Frame format is depicted in Figure 14. X, Y, and Z are the allowed preambles of a subframe. An X subframe and an Y subframe constitute a frame. X preamble is replaced by Z preamble every 192 frames to indicate block limit.

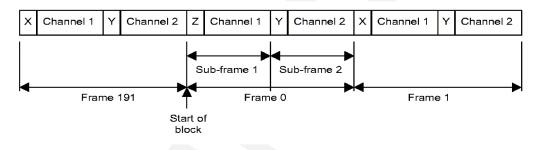
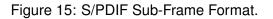



Figure 14: S/PDIF Frame Format.

Subframe format is depicted in Figure 15. A Preamble is a signal pattern lasting 4 time slots. S/Pdif Receiver decodes it and keeps track of frame and block integrity. A payload is max 24bit sample word. Validity bit indicates whether the payload is valid audio sample. User data bit allows simultaneous data send. Channel information is conveyed in channel status bits as specified in IEC 60958-1 and IEC 60958-3. S/Pdif Receiver peripheral device uses the parity bit to calculate parity check. The result is shown in SP_CTL register bits LPerr and RPerr. Each bit occupies one time slot of the subframe.

0 3	4				27	28	29	30	(a) 31
Preamble	LSB		24-bi	t audio sample word	MSB	Validity bit	User data bit	Channel status bit	Parity bit
0 3	4	7	8		27	28	29	30	(b)

10.13.2 S/PDIF Receiver Registers

The base address for S/Pdif Receiver interface registers is Y:0xFD00.

S/Pdif Receiver Registers					
Address	Туре	Reset	Abbrev	Description	
0xFD00	r/w	0x1FF0	SP_RX_CF	S/PDif control and status register	
0xFD01	r/w	0	SP_RX_CKDIV	S/PDif receiver clock divider register	
0xFD02	r	0	SP_RX_LDATA_LSB	S/PDif input left input channel, bits 8-0	
0xFD03	r	0	SP_RX_LDATA	S/PDif left input channel, bits 23-8	
0xFD04	r	0	SP_RX_RDATA_LSB	S/PDif left input channel, bits 8-0	
0xFD05	r	0	SP_RX_RDATA	S/PDif right input channel, bits 23-8	
0xFD06	r/w	0	SP_RX_STAT	S/PDif status register	
0xFD07	r	0	SP_RX_BLFRCNT	S/PDif frame status register	

SP_RX_CF Bits			
Name Bits Description			
SP_RX_CTL_EN	3	S/Pdif enable	
SP_RX_CTL_INTEN 1 Interrupt enable			

SP_RX_CTL_EN Enables S/Pdif Receiver peripheral. If disabled, i.e. '0', most of the peripheral is resetted and synchronisation to S/PDIF stream is lost and must be re-acquired after enabling.

SP_RX_CKDIV Bits				
Name Bits Description				
SP_RX_CKDIV	7:0	Receiver clock divider		

SP_RX_CKDIV is an 8-bit clock divider value that is used to adjust the S/Pdif Receiver peripheral to proper Fs according to master clock frequency. Default value is 8, resulting to Fs = 48 kHz with master clock = 24.576 MHz. Values smaller than 4 are not allowed, since at least 4 samples per audio sample are needed (2 samples per biphase mark).

S/Pdif Receiver peripheral supports audio sampling frequencies up to 192 kHz.

The supported frequencies and corresponding bit rates are summarized in the following table. Bit rate is sampling frequency multiplied by 64, which is channel number (2) times subframe time slot count (32).

While the divider value should be targeted to bit rate of the table below, the peripheral actually operates with quadruple clock rate. This must be accounted for in the system clocking design. The system clock must be at least four (4) times the bit rate if S/PDIF peripheral is to be used. In other words, SP_CTL_DIV values less than four (< 4) are forbidden. Divider must be even number.

S/PDIF Frequencies				
Fs	bit rate (Fs x 64)	Minimum system clock rate (4 x bit rate)		
22.05 kHz	1.4112 MHz	5.6448 MHz		
24 kHz	1.536 MHz	6.144 MHz		
32 kHz	2.048 MHz	8.192 MHz		
44.1 kHz	2.8224 MHz	11.2896 MHz		
48 kHz	3.072 MHz	12.288 MHz		
96 kHz	6.144 MHz	24.576 MHz		
192 kHz	12.288 MHz	49.152 MHz		

Divider = Master clock / bit rate,

Divider > 3, even number.

SP_RX_LDATA, SP_RX_LDATA_LSB, SP_RX_RDATA and SP_RX_RDATA_LSB registers are received data registers. S/PDIF data is 24 bits and it is divided in two registers. 16 MSB bits are in registers SP_RX_LDATA and SP_RX_RDATA. The remaining 8 LSB bits are in registers SP_RX_LDATA_LSB and SP_RX_RDATA_LSB.

SP_RX_STAT Bits					
Name	Bits	type	Description		
SP_RX_STAT_CHSCH	15	r/w	Channel Status Change		
SP_RX_STAT_FRCV	14	r	Frame receive		
N/A	13		always zero		
SP_RX_STAT_MISS	12	r/w	Missed reading previous frame		
SP_RX_STAT_BERR	11	r/w	Block error, Z preamble every 192 frames failure		
SP_RX_STAT_FERR	10	r/w	Frame error, Y preamble after (X or Z) failure		
SP_RX_STAT_SFERR	9	r/w	Subframe error, subframe /= 28 bits		
SP_RX_STAT_BIPHERR	8	r/w	Biphase coding error		
SP_RX_STAT_RPERR	7	r/w	Parity error, right channel		
SP_RX_STAT_LPERR	6	r/w	Parity error, left channel		
SP_RX_STAT_RV	5	r	Validity bit, right channel		
SP_RX_STAT_RU	4	r	User data bit, right channel		
SP_RX_STAT_RC	3	r	Channel status bit, right channel		
SP_RX_STAT_LV	2	r	Validity bit, left channel		
SP_RX_STAT_LU	1	r	User data bit, left channel		
SP_RX_STAT_LC	0	r	Channel status bit, left channel		

SP_RX_STAT_CHSCH is a poll bit for channel status change interrupt.

SP_RX_STAT_FRCV is set by the peripheral when a frame is received, and cleared when SP_RX_LDATA is read.

SP_RX_STAT_MISS bit is set if SP_RX_STAT_FRCV is set and new samples are written to SP_RX_LDATA and SP_RX_RDATA. The time to read the samples is a few clock cycles less than the sampling period.

SP_RX_STAT_BERR is set if the period between Z-preambles is not equal to 192 frames.

SP_RX_STAT_FERR is set if Y-preamble does not follow X-preamble or Z-preamble.

SP_RX_STAT_SFERR is set if the previous subframe has not been equal to 32 time slots.

SP_BIPHERR is set if biphase coding of the S/PDIF channel is compromised.

SP_RX_STAT_RPERR and SP_RX_STAT_LPERR are set if the parity count is failed in the respective subframe.

SP_RX_STAT_MISS, SP_RX_STAT_BERR, SP_RX_STAT_FERR, SP_RX_STAT_SFERR, SP_BIPHERR, SP_RX_STAT_RPERR, and SP_RX_STAT_LPERR are "sticky" bits, i.e. if set they keep their state until cleared by sw.

SP_RX_STAT_RV and SP_RX_STAT_LV are validity bits for right channel and left channel, restectively. When validity bit is '0', sample word is a valid PCM sample.

SP_RX_STAT_RU and SP_RX_STAT_LU are user data bits. User data bits should be used as specified in IEC 60958-3.

SP_RX_STAT_RC and SP_RX_STAT_LC are channel status bits. According to the S/PDIF standard, both channels should convey the same bits. Again, for full description of channel status bits, refer to IEC 60958-3.

SP_RX_BLFRCNT Bits				
Name Bits Type Description				
SP_RX_BLCNT	15:8	r	Frame block count	
SP_RX_FRCNT 7:0 r Frame count				

SP_RX_BLCNT is a freame block counter. This counter increment each time a new frame is received. It is zeroed after the 191th frame is received.

SP_RX_FRCNT is zeroed with every Z-preamble and incremented with every X-preamble.

S/Pdif Receiver uses two interrupts, a *frame received interrupt* and a *channel status chance interrupt*. Device issues an interrupt when it has received a frame. The interrupt is cleared when SP_RX_LDATA is read. Channel status change interrupt is set when at least one of the following conditions is satisfied:

- Channel status bit 0, selection between professional and consumer mode, is changed.
- Channel status bit 1, which indicates whether the sample word is linear PCM or not, is changed.
- Validity bit for either channel, left or right, is changed.

This interrupt is enabled by setting SP_RX_CTL_INTEN bit.

10.13.3 S/PDIF Transmitter

S/PDIF is a serial digital audio transfer standard. Sampling frequencies up to 192 KHz and sample word width of 16 - 24 bits are supported for two channels. S/PDIF transmitter peripheral has a processor interface and one external output signal for digital audio. S/PDIF is described in IEC 60958-1 and IEC 60958-3. Standard connectors are defined in IEC 60268-11:1987 although commercial products feature a variety of connectors both electrical and optical.

The speed of the S/PDIF transmitter depends on the sampling frequency of the audio signal. Since S/PDIF signal is often used to retrieve a clock signal at the receiving end, S/PDIF transmitter must produce an exact frequency with a very low jitter.

Supported sampling frequencies are 32 kHz, 48 kHz, 96 kHz and 192 kHz when master clock frequency is n x 12.288MHz. 44.1 kHz sampling frequency is supported.

10.13.4 S/PDIF Transmitter Registers

S/PDIF supports audio sample width of 16 to 24 bits. The exact figure is conveyed to the receiver by channel status bits. If the the transmitted sample word is less than 24 bits wide, the remaining LSB's must be zero.

Channel status registers provide interface to the S/PDIF standard implementation channel status bits. The S/PDIF Transmitter inserts the corresponding bits to their proper places in the transfer frame. Channel status data (byte 23) for cyclic redundancy check character (CRCC) is not tested yet.

This document offers a terse description of the channel status bits. Full coverage in IEC 60958-3 is mandatory. Current implementation shares Channel Status Data bits (registers CHS0 and CHS1) for both channels!

S/PDIF Transmitter Registers						
Reg	Туре	Reset	Abbrev	Description		
0xFD02	W	0	SP_TX_LDATA_LSB	Left channel Audio sample bits 7-0		
0xFD03	W	0	SP_TX_LDATA	Left channel Audio sample bits 23-8		
0xFD04	W	0	SP_TX_RDATA_LSB	Right channel Audio bits sample 7-0		
0xFD05	W	0	SP_TX_RDATA	Right channel Audio sample bits 23-8		
0xFD08	r/w	0	SP_TX_CHST0	Channel Status 0		
0xFD09	r/w	0	SP_TX_CHST1	Channel Status 1		
0xFD0A	r/w	0	SP_TX_CHST2	Channel Status 1		
0xFD0B	r/w	0x40	SP_TX_CFG	Transmitter configuration		

SP_TX_LDATA, SP_TX_LDATA_LSB, SP_TX_RDATA and SP_TX_RDATA_LSB registers are transmitter data registers. S/PDIF data is 24 bits and it is divided in two registers. 16 MSB bits are in registers SP_TX_LDATA and SP_TX_RDATA. The remaining 8 LSB bits are in registers SP_TX_LDATA_LSB and SP_TX_RDATA_LSB.

Channel Status SP_TX_CHST0				
Name		Bits of Chan-	Description	
	word	nel status		
SP_CH0_CAT	15:8	15:8	Category Code	
SP_CH0_MD0	7:6	7:6	PCM Mode 0	
SP_CH0_PCMM	5:3	5:3	Linear PCM Mode	
SP_CH0_CP	2	2	Copyright	
SP_CH0_PCM	1	1	Linear PCM	
SP_CH0_PROCON	0	0	Professional/Consumer	
			mode	

SP_CH0_CAT indicates to which category the device belongs. Default value is "00000000".

The default value of SP_CH0_MD0 is "00". No other states are defined yet.

When SP_CH0_PCM is '0', SP_CH0_PCMM selects linear PCM mode. The default value is "000" which corresponds to 2 audio channels without pre-emphasis.

SP_CH0_CP is a copyright bit. When '0', copyright for current stream is asserted.

SP_CH0_PCM is '0' when the audio sample word is linear PCM.

SP_CH0_PROCON is '0' in S/PDIF defining consumer usage. If this bit is '1', channel is for professional use and the interface would be called AES/EBU. However, the channel status bits would be different in this case.

Channel Status SP_TX_CHST1				
Name	Bits of data	Bits of Chan-	Description	
	word	nel status		
-	15:14	31:30	Not specified, "00"	
SP_CH1_CLKA	13:12	29:28	Clock Accuracy	
SP_CH1_FS	11:8	27:24	Sampling Frequency	
SP_CH1_CH	7:4	23:20	Channel Number	
SP_CH1_SRC	3:0	19:16	Source Number	

SP_CH1_CLKA indicates the level of clock accuracy the S/PDIF transmitter is capable of providing to its output.

The sampling frequency of the audio sample stream is defined in SP_CH1_FS.

SP_CH1_CH is the number of channels in the transmission. "0011" indicates two channel stereo format.

SP_CH1_SRC is the number of sources. "0000" is defined as "do not take into account".

Channel Status SP_TX_CHST2					
Name Bits of data		Bits of Chan-	Description		
	word	nel status			
SP_ST_NWRQ	13		New Word Request (read only bit)		
SP_TX_ENA	12		Transmitter enable		
SP_RS1_RU	11		User Data bit, right channel		
SP_RS1_RV	10		Validity bit, right channel		
SP_LS1_RU	9		User Data bit, left channel		
SP_LS1_RV	8		Validity bit, left channel		
SP_CH2_FSO	7:4	39:36	Original Sampling Frequency		
SP_CH2_WRDL	3:1	35:33	Sample Word Length		
SP_CH2_WRDLM	0	32	Maximum Sample Word Length		

SP_ST_NWRQ bit is set when new sample words must be written to sample word registers. It is cleared when SP_TX_LDATA is written. Hence, SP_ST_NWRQ has the same function as S/PDIF Interrupt, but this bit is not controlled by SP_CFG_IE.

SP_TX_ENA is the S/PDIF transmit enable. Transmitter is enabled when this register is set.

SP_RS1_RU is a user data bit for the right channel. Default value is '0'. User data bits can be used to convey an application specific message to the receiver. Some equipment categories dictate the message, see IEC 60958-3.

SP_RS1_RV is the validity bit of the right channel sample word. If the audio sample word is not a linear PCM, this bit must be set.

SP_LS1_LU is a user data bit for the left channel. Default value is '0'. User data bits can be used to convey an application specific message to the receiver. Some equipment categories dictate the message, see IEC 60958-3.

SP_LS1_LV is the validity bit of the left channel sample word. If the audio sample word is not a linear PCM, this bit must be set.

SP_CH2_FSO defines the original sampling frequency of the audio stream. "0000" means the original sampling frequency is not indicated (default).

In SP_CH2_WRDL, the sample word length is coded with respect to SP_CH2_WRDLM. "000" means the word length is not indicated.

SP_CH2_WRDLM indicates whether the maximum word length is 24 bits ('1') or 20 bits ('0').

S/PDIF TX Configuration SP_CFG				
Name Bits Description				
SP_CFG_CLKDIV	15:2	Clock divider		
SP_CFG_IE	1	Interrupt enable		
SP_CFG_SND 0 Send words				

SP_CFG_CLKDIV contains a clock divider value that is used to generate S/PDIF Transmitter operating frequency. The target is twice the bit rate. Bit rate is sampling frequency of the transmitted signal multiplied by 64. For example, 48 kHz audio signal requires bit rate of 3.072 MHz and consequent clock frequency for the peripheral is 6.144 MHz. Default value for SP_CFG_CLKDIV is 4, resulting to Fs = 48 kHz when master clock frequency is 24.576 MHz. Zero is forbidden value.

	S/PDIF Transmitter frequencies				
Fs	bit rate (Fs x 64)	Target frequency for clock divider			
32 kHz	2.048 MHz	4.096 MHz			
44.1 kHz	2.8224 MHz	5.6448 MHz			
48 kHz	3.072 MHz	6.144 MHz			
96 kHz	6.144 MHz	12.288 MHz			
192 kHz	12.288 MHz	24.576 MHz			

Divider = Master clock / Targer frequency, Divider = Master clock / (Fs * 64 * 2).

SP_CFG_IE, when '1', enables processor interrupt request when new values must be written for the sample word registers: SP_TX_LDATA and SP_TX_RDATA. Default is '0'.

SP_CFG_SND, when '1', S/PDIF Transmitter sends the data in the sample word registers. Otherwise only empty subframes with zero payload will be sent. This is because the receiver may use S/PDIF signal as a clock source and hence, the S/PDIF signal must not stop even though no data is sent.

The S/PDIF Transmitter has one interrupt. Interrupt request is issued when SP_ST_NWRQ is set, i.e. when new sample words must be written to the sample word registers.

10.14 Uart Peripheral

RS232 UART implements a serial interface using rs232 standard.

Star bit	D0	D1	D2	D3	D4	D5	D6	D7	Stop bit	
-------------	----	----	----	----	----	----	----	----	-------------	--

Figure 16: RS232 Serial Interface Protocol

When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission begins with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a stop bit (logic high). 10 bits are sent for each 8-bit byte frame.

10.14.1 Uart Peripheral Registers

	UART Registers					
Reg	Туре	Reset	Abbrev	Description		
0xFE00	r	0	UART_STATUS[3:0]	Status		
0xFE01	r/w	0	UART_DATA[7:0]	Data		
0xFE02	r/w	0	UART_DATAH[15:8]	Data High		
0xFE03	r/w	0	UART_DIV	Divider		

UART_STATUS register monitors the uart status.

UART_STATUS Bits					
Name	Bits	Description			
UART_ST_FRAMERR	4	Framing Error (stop bit was 0)			
UART_ST_RXORUN	3	Receiver overrun			
UART_ST_RXFULL	2	Receiver data register full			
UART_ST_TXFULL	1	Transmitter data register full			
UART_ST_TXRUNNING	0	Transmitter running			

UART_ST_FRAMERR is set at the time of stop bit reception. When reception is functioning normally, stop bit is always "1". If, however, "0" is detected at the line input at the stop bit time, UART_ST_FRAMERR is set to "1". This can be used to detect "break" condition in some protocols.

UART_ST_RXORUN is set if a received byte overwrites unread data when it is transferred from the receiver shift register to the data register, otherwise it is cleared.

UART_ST_RXFULL is set if there is unread data in the data register.

UART_ST_TXFULL is set if a write to the data register is not allowed (data register full).

UART_ST_TXRUNNING is set if the transmitter shift register is in operation.

UART_DATA is the uart data register. A read from UART_DATA returns the received byte in bits 7:0, bits 15:8 are returned as '0'. If there is no more data to be read, the receiver data register

full indicator will be cleared.

A receive interrupt will be generated when a byte is moved from the receiver shift register to the receiver data register.

A write to UART_DATA sets a byte for transmission. The data is taken from bits 7:0, other bits in the written value are ignored. If the transmitter is idle, the byte is immediately moved to the transmitter shift register, a transmit interrupt request is generated, and transmission is started. If the transmitter is busy, the UART_ST_TXFULL will be set and the byte remains in the transmitter data register until the previous byte has been sent and transmission can proceed.

UART_DATAH is the same register as the UART_DATA, except that bits 15:8 are used.

UART_DIV register configures uart tansmission speed.

UART_DIV Bits					
Name	Bits	Description			
UART_DIV_D1	15:8	Divider 1 (0255)			
UART_DIV_D2	7:0	Divider 2 (6255)			

The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending on the master clock frequency to get the correct bit speed. The second divider (D_2) must be from 6 to 255.

The communication speed $f = \frac{f_m}{(D_1+1)\times(D_2)}$, where f_m is the XTAL, and f is the TX/RX speed in bps.

VS1005g Datasheet 10 VS1005 PERIPHERALS AND REGISTERS

10.15 Watchdog Peripheral

The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is inactive. The counter reload value can be set by writing to WDOG_CONFIG. The watchdog is activated by writing 0x4ea9 to register WDOG RESET. Every time this is done, the watchdog counter is reset. Every 65536'th clock cycle the counter is decremented by one. If the counter underflows, it will activate vsdsp's internal reset sequence.

Thus, after the first 0x4ea9 write to WDOG RESET, subsequent writes to the same register with the same value must be made no less than every $65536 \times WDOG_CONFIG$ clock cycles.

Once started, the watchdog cannot be turned off. Also, a write to WDOG CONFIG doesn't change the counter reload value.

After watchdog has been activated, any read/write operation from/to WDOG CONFIG or WDOG DUMMY will invalidate the next write operation to WDOG_RESET. This will prevent runaway loops from resetting the counter, even if they do happen to write the correct number. Writing a wrong value to WDOG RESET will also invalidate the next write to WDOG RESET.

Reads from watchdog registers return undefined values.

10.15.1 Watchdog Registers

Watchdog Registers					
Reg	Туре	Reset	Abbrev	Description	
0xFE20	W	0	WDOG_CONFIG	Configuration	
0xFE21	w	0	WDOG_RESET	Clock configuration	
0xFE22	W	0	WDOG_DUMMY[-]	Dummy register	

10.16 Line and Mic Inputs

VS1005 has three 24-bit AD input channels and an FM receiver. ADs 1 and 2 can be configured for mic or line input mode (stereo AD). AD 3 can only be used as a line input (mono AD). When FM receiver is used only AD 3 can be used at the same time as FM demodulator shares same signal path with ADs 1 and 2.

All of the logic is clocked directly with the xtal clock (11-13MHz). FM and AD digital peripheral clocks can be switched off to save power. In order to use FM or/and AD channels the master clock enable registers REGU_CF_ADOFF and REGU_CF_FMOFF must be reset. Analog and RF logic clocking is automatically switched on when blocks are enabled.

Front end of the ADs (analog section, i.e. ADC) operates always at XTAL frequency / 2. The digital logic has a programmable sample rate. Sample rates are between 24kHz and 192kHz. It should be noted that the exact sample rates are xtal dependent and here it is assumed that the xtal is 12.288MHz. Signal paths are shown in figure 17.

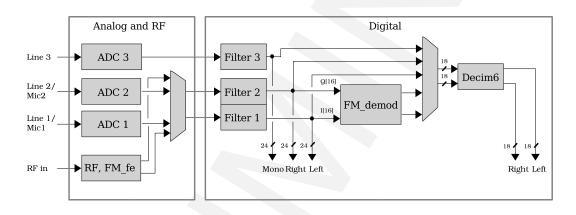


Figure 17: AD and FM signal paths

AD filter's control and data registers are listed in following table.

	A/D Control and Data Registers							
Reg	Туре	Reset	Abbrev	Description				
0xFE40	r/w	0	FM_CF	FM demodulator and AD filter configura-				
				tion register				
0xFE41	r/w	0	AD_CF	AD filter configuration register				
0xFE46	r	0	AD_LEFT_LSB[15:8]	AD1 filter (left) channel bits [7:0]				
0xFE47	r	0	AD_LEFT	AD1 filter (left) channel bits [23:8]				
0xFE48	r	0	AD_RIGHT_LSB[15:8]	AD2 filter (right) channel bits [7:0]				
0xFE49	r	0	AD_RIGHT	AD2 filter (right) channel bits [23:8]				
0xFE4A	r	0	MONO_AD_LSB[15:8]	AD3 filter (mono) channel bits [7:0]				
0xFE4B	r	0	MONO_AD	AD3 filter (mono) channel bits [23:8]				
0xFE4E	r	0	DEC6_LEFT_LSB[15:14]	FM filter left channel bits [1:0]				
0xFE4F	r	0	DEC6_LEFT	FM filter left channel bits [17:2]				
0xFE50	r	0	DEC6_RIGHT_LSB[15:14]	FM filter right channel bits [1:0]				
0xFE51	r	0	DEC6_RIGHT	FM filter right channel bits [17:2]				

10.16.1 Configuring Analog Modules for Mic and Line Input Modes

Analog modules must be configured to line or mic input modes before digital filters are used. Example values of analog configuration registers for stereo line input and mic modes are given in next table.

Analog Control Register Examples						
Address	Register	Line input mode	Mic input mode			
0xFECB	ANA_CF1	0x0000	0x0000			
0xFECC	ANA_CF0	0x0600	0x0024			
0xFED2	ANA_CF2	0x000B	0x00CB			
0xFED3	ANA_CF3	0x0000	0x0009			

10.16.2 Digital Filter Operation Modes

The FM_CF register has four bits that have effect on AD functionality. FM_CF_INIT register is the digital filters' power down. When the register is set the digital filters are operable. This register can also be used to synchronize the stereo and mono AD filters when three channels are used with same sample rate (no phase error).

The input to digital filters can also be selected from external ADCs. With FM_CF_UAD1, FM_CF_UAD2 and FM_CF_UAD3 registers the filter's input can be taken from external source. In this mode the AD input sample rate must be XTAL clock/2 or XTAL clock/4 and the input must be synchronized to vs1005 xtal oscillator clock. Vs1005 can provide both the xtal, xtal/2, and xtal/4 clocks to external circuits.

FM_CF Bits				
Name	Bits	Description		
FM_CF_UAD2	14	External input enable for stereo AD, right channel		
FM_CF_UAD1	13	External input enable for stereo AD, left channel		
FM_CF_UAD3	12	External input enable for mono AD		
FM_CF_INIT	6	Software reset for AD and FM demodulator		

The AD configuration register has bits to enable filters and to select sample rates. When the filter is enabled also the interrupt request is generated and forwarded to the interrupt controller. The decimation filter is included to decimate the demodulated FM signals downto 32kHz sample rate but its input can be selected from other sources also. The filter's input bit width is 18-bits.

AD_CF Bits			
Name	Bits	Description	
AD_CF_AD23_FLP	9	Flip AD2 and AD3 inputs	
AD_CF_DEC6SEL[1:0]	8:7	Input selection for FM filter (decimation-by-6)	
AD_CF_AD3FS[1:0]	6:5	Sample rate selection for AD filter 3 (mono AD)	
AD_CF_ADFS[1:0]	4:3	Sample rate selection for AD filters 1 and 2 (stereo	
		AD)	
AD_CF_DEC6ENA	2	FM decimation filter enable	
AD_CF_AD3ENA	1	AD filter 3 enable (mono AD, line input 3)	
AD_CF_ADENA	0	AD filter 1 and 2 enable (stereo AD, line input 1	
		and 2)	

AD_CF_AD23_FLP register flips the input of filters 2 and 3.

FM decimation filter is used when FM is enabled and it decimates the FM signals to 32kHz. The filter can be used in cascade with other filters. Register AD CF DEC6SEL is used to select filter input.

Decimation filter input selection					
AD_CF:DEC6SEL Filter input					
11 or 10	mono AD (left = right)				
01	stereo ADs				
00	FM demodulator				

AD_CF_AD3FS and AD_CF_ADFS registers select the AD filters's decimation factor (sample rate). Exact sample rate is xtal dependent.

Decimation factor							
Register	Decimation factor	Sample rate @ 12.288 MHz xtal					
11	256	24 kHz					
10	128	48 kHz					
01	64	96 kHz					
00	32	192 kHz					

AD_LEFT, AD_LEFT_LSB, AD_RIGHT, AD_RIGHT_LSB, MONO_AD and MONO_AD_LSB are the three AD filters's output data registers. As a new data sample is calculated also an interrupt request is generated.

10.17 FM Receiver

The FM receiver in vs1005 is capable of receiving frequency modulated (FM) signals from 76MHz to 108MHz. The operation of FM receiver requires several modules:

- RF modules : VCO, LNA and Mixer
- Analog modules : Muxes, amplifiers and ADCs
- Digital modules : Digital filters and FM demodulator

As was shown in figure 17. the FM receiver uses partially the same signal paths as the ADCs. When FM demodulator is used the stereo AD filter must be configured to 192kHz sample rate and the decimation filter enabled with input selection from FM demodulator. Other modules must be powered up and FM path is selected to analog output.

10.17.1 Configuring RF and Analog Modules for FM Receiver Mode

The front end configuration of the FM receiver is shown in figure 18. The VCO is digitally controlled and set to an FM band as is explained in section "Configuring FM Demodulator".

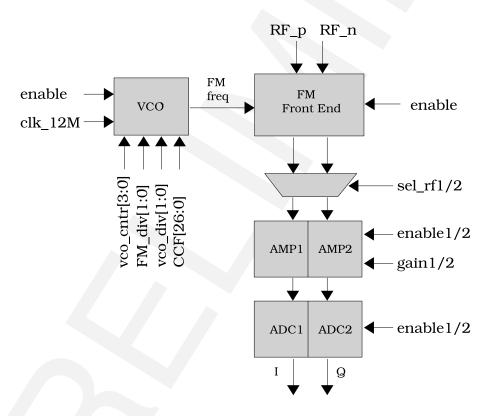


Figure 18: Block Diagram of FM Receiver, RF and analog section

To compensate the FM signals's level changes an analog gain control is added.

FM gain settings						
Gain bits	Gain					
000	11dB					
100	14dB					
010	17dB					
001	20dB					

Example values to configure analog modules are given in the table. Here the VCO's control bits are ignored.

Analog Control Register Examples					
Address	Register	Min Gain	Max Gain		
0xFECB	ANA_CF1	0x0000	0x0000		
0xFECC	ANA_CF0	0x0003	0x0003		
0xFED2	ANA_CF2	0x03CB	0x03CB		
0xFED3	ANA_CF3	0x2000	0x23F0		

10.17.2 Configuring FM Demodulator

The FM demodulator has several configuration registers that must be initialized in order to receive an FM channel. FM demodulator's control and data registers are listed in next table.

FM Control and Data Registers				
Reg	Туре	Reset	Abbrev	Description
0xFE40	r/w	0	FM_CF	FM demodulator control register
0xFE41	r/w	0	AD_CF	AD filter configuration register
0xFE42	r/w	0	FMPLL_LO	FM PLL carrier frequency register bits [15:0]
0xFE43	r/w	0	FMPLL_HI	FM PLL carrier frequency register bits [28:16]
0xFE44	r/w	0	FMCCF_LO	Carrier center frequency register bits [15:0]
0xFE45	r/w	0	FMCCF_HI[10:0]	Carrier center frequency register bits [26:16]
0xFE4E	r	0	DEC6_LEFT_LSB[15:14]	FM filter left channel bits [1:0]
0xFE4F	r	0	DEC6_LEFT	FM filter left channel bits [17:2]
0xFE50	r	0	DEC6_RIGHT_LSB[15:14]	FM filter right channel bits [1:0]
0xFE51	r	0	DEC6_RIGHT	FM filter right channel bits [17:2]
0xFE52	r	0	RDS_DATA[15:0]	FM RDS data register
0xFE53	r	0	RDS_CHK[12:0]	FM RDS checkwork and block status
0xFE5B	r	0	FM_PHSCL	FM I/Q phase error scaling factor

FM_CF register is a configuration register which is used to select demodulator operation modes. The FMCCF_HI and FMCCF_LO are used to tune FM receiver to a certain channel. The FM-PLL_HI and FMPLL_LO registers are used to match xtal frequency to the stereo subcarrier frequency (38kHz).

FM_CF Bits				
Bits	Description			
14	AD2 input selection			
13	AD1 input selection			
12	AD3 input selection			
11:8	Reserved, Use "000"			
7	Enable for FM I- and Q- signal scaling			
6	Software reset for AD filters and FM demodu-			
	lator			
5	FM RDS forced to keep synchronization			
4	FM receiver mono (1) / stereo (0) selection			
3	FM de-emphasis filter configuration 75 μ s or			
	50µs			
2	FM RDS enable			
1	FM carrier lock enable			
0	FM demodulator enable			
	14 13 12 11:8 7 6 5 4 3 2 1			

In FM mode the registers FM CF UAD2 and FM CF UAD1 must be reset.

FM CF_PHCOMP is the enable signal for FM input scaling.

FM CF INIT is the global enable for FM demodulator and AD filters. This signal can also be used to resynchronize the mono/stereo AD filters. Logic is enabled when this register is set.

FM CF RDSSYNC forces the RDS decoder to keep current symbol synchronization. When sync search is enabled (i.e. FM CF RDSSYNC is reset) the RDS decoder tries to find best symbol synchronization at all times, even when the FM signal is lost.

FM_CF_MONO register selects between mono and stereo receive modes. When set the mode is mono.

FM CF DEEMP register selects between 75µs (North America) or 50µs (Europe, Australia) de-emphasis filters. When set the de-emphasis is 75μ s.

FM CF RDSENA register enables the rds calculation logic when set.

FM CF CCFLCK register enables automatic FM fine tuning when set. When reset the FM band frequency is always at fixed value (as defined in FMCCF register).

FM CF FMENA is the FM demodulator enable. The register must be set when FM is used.

To receive in stereo mode the FM_PLL registers must be initialized correctly. These registers (FMPLL HI and FMPLL LO) set the FM stereo carrier PLL frequency. This factor is xtal dependent and is defined as:

 $pll_factor = \frac{(64 \times 2^{28} \times 38000 Hz)}{XTAL_freqHz}$

10 VS1005 PERIPHERALS AND REGISTERS

PLL value examples for most typical xtals

xtal frequency	FMPLL register
12.0MHz	54402918 = 0x033E 1F66
12.288MHz	53127850 = 0x032A AAAA
13.0MHz	50218079 = 0x02FE 445F

FMCCF_HI and FMCCF_LO are used to set FM tuning frequency (FM Carrier Center Frequency). These registers hold a 27-bit signed value which controls the frequency inside the selected VCO center frequency range. This VCO center frequency is set with divider registers ANA_CF3_DIV[1:0] and ANA_CF3_FMDIV[1:0].

VCO Divider Register				
ANA_CF3_DIV[1:0]	VCO Divider			
"00"	36			
"01" = "10"	30			
"11"	25			

FM divider					
ANA_CF3_FMDIV[1:0]	FM divider				
"00"	16				
"10"	20				
"11" = "01"	24				

The VCO frequency is 24, 20 or 16 times the FM tuning frequency, i.e. for 95.0MHz FM channel the VCO frequency must be set to 1.900GHz. The target VCO frequency can be calculated from equation :

$$F_{vco} = (4 \times VCO_{div} + CCF) \times F_{xtal}$$
 where CCF is defined as $CCF = \frac{FMCCF_{reg}}{2^{21}} + 16$

and the FM channel frequency can be given as:

 $F_{FM} = ((4 \times VCO_{div} + CCF) \times F_{xtal})/FM_{div}$

For high speed USB FMCCF registers must be reset when 12.000MHz xtal is used. When 12.288MHz xtal is used the registers are initialized to 0xFF87, 0xFFFF (-7864321). FM_CF register is initialized to value 0x0041. This makes VCO frequency of 1.92GHz which results to 480MHz USB clock.

FM_PHSCL Bits				
Name Bits Description				
FM_PHSCL_I[7:0]	15:8	I scaling factor		
FM_PHSCL_Q[7:0]	7:0	Q scaling factor		

FM_PHSCL register is used to compensate I and Q signal's phase and amplitude error. This error depends from several factors and values should be calculated for each FM band. The compensation logic is enabled when FM_CF_PHCOMP register is set. Typical values are 111 for I-scaling and 137 for Q-scaling.

DEC6_LEFT, DEC6_LEFT_LSB, DEC6_RIGHT and DEC6_RIGHT_LSB are the FM demodulator output data registers. Sample rate @12.288 MHz is 32 kHz (xtal / 384).

10.17.3 Radio Data System (RDS)

FM demodulator includes an RDS module. This module decodes the RDS bits from baseband signal to form bit groups. When a full block is decoded the 16-bit data and 10-bit checkword are stored to registers and an RDS-interrupt is generated. RDS data structure is shown in figure 19. RDS data rate is 1187.5 bits per second.

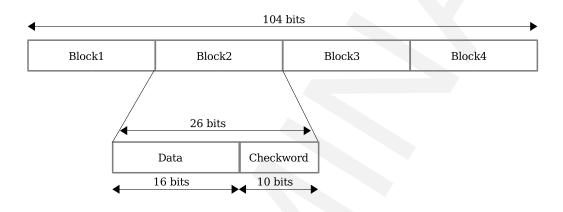


Figure 19: RDS data structure

RDS module's control bits are in register FM_CF.

RDS Control Bits in Register FM_CF (address 0xFE40)			
Name Bit Index Description			
FM_CF_RDSSYNC 5 FM RDS forced to keep current bit synchronizat		FM RDS forced to keep current bit synchronization	
FM_CF_RDSENA 2 FM RDS enable			

FM Control and Data Registers				
RegTypeResetAbbrevDescription				
0xFE52	r	0	RDS_DATA[15:0]	FM RDS data register
0xFE53	r	0	RDS_CHK[12:0]	FM RDS checkwork and block status

RDS_DATA and RDS_CHK registers store the last decoded RDS block. RDS module finds automatically bit and block synhronization but it does not do any data correction if crc errors exist. This must be done by software.

RDS_CHK Register Bits					
Reg	Bit index	Name	Description		
RDS_CHK_CHKW	12:3	CHECKWORD	Checkword of the last received block data		
RDS_CHK_ST	2	STATUS	Validity of the last received block		
RDS_CHK_BLK	1:0	BLOCK	Index of the last received block, 0-3		

10.18 I2S Peripheral

Vs1005 has a bi-directional I2S digital interface. I2s is a serial audio interface which uses serial bit clock (i2s_bck), frame sync (i2s_frm) and serial data line (i2s_dout, i2s_din) to transfer data. I2s frame consists of left and right data which is transmitted left word first and MSB bit first. Data is latched out at falling edge of bit clock and latched in at rising edge of bit clock. I2s data format is shown in Figure 20.

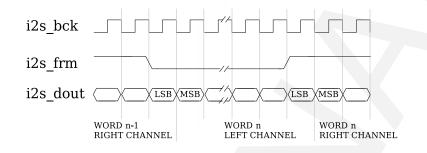


Figure 20: I2s Frame format.

10.18.1 I2S Peripheral Registers

I2S Registers					
Reg	Туре	Reset	Abbrev	Description	
0xFE60	r/w	0	I2S_CF[13:0]	Configuration and status register	
0xFE61	r/w	0	I2S_LEFT_LSB	Left data bits[15:0]	
0xFE62	r/w	0	I2S_LEFT	Left data bits[32:16]	
0xFE63	r/w	0	I2S_RIGHT_LSB	Right data bits[15:0]	
0xFE64	r/w	0	I2S_RIGHT	Right data bits[32:16]	

I2S_CF Bits				
Name	Bits	Description		
12S_CF_32B	13	32-bit mode (1) / 16-bit mode (0) select		
I2S_CF_INTENA	12	I2S peripheral interrupt enable		
I2S_CF_RXRFULL	11	Receiver right data register full		
I2S_CF_RXLFULL	10	Receiver left data register full		
I2S_CF_RXORUN	9	Receiver over run flag		
I2S_CF_TXRFULL	8	Transmitter right data register full		
I2S_CF_TXLFULL	7	Transmitter left data register full		
I2S_CF_TXURUN	6	Transmitter under run flag		
I2S_CF_MODE	5	I2S peripheral mode select (dsp or SRC out)		
I2S_CF_FS[1:0]	4:3	I2S sample rate selection		
I2S_CF_ENA	2	I2S peripheral enable		
I2S_CF_ENAMCK	1	I2S master clock (12 MHz) pad driver enable		
I2S_CF_MASTER	0	I2S master (1) / slave (0) mode select		

I2S_CF_MASTER bit is used to select between master (1) and slave (0) modes. In master mode the vs1005 generates bit clock and frame sync signals. In slave mode the external I2S

master generates the clock and sync signals.

I2S_CF_ENAMCK is the 12 MHz output clock enable signal. It can be used to clock external I2S circuitry. This clock is the same clock as the xtal oscillator clock of vs1005.

I2S_CF_ENA is the transmitter and receiver enable signal. When set the receiver and transmitter enter the active state.

I2S_CF_FS register is used to set the I2S peripheral sample rate. This register can be modified only when I2S is in idle state, i.e. I2S_CF_ENA is reset. Next table lists the sample rates when 12.288 MHz xtal is used.

I2S Sample Rates					
I2S_CF_FS[1:0]	16-bit mode	32-bit mode			
11	48kHz	24kHz			
10	192kHz	96kHz			
01	96kHz	48kHz			
00	48kHz	24kHz			

I2S_CF_MODE register selects between dsp mode and SRC mode. In dsp mode the data is transferred from left and right data registers. In SRC mode the data is sampled from DAC's SRC filter and I2S is operating in master mode only.

I2S_CF_TXURUN is the transmitter under run flag register. It is set if left or right data buffer register was empty as it was copied to shifter register.

I2S_CF_TXLFULL and I2S_CF_TXRFULL registers are the transmitter data buffer full flags for left and right channel. Flags are set when transmitter data buffer registers are modified. The flags are reset as the left and right data buffer is copied to shifter register.

I2S_CF_RXORUN is the receiver over run flag. It is set when receiver data buffers were full and new frame was received. The flag is reset by writing it to '0'.

I2S_CF_RXLFULL and I2S_CF_RXRFULL are the receiver data buffer full flags for left and right channel. Flags are set when receiver data buffer registers are full. The flags are reset as the left and right data buffer is read.

I2S_CF_INTENA enables the I2S interrupt when set.

I2S_CF_32B register selects between 32-bit (1) and 16-bit (0) data format. This register can be modified only in idle state.

I2S_LEFT, I2S_LEFT_LSB, I2S_RIGHT and I2S_RIGHT_LSB are the left and right data registers for receiver and transmitter. Each write to I2S_LEFT and I2S_RIGHT registers sets the I2S_CF_TXLFULL and I2S_CF_TXRFULL flags. Each read from I2S_LEFT and I2S_RIGHT registers resets the I2S_CF_RXLFULL and I2S_CF_RXRFULL flags. In 16-bit mode the registers I2S_LEFT_LSB and I2S_RIGHT_LSB are not used. In 32-bit mode they are used to transfer 16-lsb bits of data.

10.19 Timer Peripheral

Vs1005 has three 32-bit timers that can be initialized and enabled independently of each other. If enabled, a timer initializes to its user initialized start value, and starts decrementing every clock cycle. When the value goes past zero, an interrupt request is generated, and the timer initializes to the value in its start value register, and continues downcounting. A timer stays in that loop as long as it is enabled. Each timer has its own interrupt request.

A timer has a 32-bit timer register for down counting and a 32-bit TIMER1_LH register for holding the timer start value written by the processor. Timers have also a 3-bit TIMER_ENA register. Each timer is enabled (1) or disabled (0) by a corresponding bit of the enable register.

	Timer Registers							
Reg	Туре	Reset	Abbrev	Description				
0xFE80	r/w	0	TIMERx_CFG[7:0]	Timer configuration				
0xFE81	r/w	0	TIMERx_ENA[2:0]	Timer enable				
0xFE84	r/w	0	TIMERx_T0L	Timer0 startvalue - LSBs				
0xFE85	r/w	0	TIMERx_T0H	Timer0 startvalue - MSBs				
0xFE86	r/w	0	TIMERx_T0CNTL	Timer0 counter - LSBs				
0xFE87	r/w	0	TIMERx_T0CNTH	Timer0 counter - MSBs				
0xFE88	r/w	0	TIMERx_T1L	Timer1 startvalue - LSBs				
0xFE89	r/w	0	TIMERx_T1H	Timer1 startvalue - MSBs				
0xFE8A	r/w	0	TIMERx_T1CNTL	Timer1 counter - LSBs				
0xFE8B	r/w	0	TIMERx_T1CNTH	Timer1 counter - MSBs				
0xFE8C	r/w	0	TIMERx_T2L	Timer2 startvalue - LSBs				
0xFE8D	r/w	0	TIMERx_T2H	Timer2 startvalue - MSBs				
0xFE8E	r/w	0	TIMERx_T2CNTL	Timer2 counter - LSBs				
0xFE8F	r/w	0	TIMERx_T2CNTH	Timer2 counter - MSBs				

10.19.1 Timer Peripheral Registers

TIMER_CFG Bits					
Name Bits Description					
TIMER_CFG_CLKDIV 7:0 Master clock divider					

TIMER_CFG_CLKDIV is the master clock divider for all timer clocks. The generated internal clock frequency $f_i = \frac{f_m}{c+1}$, where f_m is the master clock frequency and c is TIMER_CF_CLKDIV. Example: With a 12 MHz master clock, TIMER_CF_DIV=3 divides the master clock by 4, and the output/sampling clock would thus be $f_i = \frac{12MHz}{3+1} = 3MHz$.

TIMER_ENA Bits					
Name	Bits	Description			
TIMER_ENA_T2	2	Enable timer 2			
TIMER_ENA_T1	1	Enable timer 1			
TIMER_ENA_T0	0	Enable timer 0			

TIMER_Tx[L/H] register defines the Timer X Startvalue. The 32-bit start value TIMER_Tx[L/H] sets the initial counter value when the timer is reset. The timer interrupt frequency $f_t = \frac{f_i}{c+1}$ where f_i is the master clock obtained with the clock divider and c is TIMER_Tx[L/H].

TIMER_TxCNT[L/H] contains the current counter values. By reading this register pair, the user may get knowledge of how long it will take before the next timer interrupt. Also, by writing to this register, a one-shot different length timer interrupt delay may be realized.

Each timer has its own interrupt, which is asserted when the timer counter underflows.

10 VS1005 PERIPHERALS AND REGISTERS

Real Time Clock (RTC) 10.20

RTC is used for accurate time measurements and storing data when CPU is powered down. The oscillator input clock frequency is 32768 Hz. Real time clock is a 32-bit time keeping up counter which has a resolution of 1 second. Additionally the 8-bit clock divider register value is accessible giving 1/128 seconds resolution. Other functions of vs1005 RTC are time alarm and 32 word register memory for battery backup. The RTC consists of two parts, the Real Time Clock module and its dsp interfacing peripheral. The RTC has its own power network which enables its use when the rest of the system is powered off. The interface between these two is bit-serial.

10.20.1 RTC Peripheral Registers

RTC Interface Registers							
Reg	Туре	Reset	Abbrev	Description			
0xFEA0	r/w	0	RTC_LOW	RTC data register bits [15:0]			
0xFEA1	r/w	0	RTC_HIGH	RTC data register bits [31:16]			
0xFEA2	r/w	0	RTC_CF[4:0]	RTC if control and status register			

RTC_CF Bits				
Name Bits Description		Description		
RTC_GSCK	4	Generate serial clock for RTC		
RTC_EXEC	3	RTC execute instruction		
RTC_RDBUSY	2	Read cycle init and busy flag		
RTC_DBUSY 1 Data cycle init and busy flag		Data cycle init and busy flag		
RTC_IBUSY	0	Instruction cycle init and busy flag		

RTC_LOW and RTC_HIGH are the rtc_if data registers. Write to RTC_CF registers busy bits start a data transfer to/from RTC. When the operation has finished the status bit is reset and result can be read from RTC_HIGH and RTC_LOW registers or RTC_HIGH and RTC_LOW registers were transferred to RTC.

RTC IBUSY is the instruction cycle initialization register. When RTC IBUSY is set the current content of RTC_HIGH and RTC_LOW registers is transferred to RTC and latched to its instruction register. When rtc_if is ready it resets the RTC_IBUSY.

RTC_DBUSY is the data cycle initialization register. When RTC_DBUSY is set the current content of RTC HIGH and RTC LOW registers is transferred to RTC data buffer. When rtc if is ready it resets the RTC DBUSY.

RTC_RDBUSY is the data read cycle initialization register. Before reading rtc a valid instruction must be in RTC instruction register (RTC_I_READRTC, RTC_I_RDDIV128). When RTC_RDBUSY is set the rtc_if first samples the selected rtc register to RTC data buffer. When the data is read to RTC HIGH and RTC LOW registers. When rtc if is ready it resets the RTC RDBUSY.

RTC EXEC is used to execute current RTC instruction. Before executing an instruction a valid instruction must be in RTC instruction register (RTC_I_RESET, RTC_I_LOADRTC). For

RTC_I_RESET, RTC_I_LOADRTC instructions the RTC_EXEC register must be set for 1 second before the instruction is ececuted. The user must reset the RTC_EXEC register after this time has elapsed.

RTC_GSCK is used to generate RTC memory clock. When RTC_GSCK is set the rtc_if generates one clock pulse for memory store. RTC_EXEC must be set during this operation. Rtc_if resets this register automatically.

RTC instructions are 8-bit codes which are written to RTC_HIGH[15:8] before setting RTC_IBUSY.

RTC Instruction Codes					
instruction	hex code	Delay	Description		
RTC_I_RESET	EB	1/128s	Reset control registers		
RTC_I_LOADRTC	59	1s	Initialize time counter register		
RTC_I_READRTC	56	1/12 MHz	Read time counter register		
RTC_I_RDDIV128	C7	1/12 MHz	Read 8-bit divider register (1/128s)		
RTC_I_ALARM	AC	1/128s	Set RTC alarm time		
RTC_I_MEM_WR	35	1/12 MHz	Write to rtc memory		
RTC_I_MEM_RD	3A	1/12 MHz	Read from RTC memory		

10.21 10-Bit Analog-to-Digital Converter (ADC)

Vs1005 has a 10-bit ADC with following features:

- Successive Approximation Register conversion (SAR)
- Up to 5 analog input channels
- Up to 0.1Msps conversion speed
- AVDD voltage as reference
- · Continuous or software enabled (once only) operation modes
- input range from 0V to AVDD

Before SAR can be used the following analog control registers must be configured.

Analog configuration for SAR						
Register Name	Address	Value	Description			
ANA_CF2	0xFED2	0x0008	Analog reference			
ANA_CF1	0xFECB	0x0100	SAR power down			

SAR operation is controlled with configuration register and the 10-bit data is stored in the data register. SAR generates an interrupt as the data register is updated.

SAR Data Register					
Reg Type Reset Abbrev Description					
0xFECD	r	0	SAR_DAT[9:0]	10-bit SAR data register	

SAR Control/Configuration Register					
RegTypeResetAbbrevDescription					
0xFED6	r/w	0x003F	SAR_CF[11:0]	SAR control register	

SAR_CF Bits					
Name Bits Description					
SAR_CF_SEL	11:8	SAR input selection			
SAR_CF_ENA	7	SAR initialize read cycle			
SAR_CF_MODE	6	SAR operation mode			
SAR_CF_CK[5:0]	5:0	SAR Clock divider register			

SAR_CF_ENA is used to start SAR cycle. When this register is set the SAR measures voltage from a given channel and stores the 10-bit value to SAR_DAT register. SAR_CF_ENA is reset when the result is ready and can be read from data register.

SAR_CF_CK[1:0] is used to select interface clock speed. The SAR clock is xtal clock / (2 x divider x 16).

SAR_CF_MODE selects between continuous mode ('1') and run-once ('0') modes.

SAR input channel is selected with SAR_CF_SEL[3:0] register. This register is double buffered against possible conversion time changes. The register is sampled as the SAR is enabled or it is in idle state. In continuous mode the register is sampled at the end of each conversion.

	SAR input channel selection							
Decimal	Hex	Description						
12	0xC	67	aux0					
10	0xA	Internal	Divided VHIGH					
7	0x7	68	aux1					
6	0x6	Internal / pin 64 RTCVDD 1	RTC voltage					
5	0x5	Internal / pin 15 CVDD 1	Core voltage CVDD					
4	0x4	71	aux4					
2	0x2	70	aux3					
0	0x0	69	aux2					

¹ Maximum allowed voltage is 1.95V

Other values are not allowed.

10.22 Pulse Width Modulation Unit

Vs1005 has a PWM output which can be programmed to generate any pulse width within 256 xtal clock periods.

PWM Registers				
Reg	Туре	Type Reset Abbrev		Description
0xFED4	r/w	0	PWM_PULSE[7:0]	PWM pulse width, 0 - 255 clock cycles
0xFED5	r/w	0	PWM_FRAME[7:0]	PWM frame length, 2 - 255 clock cycles

PWM_FRAME[7:0] defines the pwm frame length. Values 0 and 1 are not allowed and they place the unit in powerdown (output is zero). With frame values > 1 the pwm output is enabled with rising edge at start of frame and falling edge at PWM_PULSE[7:0]. If PWM_PULSE is zero the output is always zero. If PWM_PULSE > PWM_FRAME the output is always at logic high state.

PWM unit generates interrupt request at the start of each frame.

In vs1005 power-up as the pwrbtn pin is high the pwm output generates an oscillation for external powering circuitry. The oscillation reguires that there is an external pull-up resistor connected to the pwm pin.

PWM start-up oscillator				
Item Min Typical Max Description				
Pull-up resistor		100k		Value of external pull-up resistor
Start-up frequency		370kHz		Start-up oscillation frequency

10.23 Special Features

10.23.1 Software Protection

Vs1005 hardware supports software protection. Two registers control the hardware debugging and serial flash access. To use on-circuit debugging it must first be enabled by a software register. After power-up the debugger is disabled. The register can be set and reset by software. The access to serial flash can be disabled with a software register after boot-up. When serial flash is disabled it can not be enabled by software. To re-enable it requires system reset (SYSRST).

11 VS1005 Debugger

VS1005 has a hardware debugger which uses common Joint Test Action Group (JTAG) interface. The JTAG pins are in hardware debug mode when the dbgmode pin is pulled high. This enables the JTAG pins to access Test Acess Port (TAP) controller and swithes clocks to debug mode.

Vs1005 Hardware Debuger Pins			
Name Package pin Description			
tms	31	Test mode select	
tdi	32	Test data in	
tdo	33	Test data out	
tck	34	Test clock	
dbgreq	35	Debug interrupt	
dbgmode	61	JTAG debug mode enable	

Debug functions are controlled with JTAG DR (data) and IR (instruction) registers which can be written and read in predefined JTAG states. JTAG state machine is shown in Figure 21.

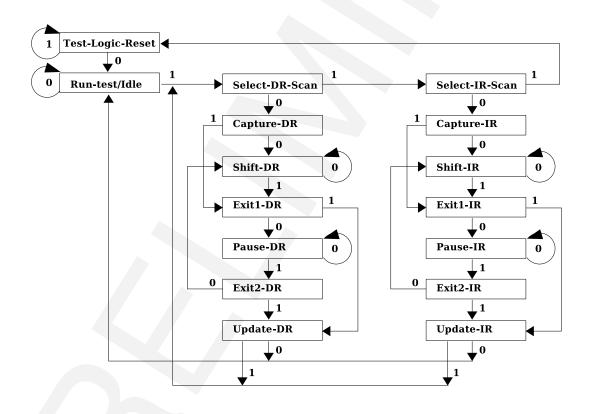


Figure 21: JTAG state machine.

TAP function is selected by writing a special 4-bit instruction to IR register. Additionally to debug functions, some common JTAG functions are supported.

Vs1005 JTAG instruction codes			
Instruction	IR register	Description	
BYPASS	"0000"	Places jtag to bypass mode. In bypass mode there is one clock cycle delay between tdi and tdo.	
IDCODE	"1111"	Places jtag's 32-bit ID code register between tdi and tdo.	

The snooper module supports up to 8 breakpoints which can be programmed to trigger at data/address events. Snooper's control and status registers are

- Enable register (SENA)
- 16-bit event count register (ECNT)
- 16-bit instruction address register (BADDR)

SENA register enables the snooper module when set. The register is reset when breakpoint interrupt is triggered and all snooper logic is halted. ECNT register is a decrementing counter which is decremented by one at each breakpoint event. When register is zero and a breakpoint event occurs, a breakpoint interrupt is generated. BADDR register stores the instruction address when the breakpoint interrupt is generated.

Each breakpoint has three configuration registers:

- Configuration register
- Address register
- Data register

Breakpoint configuration register is used to set-up a breakpoint.

Breakpoint Configuration Register Bits			
Name	Register Bit	Description	
Status	7	Breakpoint triggered flag	
Bus Type	6:5	X/Y/I bus selection	
Access Type	4:3	Fetch/Read/Write access type selection	
Condition Type	2:0	Breakpoint condition selection	

Breakpoint status bit is set when the breakpoint triggeres an interrupt.

Breakpoint Bus Type Bit Configuration			
Value	Bus	Description	
'00'		Breakpoint at I-bus	
'01'	Х	Breakpoint at X-bus	
'10'	Y	Breakpoint at Y-bus	
'11'	Illegal	Don't use	

Breakpoint Access Type Bit Configuration			
Value	Register Bit	Description	
'00'	Disabled	Breakpoint is disabled	
'01'	Fetch/Read	Breakpoint set to snoop read accesses	
'10'	Write	Breakpoint set to snoop write accesses	
'11'	Read or Write	Breakpoint set to snoop both the read and write	
		accesses	

Breakpoint Condition Type Bit Configuration			
Value	Bus	Description	
'000'	Disabled	Breakpoint disabled	
'001'	Any	Match only address	
'010'	==	X/Y-bus data EQUAL to snoop breakpoint data	
'011'	!=	X/Y-bus data NOT EQUAL to snoop breakpoint data	
'100'	< signed	Signed comparison of X/Y-bus data LESS THAN snoop breakpoint data	
'101'	>= signed	Signed comparison of X/Y-bus data GREATER THAN OR EQUAL to snoop breakpoint data	
'110'	Illegal	Don't use	
'111'	Illegal	Don't use	

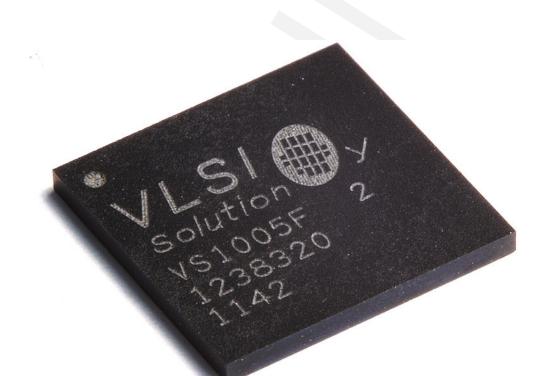
The hardware debugger requires the VLSI JTAG connector and Integrated Development Environment VSIDE for full debug capabilities. For further information about the hardware debugger connect VLSI technical support.

12 Document Version Changes

This chapter describes the most important changes to this document.

Version 0.2, 2012-03-16

• First release version.


13 CONTACT INFORMATION

13 Contact Information

VLSI Solution Oy Entrance G, 2nd floor Hermiankatu 8 FI-33720 Tampere FINLAND

Fax: +358-3-3140-8288 Phone: +358-3-3140-8200 Email: sales@vlsi.fi URL: http://www.vlsi.fi/ 深圳市源合汇通科技有限公司 YesHere Technology Limited 地址:深圳市福田区华强北路 赛格科技工业园2栋东708

联系人:王立青 手机:13267231725 电话:0755-82565571 邮箱:Bill@yeshere.cn QQ:2355355254

