
广广广州州州周周周立立立功功功单单单片片片机机机发发发展展展有有有限限限公公公司司司
地址：广州市天河北路 689号光大银行大厦 15楼 F1
网址：http://www.zlgmcu.com

用用用户户户指指指南南南
RRReeevvv...222777555222

SStteellllaarriiss®®外外设设驱驱动动库库

 广州周立功单片机发展有限公司

技术支持

如果您对文档有所疑问，您可以在办公时间（星期一至星期五上午 8:30~11:50；下午
1:30~5:30；星期六上午 8:30~11:50）拨打技术支持电话或 E-mail联系。
网 址： www.zlgmcu.com
联系电话： +86 (020) 22644358 22644359 22644360 22644361
E-mail： zlgmcu.support@zlgmcu.com

销售与服务网络

广州周立功单片机发展有限公司

地址：广州市天河北路 689号光大银行大厦 15楼 F1 邮编：510630

电话：(020)38730972 38730976 38730916 38730917 38730977

传真：(020)38730925

网址：http://www.zlgmcu.com

广州专卖店

地址：广州市天河区新赛格电子城 203-204室

电话：(020)87578634 87569917

传真：(020)87578842

南京周立功

地址：南京市珠江路 280号珠江大厦 2006室

电话：(025)83613221 83613271 83603500

传真：(025)83613271

北京周立功

地址：北京市海淀区知春路 113 号银网中心 A 座

1207-1208室（中发电子市场斜对面）

电话：(010)62536178 62536179 82628073

传真：(010)82614433

重庆周立功

地址：重庆市石桥铺科园一路二号大西洋国际大厦

（赛格电子市场）1611室

电话：(023)68796438 68796439

传真：(023)68796439

杭州周立功

地址：杭州市登云路 428号浙江时代电子市场 205号

电话：(0571)88009205 88009932 88009933

传真：(0571)88009204

成都周立功

地址：成都市一环路南二段1号数码同人港401室（磨

子桥立交西北角）

电话：(028) 85439836 85437446

传真：(028) 85437896

深圳周立功

地址：深圳市深南中路 2070 号电子科技大厦 A 座

24楼 2403室

电话：(0755)83781788（5线）

传真：(0755)83793285

武汉周立功

地址：武汉市洪山区广埠屯珞瑜路158号12128室（华

中电脑数码市场）

电话：(027)87168497 87168297 87168397

传真：(027)87163755

上海周立功

地址：上海市北京东路 668号科技京城东座 7E室

电话：(021)53083452 53083453 53083496

传真：(021)53083491

西安办事处

地址：西安市长安北路 54号太平洋大厦 1201室

电话：(029)87881296 83063000 87881295

传真：(029)87880865

 广州周立功单片机发展有限公司

目录

第 1章 简介 ...1
第 2章 编译代码 ...3

2.1 所需软件...3
2.2 用Keil uVision编译 ..3
2.3 用IAR Embedded Workbench编译...3
2.4 用CodeSourcery Sourcery G++编译 ..3
2.5 用Code Red Technologies Tools编译 ...4
2.6 从命令行编译...4

第 3章 引导代码 ...7
第 4章 编程模型 ...8

4.1 简介...8
4.2 直接寄存器访问模型...8
4.3 软件驱动程序模型...9
4.4 组合模型...9

第 5章 模拟比较器 ...10
5.1 简介...10
5.2 API函数 ..10

5.2.1 详细描述...10
5.2.2 函数文件...10

5.3 编程范例...15
第 6章 模数转换器（ADC） ...16

6.1 简介...16
6.2 API函数 ..16

6.2.1 详细描述...17
6.2.2 函数文件...17

6.3 编程范例...27
第 7章 控制器局域网（CAN） ...28

7.1 简介...28
7.2 API函数 ..28

7.2.1 详细描述...29
7.2.2 数据结构文件...30
7.2.3 定义文件...31
7.2.4 枚举文件...31
7.2.5 函数文件...33

7.3 编程示例...43
第 8章 以太网控制器 ...46

8.1 简介...46
8.2 API函数 ..46

8.2.1 详细描述...46
8.2.2 函数文件...47

8.3 编程示例...57
第 9章 Flash...59

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

ii

 广州周立功单片机发展有限公司

9.1 简介...59
9.2 API函数 ..59

9.2.1 详细描述...60
9.2.2 函数文件...60

9.3 编程示例...66
第 10章 GPIO..67

10.1 简介...67
10.2 API函数 ..67

10.2.1 详细描述...68
10.2.2 函数文件...68

10.3 编程示例...81
第 11章 冬眠模块 ...83

11.1 简介...83
11.2 API函数 ..83

11.2.1 详细描述...84
11.2.2 函数文件...84

11.3 编程示例...94
第 12章 I2C..99

12.1 简介...99
12.1.1 主机操作...99
12.1.2 从机操作...100

12.2 API函数 ..100
12.2.1 详细描述...100
12.2.2 函数文件...101

12.3 编程示例... 111
第 13章 中断控制器（NVIC） ... 112

13.1 简介...112
13.2 API函数 ..112

13.2.1 详细描述...113
13.2.2 函数文件...113

13.3 编程示例...117
第 14章 内存保护单元（MPU） .. 118

14.1 简介...118
14.2 API函数 ..118

14.2.1 详细描述...118
14.2.2 函数文件...119

14.3 编程示例...124
第 15章 外设管脚映射 ...127

15.1 简介...127
15.2 API函数 ..127

15.2.1 详细描述...127
15.2.2 函数文件...127

15.3 编程示例...132
第 16章 脉宽调制器(PWM)...134

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

iiii

 广州周立功单片机发展有限公司

16.1 简介...134
16.2 API函数 ..134

16.2.1 详细描述...135
16.2.2 函数文件...136

16.3 编程示例...153
第 17章 正交编码器(QEI)..154

17.1 简介...154
17.2 API函数 ..154

17.2.1 详细描述...155
17.2.2 函数文件...155

17.3 编程示例...162
第 18章 同步串行接口(SSI)...163

18.1 简介...163
18.2 API函数 ..163

18.2.1 详细描述...163
18.2.2 函数文件...164

18.3 编程示例...171
第 19章 系统控制 ...172

19.1 简介...172
19.2 API函数 ..173

19.2.1 详细描述...174
19.2.2 函数文件...174

19.3 编程示例...192
第 20章 系统节拍(SysTick) ...194

20.1 简介...194
20.2 API函数 ..194

20.2.1 详细描述...194
20.2.2 函数文件...194

20.3 编程示例...197
第 21章 定时器 ...198

21.1 简介...198
21.2 API函数 ..198

21.2.1 详细描述...199
21.2.2 函数文件...199

21.3 编程示例...209
第 22章 UART ..210

22.1 简介...210
22.2 API函数 ..210

22.2.1 详细描述...211
22.2.2 函数文件...211

22.3 编程示例...222
第 23章 uDMA控制器..224

23.1 简介...224
23.2 API函数 ..225

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

iiiiii

 广州周立功单片机发展有限公司

23.2.1 详细描述...225
23.2.2 函数文件...226

23.3 编程示例...237
第 24章 USB控制器 ...239

24.1 简介...239
24.2 结合uDMA控制器使用USB..239
24.3 API函数 ..243

24.3.1 详细描述...245
24.3.2 函数文件...246

24.4 编程示例...267
第 25章 看门狗定时器 ...269

25.1 简介...269
25.2 API函数 ..269

25.2.1 详细描述...269
25.2.2 函数文件...270

25.3 编程示例...276
第 26章 使用ROM..277

26.1 简介...277
26.2 直接调用ROM..277
26.3 调用映射的ROM..277
26.4 更新固件...278

26.4.1 详细描述...278
26.4.2 函数文件...279

第 27章 实用函数 ...280
27.1 简介...280
27.2 API函数 ..280

27.2.1 详细描述...281
27.2.2 函数文件...282

第 28章 错误处理 ...299
第 29章 引导加载程序 ...300

29.1 简介...300
29.1.1 头文件...300
29.1.2 启动（Start-up）代码 ..301
29.1.3 以太网更新...302
29.1.4 串口更新...303
29.1.5 定制（Customization）..305
29.1.6 命令...305
29.1.7 配置...308

29.2 函数...310
29.2.1 详细描述...311
29.2.2 函数文件...311

第 30章 工具链 ...320
30.1 简介...320
30.2 编译器...320

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

iviv

 广州周立功单片机发展有限公司

30.2.1 调用编译器...320
30.2.2 理解链接器脚本...321
30.2.3 编译器结构...326
30.2.4 汇编器结构...326
30.2.5 链接应用...327

30.3 调试器...327
第 31章 DK-LM3S101示例应用...329

31.1 简介...329
31.2 API函数 ..329

31.2.1 详细描述...329
31.2.2 函数文件...329

31.3 示例...335
第 32章 DK-LM3S102示例应用...338

32.1 简介...338
32.2 API函数 ..338

32.2.1 详细描述...338
32.2.2 函数文件...338

32.3 示例...344
第 33章 DK-LM3S301示例应用...348

33.1 简介...348
33.2 API函数 ..348

33.2.1 详细描述...348
33.2.2 函数文件...348

33.3 示例...354
第 34章 DK-LM3S801示例应用...358

34.1 简介...358
34.2 API函数 ..358

34.2.1 详细描述...358
34.2.2 函数文件...358

34.3 示例...364
第 35章 DK-LM3S811示例应用 ...368

35.1 简介...368
35.2 API函数 ..368

35.2.1 详细描述...368
35.2.2 函数文件...368

35.3 示例...374
第 36章 DK-LM3S815示例应用...378

36.1 简介...378
36.2 API函数 ..378

36.2.1 详细描述...378
36.2.2 函数文件...378

36.3 示例...384
第 37章 DK-LM3S817示例应用...388

37.1 简介...388

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

vv

 广州周立功单片机发展有限公司

37.2 API函数 ..388
37.2.1 详细描述...388
37.2.2 函数文件...388

37.3 示例...394
第 38章 DK-LM3S818示例应用...398

38.1 简介...398
38.2 API函数 ..398

38.2.1 详细描述...398
38.2.2 函数文件...398

38.3 示例...404
第 39章 DK-LM3S828示例应用...408

39.1 简介...408
39.2 API函数 ..408

39.2.1 详细描述...408
39.2.2 函数文件...408

39.3 示例...414
第 40章 EK-LM3S1968示例应用 ...418

40.1 简介...418
40.2 API函数 ..418

40.2.1 详细描述...419
40.2.2 函数文件...419

40.3 示例...426
第 41章 EK-LM3S2965示例应用 ...429

41.1 简介...429
41.2 API函数 ..429

41.2.1 详细描述...429
41.2.2 函数文件...429

41.3 示例...433
第 42章 C版本的EK-LM3S2965示例应用...436

42.1 简介...436
42.2 API函数 ..436

42.2.1 详细描述...436
42.2.2 函数文件...436

42.3 示例...440
第 43章 EK-LM3S3748示例应用 ...443

43.1 简介...443
43.2 API函数 ..443

43.2.1 详细描述...443
43.2.2 函数文件...443
43.2.3 变量文件...449

43.3 示例...449
第 44章 EK-LM3S6965示例应用 ...455

44.1 简介...455
44.2 API函数 ..455

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

vivi

 广州周立功单片机发展有限公司

44.2.1 详细描述...455
44.2.2 函数文件...455

44.3 范例...459
第 45章 C版本EK-LM3S6965示例应用...463

45.1 简介...463
45.2 API函数 ..463

45.2.1 详细描述...463
45.2.2 函数文件...463

45.3 示例...467
第 46章 EK-LM3S811示例应用 ...471

46.1 简介...471
46.2 API函数 ..471

46.2.1 详细描述...471
46.2.2 函数文件...471

46.3 示例...474
第 47章 EK-LM3S8962示例应用 ...477

47.1 简介...477
47.2 API函数 ..477

47.2.1 详细描述...477
47.2.2 函数文件...477

47.3 示例...481
第 48章 RDK-IDM示例应用..486

48.1 简介...486
48.1.1 模拟输入驱动程序...486
48.1.2 显示屏驱动程序...486
48.1.3 lwIP驱动程序 ...487
48.1.4 继电器输出驱动程序...487
48.1.5 声音输出驱动程序...487
48.1.6 触摸屏幕驱动程序...487

48.2 模拟输入API函数 ..488
48.2.1 详细描述...488
48.2.2 函数文件...488

48.3 显示屏驱动程序的API函数 ..491
48.3.1 详细描述...491
48.3.2 函数文件...491
48.3.3 变量文件...492

48.4 lwIP 驱动程序API函数 ...492
48.4.1 详细描述...492
48.4.2 函数文件...492

48.5 继电器输出API函数 ..494
48.5.1 详细描述...494
48.5.2 函数文件...494

48.6 声音输出API函数 ..495
48.6.1 详细描述...495

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

viivii

 广州周立功单片机发展有限公司

48.6.2 函数文件...495
48.7 触摸屏幕API函数 ..498

48.7.1 详细描述...498
48.7.2 函数文件...498

48.8 范例...499
第 49章 RDK-S2E示例应用...502

49.1 简介...502
49.2 配置API函数 ..502

49.2.1 详细描述...503
49.2.2 数据结构文件...503
49.2.3 定义文件...503
49.2.4 函数文件...504
49.2.5 变量文件...506

49.3 文件系统API函数 ..507
49.3.1 详细描述...507
49.3.2 函数文件...507

49.4 循环缓冲区API函数 ..508
49.4.1 详细描述...508
49.4.2 函数文件...508

49.5 串行端口API函数 ..512
49.5.1 详细描述...513
49.5.2 函数文件...513

49.6 远程登录端口API函数 ..521
49.6.1 详细描述...521
49.6.2 数据结构文件...521
49.6.3 定义文件...523
49.6.4 枚举文件...523
49.6.5 函数文件...524

49.7 通用即插即用API函数 ..527
49.7.1 详细描述T ..527
49.7.2 函数文件...527

49.8 范例...528

Stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

viiiviii

 广州周立功单片机发展有限公司 第1章 简介

第1章 简介

Luminary Micro®Stellaris®外围驱动程序库是一系列用来访问 Stellaris 系列的基于
ARM®CortexTM-M3 微处理器上的外设的驱动程序。尽管从纯粹的操作系统的理解上它们
不是驱动程序（也就是说，它们没有公共的接口，未连接到一个整体的设备驱动程序结构），

但这些驱动程序确实提供了一种机制，使器件的外设使用起来很容易。

驱动程序的功能和组织结构由下列设计目标决定：

 驱动程序全部用 C编写，实在不可能用 C语言编写的除外；
 驱动程序演示了如何在常用的操作模式下使用外设；
 驱动程序很容易理解；
 从内存和处理器使用的角度，驱动程序都很高效；
 驱动程序尽可能自我完善（self-contained）；
 只要可能，可以在编译中处理的计算都在编译过程中完成，不占用运行时间；
 它们可以用多个工具链来构建。

这些设计目标会得到一些以下的结果：

 （站在代码大小和/或执行速度的角度）驱动程序不必要达到它们所能实现的最高
效率。虽然执行外设操作的最高效率的代码都用汇编编写，然后进行裁减来满足应

用的特殊要求，但过度优化驱动程序的大小会使它们变得更难理解；
 驱动程序不支持硬件的全部功能。尽管现有的代码可以作为一个参考，在它们的基
础上增加对附加功能的支持，但是一些外设提供的复杂功能是库中的驱动程序不能

使用的；
 API有一种方法，可以移走所有的错误检查代码。由于错误代码通常只在初始程序
开发的过程中使用，所以可以把它移走来改善代码大小和速度。

对于许多应用来说，驱动程序可以直接使用。但是，在某些情况下，为了满足应用的功

能、内存或处理要求，必须增加驱动程序的功能或改写驱动程序。如果这样，现有的驱动程

序就只能用作如何操作外设的一个参考。

支持以下工具链：

 KeilTMRealView®微处理器开发工具；
 Stellaris EABI的 CodeSourcery Sourcery G++；
 IAR Embedded Workbench®；
 Code Red Technologies tools。

源代码概述

下面简单描述了外设驱动程序库源代码的组织结构以及每个部分详细描述的参考章节。

EULA.txt 包括这个软件包的使用在内的最终用户许可协议的完整文本。

Makefile 编译驱动程序库的规则。这个文件的内容在第 2章中描述。

asmdefs.h 汇编语言源文件使用的一组宏。这个文件的内容在第 30章中描述。

boards/ 这个目录包含运行在各种 Luminary Micro 开发评估板上的示例应用

的源代码，详见第 31章至第 49章中的描述。

boot_loader/ 该目录包含引导加载程序的源代码。该代码请看第 29章的描述。
codered/ 该目录包含 Code Red Technologies工具链特有的源文件。这个目录的

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

1

 广州周立功单片机发展有限公司 第1章 简介

内容在第 3章和第 30章中描述。
ewarm/ 该目录包含 IAR Embedded Workbench工具链特有的源文件。该目

录的内容在第 3章和第 30章中描述。

gcc/ 该目录包含 GNU工具链特有的源文件。该目录的内容在第 3章和

第 30章中描述。

grlib/ 该目录包含 Stellaris Graphics数据库。该目录的内容请看该目录所在
的 PDF描述。

hw_*.h 头文件，每个外设含有一个，描述了每个外设的所有寄存器以及寄存

器中的位字段。驱动程序使用这些头文件来直接访问一个外设，应用

代码也可以使用这些头文件，从而将外设驱动程序库 API忽略。

inc/ 该目录保持了直接寄存器用于访问编程模块的部分指定头文件，详

见第 4章的描述。

makedefs make files使用的一组定义。这个文件的内容在第 30章中描述。

rvmdk/ 该目录包含 Keil RealView微控制器开发工具特有的源文件。这个目
录的内容在第 3章和第 30章中描述。

src/ 该目录包含驱动程序的源代码，这些源代码在第 5章～第 25章描述。

third_party/ 该目录包含 Stellaris微控制器家族已使用（ported）的第三方软件包，
每个软件包都有其功能性的文件描述。

usblib/ 该目录包含 Stellaris USB 驱动程序库。该目录的内容请看其所在的
PDF的描述。

utils/ 该目录包含一组实用程序函数，供示范应用使用。这个目录的内容在
第 27章中描述。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

2

 广州周立功单片机发展有限公司 第2章 编译代码

第2章 编译代码

2.1

2.2

2.3

2.4

所需软件

为了编译外设驱动程序库的代码，需要以下软件：

 下面工具链中的一个：

♦ Keil RealView 微控制器开发板;

♦ ARM EABI的 CodeSourcery的 Sourcery G++;

♦ IAR Embedded Workbench;

♦ Code Red Technologies tools。

 如果从命令行（Command Line）编译，则需要某种形式的Windows® Unix环境。

根据所选工具链提供的指令安装编译器和调试器（Luminary Micro也提供了描述如何安
装每个工具链的快速入门指南）；这也将编译器添加到搜索路径，以便它能够被执行。

安装了所需的软件后，必须用您所选的归档工具（如WinZip®或Windows XP内置的实
用工具）将外设驱动源程序库从其 ZIP文件中提取出来。对于剩余指令，假设源文件被提取
到 C:/DriverLib目录下。

用 Keil uVision编译

外设驱动程序库和每个示范应用都有一个 uVision工程（扩展名为.Uv2），可以在 uVision
中编译。简单地把工程文件装载到 uVision，再点击“Build target”或“Rebuild all target files”
按钮，就可以进行编译。注意，外设驱动程序库（C：/DriverLib/src/driverlib.Uv2）工程必
须在任一示范应用编译之前编译。

在 Keil中具有一个多工程工作空间文件（扩展名为.mpw），它包括在每个板目录下的一
个特定板的所有工程。例如：在 boards/dk-lm3s101目录下，具有一个 dk-lm3s101.mpw的文
件，它包含外设驱动程序库的工程和 DK-LM3S101板的所有板示例工程。

关于 uVision的用法，详见“RealView快速入门”。

用 IAR Embedded Workbench编译

外设驱动程序库和每个示范应用都有一个 Embedded Workbench工程（扩展名为.ewp），
可以在 5 版本的 Embedded Workbench 中编译。简单地把工程文件载入到 Embedded
Workbench，再从“Project”菜单中选择“Make”或“Rebuild all”项，就可以进行编译。注意，
外设驱动程序库（C：/DriverLib/src/driverlib.ewp）项目必须在任一示范应用编译之前编译。

在 Embedded Workbench中具有一个工作空间文件（扩展名为.eww），它包括每个板目
录下的一个特定板的全部工程。例如：在boards/dk-lm3s101目录下，具有一个dk-lm3s101.eww
的文件，它包含外设驱动程序库的工程和 DK-LM3S101板的全部板示例工程。

使用 4.42a版本的 Embedded Workbench时，同样也会有这些文件的其他版本。它们为
-ewarm4.ewp和-earm4.eww，并且位于与第 5版本文件相同的地方。

关于 Embedded Workbench的用法，详见“IAR KickStart快速入门”。

用 CodeSourcery Sourcery G++编译

利用 CodeSourcery公共启动代码序列（CS3），可以对外设驱动程序库和每个示范应用
的代码进行编译。通过设置有效的“sourcerygxx”编译环境，将用 CS3来编译应用代码。使

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

3

 广州周立功单片机发展有限公司 第2章 编译代码

用 CS3的优势是能够很方便地使用由 CodeSourcery提供的 C驱动程序库，如 printf()。

有关 CS3的信息和如何在应用中使用 CS3，详见 CodeSourcery Getting Started文档描述。
关于如何使用 CS3进行编译，详见以下章节的描述。

2.5

2.6

用 Code Red Technologies Tools编译

使用 Code Red Technologies Tools的编译器可以对外设驱动程序库和每个示范应用代码
进行编译。通过设置有效的“codered”环境，当从命令行或 Code Red Technologies Tools开
发环境中编译时，可以使用 Code Red Technologies Tools。

关于 Code Red Technologies Tools的用法，详见“code_red快速入门”。

从命令行编译

为了从命令行编译，需要某种形式的Windows要求的Unix环境。推荐的解决方案是
SourceForge 的 Unix 实 用 程 序 (http://unxutils.sourceforge.net) ； 也 可 以 选 择 Cygwin
（http://www.cygwin.com)和MinGW (http://www.mingw.org)。Unix实用程序和Cygwin已经
通过测试，可以与该程序库共同工作；尽管MinGW未经测试，但它应该也可与该程序库共
同工作。

关于安装和建立 Unix实用程序的详情，请参考“GNU快速入门”。

makefiles不能与通常在Windows中有效的 make实用程序(如 RealView提供的 make实
用程序)共同工作。在搜索路径中“Unix”版本的 make必须在任何其他版本的 make之前出
现。当然，如果在 Linux上使用了一个编译器，那么存在的 Posix shell环境就不仅仅只适合
编译代码了。

SourceForge 的 Unix 实用程序在一个必须解压的 ZIP 文档中；对于剩余的指令，假设
Unix实用程序被提取到 c:/。

搜索路径必须手动更新来包括 C:/bin目录和 C:/usr/local/wbin目录，C:/usr/local/wbin目
录更适合放在搜索路径的开始处（以便优先选择使用 C:/usr/local/wbin的 make，而不是 make
的其他版本）。

剩余的指令假设 c:/bin/sh的 shell使用级别优先于由Windows XP提供的命令的解释器
（command shell）。如果不使用优先级的 shell，就必须修改命令 shell，以使其与Windows XP
shell兼容。

两个快速测试将决定看过路径是否设置正确。首先，输入：

make --version

它应当会返回报告某个版本的 GNU Make被调用；否则，正在寻找的就是错误的 make
实用程序，需要修改搜索路径。下一步，输入：

type sh

应该指定 Uni实用程序的 sh.exe被提取的路径；否则，make实用程序将无法找到 shell
（意味着编译失败），需要修改搜索路径。

如果使用 Keil RealView 微控制器开发工具，下面的指令将验证能找到编译器（这就意
味着也可以找到所有其他工具链的实用程序）：

type armcc

如果使用 ARM EABI的 CodeSourcery的 Sourcery G++，下面的指令将验证能找到编译
器：

type arm-stellaris-eabi-gcc

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

4

 广州周立功单片机发展有限公司 第2章 编译代码

如果使用 IAR Embedded Workbench，下面的指令将验证能找到编译器：

type iccarm

type xlink

如果使用 Code Red Technologies tools，下面的指令将验证能找到编译器：

type arm-none-eabi-gcc

只要上面的任何一个检测失败，编译就将有可能也失败。在每一种情况下必须要将搜索

路径更新，以便 shell能查找到正在讨论的工具的位置。

现在，就可以编译驱动程序库和示范应用代码了，输入以下指令：

cd c:/DriverLib

make

它将会显示出简短的信息来指示正在执行的编译步骤；下面提取出来的就是一个例子：

...

CC timer.c

CC uart.c

CC watchdog.c

AR gcc/libdriver.a

...

上述内容指明正在编译 timer.c、uart.c和 watchdog.c，然后创建一个称为 gcc/libdriver.a
的库。象这样显示简短的信息，使得人们可以很容易地发现编译过程中遇到的警告和错误。

几个变量控制着编译的过程。它们可以作为环境变量出现，或者，也能在命令行将它们

传递给 make。这些变量是：

 COMPLIER：指定用来编译源代码的工具链。目前，它可以是 codered、ewarm、
gcc、rvmdk、或 sourcerygxx；如果并未特别指定，默认值是 gcc；

 DEBUGGER：指定用来运行可执行体的调试器。这会影响所用到的 Diag…()函数
的版本。目前，DEBUGGER有 cspy、gdb、或 uvision；如果并未特别指定，它的
默认值要取决于编译器的值（codered、ewarm、gcc、rvmdk、sourcerygxx 分别对
应决定 gdb、cspy、gdb、uvision 、gdb的值）；

 DEBUG：指定应该包含在编译的目标文件中的调试信息。这就允许调试器执行源
级调试，并且可以增加额外的代码来辅助开发和调试进程（如基于 ASSERT 的错
误校验）。该变量的值并不重要；如果它存在，就包含调试信息。如果变量未指定，

就不包含调试信息；
 VERBOSE：指定应当显示实际的编译器调用，而不是简短的编译步骤。该变量的
值并不重要，如果变量存在，将使能 VERBOSE 模式，如果变量未指定，禁止
VERBOSE模式。

因此，举例如下，使用 rmvdk编译，调试使能，输入：

make COMPILER=rvmdk DEBUG=1

或者，也可以输入下面的内容：

export COMPILER=rvmdk

export DEBUG=1

make

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

5

 广州周立功单片机发展有限公司 第2章 编译代码

后者的优点就是后面的编译只需调用 make，更不容易因为每次忘记将变量添加到命令
行而导致未预期的结果（即是说，用不同的定义编译混合和匹配目标而导致的结果）。

为了删除所有编译项目，使用以下指令：

make clean

注意，这操作仍取决于 COMPLIER环境变量；它只能删除与使用中的工具链相关的对
象（即，它可以用来清除 rvmdk对象而不影响 gcc对象）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

6

 广州周立功单片机发展有限公司 第3章 引导代码

第3章 引导代码

引导代码包含设置向量表和获取系统复位后运行的应用代码所需的最小代码集。引导代

码有多个版本，每个支持的工具链对应一个（一些工具链特有的结构被用来寻找代码、数据

和 bss 区驻留在内存中的位置）；启动代码包含在<toolchain>/startup.c 中。伴随启动代码的
是相应的链接器脚本，链接器脚本用来连接一个应用，以便向量表、代码区、数据区初始化

程 序 （ initializer ） 和 数 据 区 放 置 在 内 存 中 的 合 适 位 置 ； 这 个 脚 本 包 含 在
<toolchain>/standalone.ld中（IAR Embedded Workbench对应的是 standalone.xcl）。

引导代码及其对应的链接器脚本采用基于 Flash 的系统的典型内存分布。Flash 的第一
部分用来存放代码和只读数据（这被称为“代码”区）。紧跟其后的是用于非零初始化数据

的初始化程序（如果有的话）。SRAM的第一部分用来存放非零初始化的数据（这被称为“数
据”区），后面跟着的是零初始化的数据（称为“bss”区）。

Cortex-M3微处理器的向量表包含 4个必需项。它们是初始堆栈指针、复位处理程序地
址、NMI 处理程序地址和硬故障（hard fault）处理程序地址。复位时，处理器将装载初始
堆栈指针，然后开始执行复位处理程序。由于 NMI 或硬故障可以随时出现，所以初始堆栈
指针是必不可少的。处理器会自动将 8个项压入堆栈，所以要求堆栈能够接受这两个中断。

g_pfnVectors数组包含一个完整的向量表。它包含所有处理程序和初始堆栈末端的地址。
工具链特有的结构给链接器提供一个暗示（hint），用来确保这个数组位于 0x0000.0000，这
是向量表默认的地址。

NmisR函数包含 NMI处理程序。它只是简单地进入一个死循环，在 NMI出现时有效地
终止应用。因此，应用状态被保存下来以供调试器检查。如果需要，应用可以通过中断驱动

程序提供它自己的 NMI处理程序。

FaultISR函数包含硬故障处理程序。它也是进入一个死循环，可以被应用取代。

ResetISR函数包含复位处理程序。它将初始化程序从 Flash的代码区末尾复制到 SRAM
的数据区，向 bss区填充零，然后跳转到应用提供的入口点。当这个函数被调用时，为了使
C代码能够正确地运行，这些是要求必须完成的最少的事情。应用要求的任何更复杂的操作
必须由应用自己提供。

应用必须提供一个称为 main的入口点，main不使用任何参数，也从不返回。这个函数
将在内存初始化完成之后被 ResetISR 调用。如果 main 确实返回了，那么 ResetISR 也会返
回，这样会造成出现硬故障。

每个示范应用都有自己的引导代码副本，所需的中断处理程序放置在适当的位置。这就

允许为每个范例定制中断处理程序，并允许中断处理程序驻留在 Flash中。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

7

 广州周立功单片机发展有限公司 第4章 编程模型

第4章 编程模型

4.1

4.2

简介

外设驱动程序库提供支持二个编程模型：直接寄存器访问模型和软件驱动程序模型。根

据应用的需要或者开发者所需要的编程环境，每个模型可以独立使用或组合使用。

每个编程模型有优点也有弱点。使用直接寄存器访问模型通常得到比使用软件驱动程序

模型更少和更高效的代码。然而，直接寄存器访问模型一定要求了解每个寄存器、位段、它

们之间的相互作用以及任何一个外设适当操作所需的先后顺序的详细内容；而开发者使用软

件驱动程序模型，则不需要知道这些详细内容，通常只需更短的时间开发应用。

直接寄存器访问模型

在直接寄存器访问模型下，通过直接向外设寄存器写入数值，应用就可以对外设进行编

程。所提供的宏集大大简化这个处理过程。这些宏存储在 inc目录下的特定部分的头文件中
（part-specific header files），头文件的名称必须与器件型号相一致（如，LM3S6965微处理
控制器的头文件名为 inc/lm3s6965.h）。通过包含与正在使用的器件名称相匹配的头文件，就
可以使用这些宏来访问这器件中的所有寄存器，包括这些寄存器在内的位段。由于只能使用

这些宏来访问存在于正在讨论的器件的寄存器，这就使得访问不是这个器件的寄存器变得很

困难。

直接寄存器访问模型所使用的定义遵从着一个命名惯例，该惯例使得人们可以很容易就

知道如何使用一个特殊的宏。其惯例规则如下：

 以_R结尾的值是用来访问寄存器的值。例如：SSI0_CR0_R是用来访问在 SSI0模
块的 CR0寄存器；

 以_M结尾的值用来代表在寄存器的多位字段的屏蔽。如果在多位字段的值是一个
数字，那么宏基本名将相同，但以 _S 结尾（例如： SSI_CR0_SCR_M 和
SSI_CR0_SCR_S)。如果在多位段的值是一个列举，那么宏集的基本名将相同，但
是以不同列举值的标识符结尾（例如：SSI_CR0_FRF_M 宏定义位字段，

SSI_CR0_FRF_NMW、SSI_CR0_FRF_TI 和 SSI_CR0_FRF_MOTO 宏为位字段提供列
举）；

 以_S 结尾的值代表着移位一个值的位数以使得这个值对齐多位字段。这些值的名
与宏的基本名相同，但它们以_M结尾；

 其它所有的宏代表着位字段的值；
 所有寄存器命名宏时，首先是模型的名和举例编号（例如：第一个 SSI模型命名为

SSI0），接着是在数据手册出现的寄存器的名字（例如：在数据手册中的 CR0 寄
存器将会使宏被命名为 SSI0_CR0_R）；

 所有寄存器的位字段命名时，首先是模型的名，跟着是寄存器的名，后面再跟着出
现在数据手册的位字段名。例如：在 SSI模型中的 CR0寄存器的 SCR位字段将会
被命名为 SSI_CR0_SCR…..在位字段是单个位的（a single bit）情况下，命名结束
（例如：SSI_CR0_SPH是 CR0寄存器的单一位）。如果位字段大于单一位，那么
名后面将会有一个屏蔽值(_M)，如果位字段包含有一个数字或不是一个数字而是
一个列举集，那么后面将会有一个移位(_S)；

鉴于这些定义，可以按如下编程 CR0寄存器：

SSI0_CR0_R = ((5 << SSI_CR0_SCR_S) | SSI_CR0_SPH | SSI_CR0_SPO |

SSI_CR0_FRF_MOTO | SSI_CR0_DSS_8);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

8

 广州周立功单片机发展有限公司 第4章 编程模型

另外，以下的方法也具有相同的作用（尽管它难以理解）：

SSI0_CR0_R = 0x000005c7;

按如下输入可以从 CR0寄存器提取 SCR字段的值：
ulValue = (SSI0_CR0_R & SSI_CR0_SCR_M) >> SSI0_CR0_SCR_S;

GPIO模块具有多个不包含有位字段定义的寄存器。对于这些寄存器，寄存器位代表着
单独的 GPIO管脚；因此这些寄存器的位 0则与器件的 PX0管脚相对应（X由一个 GPIO模
块字母所取代），位 1与 PX1管脚相对应，依此类推，等等。

每块板的 blinky范例使用直接寄存器访问模型来使板上的 LED闪烁。

注：被驱动程序库所用到的 hw_*.h头文件包含有许多与供直接寄存器访问模型使用的头文件相同的定义。

因此，不能把二个相同定义的头文件包含在同一个源文件中，这样编译器就无需产生要求对符号进行

重新定义的警告。

4.3 软件驱动程序模型

在软件驱动程序模型下，应用使用外设提供的 API 来控制外设。由于这些驱动在它们
的正常操作模式下能够提供对外设进行完全的控制，因此我们可以写整个应用，而无需直接

访问硬件。这提供了应用的高速发展，且无需了解如何对外设进行编程的详细情况。

与直接寄存器访问模型范例相对应的是，以下的指令也将会编程 SSI 模块的 CR0 寄存
器（虽然 API隐藏了这个事实）：

SSIConfigSetExpClk(SSI0_BASE, 50000000, SSI_FRF_MOTO_MODE_3,

SSI_MODE_MASTER, 1000000, 8);

在 CR0寄存器得出的结果值可能并不完全相同，这是因为 SSIConfigSetExpClk()可能为
SCR位字段计算出的值与直接寄存器访问模型范例中所用的值不同。

所有的范例应用，blinky除外，都使用了软件驱动程序模型。

外设驱动程序库的驱动在第 5章至第 25章中描述。这些驱动组合起来形成软件驱动模
型。

4.4 组合模型

在单个应用中，可以把直接寄存器访问模型和软件驱动程序模型组合起来使用。这就允

许在应用范围内的任何特别情况下可以使用最合适的模型；例如：使用软件驱动程序模型来

配置外设（因为这一外设的操作并不是至关重要）并且在外设操作中也可以使用直接寄存器

访问模型（这有可能这个外设的操作比较重要）。或者，外设的执行并不非常重要时（如把

UART 用于数据记录），可以对外设使用软件驱动程序模型。而在外设的执行很重要时（如
使用 ADC模块来捕获实时模拟数据），则使用直接寄存器访问模型。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

9

 广州周立功单片机发展有限公司 第5章 模拟比较器

第5章 模拟比较器

5.1

5.2

简介

比较器 API 提供一组函数来处理模拟比较器。比较器可以将一个测试电压和单个外部
参考电压、一个公共的单端外部参考电压或一个公共的内部参考电压相比较。比较器可以把

它的输出提供给一个器件管脚，代替板上的模拟比较器，或者，输出也可以通过中断或触发

ADC来通知应用，使应用开始捕获一个采样序列。中断的产生和 ADC触发逻辑是相互独立
的，因此，中断可以在上升沿产生，而 ADC却在下将沿触发（举例说明）。

这个驱动程序包含在 src/comp.c中，src/comp.h包含应用使用的 API定义。

API函数

函数

 void ComparatorConfigure (unsigned long ulBase, unsigned long ulComp, unsigned
long ulConfig)；

 void ComparatorIntClear (unsigned long ulBase, unsigned long ulComp)；
 void ComparatorIntDisable (unsigned long ulBase, unsigned long ulComp)；
 void ComparatorIntEnable (unsigned long ulBase, unsigned long ulComp)；
 void ComparatorIntRegister (unsigned long ulBase, unsigned long ulComp,

void(*pfnHandler)(void))；
 tBoolean ComparatorIntStatus (unsigned long ulBase, unsigned long ulComp, tBoolean

bMasked)；
 void ComparatorIntUnregister (unsigned long ulBase, unsigned long ulComp)；
 void ComparatorRefSet (unsigned long ulBase, unsigned long ulRef)；
 tBoolean ComparatorValueGet (unsigned long ulBase, unsigned long ulComp)。

5.2.1 详细描述

比较器 API 就像比较器本身一样，非常简单。有一些函数可以用来配置比较器和读取
它的输出(ComparatorConfigure()、ComparatorRefSet()和 ComparatorValueGet())，以及处理比
较 器 的 中 断 处 理 程 序 (ComparatorIntRegister() 、 ComparatorIntUnregister() 、
ComparatorIntEnable() 、 ComparatorIntDisable() 、 ComparatorIntStatus() 和

ComparatorIntClear())。

5.2.2 函数文件

5.2.2.1 ComparatorConfigure

配置一个比较器

函数原型：

void

ComparatorConfigure(unsigned long ulBase,

unsigned long ulComp,

unsigned long ulConfig)

参数：

ulBase是比较器模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

10

 广州周立功单片机发展有限公司 第5章 模拟比较器

ulComp是要配置的比较器的索引。

ulConfig是比较器的配置。

描述：

这个函数配置一个比较器。ulConfig 参数是 COMP_TRIG_xxx、COMP_INT_xxx、
COMP_ASRCP_xxx和 COMP_OUTPUT_xxx值之间逻辑或操作的结果。

COMP_TRIG_xxx项可以是下列值：

 COMP_TRIG_NONE：没有触发 ADC；
 COMP_TRIG_HIGH：比较器输出为高时触发 ADC；
 COMP_TRIG_LOW：比较器输出为低时触发 ADC；
 COMP_TRIG_FALL：比较器输出由高变为低时触发 ADC；
 COMP_TRIG_RISE：比较器输出由低变为高时触发 ADC；
 COMP_TRIG_BOTH：比较器输出由低变为高或由高变为低时触发 ADC。

COMP_INT_xxx可以是下列值：

 COMP_INT_HIGH：比较器输出为高时产生中断；
 COMP_INT_LOW：比较器输出为低时产生中断；
 COMP_INT_FALL：比较器输出由高变为低时产生中断；
 COMP_INT_RISE：比较器输出由低变为高时产生中断；
 COMP_INT_BOTH：比较器输出由低变为高或由高变为低时产生中断。

COMP_ASRCP_xxx可以是下列值：

 COMP_ASRCP_PIN：使用专用 Comp+管脚的电压作为参考电压；
 COMP_ASRCP_PIN0：使用 Comp0+管脚的电压作为参考电压（与比较器 0 的

COMP_ASRCP_PIN相同）；
 COMP_ASRCP_REF：使用内部产生的电压作为参考电压。

COMP_OUTPUT_xxx可以是下列值：

 COMP_OUTPUT_NORMAL：使能比较器的同相输出；
 COMP_OUTPUT_INVERT：使能比较器的反相输出；
 COMP_OUTPUT_NONE：不赞成使用该值，它使能比较器的同相输出。

返回：

无。

5.2.2.2.ComparatorIntClear

清除一个比较器中断。

函数原型：

void

ComparatorIntClear(unsigned long ulBase,

unsigned long ulComp)

参数：

ulBase是比较器模块的基址。

ulComp是比较器的索引。

描述：

清除比较器中断，使中断不再有效。这个操作必须在中断处理程序中执行，以防在退出

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

11

 广州周立功单片机发展有限公司 第5章 模拟比较器

时立刻对中断进行再次调用。注意：对于一个电平触发的中断，中断在其无效前不能将其清

除。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能需要过几个时钟周期才能真正将中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后才清除中断源）以避免器件

在真正清除中断源之前从中断处理程序中返回。操作失败可会能导致再次立即进入中断处理程序。（因为

NVIC仍会把中断源看作是有效的）。

返回：

无。

5.2.2.3 ComparatorIntDisable

禁止比较器中断。

函数原型：

void

ComparatorIntDisable(unsigned long ulBase,

unsigned long ulComp)

参数：

ulBase是比较器模块的基址。

ulComp是比较器的索引。

描述：

这个函数禁止特定的比较器产生中断。只有中断被使能的比较器才能反映到处理器中。

返回：

无。

5.2.2.4 ComparatorIntEnable
使能比较器中断。

函数原型：

void

ComparatorIntEnable(unsigned long ulBase,

unsigned long ulComp)

参数：

ulBase是比较器模块的基址。

ulComp是比较器的索引。

描述：

这个函数使能特定的比较器产生中断。只有中断被使能的比较器才能反映到处理器中。

返回：

无。

5.2.2.5 ComparatorIntRegister
注册比较器中断的中断处理程序。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

12

 广州周立功单片机发展有限公司 第5章 模拟比较器

ComparatorIntRegister(unsigned long ulBase,

unsigned long ulComp,

void (*pfnHandler)(void))

参数：

ulBase是比较器模块的基址。

ulComp是比较器的索引。

pfnHandler是在比较器中断出现时调用的函数的指针。

描述：

这个函数设置在比较器中断出现时调用处理程序。这会使能中断处理器中的中断；由中

断处理程序负责通过 ComparatorIntClear()来清除中断源。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

5.2.2.6 ComparatorIntStatus
获取当前的中断状态。

函数原型：

tBoolean

ComparatorIntStatus(unsigned long ulBase,

unsigned long ulComp,

tBoolean bMasked)

参数：

ulBase是比较器模块的基址。

ulComp是比较器的索引。

bMasked：如果需要原始的中断状态，bMasked为假；如果需要屏蔽的中断状态，bMasked
就为真。

描述：

这个函数返回比较器的中断状态。返回的是原始的中断状态或屏蔽的中断状态。

返回：

有中断提交时返回 True，无中断提交时返回 False。

5.2.2.7 ComparatorIntUnregister
注销比较器中断的中断处理程序。

函数原型：

void

ComparatorIntUnregister(unsigned long ulBase,

unsigned long ulComp)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

13

 广州周立功单片机发展有限公司 第5章 模拟比较器

ulBase是比较器模块的基址。

ulComp是比较器的索引。

描述：

当比较器中断出现时，这个函数将清除要调用的处理程序。这样也将关闭中断控制器中

的中断，以便中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

5.2.2.8 ComparatorRefSet
设置内部参考电压。

函数原型：

void

ComparatorRefSet(unsigned long ulBase,

unsigned long ulRef)

参数：

ulBase是比较器模块的基址。

ulRef是希望的参考电压。

描述：

这个函数将设置内部参考电压值。电压指定为下面其中一个值：

 COMP_REF_OFF：关闭参考电压；
 COMP_REF_0V：设置参考电压为 0V；
 COMP_REF_0_1375V：设置参考电压为 0.1375V；
 COMP_REF_0_275V：设置参考电压为 0.275V；
 COMP_REF_0_4125V：设置参考电压为 0.4125V；
 COMP_REF_0_55V：设置参考电压为 0.55V；
 COMP_REF_0_6875V：设置参考电压为 0.6875V；
 COMP_REF_0_825V：设置参考电压为 0.825V；
 COMP_REF_0_928125V：设置参考电压为 0.928125V；
 COMP_REF_0_9625V：设置参考电压为 0.9625V；
 COMP_REF_1_03125V：设置参考电压为 1.03125V；
 COMP_REF_1_134375V：设置参考电压为 1.134375V；
 COMP_REF_1_1V：设置参考电压为 1.1V；
 COMP_REF_1_2375V：设置参考电压为 1.2375V；
 COMP_REF_1_340625V：设置参考电压为 1.340625V；
 COMP_REF_1_375V：设置参考电压为 1.375V；
 COMP_REF_1_44375V：设置参考电压为 1.44375V；
 COMP_REF_1_5125V：设置参考电压为 1.5125V；
 COMP_REF_1_546875V：设置参考电压为 1.546875V；
 COMP_REF_1_65V：设置参考电压为 1.65V；
 COMP_REF_1_753125V：设置参考电压为 1.753125V；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

14

 广州周立功单片机发展有限公司 第5章 模拟比较器

 COMP_REF_1_7875V：设置参考电压为 1.7875V；
 COMP_REF_1_85625V：设置参考电压为 1.85625V；
 COMP_REF_1_925V：设置参考电压为 1.925V；
 COMP_REF_1_959375V：设置参考电压为 1.959375V；
 COMP_REF_2_0625V：设置参考电压为 2.0625V；
 COMP_REF_2_165625V：设置参考电压为 2.165625V；
 COMP_REF_2_26875V：设置参考电压为 2.26875V；
 COMP_REF_2_371875V：设置参考电压为 2.371875V。

返回：

无。

5.2.2.9 ComparatorValueGet
获取当前的比较器输出值。

函数原型：

tBoolean

ComparatorValueGet(unsigned long ulBase，

unsigned long ulComp)

参数：

ulBase是比较器模块的基址。
ulComp是比较器的索引。

描述：

这个函数获取比较器输出的当前值。
返回：

比较器输出为高时函数返回 true，比较器输出为低时函数返回 false。

5.3 编程范例

下面的例子显示了如何使用比较器 API来配置比较器和读出它的值。
//

// 配置内部参考电压。

//

ComparatorRefSet(COMP_BASE, COMP_REF_1_65V);

//

// 配置比较器。

//

ComparatorConfigure(COMP_BASE, 0,

(COMP_TRIG_NONE | COMP_INT_BOTH |

COMP_ASRCP_REF | COMP_OUTPUT_NONE));

//

// 延时一段时间...

//

//

// 读取比较器输出值。

//

ComparatorValueGet(COMP_BASE, 0);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

15

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

第6章 模数转换器（ADC）

6.1

6.2

简介

模数转换器（ADC）API 提供一组函数来处理 ADC。函数可以配置采样序列发生器
（sample sequencer）、读取捕获数据、注册一个采样序列中断处理程序以及处理中断屏蔽/
清除。

ADC 支持高达 8 个输入通道和一个内部温度传感器。4 个采样序列，每个都具有可配
置的触发事件，可以被捕获。第一个序列将捕获多达 8次采样，第二和第三个序列将捕获多
达 4次采样，第四个序列将捕获一次采样。每次采样的可以是相同的通道、不同的通道，或
者任何顺序的通道组合。

采样序列有可配置的优先级，决定了多个触发同时出现时它们以何种顺序被捕获。当前

触发的最高优先级的序列将被采样。必须注意频繁出现的触发（例如“总是”触发）。如果

它们的优先级太高，那么有可能导致较低优先级的序列不能被采样。

从 Stellaris 微控制器的 C0版开始，可使用 ADC数据的硬件过采样（oversampling）来
提高精度。支持 2×、4×、8×、16×、32×和 64×的过采样因子，但降低了对应数量的采
样序列的深度。可以在所有的采样序列中统一应用硬件过采样。

ADC 数据的软件过采样也能提高精度（即使是在硬件过采样可用时）。支持 2×、4×
和 8×的过采样因子，但降低了对应数量的采样序列的深度。例如：第一个采样序列将捕获
8次采样；在 4×过采样模式下，它只能捕获二次采样，因为第一个 4次采样用在第一个过
采样的值上，第二个 4次采样被用于第二个过采样的值。在每次采样序列的基础上配置软件
过采样的数量。

可以用一个更完善的软件过采样来消除采样深度的降低。通过将 ADC的触发速率提高
4倍（例如）和取 4次触发的数据的平均数，就可以获得 4倍的过采样，而不损失任何采样
序列的功能。在这种情况下，得到的结果就是增加了 ADC 触发的次数（和可能的 ADC 中
断数量）。由于这需要在 ADC 驱动程序本身之外进行调整，因此驱动程序并不直接支持它
（尽管在驱动程序中没有任何操作将其阻止）。在这种情况下不应该使用软件过采样 API。

这个驱动程序包含在 src/adc.c中，src/adc.h包含应用使用的 API定义。

API函数

 void ADCHardwareOversampleConfigure (unsigned long ulBase, unsigned long
ulFactor)；

 void ADCIntClear (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCIntDisable (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCIntRegister (unsigned long ulBase, unsigned long ulSequenceNum，

void (*pfnHandler)(void))；
 unsigned long ADCIntStatus (unsigned long ulBase, unsigned long ulSequenceNum,

tBoolean bMasked)；
 void ADCIntUnregister (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCProcessorTrigger (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCSequenceConfigure (unsigned long ulBase, unsigned long ulSequenceNum,

unsigned long ulTrigger, unsigned long ulPriority)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

16

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

 long ADCSequenceDataGet (unsigned long ulBase, unsigned long ulSequenceNum,
unsigned long*pulBuffer)；

 void ADCSequenceDisable (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCSequenceEnable (unsigned long ulBase, unsigned long ulSequenceNum)；
 long ADCSequenceOverflow (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCSequenceOverflowClear (unsigned long ulBase, unsigned long

ulSequenceNum)；
 void ADCSequenceStepConfigure (unsigned long ulBase, unsigned long

ulSequenceNum，unsigned long ulStep, unsigned long ulConfig)；
 long ADCSequenceUnderflow (unsigned long ulBase, unsigned long ulSequenceNum)；
 void ADCSequenceUnderflowClear (unsigned long ulBase, unsigned long

ulSequenceNum)；
 void ADCSoftwareOversampleConfigure (unsigned long ulBase, unsigned long

ulSequenceNum，unsigned long ulFactor)；
 void ADCSoftwareOversampleDataGet (unsigned long ulBase, unsigned long

ulSequenceNum，unsigned long *pulBuffer, unsigned long ulCount)；
 void ADCSoftwareOversampleStepConfigure (unsigned long ulBase, unsigned long

ulSequenceNum，unsigned long ulStep, unsigned long ulConfig)。

6.2.1 详细描述

模数转换器 API 分成 3 组函数，分别执行以下功能：处理采样序列、处理器触发和中
断处理。

采样序列用 ADCSequenceConfigure()和 ADCSequenceStepConfigure()来配置，分别用
ADCSequenceEnable() 和 ADCSequenceDisable() 来 使 能 和 禁 能 。 捕 获 的 数 据 通 过
ADCSequenceDataGet()来获得。采样序列 FIFO溢出和未溢出通过 ADCSequenceOverflow()、
ADCSequenceOverflowClear()和 ADCSequenceUnderflow()来管理。

ADC的硬件过采样由 ADCHardwareOversampleConfigure()来控制。ADC的软件过采样
由 ADCSoftwareOversampleConfigure() 、 ADCSoftwareOversampleStepConfigure() 和
ADCSoftwareOversampleDataGet()来控制。

处理器触发由 ADCProcessorTrigger()来产生。

ADC 采样序列中断的中断处理程序由 ADCIntRegister()和 ADCIntUnregister()来管理。
采样序列中断源由 ADCIntDisable()、ADCIntEnable()、ADCIntStatus()和 ADCIntClear()来管
理。

6.2.2 函数文件

6.2.2.1 ADCHardwareOversampleConfigure
配置 ADC的硬件过采样因子。

函数原型：

void

ADCHardwareOversampleConfigure(unsigned long ulBase，

unsigned long ulFactor)

参数：

ulBase是 ADC模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

17

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

ulFactor对其进行求平均值的采样次数。

描述：

这个函数用来配置 ADC的硬件过采样，在采样数据方面它可以提供更好的解决方法。
通过取同一个模拟输入的多次采样值的平均值，可以完成过采样。支持六种不同的过采样速

率：2×、4×、8×、16×、32×和 64×。指定一个过采样因子为 0时，将禁止硬件过采样。

硬件过采样可以统一应用到所有的采样序列中。它不会像软件过采样 API 那样会降低
采样序列的深度；每个写入采样序列 FIFO的示例就是一个完整过采样的模拟输入读操作。

使能硬件平均采样值可以提高 ADC的精确度，但却要以采样的吞吐量为代价。例如：
把过采样速率提高 4倍时，ADC的吞吐量由 250Ksps减至 62.5Ksps。

注：从 Stellaris微控制器的 C0版本开始，可以使用硬件过采样这功能。

返回：

无。

6.2.2.2 ADCIntClear
清除采样序列中断源。

函数原型：

void

ADCIntClear(unsigned long ulBase，

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

指定的采样序列中断被清除，使之不再有效。这必须在中断处理程序中处理，以防止在

退出时再次立即对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后操作中才清除中断源）以避免

在真正清除中断源之前器件从中断处理程序中返回。操作失败可能会导致立即再次进入中断处理程序。（因

为 NVIC仍会把中断源看作是有效的）。

返回：

无。

6.2.2.3 ADCIntDisable
禁止一个采样序列中断。

函数原型：

void

ADCIntDisable(unsigned long ulBase，

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列的编号。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

18

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

描述：

这个函数关闭请求的采样序列中断。

返回：

无。

6.2.2.4 ADCIntEnable
使能一个采样序列中断。

函数原型：

void

ADCIntEnable(unsigned long ulBase，

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

这个函数使能请求的采样序列中断。在使能采样序列中断前先清除所有未处理的中断

（outstanding interrupt）。

返回：

无。

6.2.2.5 ADCIntRegister
注册一个 ADC中断的中断处理程序。

函数原型：

void

ADCIntRegister(unsigned long ulBase,

unsigned long ulSequenceNum,

void (*pfnHandler)(void))

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

pfnHandler是 ADC采样序列中断出现时指向调用的函数的指针。

描述：

这个函数设置采样序列中断出现时调用的处理程序。这将会使能中断控制器中的全局中

断；序列中断必须用 ADCIntEnable()来使能。由中断处理程序负责通过 ADCIntClear()来清
除中断源。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

6.2.2.6 ADCIntStatus

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

19

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

获取当前的中断状态。

函数原型：

unsigned long

ADCIntStatus(unsigned long ulBase,

unsigned long ulSequenceNum,

tBoolean bMasked)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

bMasked：如果需要原始的中断状态，则 bMasked为 False；如果需要屏蔽的中断状态，
bMasked就为 True。

描述：

这个函数返回指定的采样序列的中断状态。原始的中断状态或允许反映到处理器中的中

断的状态可以被返回。

返回：

当前的原始的或屏蔽的中断状态。

6.2.2.7 ADCIntUnregister
注销一个 ADC中断的中断处理程序。

函数原型：

void

ADCIntUnregister(unsigned long ulBase，

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

此函数注销中断处理程序。这将会禁止中断控制器中的全局中断；序列中断必须通过

ADCIntDisable()来禁止。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

6.2.2.8 ADCProcessorTrigger
引发一次采样序列的处理器触发。

函数原型：

void

ADCProcessorTrigger(unsigned long ulBase，

unsigned long ulSequenceNum)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

20

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

如果采样序列触发被配置成 ADC_TRIGGER_PROCESSOR，这个函数就触发一次处理
器启动的采样序列。

返回：

无。

6.2.2.9 ADCSequenceConfigure
配置采样序列的触发源和优先级。

函数原型：

void

ADCSequenceConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long ulTrigger,

unsigned long ulPriority)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

ulTrigger是启动采样序列的触发源；它必须是 ADC_TRIGGER_*值中的其中一个。

ulPriority是一个采样序列相对于其它采样序列的相对优先级。

描述：

这个函数配置一个采样序列的初始条件。有效采样序列的范围是从 0到 3；序列 0捕获
多达 8个采样，序列 1和 2捕获多达 4个采样，序列 3捕获 1个采样。触发条件和优先级（相
对于其它采样序列执行体）被设置。

参数 ulTrigger可以是以下值：

 ADC_TRIGGER_PROCESSOR – 处理器通过 ADCProcessorTrigger()函数产生的一
个触发；

 ADC_TRIGGER_COMP0 – 第一个模拟比较器产生的触发；比较器由
ComparatorConfigure()来配置；

 ADC_TRIGGER_COMP1 – 第二个模拟比较器产生的触发；比较器由
ComparatorConfigure()来配置；

 ADC_TRIGGER_COMP2 – 第三个模拟比较器产生的触发；比较器由
ComparatorConfigure()来配置；

 ADC_TRIGGER_EXTERNAL – 由端口 B4管脚的一个输入产生的触发；
 ADC_TRIGGER_TIMER – 定时器产生的一个触发，由 TimerControlTrigger()来配
置；

 ADC_TRIGGER_PWM0 – 第 一 个 PWM 发 生 器 产 生 的 一 个 触 发 ， 由

PWMGenIntTrigEnable()来配置；
 ADC_TRIGGER_PWM1 – 第 二 个 PWM 发 生 器 产 生 的 一 个 触 发 ， 由

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

21

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

PWMGenIntTrigEnable()来配置；
 ADC_TRIGGER_PWM2 – 第 三 个 PWM 发 生 器 产 生 的 一 个 触 发 ， 由

PWMGenIntTrigEnable()来配置；
 ADC_TRIGGER_ALWAYS – 触发一直有效，使采样序列重复捕获（只要没有更高
优先级的触发源有效）。

注意：并非所有 Stellaris系列的成员都可以使用上述全部的触发源。请查询相关器件的
数据手册来确定它们的可用触发源。

参数 ulPriority的值在 0～3之间，0代表最高的优先级，3代表最低的优先级。注意：
在对一系列的采样序列的优先级进行编程时，每个采样序列的优先级必须是唯一的；由调用

者来确保优先级的唯一性。

返回：

无。

6.2.2.10 ADCSequenceDataGet
获取一个采样序列捕获的数据。

函数原型：

long

ADCSequenceDataGet(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long *pulBuffer)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

pulBuffer是数据存放的地址。

描述：

此函数将数据从指定采样序列的输出 FIFO 复制到一个内存驻留的缓冲区。硬件 FIFO
中可用的采样被复制到缓冲区中（假设缓冲区足够大，可以存放许多采样）。这个函数只返

回目前可用的采样，如果采样正在处理，则返回的可能是不完整的采样序列。

返回：

返回复制到缓冲区的采样。

6.2.2.11 ADCSequenceDisable
禁止一个采样序列。

函数原型：

void

ADCSequenceDisable(unsigned long ulBase,

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

22

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

这个函数用来在检测到指定的采样序列的触发时阻止该采样序列被捕获。一个采样序列

在配置前应该被禁止。

返回：

无。

6.2.2.12 ADCSequenceEnable
使能一个采样序列。

函数原型：

void

ADCSequenceEnable(unsigned long ulBase,

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

这个函数用来在检测到指定的采样序列的触发时允许该采样序列被捕获。一个采样序列

必须在使能前配置。

返回：

无。

6.2.2.13 ADCSequenceOverflow
确定一个采样序列是否溢出。

函数原型：

long

ADCSequenceOverflow(unsigned long ulBase,

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

此函数确定一个采样序列是否出现了溢出。如果下次触发出现前捕获的采样还未从

FIFO中读出时会出现这种情况。

返回：

如果没有出现溢出，返回零；如果出现了溢出，返回非零。

6.2.2.14 ADCSequenceOverflowClear
清除采样序列的溢出条件。

函数原型：

void

ADCSequenceOverflowClear(unsigned long ulBase,

unsigned long ulSequenceNum)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

23

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

这个函数将会清除一个采样序列的一个的溢出条件。为了检测到一个后面的溢出条件，

必须将溢出条件清除（否则不会造成影响）。

返回：

无。

6.2.2.15 ADCSequenceStepConfigure
配置采样序列发生器的步进。

函数原型：

void

ADCSequenceStepConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long ulStep,

unsigned long ulConfig)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

ulStep是配置的步进。

ulConfig是该步进的配置；它必须是 ADC_CTL_TS、ADC_CTL_IE、ADC_CTL_END、
ADC_CTL_D和一个输入通道选择（从 ADC_CTL_CH0到 ADC_CTL_CH7）的逻辑或。

描述：

这个函数将为一个采样序列的步进设置 ADC 配置。ADC 可以配置成单端或差分操作
（ADC_CTL_D 位置位时选择差分操作），可以选择被采样的通道（ADC_CTL_CH0 到
ADC_CTL_CH7的值），可以选择内部温度传感器（ADC_CTL_TS位）。另外，该步进可以
定义成序列的末尾（ADC_CTL_END位），同时它也可以配置成在步进完成后产生一个中断
（ADC_CTL_IE位）。当这个序列的触发产生时，ADC会在适当的时间使用这个配置。

ulStep 参数决定了触发产生时 ADC 捕获采样序列的次序。对于第一个采样序列，其值
可以是 0～7；对于第二和第三个采样序列，其值从 0～3；对于第四个采样序列，其值只能
取 0。

差分模式只对相邻的通道对（例如：0和 1）起作用。通道选择必须是采样的通道对的
编号（例如，ADC_CTL_CH0对应通道 0和 1，ADC_CTL_CH1对应通道 2和 3），否则 ADC
将返回未定义的结果。另外，如果在温度传感器正在被采样时选择差分模式，则 ADC将返
回未定义的结果。

由调用者确保指定了一个有效的配置；这个函数不检查指定的配置是否有效。

返回：

无。

6.2.2.16 ADCSequenceUnderflow

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

24

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

确定是否出现采样序列下溢。

函数原型：

long

ADCSequenceUnderflow(unsigned long ulBase,

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列的编号。

描述：

这个函数确定是否已经出现了采样序列下溢。如果从 FIFO中读出过多的采样就会出现
这样的情况。

返回：

如果没有出现下溢，则返回零；如果出现了下溢，则返回非零。

6.2.2.17 ADCSequenceUnderflowClear
清除一个采样序列的下溢条件。

函数原型：

void

ADCSequenceUnderflowClear(unsigned long ulBase，

unsigned long ulSequenceNum)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

描述：

这个函数将清除采样序列中的一个采样序列的下溢条件。为了检测到后面的下溢条件，

必须清除该下溢条件（否则不会造成影响）。

返回：

无。

6.2.2.18 ADCSoftwareOversampleConfigure
配置 ADC的软件过采样因子。

函数原型：

void

ADCSoftwareOversampleConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long ulFactor)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

25

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

ulFactor对其进行求平均值的采样次数。

描述：

这个函数配置 ADC的软件过采样，它可以用来给采样数据提供更好的精度。过采样通
过取同一个模拟输入的多个采样值的平均值来完成。支持 3 种不同的过采样速率：2×、4
×和 8×。

只有深度大于 1次采样的采样序列发生器才支持过采样（即，不支持第四个采样序列发
生器）。例如，在 2×过采样的情况下，采样序列发生器除以 2；因此，第一个采样序列发生
器上的 2×过采样每次触发只能提供 4次采样。这也意味者 8×过采样只在第一个采样序列
发生器上可用。

返回：

无。

6.2.2.19 ADCSoftwareOversampleDataGet
利用软件过采样获取采样序列的捕获数据。

函数原型：

void

ADCSoftwareOversampleDataGet(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long *pulBuffer,

unsigned long ulCount)

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

pulBuffer是数据存放的地址。

ulCount是读取的采样次数。

描述：

这个函数利用过软件采样将数据从指定采样序列的输出 FIFO复制到一个内存驻留的缓
冲区。请求的采样数被复制到数据缓冲区；如果硬件 FIFO中没有足够多的采样可以满足这
些过采样数据项的要求，那么将返回错误的结果。由调用者负责只读取可用的采样，并一直

等到有可用的数据为止（例如，直至接收到一个中断）。

返回：

无。

6.2.2.20 ADCSoftwareOversampleStepConfigure
配置软件过采样序列发生器的步进。

函数原型：

void ADCSoftwareOversampleStepConfigure(unsigned long ulBase,

unsigned long ulSequenceNum,

unsigned long ulStep,

unsigned long ulConfig)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

26

 广州周立功单片机发展有限公司 第6章 模数转换器（ADC）

参数：

ulBase是 ADC模块的基址。

ulSequenceNum是采样序列编号。

ulStep是要配置的步进。

ulConfig是该步进的配置。

描述：

当使用软件过采样特性时，这个函数配置采样序列发生器的步进。可用的步进数由

ADCSoftwareOversampleConfigure() 设 置 的 过 采 样 因 子 决 定 。 ulConfig 的 值 与 为

ADCSequenceStepConfigure()定义的 ulConfig值相同。

返回：

无。

6.3 编程范例

下面的示例显示了如何使用 ADC API来初始化一个处理器触发的采样序列、触发采样
序列，然后在数据准备就绪后读回数据。

unsigned long ulValue;

//

// 当处理器触发出现时，使能第一个采样序列来捕获通道 0的值。

//

ADCSequenceConfigure(ADC_BASE, 0, ADC_TRIGGER_PROCESSOR, 0);

ADCSequenceStepConfigure(ADC_BASE, 0, 0,

ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CH0);

ADCSequenceEnable(ADC_BASE, 0);

//

// 触发采样序列。

//

ADCProcessorTrigger(ADC_BASE, 0);

//

// 等待采样序列完成。

//

while(!ADCIntStatus(ADC_BASE, 0, false))

{

}

//

// 从 ADC读取值。

//

ADCSequenceDataGet(ADC_BASE, 0, &ulValue);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

27

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

第7章 控制器局域网（CAN）

7.1

7.2

简介

控制器局域网（CAN）API提供了用于访问 Stellaris CAN模块的函数集。函数能对 CAN
控制器、报文对象进行配置和对 CAN中断进行管理。

Stellaris CAN模块提供了 CAN数据链接层的硬件处理。因为它能被配置成具有报文过
滤器并能预载报文数据，所以它能在总线上自动发送和接收报文，并相应用地通知应用。它

能自动地处理 CRC的产生和检查、错误处理、和重发 CAN报文。

报文对象存放在 CAN控制器中，并且它能提供在 CAN总线上的 CAN模块的主接口。
这 32 个报文对象中的每一个都能被编程成可以处理一个独立的报文 ID，或能在同一个 ID
上被一起链接成一个帧序列。报文标识符过滤器提供了能被编程为与任何或全部报文 ID位
相匹配的屏蔽，和帧类型。

驱动程序包含在 src/can.c中，src/can.h包含应用使用的 API定义。

API函数

数据结构
 tCANBitClkParms；
 tCANMsgObject。

定义
 MSG_OBJ_STATUS_MASK。

枚举
 tCANIntFlags；
 tCANIntStsReg；
 tCANObjFlags；
 tCANStatusCtrl；
 tCANStsReg；
 tMsgObjType。

函数
 void CANBitTimingGet (unsigned long ulBase, tCANBitClkParms *pClkParms)；
 void CANBitTimingSet (unsigned long ulBase, tCANBitClkParms *pClkParms)；
 void CANDisable (unsigned long ulBase)；
 void CANEnable (unsigned long ulBase)；
 tBoolean CANErrCntrGet (unsigned long ulBase, unsigned long *pulRxCount,

unsigned long *pulTxCount)；
 void CANInit (unsigned long ulBase)；
 void CANIntClear (unsigned long ulBase, unsigned long ulIntClr)
 void CANIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void CANIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void CANIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long CANIntStatus (unsigned long ulBase, tCANIntStsReg eIntStsReg)；
 void CANIntUnregister (unsigned long ulBase)；
 void CANMessageClear (unsigned long ulBase, unsigned long ulObjID)；
 void CANMessageGet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

28

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

*pMsgObject, tBoolean bClrPendingInt)；
 void CANMessageSet (unsigned long ulBase, unsigned long ulObjID, tCANMsgObject

*pMsgObject, tMsgObjType eMsgType)；
 tBoolean CANRetryGet (unsigned long ulBase)；
 void CANRetrySet (unsigned long ulBase, tBoolean bAutoRetry)；
 unsigned long CANStatusGet (unsigned long ulBase, tCANStsReg eStatusReg)。

7.2.1 详细描述

CAN API提供了应用所需要用来实施一个中断驱动 CAN堆栈的全部函数。我们能使用
这些函数控制 Stellaris微控制器的任何一个可用的 CAN端口，并且函数能与一个端口使用
而不会与其它端口造成冲突。

默认时 CAN模块被禁止，因此在调用任何其他的 CAN函数前，必须要先调用 CANInit()
函数。这样就能在使能 CAN总线上的控制器前把报文对象初始化到一个安全的状态。同样，
在使能 CAN控制器前，必须要对位时序值进行编程。在位时序值被编程为一个恬当的值时，
应该要调用 CAN 总线的 CANSetBitTiming()函数。一旦调用完这二个函数，那么就可使用
CANEnable()将 CAN 控制器使能，如有需要，稍后则可使用 CANDisable()将其关闭。调用
CANDisable()并不会重新初始化一个 CAN 控制器，因此我们可以使用它来暂时把 CAN 控
制器从总线上移除。

CAN控制器具有很高的可配置性并且包含 32个报文对象，在某些条件下这些报文对象
能被编程为自动发送和接收 CAN报文。报文对象允许应用程序自动执行一些操作而无需与
微控制器进行交互。以下是这些操作的一些范例：

 立即发送一个数据帧；
 当在 CAN总线上发现（seen）一个正在匹配的远程帧时，发送一个数据帧；
 接收一个特定的数据帧；
 接收与某个标识符样式匹配的数据帧。

为了把报文对象配置成可以执行这些操作中的任何一个操作，应用程序必须首先要使用

CANMessageSet()来设置 32 个报文对象中的其中一个报文对象。这个函数能把一个报文对
象配置成可以发送数据或接收数据。每一个报文对象可以被配置成在发送或接收 CAN报文
时产生中断。

当从 CAN总线接收到数据时，应用程序可以使用 CANMessageGet()函数读取到所接收
到的报文。同样这函数也能读取这样一个报文：在改变报文对象的配置前，报文已被配置以

便定位一个报文结构。使用这个函数读取报文对象也将会清除任何报文对象中正在挂起的中

断。

一旦已使用 CANMessageSet()来完成对一个报文对象的配置，那么此函数分配报文对象
并继续执行其编程功能，除非通过调用 CANMessageClear()将其释放。在对报文对象进行新
配置前，无需请求应用程序清除报文对象，因此每次调用 CANMessageSet()时，它将会覆盖
任何之前被编程的配置。

32 个报文对象是相同的，优先级除外。最小编号的报文对象具有最高的优先级。优先
级以二种方式影响着操作。第一种，如果在同一时间准备好多个操作，那么具有最高优先级

的报文对象将会首先发生。第二种，多个报文对象正在挂起中断时，那么在读取中断状态时，

具有最高优先级的报文对象将会首先出现。由应用负责把 32个报文对象作为一个源来管理
并确定分配和释放它们的最佳途径。

CAN控制器在下列条件下能够产生中断：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

29

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

 当任何一个报文对象发送一个报文时；
 当任何一个报文对象接收一个报文时；
 在警告条件如一个错误计数器达到了限值或出现多个总线错误时；
 在控制器错误条件如进入总线关闭状态时。

为了能对 CAN中断作出处理，必须要安装一个中断处理程序。如果需要一个动态中断
配置，那么可以使用 CANIntRegister()来注册中断处理程序。这将会把向量表放置在一个基
于 RAM 的向量表中。然后，如果应用程序使用 Flash 中的预载向量表，那么 CAN 控制器
处理程序应该处于向量表中的恬当位置。在这种情况下，不需要使用 CANIntRegister()，但
将要使用 IntEnable()函数来使能在主处理器主机中断控制器的中断。使用 CANIntEnable()函
数就可使能模块中断，而 CANIntDisable()函数则可关闭模块中断。

一旦 CAN 中断使能，只要触发一个 CAN 中断那么就将调用中断处理程序。通过使用
CANIntStatus()函数，处理程序就能确定是由哪一个条件而引起的中断。当一个中断发生时，
多个条件被挂起。因此处理程序必须被设计成在退出前对全部挂起的中断条件进行处理。在

退出处理程序前，必须清除每一个中断条件。清除中断条件有二种方法。CANIntClear()函
数将会清除一个特定的中断条件而无需进行处理程序所要求的进一步操作。但是，处理程序

也能通过执行某些操作来清除中断条件。如果中断为一个状态中断，那么通过使用

CANStatusGet()读取状态寄存器就可以清除中断。如果中断是由其中一个报文对象引起的，
那么使用 CANMessageGet()读取报文对象就可将其清除。

这里有几种状态寄存器能帮助应用程序对控制器进行管理。CANStatusGet()函数能读取
状态寄存器。其中有一个控制器状态寄存器能提供总的状态信息如错误或警告条件。同样也

有几个状态寄存器在使用 32位状态映射（一位代表着一个报文对象）时能立即提供参报文
对象的全部信息。这些状态寄存器能确定：

 哪些报文对象未对所接收到的数据进行处理；
 哪些报文对象正在挂起发送请求；
 哪些报文对象被分配为使用。

7.2.2 数据结构文件

7.2.2.1 tCANBitClkParms

定义：

typedef struct

{

unsigned int uSyncPropPhase1Seg;

unsigned int uPhase2Seg;

unsigned int uSJW;

unsigned int uQuantumPrescaler;

}

tCANBitClkParms

成员：

uSyncPropPhase1Seg：这个值保存同步、传播和以 time quanta 来计量的相缓冲区 1 区
（segment）的和。此设置的有效值为 2~16。

uPhase2Seg：这个值保存以 time quanta来计量的相缓冲区 2区（segment）的值。此设置

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

30

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

的有效值为 1~8。

uSJW：这个值保存以 time quanta来计量的再同步跳跃宽度。此设置的有效值为 1~4。

uQuantumPrescaler：这个值保存用来确定time quanta的CAN_CLK分频器。此设置的有效
值范围为1~1023。

描述：

此结构是对与设置 CAN控制器的位时序相关的值进行压缩。当调用 CANGetBitTiming
和 CANSetBitTiming函数时，使用此结构。

7.2.2.2 tCANMsgObject
定义

typedef struct

{

unsigned long ulMsgID;

unsigned long ulMsgIDMask;

unsigned long ulFlags;

unsigned long ulMsgLen;

unsigned char *pucMsgData;

}

tCANMsgObject

成员：

ulMsgID 用作 11或 29位标识符的 CAN报文标识符。

ulMsgIDMask 在使能标识符过滤器时所使用的报文标识符屏蔽。

ulFlags 此值保存多个状态标志和 tCANObjFlags所指定的设置。

ulMsgLen 此值是报文对象中的数据字节数。

pucMsgData 这是指向报文对象的数据的指针。

描述：

此结构是对与 CAN控制器中的一个 CAN报文对象相关的项目进行压缩。

7.2.3 定义文件

7.2.3.1 MSG_OBJ_STATUS_MASK

此定义要与 tCANObjFlags所枚举的值一起使用，以允许只检查状态标志和非配置标志，

7.2.4 枚举文件

7.2.4.1 tCANIntFlags
描述

这些定义是用来指定 CANIntEnable()和 CANIntDisable()的中断源。

枚举器

CAN_INT_ERROR 这个标志是用来允许 CAN控制器产生错误中断。

CAN_INT_STATUS 这个标志是用来允许 CAN控制器产生状态中断。

CAN_INT_MASTER 这个标志是用来允许 CAN 控制器产生任何 CAN 中断。如果不

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

31

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

设置此标志，那么 CAN控制器将不会产生中断。

7.2.4.2 tCANIntStsReg

描述：

这个数据类型是用来识别中断状态寄存器。当调用 CANIntStatus()函数时，就可使用此
数据类型。

枚举器：

CAN_INT_STS_CAUSE 读取 CAN中断状态信息。

CAN_INT_STS_OBJECT 读取一个报文对象的中断状态。

7.2.4.3 tCANObjFlags

描述：

当调用 CANMessageSet()和 CANMessageGet()函数时，这些标志由 tCANMsgObject 变
量使用。

枚举器：

MSG_OBJ_TX_INT_ENABLE 这表明应使能或使能发送中断。

MSG_OBJ_RX_INT_ENABLE 这表明应使能或使能接收中断。

MSG_OBJ_EXTENDED_ID 这表明一个报文对象将会使用或正在使用一个扩展标识
符。

MSG_OBJ_USE_ID_FILTER 这表明一个报文对象将会使用或正在使用基于对象的报
文标识符的过滤。

MSG_OBJ_NEW_DATA 这表明报文对象的新数据可用。

MSG_OBJ_DATA_LOST 这表明数据已丢失，因为这个报文对象是最后被读取。

MSG_OBJ_USE_DIR_FILTER 这表明一个报文对象将会使用或正在使用基于传递方
向的过滤。如果使用了方向过滤，那么同样必须要使能

ID过滤。

MSG_OBJ_USE_EXT_FILTER 这表明一个报文对象将会使用或正在使用基于扩展标
识符的报文标识符过滤。如果使用了扩展标识符，那

么同样必须要使能 ID过滤。

MSG_OBJ_REMOTE_FRAME 这表明一个报文对象是一个远程帧。

MSG_OBJ_NO_FLAGS 这表明一个报文对象不用设置标志。

7.2.4.4 tCANStatusCtrl
描述：

当调用 CANStatusGet()函数时，下列枚举包含所有能被返回的错误或状态指示。

枚举器：

CAN_STATUS_BUS_OFF CAN控制器已进入一个总线关闭状态。

CAN_STATUS_EWARN CAN控制器错误级别已到达警告级别。

CAN_STATUS_EPASS CAN控制器错误级别已到达错误被动级别。

CAN_STATUS_RXOK 在最后读取这个状态后成功接收一个报文。

CAN_STATUS_TXOK 在最后读取这个状态后成地发送一个报文。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

32

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

CAN_STATUS_LEC_MSK 这是最后错误代码段的屏蔽。

CAN_STATUS_LEC_NONE 无错误。

CAN_STATUS_LEC_STUFF 一个位填充错误已发生。

CAN_STATUS_LEC_FORM 一个格式化错误已发生。

CAN_STATUS_LEC_ACK 一个应答错误已发生。

CAN_STATUS_LEC_BIT1 位电平为 1的总线时间比所允许的更长。

CAN_STATUS_LEC_BIT0 位电平为 0的总线时间比所允许的更长。

CAN_STATUS_LEC_CRC 一个 CRC错误已发生。

CAN_STATUS_LEC_MASK 这是 CAN最后错误代码（LEC）的屏蔽。

7.2.4.5 tCANStsReg

描述：

当调用 CANStatusGet()函数时，此数据类型是用来识别要读取哪一个状态寄存器。

枚举器：

CAN_STS_CONTROL 读取完整 CAN控制器状态。

CAN_STS_TXREQUEST 读取带有一个发送请求设置的报文对象的完整 32位屏蔽。

CAN_STS_NEWDAT 读取新数据可用的报文对象的完整 32位屏蔽。

CAN_STS_MSGVAL 读取被使能的报文对象的完整 32位屏蔽。

7.2.4.6 tMsgObjType
描述：

此定义用来确定通过调用 CANMessageSet() API来设置报文对象的类型。

枚举器：

MSG_OBJ_TYPE_TX 发送报文对象。

MSG_OBJ_TYPE_TX_REMOTE 发送远程请求报文对象。

MSG_OBJ_TYPE_RX 接收报文对象。

MSG_OBJ_TYPE_RX_REMOTE 接收远程请求报文对象。

MSG_OBJ_TYPE_RXTX_REMOTE 远程帧接收具有自动发送的远程报文对象。

7.2.5 函数文件

7.2.5.1 CANBitTimingGet

读取 CAN控制器位时序的当前设置。

函数原型：

void

CANBitTimingGet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

参数：

ulBase是 CAN控制器的基址。

pClkParms是指针，指向保存时序参数的结构。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

33

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

此函数 CAN控制器位时钟时序的当前配置，并把结果信息存放在调用者所提供的结构
中。在 ClkParms所指向的结构中返回的值的含义，请参考 CANBitTimingSet()。

此函数取代了最初的 CANGetBitTiming() API 并执行相同的操作。can.h 中提供了一个
宏把最初的 API映射到这个 API中。

返回：

无。

7.2.5.2 CANBitTimingSet
对 CAN控制器位时序进行配置。

函数原型：

void

CANBitTimingSet(unsigned long ulBase,

tCANBitClkParms *pClkParms)

参数：

ulBase是 CAN控制器的基址。

pClkParms指向具有时钟参数的结构。

描述：

对 CAN总线位时序的不同时序参数进行配置：传播区、相缓冲区 1区、相缓冲区 2区
和同步跳跃宽度。传播区和相缓冲区 1区的值来自组合 pClkParms->uSyncPropPhase1Seg参
数。相缓冲区 2由 pClkParms->uPhase2Seg参数确定。这二个参数，连同 pClkParms->uSJW
都是基于位时间量的单位。实际量时间是由指定 CAN 模块时钟的分频因子的

pClkParms->uQuantumPrescaler值确定。

以量为单位的总位时间将会是两个 Seg参数的和，如下：

bit_time_q = uSyncPropPhase1Seg + uPhase2Seg + 1

注意，Sync_Seg的一个周期是一个量，并且它被加到 Prop_Seg和 Phase1_Seg的正确周
期上。

这个等式确定实际位速率，如下：

CAN Clock / ((uSyncPropPhase1Seg + uPhase2Seg + 1) * (uQuantumPrescaler))

这意味着 uSyncPropPhase1Seg = 4、uPhase2Seg = 1、uQuantumPrescaler = 2和一个 8MHz
的 CAN时钟，那么位速率将会是(8 MHz) / ((5 + 2 + 1) * 2)或 500 Kbit/sec。

此函数取代了最初的 CANSetBitTiming() API并执行相同的操作。can.h中提供了一个宏
把最初的 API映射到这个 API中。

返回：

无。

7.2.5.3 CANDisable

关闭 CAN控制器。

函数原型：

void

CANDisable(unsigned long ulBase)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

34

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

ulBase是要关闭的 CAN控制器的基址。

描述：

关闭报文处理的 CAN控制器。当关闭时，控制器将不再自动处理 CAN总线上的数据。
调用 CANEnable()，就能重新启动控制器。CAN 控制器的状态和控制器的报文对象仍与调
用此函数前的一样。

返回：

无。

7.2.5.4 CANEnable

使能 CAN控制器。

函数原型：

void

CANEnable(unsigned long ulBase)

参数：

ulBase是要使能的 CAN控制器的基址。

描述：

使能报文处理的 CAN控制器。一旦使能，控制器将自动发送任何挂起的帧，并对任何
接收到的帧作出处理。调用 CANDisable()，就可停止控制器。在调用 CANEnable()前，应先
调用 CANInit()来初始化控制器，并应通过调用 CANBitTimingSet()来对 CAN总线进行配置。

返回：

无。

7.2.5.5 CANErrCntrGet

读取 CAN控制器错误计数器寄存器。

函数原型：

tBoolean

CANErrCntrGet(unsigned long ulBase,

unsigned long *pulRxCount,

unsigned long *pulTxCount)

参数：

ulBase是 CAN控制器的基址。

pulRxCount是指向存放接收错误计数器的位置的指针。

pulTxCount是指向存放发送错误计数器的位置的指针。

描述：

读取错误计数器寄存器并把发送和接收错误计数值返回给调用者，以及返回一个表示控

制器接收计数器是否已到达到错误被动限制的标志。接收和发送错误计数器的值通过参数所

提供的指针返回。

调用此函数后，*pulRxCount 将会保存当前接收错误计数并且*pulTxCount 将会保存当
前发送错误计数。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

35

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

如果发送错误计数已达到了错误被动限制则返回 True；如果错误计数低于错误被动限
制则返回 False。

7.2.5.6 CANInit
在复位后初始化 CAN控制器。

函数原型：

void

CANInit(unsigned long ulBase)

参数：

ulBase是 CAN控制器的基址。

描述：

复位后，CAN 控制器处于关闭状态。但是，用于报文对象的内存包含着未定义的值并
且在首次使能 CAN控制器之前必须要将内存清除。这样就能防止在配置报文对象之前进行
不必要的数据传送或接收。必须要先调用此函数，然后才能首次使能控制器。

返回：

无。

7.2.5.7 CANIntClear
清除一个 CAN中断源。

函数原型：

void

CANIntClear(unsigned long ulBase,

unsigned long ulIntClr)

参数：

ulBase是 CAN控制器的基址。

ulIntClr是表示要清除哪一个中断源的值。

描述：

此函数用来清除一个特定的中断源。ulIntClr参数应该是下列值中的其中之一：

 CAN_INT_INTID_STATUS – 清除一个状态中断；
 1-32 – 清除特定的报文对象中断。

不需要使用此函数来清除一个中断。只有在应用想要清除一个中断源而无需执行正常中

断操作时才应使用此函数。

通常地，状态中断是通过使用 CANStatusGet()来读取控制器状态而被清除的。而一个特
定的报文对象通常是通过使用 CANMessageGet()来读取报文对象而被清除的。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作才清除中断源）以避免

在真正清除中断源之前从中断处理程序中返回。如果操作失败可会能导致立即再次进入中断处理程序。（因

为 NVIC仍会把中断源看作是有效的）。

返回：

无。

7.2.5.8 CANIntDisable

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

36

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

关闭单独的 CAN控制器中断源。

函数原型：

void

CANIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是 CAN控制器的基址。

ulIntFlags是要被关闭的中断源的位屏蔽。

描述：

关闭特定的 CAN控制器中断源。只有使能的中断源才能引起一个处理器中断。

此 ulIntFlags参数具有与 CANIntEnable()函数中的 ulIntFlags参数相同的定义。

返回：

无。

7.2.5.9 CANIntEnable

使能单独的 CAN控制器中断源。

函数原型：

void

CANIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是 CAN控制器的基址。

ulIntFlags是要被使能的中断源的位屏蔽。

描述：

使能特定的 CAN控制器中断源。只有使能的中断源才能引起一个处理器中断。

ulIntFlags参数是下列任何值的逻辑或：

 CAN_INT_ERROR – 一个控制器错误条件已发生；
 CAN_INT_STATUS – 一个报文传送已完成，或检测到一个总线错误；
 CAN_INT_MASTER – 允许 CAN控制器产生中断。

为了产生任何中断，必须使能 CAN_INT_MASTER。另外，为了使一个报文对象的任
何特殊传输能产生一个中断，此报文对象必须要使能中断（请参考 CANMessageSet()）。如
果控制器进入“总线关闭”条件，或如果错误计数器达到了限值，那么 CAN_INT_ERROR
将产生一个中断。CAN_INT_STATUS将会在多个状态条件下产生一个中断并且能提供的中
断比应用需要处理的还要多。当一个中断发生时，使用 CANIntStatus()则可确定中断发生的
原因。

返回：

无。

7.2.5.10 CANIntRegister

注册一个 CAN控制器的中断处理程序。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

37

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

函数原型：

void

CANIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

参数：

ulBase是 CAN控制器的基址。

pfnHandler是指针，指向在使能的 CAN中断发生时要被调用的函数。

描述：

此函数把中断处理程序注册到中断向量表中，并使能中断控制器的 CAN中断；必须通
过使用 CANIntEnable()来使能特定的 CAN中断源。即将被注册的中断处理程序必须要清除
中断源，这时则可以使用 CANIntClear()。

如果应用程序正在使用存放在 Flash的一个静态向量表，则无需要以这样的方式注册中
断处理程序。反之，应该使用 IntEnable()来使能中断控制器的 CAN中断。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

7.2.5.11 CANIntStatus

返回 CAN控制器当前中断状态。

函数原型：

unsigned long

CANIntStatus(unsigned long ulBase,

tCANIntStsReg eIntStsReg)

参数：

ulBase是 CAN控制器的基址。

eIntStsReg表示要读取哪一个中断状态寄存器。

描述：

返回二个中断状态寄存器的其中一个值。读中断状态寄存器是由 eIntStsReg参数决定，
它是下列值中的其中之一：

 CAN_INT_STS_CAUSE – 表示中断产生的原因；
 CAN_INT_STS_OBJECT – 表示正在挂起全部报文对象的中断。

CAN_INT_STS_CAUSE返回控制器中断寄存器的值并表示中断产生的原因。如果原因
是一个状态中断，那么它将是 CAN_INT_INTID_STATUS 的一个值。在这种情况下，应该
使用 CANStatusGet()函数读取状态寄存器。调用此函数读取状态寄存器也将会清除状态中
断。如果中断寄存器的值处于 1-32 之间，那么即表示具有高优先级编号的报文对象正在挂
起一个中断。通过使用 CANIntClear()函数，或在一个接收到的报文情况下使用
CANMessageGet()读取报文，就能清除报文对象中断。中断处理程序能再次读取中断状态，
以确保在中断返回前清除全部挂起的中断。

CAN_INT_STS_OBJECT返回一个表示报文对象正在挂起中断的位屏蔽。这就能立即发

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

38

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

现全部挂起的中断，而无需使用 CAN_INT_STS_CAUSE重复读取中断寄存器。

返回：

返回中断状态寄存器中的一个值。

7.2.5.12 CANIntUnregister

注销一个 CAN控制器的中断处理程序。

函数原型：

void

CANIntUnregister(unsigned long ulBase)

参数：

ulBase是 CAN控制器的基址。

描述：

此函数把以前注册的中断处理程序注销并禁止中断控制器的中断。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

7.2.5.13 CANMessageClear

清除一个不再使用的报文对象。

函数原型：

void

CANMessageClear(unsigned long ulBase,

unsigned long ulObjID)

参数：

ulBase是 CAN控制器的基址。

ulObjID是要禁止的报文对象编号（1-32）。

描述：

此函数清除一个不再使用的特定的报文对象。一旦一个报文对象已被“清除”，那么它

将不能再自动地发送或接收报文，或产生中断。

返回：

无。

7.2.5.14 CANMessageGet

读取其中一个报文对象缓冲区的 CAN报文。

函数原型：

void

CANMessageGet(unsigned long ulBase,
unsigned long ulObjID,
tCANMsgObject *pMsgObject,
tBoolean bClrPendingInt)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

39

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

参数：

ulBase是 CAN控制器的基址。

ulObjID是要读取的对象编号（1-32）。

pMsgObject指向一个包含报文对象段的结构。

bClrPendingInt表示是否应该清除一个相关的中断。

描述：

此函数一般读取 CAN 控制器的 32 个报文对象中的其中之一的内容，并把它返回给调
用者。返回的数据被存放在 pMsgObject所指向的，由调用者提供的结构的段（fields）中。
此数据由 CAN报文所有组成部分再加上一些控制和状态信息构成。

通常此函数是读取接收的到和存放着一个带有某个标识符的 CAN报文的报文对象。但是，
它也能用来读取报文对象的内容，以防在只需要对上一次设置的结构进行部分更改时能装载结构

段。

当使用 CANMessageGet 时，全部结构的相同段是以使用 CANMessageSet()函数那样的
相同方式定位，以下除外：

pMsgObject->ulFlags:

 MSG_OBJ_NEW_DATA表示自从上一次读取后，这是否是新数据。
 MSG_OBJ_DATA_LOST表示至少在这个报文对象中接收到一个报文，并且在被覆
写前不被主机读取。

返回：

无。

7.2.5.15 CANMessageSet

配置 CAN控制器的一个报文对象。

函数原型：

void

CANMessageSet(unsigned long ulBase,

unsigned long ulObjID,

tCANMsgObject *pMsgObject,

tMsgObjType eMsgType)

参数：

ulBase是 CAN控制器的基址。

ulObjID是要配置的对象编号（1-32）。

pMsgObject是指向一个包含报文对象设置的结构的指针。

eMsgType表示这个对象的报文类型。

描述：

此函数一般对 CAN 控制器的 32 个报文对象中的任何一个报文对象进行配置。一个报
文对象能被配置成 CAN报文对象的任何类型和自动发送和接收的几个选项。此次调用允许
报文对象被配置可以在接收完或发送完报文时产生中断。报文对象也能被配置成具有一个过

滤器/屏蔽，所以只有符合某参数的报文在 CAN总线上被发现时才执行操作。

eMsgType参数必须是下列值中的一个：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

40

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

 MSG_OBJ_TYPE_TX – CAN发送报文对象；
 MSG_OBJ_TYPE_TX_REMOTE – CAN发送远程请求报文对象；
 MSG_OBJ_TYPE_RX – CAN接收报文对象；
 MSG_OBJ_TYPE_RX_REMOTE – CAN接收远程请求报文对象；
 MSG_OBJ_TYPE_RXTX_REMOTE – CAN远程帧接收远程，然后发送报文对象。

pMsgObject所指向的报文对象必须由调用者来定位，如下：

 ulMsgID – 包含报文 ID，11位或 29位；
 ulMsgIDMask – 如果标识符过滤使能，ulMsgID的位屏蔽必须匹配；
 ulFlags；

♦ 设置MSG_OBJ_TX_INT_ENABLE标志，以使能发送时的中断；

♦ 设置MSG_OBJ_RX_INT_ENABLE标志，以使能接收时的中断；

♦ 设置MSG_OBJ_USE_ID_FILTER标志，以使能基于 ulMsgIDMask所指定的标
识符屏蔽的过滤。

 ulMsgLen – 报文数据的字节数。对于一个远种帧而言，这应该是一个非零的偶数；
它应该与响应数据帧的期望数据字节匹配；

 pucMsgData – 指向一个包多达 8个数据字节的数据帧的缓冲区。

为了直接把一个数据帧或远程帧发送出去，要执行下列步骤：

1 把 tMsgObjType设置为MSG_OBJ_TYPE_TX。

2 把 ulMsgID设为报文 ID。

3 设置 ulFlags，设置MSG_OBJ_TX_INT_ENABLE，以便在发送报文时获取一个中断。
为了禁止基于报文标识符的过滤，一定不要设置MSG_OBJ_USE_ID_FILTER。

4 把 ulMsgLen设置为数据帧的字节数。

5 把 pucMsgData设置为指向一个包含报文字节的数组（如果是一个数据帧，不适用此
操作；如果是一个远程帧，把这设置为指向一个有效缓冲区则是一个好方法）。

6 调用此函数，并把 ulObjID设置为 32个对象缓冲区中的其中一个缓冲区。

为了接收一个特定的数据帧，要执行下列步骤：

1 把 tMsgObjType设置为MSG_OBJ_TYPE_RX。

2 把 ulMsgID设为完整报文 ID，或使用部分 ID匹配的部分屏蔽。

3 设置 ulMsgIDMask位，用于在对比过程中的屏蔽。

4 按如下设置 ulFlags：

♦ 设置MSG_OBJ_TX_INT_ENABLE标志，以便在接收数据帧时被中断；

♦ 设置MSG_OBJ_USE_ID_FILTER标志，以便使能基于过滤的标识符。

5 把 ulMsgLen设置为期望数据帧的字节数。

6 此次调用并不使用 pucMsgData所指向的缓冲区。

6 调用此函数，并把 ulObjID设置为 32个对象缓冲区中的其中一个缓冲区。

如果您指定的报文对象缓冲区已包含有一个报文标识符，那么它将会被覆写。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

41

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

无。

7.2.5.16 CANRetryGet

返回自动重发的当前设置。

函数原型：

tBoolean

CANRetryGet(unsigned long ulBase)

参数：

ulBase是 CAN控制器的基址。

描述：

读取 CAN控制器中的自动重发的当前设置，并把它返回给调用者。

返回：

如果使能自动重发，返回 True，否则返回 False。

7.2.5.17 CANRetrySet

设置 CAN控制器自动重发操作。

函数原型：

void

CANRetrySet(unsigned long ulBase,

tBoolean bAutoRetry)

参数：

ulBase是 CAN控制器的基址。

bAutoRetry使能自动重发。

描述：

使能或禁止含有检测错误报文的自动重发。如果 bAutoRetry 为 True，那么使能自动重
发，否则将其禁止。

返回：

无。

7.2.5.18 CANStatusGet

读取其中一个控制器状态寄存器。

函数原型：

unsigned long

CANStatusGet(unsigned long ulBase,

tCANStsReg eStatusReg)

参数：

ulBase是 CAN控制器的基址。

eStatusReg是要读的状态寄存器。

描述：

读取 CAN控制器中的一个状态寄存器，并把它返回给调用者。不同的状态寄存器为：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

42

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

 CAN_STS_CONTROL – 主控制器状态；
 CAN_STS_TXREQUEST – 挂起发送对象的位屏蔽；
 CAN_STS_NEWDAT –具有新数据的对象的位屏蔽；
 CAN_STS_MSGVAL – 含有有效配置的对象的位屏蔽。

在读取主控制器状态寄存器时，将清除一个正在挂起的状态中断。如果原因是一个状态

中断，那么就应该在 CAN控制器的中断处理程序中使用此操作。控制器状态寄存器段如下
所示：

 CAN_STATUS_BUS_OFF – 控制器处于总线关闭条件；
 CAN_STATUS_EWARN – 一个错误计数器已达到了至少为 96的限值；
 CAN_STATUS_EPASS – CAN控制器处于错误被动状态；
 CAN_STATUS_RXOK –成功地接收到一个报文（独立于任何报文过滤）；
 CAN_STATUS_TXOK – 成功地发送一个报文；
 CAN_STATUS_LEC_MSK – 最后错误代码位屏蔽（3位）；
 CAN_STATUS_LEC_NONE – 无错误；
 CAN_STATUS_LEC_STUFF – 检测到填充错误；
 CAN_STATUS_LEC_FORM – 报文的固定格式部分发生一个格式错误；
 CAN_STATUS_LEC_ACK – 一个发送的报文不被应答；
 CAN_STATUS_LEC_BIT1 – 当尝试在隐性模式（recessive mode）下发送时，检
测到一个显性电平（dominant level）；

 CAN_STATUS_LEC_BIT0 –当尝试在显性模式（dominant mode）下发送时，检测
到一个隐性电平（recessive level）；

 CAN_STATUS_LEC_CRC – CRC – 在所接收到报文中的 CRC错误。

余下的状态寄存器是报文对象的 32位位映射。使用它们就能快速得到全部报文对象的
状态信息，而无需单独询问每一个状态寄存器。它们包含下列信息：

 CAN_STS_TXREQUEST – 如果一个报文对象的 TxRequest位被设，这就意味着这
个对象的发送正在挂起。应用能使用这个信息确定哪些对象仍在等待着发送一个报

文；
 CAN_STS_NEWDAT – 如果一个报文对象的 NewDat位被设，这就意味着已接收
到这个对象的新报文，且并未被主应用程序挑选到；

 CAN_STS_MSGVAL – 如果一个报文对象的MsgVa位被设，这就意味着它已编程
一个有效的配置。主应用程序能使能此信息来确定哪些报文对象是空的/未被使用
的。

返回：

返回状态寄存器的值。

7.3 编程示例

这个示例代码将把 CAN控制器 0的数据发送到 CAN控制器 1中。为了能实际上接收
到数据，必须在这二个端口之间连接一个外部电缆。在这个示例中，二个控制器都被配置为

具有 1Mbit的操作速率。

tCANBitClkParms CANBitClk;

tCANMsgObject sMsgObjectRx;

tCANMsgObject sMsgObjectTx;

unsigned char ucBufferIn[8];

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

43

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

unsigned char ucBufferOut[8];

//

// 把全部报文对象的状态和 CAN模块的状态复位为一个已知状态

//

CANInit(CAN0_BASE);

CANInit(CAN1_BASE);

//
// 把控制器配置为具有 1 Mbit的操作速率

//

CANBitClk.uSyncPropPhase1Seg = 5;

CANBitClk.uPhase2Seg = 2;

CANBitClk.uQuantumPrescaler = 1;

CANBitClk.uSJW = 2;

CANSetBitTiming(CAN0_BASE, &CANBitClk);

CANSetBitTiming(CAN1_BASE, &CANBitClk);

//

// 使 CAN0器件不处于 INIT状态

//

CANEnable(CAN0_BASE);

CANEnable(CAN1_BASE);

//

// 配置一个接收对象

//

sMsgObjectRx.ulMsgID = (0x400);

sMsgObjectRx.ulMsgIDMask = 0x7f8;

sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;

sMsgObjectRx.ulMsgLen = 8;

sMsgObjectRx.pucMsgData = ucBufferIn;

CANMessageSet(CAN1_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//

// 配置并启动报文对象发送

//

sMsgObjectTx.ulMsgID = 0x400;

sMsgObjectTx.ulFlags = 0;

sMsgObjectTx.ulMsgLen = 8;

sMsgObjectTx.pucMsgData = ucBufferOut;

CANMessageSet(CAN0_BASE, 2, &sMsgObjectTx, MSG_OBJ_TYPE_TX);

//

// 等待新数据变为可用

//

while((CANStatusGet(CAN1_BASE, CAN_STS_NEWDAT) & 1) == 0)

{

//

// 把报文对象的报文读出

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

44

 广州周立功单片机发展有限公司 第7章 控制器局域网（CAN）

//

CANMessageGet(CAN1_BASE, 1, &sMsgObjectRx, true);

}

//

// 处理在 sMsgObjectRx.pucMsgData中的数据

//

...

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

45

 广州周立功单片机发展有限公司 第8章 以太网控制器

第8章 以太网控制器

8.1

8.2

简介

Stellaris以太网控制器由一个完全集成媒体访问控制器（MAC）和一个网络物理（PHY）
接口器件组成。以太网控制制器符合 IEEE 802.3 规范和完全支持 10BASE-T 标准与
100BASE-TX标准。

以太网 API 提供这样一组函数：以太网控制器需要用这一组函数来执行这个以太网控
制器的一个中断驱动的以太网驱动程序。函数被提供来配置和控制MAC，以便访问在 PHY
设置的寄存器，以便发送和接收以太网包，并配置和控制可用的中断。

驱动程序包含在 src/ethernet.c中，src/ethernet.h包含应用使用的 API定义。

API函数

函数
 unsigned long EthernetConfigGet (unsigned long ulBase)；
 void EthernetConfigSet (unsigned long ulBase, unsigned long ulConfig)；
 void EthernetDisable (unsigned long ulBase)；
 void EthernetEnable (unsigned long ulBase)；
 void EthernetInitExpClk (unsigned long ulBase, unsigned long ulEthClk)；
 void EthernetIntClear (unsigned long ulBase, unsigned long ulIntFlags)；
 void EthernetIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void EthernetIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void EthernetIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long EthernetIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void EthernetIntUnregister (unsigned long ulBase)；
 void EthernetMACAddrGet (unsigned long ulBase, unsigned char *pucMACAddr)；
 void EthernetMACAddrSet (unsigned long ulBase, unsigned char *pucMACAddr)；
 tBoolean EthernetPacketAvail (unsigned long ulBase)；
 long EthernetPacketGet (unsigned long ulBase, unsigned char *pucBuf, long lBufLen)；
 long EthernetPacketGetNonBlocking (unsigned long ulBase, unsigned char *pucBuf,

long lBufLen)；
 long EthernetPacketPut (unsigned long ulBase, unsigned char *pucBuf, long lBufLen)；
 long EthernetPacketPutNonBlocking (unsigned long ulBase, unsigned char *pucBuf,

long lBufLen)；
 unsigned long EthernetPHYRead (unsigned long ulBase, unsigned char ucRegAddr)；
 void EthernetPHYWrite (unsigned long ulBase, unsigned char ucRegAddr, unsigned

long ulData)；
 tBoolean EthernetSpaceAvail (unsigned long ulBase)。

8.2.1 详细描述

对于任何应用，必须要最先调用 EthernetInitExpClk()函数以便准备以太网控制器的操
作。此函数将会配置其于系统参数，如系统时钟速度的以太网控制器选项。

一旦以太网控制器初始化，通过 EthernetPHYRead()和 EthernetPHYWrite()函数就可访问
PHY。在默认状态下，PHY将会自动协商线路速度（line speed）和双工模式（duplex mode）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

46

 广州周立功单片机发展有限公司 第8章 以太网控制器

对于大多数应用而言，这已足够符合需求。但如果需要一个特殊的配置，那么可使用 PHY
的读写函数对 PHY进行重新配置，以符合所要求的操作模式。

EthernetConfigSet()函数也能对MAC进行配置。此函数的参数将允许对选项如混合模式
（Promiscuous Mode）、多播接收端（Multicast Reception）、发送数据长度填充（Transmit Data
Length Padding）等进行配置。EthernetConfigGet()函数一般用来询问以太网MAC的当前配
置。

MAC 地址，对进入的包进行过滤，必须使用 EthernetMACAddrSet()函数编程 MAC 地
址。若要询问MAC地址的当前值，则可使用 EthernetMACAddrGet()函数。

当配置已完成时，只要使用函数 EthernetEnable()就可使能以太网控制器。当准备要结
束以太网控制器的操作时，调用 EthernetDisable()函数即可。

在使能以太网控制器后，可使用 EthernetPacketPut()和 EthernetPacketGet()函数来发送和
接收以太网帧（Ethernet frames）。使用这二个函数时必须要谨慎，因为它们是块函数，并将
不会返回直至数据可用（对于 RX）或缓冲区空间可用（对于 TX）。如果想要确定是否有空
间容纳一个 TX 包或是否有一个可用的 RX 包，那么在调用这些块函数前要先调用
EthernetSpaceAvail()和 EthernetPacketAvail()函数。另外，如果一个包不能被处理，那么
EthernetPacketGetNonBlocking()和 EthernetPacketPutNonBlocking()函数将会立即返回。否则
包将会被正常处理。

在开发一个 TCP/IP协议栈的映射层时，您可能希望可以使用以太网控制器的中断功能。

EthernetIntRegister()和 EthernetIntUnregister()函数一般用来把一个 ISR（中断服务程序）注册
到系统中，并使能或禁止以太网控制器的中断信号。EthernetIntEnable()和 EthernetIntDisable()
函数一般是对以太网控制器有效的单独中断源进行巧妙的处理（例如，RX错误、TX完成）。
可以使用 EthernetIntStatus()和 EthernetIntClear()函数询问有效的中断，确定哪些程序要服务，
和在函数从注册的 ISR返回前清除所指示的中断。

以前版本的外设驱动程序的 EthernetInit()、 EthernetPacketNonBlockingGet()和
EthernetPacketNonBlockingPut() API 已 分 别 被 EthernetInitExpClk() 、

EthernetPacketGetNonBlocking()和 EthernetPacketPutNonBlocking() API取代。ethernet.h已提
供一个宏把旧的 API映射到新的 API中，从而允许现有的应用能与新的 API进行连接和运
行。建议新应用在赞同旧的 API同时，使用新的 API。

8.2.2 函数文件

8.2.2.1 EthernetConfigGet
获取以太网控制器的当前配置。

函数原型：

unsigned long

EthernetConfigGet(unsigned long ulBase)

参数：

ulBase是控制器的基址。

描述：

此函数将询问以太网控制器的控制寄存器，并返回一个位映射配置值。

也可参考：

EthernetConfigSet()函数中的描述提供了有关将被返回的位映射配置值的详细信息。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

47

 广州周立功单片机发展有限公司 第8章 以太网控制器

返回：

返回位映射以太网控制器配置值。

8.2.2.2 EthernetConfigSet
设置以太网控制器的配置。

函数原型：

Void

EthernetConfigSet(unsigned long ulBase,

unsigned long ulConfig)

参数：

ulBase是控制器的基址。

ulConfig是控制器的配置。

描述：

在调用完 EthernetInitExpClk()函数后，此 API函数就可对以太网控制器的各种特性进行
配置。

以太网控制器提供了三个控制寄存器，它们用来配置控制器的操作。发送控制寄存器提

供了这样的设置：使能全双工模式、自动产生帧检测序列和把发送包填充到 IEEE标准所要
求的最小的长度。接收控制寄存器提供的设置如下：使能接收带有坏帧检查序列值的包，和

使能多播或混合模式。时戳控制寄存器提供的设置是使能支持逻辑的控制器，此控制器允许

使用通用定时器 3来捕获所发送的和所接收的包的时戳。

ulConfig参数是下列值的逻辑或：

 ETH_CFG_TS_TSEN –使能 TX和 RX中断状态，作为 CCP定时器输入；
 ETH_CFG_RX_BADCRCDIS – 禁止接收带有一个错误 CRC的包；
 ETH_CFG_RX_PRMSEN – 使能混合模式接收（所有包）；
 ETH_CFG_RX_AMULEN –使能接收多播包；
 ETH_CFG_TX_DPLXEN –使能全双工发送模式；
 ETH_CFG_TX_CRCEN – 使能发送，发送时自动产生 CRC；
 ETH_CFG_TX_PADEN – 使能把发送数据填充到最小尺寸的填充操作。

这些位映射值被编程到发送、接收、和/或时戳控制器中。

返回：

无。

8.2.2.3 EthernetDisable
禁止以太网控制器。

函数原型：

Void

EthernetDisable(unsigned long ulBase)

参数：

ulBase是控制器的基址。

描述：

当终止在以太网接口的操作时，应该调用此函数。此函数将会禁止发送器和接收器，并

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

48

 广州周立功单片机发展有限公司 第8章 以太网控制器

将清除接收 FIFO。

返回：

无。

8.2.2.4 EthernetEnable
使能以太网控制器的正常操作。

函数原型：

Void

EthernetEnable(unsigned long ulBase)

参数：

ulBase是控制器的基址。

描述：

一旦使用 EthernetConfigSet()函数配置完以太网控制器，并且已通过使用
EthernetMACAddrSet() 函数对 MAC 地址进行编程，那么就可以调用此 API 函数来使能控
制器的正常操作。

此函数将使能控制器的发送器和接收器，并复位接收 FIFO。

返回：

无。

8.2.2.5 EthernetInitExpClk
初始化以太网控制器的操作。

函数原型：

Void

EthernetInitExpClk(unsigned long ulBase,

unsigned long ulEthClk)

参数：

ulBase是控制器的基址。

ulEthClk是被提供到以太网模块的时钟速率。

描述：

此函数将会使以太网控制器准备好首次在一个给定的硬件/软件配置下使用。因此应该
先调用此函数，然后才调用任何其它以太网 API函数。

外设时钟将与处理器时钟相同。时钟将会是 SysCtlClockGet()函数所返回的值，或如果
时钟是一个已知常量（在调用 SysCtlClockGet()后保存代码/执行体），那么就可以明确它是
硬编码。

此函数取代了最初的 EthernetInit() API，并执行相同的操作。ethernet.h中提供了一个宏
把最初的 API映射到这个 API中。

注：如果器件的配置被改变（例如，系统时钟被重新编程为一个不同的速率），那么必须调用

EthernetDisable()函数将以太网控制器禁止，并且必须要再次调用 EthernetInitExpClk()函数来重新初始化以

太网控制器。在控制器已被重新初始化后，此时对控制器进行重新配置，就应该要调用适当的以太网 API

函数。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

49

 广州周立功单片机发展有限公司 第8章 以太网控制器

无。

8.2.2.6 EthernetIntClear
清除以太网中断源。

函数原型：

Void

EthernetIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是控制器的基址。

ulIntFlags是要被清除的中断源的位屏蔽。

描述：

清除特定的以太网中断源，使其不再有效。这必须在中断处理程序中处理，以防在退出

时立即再次对其进行调用。

此 ulIntFlags参数与 EthernetIntEnable()的 ulIntFlags参数具有相同的定义。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免器件在真正清除中断源之前从中断处理程序中返回。如果不这样子做的话可会能导致立即再次进入中断

处理程序。（因为 NVIC仍会把中断源看作是有效的）

返回：

无。

8.2.2.7 EthernetIntDisable
禁止个别的以太网中断源。

函数原型：

Void

EthernetIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是控制器的基址。

ulIntFlags是中断源要被禁止的位屏蔽。

描述：

禁止被指示的以太网中断源。只有那些被使能的中断源才能被反映到处理器中断程序；

禁止的中断源则对处理器没有任何影响。

此 ulIntFlags参数与 EthernetIntEnable()的 ulIntFlags参数具有相同的定义。

返回：

无。

8.2.2.8 EthernetIntEnable
使能个别的以太网中断源。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

50

 广州周立功单片机发展有限公司 第8章 以太网控制器

Void

EthernetIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是控制器的基址。

ulIntFlags是要被使能的中断源的位屏蔽。

描述：

使能被指示的以太网中断源。只有那些被使能的中断源才能被反映到处理器中断程序；

禁止的中断源则对处理器没有任何影响。

ulIntFlags参数是下列值的任何逻辑或：

 ETH_INT_PHY-发生了一个 PHY中断。集成 PHY支持许多中断条件。必须要读取
PHY寄存器、PHY_MR17，才能确定发生了哪一个PHY中断。使用EthernetPHYRead()
函数就可读取此寄存器；

 ETH_INT_MDIO – 这个中断表明管理接口的传输（transaction）已成功完成；
 ETH_INT_RXER – 这个中断表明在接收帧的过程中已出现了一个错误。这个错误
能指示一个长度失配、一个 CRC故障或一个 PHY错误指示；

 ETH_INT_RXOF – 这个中断表明已接收到一个超过 RX FIFO的可用空间的包；
 ETH_INT_TX -这个中断表明存放在 TX FIFO的包已被成功发送；
 ETH_INT_TXER – 这个中断表明在传送包的过程中发生了一个错误。这个错误可
能是在退出程序（back-off process）期间的一个再试故障，或一个存储在 TX FIFO
中的无效长度；

 ETH_INT_RX – 这个中断表明中在 RX FIFO中有一个（或多个）可用的包正在处
理。

返回：

无。

8.2.2.9 EthernetIntRegister
注册一个以太网中断的中断处理程序。

函数原型：

Void

EthernetIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

参数：

ulBase是控制器的基址。

phnHandler是指针，指向在使能的以太网中断发生时调用的函数。

描述：

此函数设置在以太网中断发生时调用的处理程序。这将会使能中断控制器的全局中断；

必须通过 EthernetIntEnable()来使能特定的以太网中断。由中断处理程序负责清除中断源。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

51

 广州周立功单片机发展有限公司 第8章 以太网控制器

无。

8.2.2.10 EthernetIntStatus
获取当前以太网中断状态。

函数原型：

unsigned long

EthernetIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是控制器的基址。

bMasked为 False如果原始中断状态被请求，如果屏蔽中断状态被请求则为 True。

描述：

此函数返回以太网控制器的中断状态。可以返回到原始中断状态或被允许反映到处理器

的中断状态。

返回：

返回当前中断状态，用 EthernetIntEnable()中描述的位段值列举出来。

8.2.2.11 EthernetIntUnregister
注销一个以太网中断的中断处理程序。

函数原型：

Void

EthernetIntUnregister(unsigned long ulBase)

参数：

ulBase是控制器的基址。

描述：

此函数注销中断处理程序。这将会关闭中断控制器的全局中断（global interrupt），因此
不能再调用中断处理程序。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

8.2.2.12 EthernetMACAddrGet
获取以太网控制器的MAC地址。

函数原型：

Void

EthernetMACAddrGet(unsigned long ulBase,

unsigned char *pucMACAddr)

参数：

ulBase是控制器的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

52

 广州周立功单片机发展有限公司 第8章 以太网控制器

pucMACAddr是指针，指向存放MAC-48地址八位组（octets）的数组的位置。

描述：

此函数将把当前编程的MAC地址读入到 pucMACAddr缓冲区中。

也可参考：

有关MAC地址格式的更多详细情况，请参考 EthernetMACAddrSet() API描述。

返回：

无。

8.2.2.13 EthernetMACAddrSet

设置以太网控制器的MAC地址。

函数原型：

Void

EthernetMACAddrSet(unsigned long ulBase,

unsigned char *pucMACAddr)

参数：

ulBase是控制器的基址。

pucMACAddr是指针，指向存放MAC-48地址八位组（octets）的数组。

描述：

此函数将把 pucMACAddr 所指定的符合 IEEE 所定义的 MAC-48 地址编程到以太网控
制器中。以太网控制器使用这个地址来实现硬件级（hardware-level）对进入的以太网包进行
过滤（当禁止混合模式时）。

MAC-48 地址定义为 6 个八位组（字节），这将在下面的示例地址中说明。这些值是以
十六进制的格式显示。

AC-DE-48-00-00-80

在这个表示法中，前三个八位组（(AC-DE-48）是组织惟一的标识符（OUI）。这是由
IEEE 分配的数码，用在请求分配一块 MAC 地址的组织上。最后三个八位组（(00-00-80）
是由一个被OUI所有者管理 24的数码，用来唯一地识别出连接到以太网的组织内一个硬件。

在这个表示法中，八位组发送时是从左到右发送的，因此“AC”八位组是最先被发送，而
“80”八位组是最后被发送。在一个八位组内，位发送是从 LSB到MSB。就此地址而言，要发
送的第一个位是 “0”，“AC”的 LSB；而最后发送的一个位是“1”，“80”的MSB。

返回：

无。

8.2.2.14 EthernetPacketAvail
查看以太网控制器的有效包。

函数原型：

tBoolean

EthernetPacketAvail(unsigned long ulBase)

参数：

ulBase是控制器的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

53

 广州周立功单片机发展有限公司 第8章 以太网控制器

描述：

以太网控制器提供这样的一个控制器：它包含接收 FIFO中可用的多个包。当成功地接
收到包的最后一个字节时（即帧检查序列字节），包计数值递增。一旦完整读取 FIFO 中的
包（包括帧检查序列字节），那么包计数值将会减少。

返回：

如果接收 FIFO能接收一个或多个包，包括当前正在被读取的包，则返回 True；否则返
回 Flase。

8.2.2.15 EthernetPacketGet

等待着来自以太网控制器的包。

函数原型：

Long

EthernetPacketGet(unsigned long ulBase,

unsigned char *pucBuf,

long lBufLen)

参数：

ulBase是控制器的基址。

pucBuf是指向包缓冲区的指针。

lBufLen是被读入缓冲区的最大字节数。

描述：

此函数读取一个以太网控制器接收 FIFO 中的包，并把读出的数据放置到 pucBuf 中。
此函数将会一直等待读取包，直到接收 FIFO 接收到一个包。然后函数将会读取接收 FIFO
中的整个包。如果包的字节数超出了 pucBuf（由 lBufLen所指定）所能容纳的字节数，那么
函数将返回包的无效数据长度，并且缓冲区保留包的 lBufLen个字节。否则函数将返回所读取
到的包的长度，pucBuf则包含整个包（不包括帧检查序列字节）。

注：此函数正在等待并将不会返回，直到接收到一个包。

返回：

如果包的长度大于 pucBuf，则返回无效包长度-n，否则返回包的长度 n。

8.2.2.16 EthernetPacketGetNonBlocking

接收一个以太网控制器的包。

函数原型：

Long

EthernetPacketGetNonBlocking(unsigned long ulBase,

unsigned char *pucBuf,

long lBufLen)

参数：

ulBase是控制器的基址。

pucBuf是指向包缓冲区的指针。

lBufLen是被读入缓冲区的最大字节数。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

54

 广州周立功单片机发展有限公司 第8章 以太网控制器

描述：

此函数读取一个以太网控制器接收 FIFO 中的包，并把读出的数据放置到 pucBuf 中。
如果接收 FIFO 中没有接收到包，那么函数将会立即返回。否则函数将读取接收 FIFO 的整
个包。如果包的字节数超出了超出了 pucBuf（由 lBufLen所指定）所能容纳的字节数，那么
函数将返回包的无效长度，且缓冲区将包含包的 lBufLen个字节。否则函数将返回所读取到的
包的长度，pucBuf则包含整个包（不包括帧检查序列字节）。

此函数取代了最初的 EthernetPacketNonBlockingGet() API并执行相同的操作。ethernet.h
提供了一个宏把最初的 API映射到这个 API中。

注：如果接收 FIFO中没有接收到包，函数将立即返回。

返回：

如果 FIFO中没有包，返回 0；如果包的长度大于 pucBuf，则返回无效包长度-n；否则
返回包长度 n。

8.2.2.17 EthernetPacketPut

等待发送一个来自以太网控制器的包。

函数原型：

Long

EthernetPacketPut(unsigned long ulBase,

unsigned char *pucBuf,

long lBufLen)

参数：

ulBase是控制器的基址。

pucBuf是指向包缓冲区的指针。

lBufLen是被发送的包字节数。

描述：

此函数把 pucBuf所包含的 lBufLen个包字节写入到控制器的发送 FIFO，然后激活这个
包的发送器。函数将会一直等待直至发送 FIFO 为空。一旦发送 FIFO 空间可用，一旦包的
lBufLen 个字节已被放置在 FIFO 中并且发送器已启动，函数将返回。函数并不会等待传送
完成。如果长度比发送 FIFO中的可发送的空间大，则函数返回无效的 lBufLen

注：函数阻塞并将在返回前等待，直至 FIFO空间能发送包。

返回：

如果包的长度大于 pucBuf，则返回无效包长度-n；否则返回包长度 lBufLen。

8.2.2.18 EthernetPacketPutNonBlocking

将一个包发送到以太网控制器。

函数原型：

Long

EthernetPacketPutNonBlocking(unsigned long ulBase,

unsigned char *pucBuf,

long lBufLen)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

55

 广州周立功单片机发展有限公司 第8章 以太网控制器

ulBase是控制器的基址。

pucBuf是指向包缓冲区的指针。

lBufLen是被发送的包字节数。

描述：

此函数把包含在 pucBuf中的 lBufLen个包字节写入到控制器的发送 FIFO，然后激活这
个包的发送器。如果 FIFO 中没有可用的空间，函数将会立即返回。如果可向 FIFO 写入字
节，一旦包的 lBufLen个字节已被放置在 FIFO 中并且发送器已启动，函数将返回。函数并
不会等待传送完成。如果长度比发送 FIFO中的可发送的空间大，则函数返回无效的 lBufLen。

此函数取代了最初的 EthernetPacketNonBlockingPut() API 并执行相同的操作。ethernet.h
提供了一个宏把最初的 API映射到这个 API中。

注：这个函数不阻塞，如果 FIFO中没有发送包的可用的空间，函数将会立即返回。

返回：

如果不能向发送 FIFO写入字节，返回 0；如果包的长度大于 pucBuf，则返回无效包长
度-n；否则返回包长度 lBufLen。

8.2.2.19 EthernetPHYRead

读取 PHY寄存器。

函数原型：

unsigned long

EthernetPHYRead(unsigned long ulBase,

unsigned char ucRegAddr)

参数：

ulBase是控制器的基址。

ucRegAddr是要被访问的 PHY寄存器的地址。

描述：

此函数将返回 ucRegAddr所指定的 PHY寄存器的内容。

返回：

返回从 PHY寄存器读取到的 16位值。

8.2.2.20 EthernetPHYWrite

写 PHY寄存器。

函数原型：

Void

EthernetPHYWrite(unsigned long ulBase,

unsigned char ucRegAddr,

unsigned long ulData)

参数：

ulBase是控制器的基址。

ucRegAddr是要被访问的 PHY寄存器的地址。

ulData是写入 PHY寄存器的数据。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

56

 广州周立功单片机发展有限公司 第8章 以太网控制器

描述：

此函数将写 ulData到 ucRegAddr所指定的 PHY寄存器。

返回：

无。

8.2.2.21 EthernetSpaceAvail
查看以太网控制器的包可用空间。

函数原型：

tBoolean

EthernetSpaceAvail(unsigned long ulBase)

参数：

ulBase是控制器的基址。

描述：

以太网控制器的发送 FIFO 被设计成一次只能支持单个包。在包已写入 FIFO 后，必须
要置位发送请求位，以便开始发送包。只有在发送完一个包后才能写一个新包到 FIFO中。
此函数将会简单地查看否正在操作一个包。如果是，那么就不能向发送 FIFO写入包。

返回：

如果能向发送 FIFO写入包，返回 True；否则返回 False。

8.3 编程示例

以下示例显示了如何使用这个 API来初始化以太网控制器以发送和接收包。

unsigned char pucMACAddress[6];

unsigned char pucMyRxPacket[];

unsigned char pucMyTxPacket[];

unsigned long ulMyTxPacketLength;

//

//初始化以太网控制器，供操作使用

//

EthernetInitExpClk(ETH_BASE, SysCtlClockGet());

//

// 配置用于正常操作的以太网

//使能 TX 双工模式

//使能 TX填充

//

EthernetConfigSet(ETH_BASE, (ETH_CFG_TX_DPLXEN | ETH_CFG_TX_PADEN));

//

//编程MAC地址(01-23-45-67-89-AB)

//

pucMACAddress[0] = 0x01;

pucMACAddress[1] = 0x23;

pucMACAddress[2] = 0x45;

pucMACAddress[3] = 0x67;

pucMACAddress[4] = 0x89;

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

57

 广州周立功单片机发展有限公司 第8章 以太网控制器

pucMACAddress[5] = 0xAB;

EthernetMACAddrSet(ETH_BASE, pucMACAddress);
//

// 使能以太网控制器

//

EthernetEnable(ETH_BASE);

//

// 发送一个包

// (假设包已在某个适当的别处被代码填充)

//

EthernetPacketPut(ETH_BASE, pucMyTxPacket, ulMyTxPacketLength);

//

// 等待一个包进来

//

EthernetPacketGet(ETH_BASE, pucMyRxPacket, sizeof(pucMyRxPacket));

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

58

 广州周立功单片机发展有限公司 第 9 章 Flash

第9章 Flash

9.1

9.2

简介

Flash API 提供了一组函数，用来处理片内 Flash。这些函数可以编程和擦除 Flash、配
置 Flash保护以及处理 Flash中断。

Flash组成一系列可以单独擦除的 1kB的块。擦除一个块会使该块的全部内容复位为 1。
这些 1kB 的块可以配对组成一系列可以单独被保护的 2kB 的块。2kB 的块可以标注成只读
或只执行，提供了各种级别的代码保护。只读块不能被擦除或编程，它们的内容被保护起来

以防被修改。只执行块不能被擦除或编程，只能用处理器指令取指机制来读取，它们的内容

被保护起来以防被处理器或调试器读取。

Flash可以被逐字编程。编程就是在合适的地方使得为 1的位变成为 0的位；正因为这
样，只要每个编程操作只要求将为 1的位变成为 0的位，一个字就能够被重复编程。

Flash的时序自动由 Flash控制器来处理。为了处理时序，Flash控制器必须知道系统的
时钟速率，以便能够记录某些信号有效的时间（多少个微秒）。每微秒的时钟周期数必须提

供给 Flash控制器，以便它能执行这个时序。

当尝试进行一次无效访问时（例如从只执行 Flash中读取数据时），Flash控制器可以产
生一个中断。这可被用来验证一个编程操作；中断将防止无效访问被默默地忽略，进而将潜

在的问题隐藏。Flash保护无需永远使能就能被应用；这个特性和中断一起允许程序在 Flash
保护被永久应用到器件（这是一个不可逆的操作）之前就能被调试。当一次擦除或编程操作

完成时也可以产生一个中断。

根据使用的 Stellaris系列成员的不同，可用的 Flash的大小可以是 8kB、16kB、32kB、
64kB、96kB、128kB或 256kB。

这个驱动程序包含在 src/flash.c中，src/flash.h包含应用使用的 API定义。

API函数

函数

 long FlashErase (unsigned long ulAddress)；
 void FlashIntClear (unsigned long ulIntFlags)；
 void FlashIntDisable (unsigned long ulIntFlags)；
 void FlashIntEnable (unsigned long ulIntFlags)；
 unsigned long FlashIntGetStatus (tBoolean bMasked)；
 void FlashIntRegister (void (*pfnHandler)(void))；
 void FlashIntUnregister (void)；
 long FlashProgram (unsigned long *pulData, unsigned long ulAddress,

unsigned long ulCount)；

 tFlashProtection FlashProtectGet (unsigned long ulAddress)；
 long FlashProtectSave (void)；
 long FlashProtectSet (unsigned long ulAddress, tFlashProtection eProtect)；
 unsigned long FlashUsecGet (void)；
 void FlashUsecSet (unsigned long ulClocks)；
 long FlashUserGet (unsigned long *pulUser0, unsigned long *pulUser1)；
 long FlashUserSave (void)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

59

 广州周立功单片机发展有限公司 第 9 章 Flash

 long FlashUserSet (unsigned long ulUser0, unsigned long ulUser1)。

9.2.1 详细描述

Flash API分成 3组函数，分别执行以下功能：编程 Flash、处理 Flash保护和处理中断。

Flash编程由 FlashErase()、FlashProgram()、FlashUsecGet()和 FlashUsecSet()来管理。

Flash保护由 FlashProtectGet()、FlashProtectSet()和 FlashProtectSave()来管理。

中断处理由 FlashIntRegister()、FlashIntUnregister()、FlashIntEnable()、FlashIntDisable()、
FlashIntGetStatus()和 FlashIntClear()来管理。

9.2.2 函数文件

9.2.2.1 FlashErase
擦除一个 Flash块。

函数原型：

long

FlashErase(unsigned long ulAddress)

参数：

ulAddress是要擦除的 Flash块的起始地址。

描述：

这个函数将擦除片内 Flash的一个 1kB的块。Flash块被擦除之后必须填入字节 0xFF。
只读和只执行块不能被擦除。

这个函数在块擦除完成前不会返回。

返回：

擦除成功时返回 0；如果指定了一个无效的块地址或者块被写保护时返回-1。

9.2.2.2 FlashIntClear
清除 Flash控制器中断源。

函数原型：

void

FlashIntClear(unsigned long ulIntFlags)

参数：

ulIntFlags 是要清除的中断源的位屏蔽。其值可以是 FLASH_FCMISC_PROGRAM 或

FLASH_FCMISC_AMISC。

描述：

清除指定的 Flash控制器中断源，使之不再有效。这必须在中断处理程序中完成，防止
在退出时又立即对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免在真正清除中断源之前从中断处理程序中返回。操作失败可能会导致立即再次进入中断处理程序。（因为

NVIC仍会把中断源看作是有效的）。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

60

 广州周立功单片机发展有限公司 第 9 章 Flash

9.2.2.3 FlashIntDisable
禁止单个 Flash控制器中断源。

函数原型：

void

FlashIntDisable(unsigned long ulIntFlags)

参数：

ulIntFlags 是要禁能的中断源的位屏蔽。其值可以是 FLASH_FCIM_PROGRAM 或

FLASH_FCIM_ACCESS。

描述：

禁止指示的 Flash控制器中断源。只有使能的中断源可以反映为处理器中断；禁止的中
断源对处理器不产生任何影响。

返回：

无。

9.2.2.4 FlashIntEnable
使能单个 Flash控制器中断源。

函数原型：

void

FlashIntEnable(unsigned long ulIntFlags)

参数：

ulIntFlags 是要使能的中断源的位屏蔽。其值可以是 FLASH_FCIM_PROGRAM 或

FLASH_FCIM_ACCESS。

描述：

使能指示的 Flash控制器中断源。只有使能的中断源可以反映为处理器中断；禁止的中
断源对处理器不会产生任何影响。

返回：

无。

9.2.2.5 FlashIntGetStatus
获取当前的中断状态。

函数原型：

unsigned long

FlashIntGetStatus(tBoolean bMasked)

参数：

bMasked：如果需要原始的中断状态，bMasked的值就为 False；如果需要屏蔽的中断状
态，bMasked的值就为 True。

描述：

这个函数返回 Flash控制器的中断状态。原始的中断状态或允许反映到处理器中的中断
的状态可以被返回。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

61

 广州周立功单片机发展有限公司 第 9 章 Flash

返回当前的中断状态，通过下面的一个位字段列举出来：FLASH_FCMISC_PROGRAM
和 FLASH_FCMISC_AMISC。

9.2.2.6 FlashIntRegister
注册一个 Flash中断的中断处理程序。

函数原型：

void

FlashIntRegister(void (*pfnHandler) (void))

参数：

pfnHandler是 Flash中断出现时调用的函数的指针。

描述：

这个函数设置在 Flash 中断出现时调用处理程序。当无效的 Flash 访问（例如试图编程
或擦除一个只读块，或者试图读取一个只执行块）出现时，Flash控制器可以产生一个中断。
Flash 控制器也可以在一个编程或擦除操作完成时产生一个中断。当处理程序被注册时，中
断将自动被使能。

也可参考：

有关注册中断处理程序的重要信息也可参考 IntRegister()。

返回：

无。

9.2.2.7 FlashIntUnregister
注销 Flash中断的中断处理程序。

函数原型：

void

FlashIntUnregister(void)

描述：

这个函数将清除 Flash中断出现时要调用的处理程序。这也将关闭中断控制器中的中断，
以便中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

9.2.2.8 FlashProgram
编程 Flash。

函数原型：

long

FlashProgram(unsigned long *pulData,

unsigned long ulAddress,

unsigned long ulCount)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

62

 广州周立功单片机发展有限公司 第 9 章 Flash

pulData是指向编程数据的指针。

ulAddress是要编程的 Flash的起始地址。它必须是 4的倍数。

ulCount是要编程的字节数。它必须是 4的倍数。

描述：

这个函数将一连串的字编程到片内 Flash中。编程到每个单元的内容是新数据和已有数
据与运算的结果；换句话说，值为 1的位在编程后仍然保持为 1或变为 0，但是，值为 0的
位不能变成 1。因此，只要遵循这些规则，一个字可以被编程多次；如果一次编程操作尝试
将为 0的位变成 1，这一位的值将不会改变。

由于 Flash一次只能被编程一个字，所以 Flash的起始地址和字节计数必须都是 4的倍
数。由调用者来验证编程的内容，如果需要这样的验证。

这个函数在数据编程完成之后才返回。

返回：

编程成功时返回 0；如果遇到编程错误，则返回-1。

9.2.2.9 FlashProtectGet
获取一个 Flash块的保护设置。

函数原型：

tFlashProtection

FlashProtectGet(unsigned long ulAddress)

参数：

ulAddress是查询的 Flash块的起始地址。

描述：

这个函数将获得指定的 2kB Flash块的当前保护设置。每个块可以被读/写、只读或只执
行。读/写块可以被读取、执行、擦除和编程。只读块可以被读取和执行。只执行块只能被
执行；不允许处理器和调试器的数据读操作。

返回：

返回这个块的保护设置。可能的值请参考 FlashProtectSet()。

9.2.2.10 FlashProtectSave
保存 Flash保护设置。

函数原型：

long

FlashProtectSave(void)

描述：

这个函数将使当前编程的 Flash保护设置永久有效。这是一个不可逆的操作；芯片复位
或重启都不能改变 Flash保护。

这个函数在保护被保存之后才返回。

返回：

操作成功时返回 0；如果遇到硬件错误时返回-1。

9.2.2.11 FlashProtectSet

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

63

 广州周立功单片机发展有限公司 第 9 章 Flash

设置一个 Flash块的保护设置。

函数原型：

long

FlashProtectSet(unsigned long ulAddress,

tFlashProtection eProtect)

参数：

ulAddress是要保护的 Flash块的起始地址。

eProtect 是应用到块的保护。其值可以是 FlashReadWrite、 FlashReadOnly 或
FlashExecuteOnly。

描述：

这个函数将为指定的 2kB Flash 块设置保护。可读/写的块可以被设置成只读或只可执
行。只读块可以被设置成只可执行。只可执行的块不能修改它们的保护。尝试使块保护的级

别降低（即，从只读变为读/写）会导致失败（并会被硬件阻止）。

Flash 保护的改变会一直保持到下次复位的出现。这就允许应用在期望的 Flash 保护环
境中执行来检查不合适的 Flash访问（通过 Flash中断）。用 FlashProtectSave()函数来使 Flash
保护永远有效。

返回：

操作成功时返回 0；如果指定了一个无效地址或一个无效的保护时返回-1。

9.2.2.12 FlashUsecGet
获取每微秒的处理器时钟数。

函数原型：

unsigned long

FlashUsecGet(void)

描述：

这个函数返回每微秒的时钟数，作为当前 Flash控制器的已知量。

返回：

返回每微秒的处理器时钟数。

9.2.2.13 FlashUsecSet
设置每微秒的处理器时钟数。

函数原型：

void

FlashUsecSet(unsigned long ulClocks)

参数：

ulClocks是每微秒的处理器时钟数。

描述：

这个函数用来告诉 Flash控制器每微秒的处理器时钟数。这个值必须被正确编程，否则
Flash很可能无法正确编程；这个值对读 Flash没有影响。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

64

 广州周立功单片机发展有限公司 第 9 章 Flash

无。

9.2.2.14 FlashUserGet
获取用户寄存器。

函数原型：

long

FlashUserGet (unsigned long *pulUser0，

unsigned long *pulUser1)

参数：

pulUser0是用来保存 USER Register0的单元指针。

pulUser1是用来保存 USER Register1的单元指针。

描述：

这个函数将会读取寄存器（0和 1）的内容，并把内容存放于指定的单元。

返回：

操作成功时返回 0；如果遇到硬件错误时返回-1。

9.2.2.15 FlashUserSave
保存用户寄存器。

函数原型：

long

FlashUserSave(void)

描述：

这个函数将会使当前编程的用户寄存器设置永久有效。这是一个不可逆的操作，芯片复

位或重启都不能改变这个设置。

这个函数在在已保存保护前将不会返回

返回：

操作成功时返回 0；如果遇到硬件错误时返回-1。

9.2.2.16 FlashUserSet
设置用户寄存器。

函数原型：

long

FlashUserSet(unsigned long ulUser0，

unsigned long ulUser1)

参数：

ulUser0是存储在 USER Register0中的值。

ulUser1是存储在 USER Register1中的值。

描述：

这个函数将会把用户寄存器的内容设置为指定的值。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

65

 广州周立功单片机发展有限公司 第 9 章 Flash

操作成功时返回 0；如果遇到硬件错误时返回-1。

9.3 编程示例

下面的示例显示了如何使用 Flash API来擦除一个 Flash块以及编程多个字。

unsigned long pulData[2];

//

//将 uSec的值设为 20，指明处理器运行在 20 MHz的频率下。

//

FlashUsecSet(20);

//

//擦除一个 Flash块。

//

FlashErase(0x800);

//

//编程一些数据到最新擦除的 Flash块中。

//

pulData[0] = 0x12345678;

pulData[1] = 0x56789abc;

FlashProgram(pulData, 0x800, sizeof(pulData));

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

66

 广州周立功单片机发展有限公司 第 10 章 GPIO

第10章 GPIO

10.1

10.2

简介

GPIO模块提供对多达 8个独立 GPIO管脚（实际出现的管脚数取决于 GPIO端口和器
件型号）的控制。每个管脚有以下功能：

 可配置用作输入或输出。复位时默认用作输入；
 在输入模式中，可以在高电平、低电平、上升沿、下降沿或两个边沿时产生中断；
 在输出模式中，可以配置成 2mA、4mA 或 8mA 的驱动能力。8mA 的驱动能力配
置有可选的斜率控制，用来限制信号的上升和下降时间。复位时默认具有 2mA的
驱动能力；

 可选的弱上拉或下拉电阻。复位时默认为弱上拉；
 可选的开漏操作。复位时默认为标准的推/挽操作；
 可以配置用作一个 GPIO或一个外设管脚。复位时默认用作 GPIO。注意：并非所
有器件的所有管脚都有外设功能，在这种情况下管脚就只用作 GPIO（即当管脚被
配置用作外设功能时不会做任何有用的事）。

大多数的 GPIO函数一次可以对多个 GPIO管脚（在一个模块中）进行操作。这些函数
的 ucPins参数用来设定被影响的管脚；对应在该参数中的位被置位的管脚将会受到影响（管
脚 0对应位 0、管脚 1对应位 1，等等）。例如，如果 ucPins的值为 0x09，则管脚 0和 3将
会受到函数的影响。

GPIOPinRead()和 GPIOPinWrite()函数最有用；一次读操作只返回请求的管脚的值（其
它管脚的值被屏蔽），一次写操作将同时影响请求的管脚（即，多个 GPIO 管脚的状态可以
同时改变）。屏蔽 GPIO 管脚状态的数据在硬件中出现；向硬件发布一个读或写操作时，一
些地址位被解释成对可以进行操作（和不受影响）的 GPIO管脚的一个指示。有关 GPIO数
据寄存器基于地址的位屏蔽的详细情况请参考器件的数据手册。

对于含有一个 ucPin（单数）参数的函数来说，只有一个管脚受到这些函数的影响。在
这种情况下，这个参数值指示的就是管脚编号（即 0～7）。

这个驱动程序包含在 src/gpio.c中，src/gpio.h包含应用使用的 API定义。

API函数

函数

 unsigned long GPIODirModeGet (unsigned long ulPort, unsigned char ucPin)；
 void GPIODirModeSet (unsigned long ulPort, unsigned char ucPins,

unsigned long ulPinIO)；
 unsigned long GPIOIntTypeGet (unsigned long ulPort, unsigned char ucPin)；
 void GPIOIntTypeSet (unsigned long ulPort, unsigned char ucPins, unsigned long

ulIntType)；
 void GPIOPadConfigGet (unsigned long ulPort, unsigned char ucPin, unsigned

long*pulStrength, unsigned long *pulPinType)；
 void GPIOPadConfigSet (unsigned long ulPort, unsigned char ucPins,unsigned long

ulStrength, unsigned long ulPinType)；
 void GPIOPinIntClear (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinIntDisable (unsigned long ulPort, unsigned char ucPins)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

67

 广州周立功单片机发展有限公司 第 10 章 GPIO

 void GPIOPinIntEnable (unsigned long ulPort, unsigned char ucPins)；
 long GPIOPinIntStatus (unsigned long ulPort, tBoolean bMasked)；
 long GPIOPinRead (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeADC (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeCAN (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeComparator (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeGPIOInput (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeGPIOOutput (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeGPIOOutputOD (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeI2C (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypePWM (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeQEI (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeSSI (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeTimer (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeUART (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinTypeUSBDigital (unsigned long ulPort, unsigned char ucPins)；
 void GPIOPinWrite (unsigned long ulPort, unsigned char ucPins, unsigned char ucVal)；
 void GPIOPortIntRegister (unsigned long ulPort, void (*pfnIntHandler)(void))；
 void GPIOPortIntUnregister (unsigned long ulPort)。

10.2.1 详细描述

GPIO API分成 3组函数，分别执行以下功能：配置 GPIO管脚、处理中断和访问管脚
值。

GPIO 管 脚 用 GPIODirModeSet() 和 GPIOPadConfigSet() 配 置 。 配 置 可 用
GPIODirModeGet()和 GPIOPadConfigGet()读回。还有一些很有用的函数，在特定外设所需
或 推 荐 的 配 置 中 进 行 管 脚 配 置 ； 这 些 函 数 分 别 是 GPIOPinTypeCAN() 、
GPIOPinTypeComparator() 、 GPIOPinTypeGPIOInput() 、 GPIOPinTypeGPIOOutput() 、
GPIOPinTypeGPIOOutputOD()、GPIOPinTypeI2C()、GPIOPinTypePWM()、GPIOPinTypeQEI()、
GPIOPinTypeSSI()、GPIOPinTypeTimer()和 GPIOPinTypeUART()。

GPIO 中 断 由 GPIOIntTypeSet() 、 GPIOIntTypeGet() 、 GPIOPinIntEnable() 、
GPIOPinIntDisable() 、 GPIOPinIntStatus() 、 GPIOPinIntClear() 、 GPIOPortIntRegister() 和
GPIOPortIntUnregister()来处理。

GPIO管脚状态由 GPIOPinRead()和 GPIOPinWrite()来访问。

10.2.2 函数文件

10.2.2.1 GPIODirModeGet
获得一个管脚的方向和模式。

函数原型：

unsigned long

GPIODirModeGet(unsigned long ulPort,

unsigned char ucPin)

参数：

ulPort是 GPIO端口的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

68

 广州周立功单片机发展有限公司 第 10 章 GPIO

ucPin是管脚编号。

描述：

这个函数获取所选 GPIO端口某个特定管脚的方向和控制模式。在软件控制下这个管脚
可以配置成输入或输出，或者，管脚也可由硬件来控制。控制的类型和方向作为一个枚举数

据类型被返回。

返回：

返回在 GPIODirModeSet()中描述的一个枚举数据类型。

10.2.2.2 GPIODirModeSet
设置指定管脚的方向和模式。

函数原型：

void

GPIODirModeSet(unsigned long ulPort,

unsigned char ucPins,

unsigned long ulPinIO)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）。

ulPinIO是管脚方向“与/或”模式。

描述：

这个函数在软件控制下将所选 GPIO端口的指定管脚设置成输入或输出，或者，也可以
将管脚设置成由硬件来控制。

参数 ulPinIO是一个枚举数据类型，它可以是下面的其中一个值：

 GPIO_DIR_MODE_IN；
 GPIO_DIR_MODE_OUT；
 GPIO_DIR_MODE_HW。

在上面的值中，GPIO_DIR_MODE_IN 表明管脚将被编程用作一个软件控制的输入，
GPIO_DIR_MODE_OUT 表 明 管 脚 将 被 编 程 用 作 一 个 软 件 控 制 的 输 出 ，

GPIO_DIR_MODE_HW表明管脚将被设置成由硬件进行控制。

管脚用一个位组合（bit-packed）的字节来指定，这里的每个字节，置位的位用来识别
被访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.3 GPIOIntTypeGet
获取管脚的中断类型。

函数原型：

unsigned long

GPIOIntTypeGet(unsigned long ulPort,

unsigned char ucPin)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

69

 广州周立功单片机发展有限公司 第 10 章 GPIO

参数：

ulPort是 GPIO端口的基址。

ucPin是管脚编号。

描述：

这个函数获取所选 GPIO端口上某个特定管脚的中断类型。管脚可配置成在下降沿、上
升沿或两个边沿检测中断，或者，它也可以配置成在低电平或高电平检测中断。中断检测机

制的类型作为一个枚举数据类型返回。

返回：

返回 GPIOIntTypeSet()中描述的一个枚举数据类型。

10.2.2.4 GPIOIntTypeSet
设置指定管脚的中断类型。

函数原型：

void

GPIOIntTypeSet(unsigned long ulPort,

unsigned char ucPins,

unsigned long ulIntType)

参数：

ulPort是 GPIO端口的基址。

ucPins是特定管脚的位组合（bit-packed）表示。

ulIntType指定中断触发机制的类型。

描述：

这个函数为所选 GPIO端口上特定的管脚设置不同的中断触发机制。

参数 ulIntType是一个枚举数据类型，它可以是下面其中的一个值：

 GPIO_FALLING_EDGE；
 GPIO_RISING_EDGE；
 GPIO_BOTH_EDGES；
 GPIO_LOW_LEVEL；
 GPIO_HIGH_LEVEL。

在上面的值中，不同的值描述了中断检测机制（边沿或电平）和特定的触发事件（边沿

检测的上升沿、下降沿或上升/下降沿，电平检测的低电平或高电平）。

管脚用一个位组合（bit-packed）的字节来指定，这里的每个字节，置位的位用来识别
被访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：为了避免伪中断，用户必须确保 GPIO输入在这个函数的执行过程中保持稳定。

返回：

无。

10.2.2.5 GPIOPadConfigGet
获取管脚的配置。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

70

 广州周立功单片机发展有限公司 第 10 章 GPIO

GPIOPadConfigGet(unsigned long ulPort,

unsigned char ucPin,

unsigned long *pulStrength,

unsigned long *pulPinType)

参数：

ulPort是 GPIO端口的基址。

ucPin是管脚编号。

pulStrength是输出驱动强度存放处的指针。

pulPinType是输出驱动类型存放处的指针。

描述：

这个函数获取所选 GPIO上某个特定管脚的端口配置。pulStrength和 pulPinType返回的
值与 GPIOPadConfigSet()中使用的值相对应。这个函数也可以获取用作输入管脚的管脚配
置；但是，返回的唯一有意义的数据是管脚终端连接的是上拉电阻还是下拉电阻。

返回：

无。

10.2.2.6 GPIOPadConfigSet
设置指定管脚的配置。

函数原型：

void

GPIOPadConfigSet(unsigned long ulPort,

unsigned char ucPins,

unsigned long ulStrength,

unsigned long ulPinType)

参数：

ulPort是 GPIO端口的基址。

ucPins是特定管脚的位组合（bit-packed）表示。

ulStrength指定输出驱动强度。

ulPinType指定管脚类型。

描述：

这个函数设置所选 GPIO端口指定管脚的驱动强度和类型。对于配置用作输入端口的管
脚，端口按照要求配置，但是对输入唯一真正的影响是上拉或下拉终端的配置。

参数 ulStrength可以是下面的一个值：

 GPIO_STRENGTH_2MA；
 GPIO_STRENGTH_4MA；
 GPIO_STRENGTH_8MA；
 GPIO_STRENGTH_8MA_SC。

在上面的值中，GPIO_STRENGTH_xMA 指示 2、4 或 8mA 的输出驱动强度；而
GPIO_OUT_STRENGTH_8MA_SC指定了带斜率控制（slew control）的 8mA输出驱动。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

71

 广州周立功单片机发展有限公司 第 10 章 GPIO

参数 ulPinType可以是下面的其中一个值：

 GPIO_PIN_TYPE_STD；
 GPIO_PIN_TYPE_STD_WPU；
 GPIO_PIN_TYPE_STD_WPD；
 GPIO_PIN_TYPE_OD；
 GPIO_PIN_TYPE_OD_WPU；
 GPIO_PIN_TYPE_OD_WPD；
 GPIO_PIN_TYPE_ANALOG。

在上面的值中，GPIO_PIN_TYPE_STD*指定一个推挽管脚，GPIO_PIN_TYPE_OD*指
定 一 个 开 漏 管 脚 ， *_WPU 指 定 一 个 弱 上 拉 ， *_WPD 指 定 一 个 弱 下 拉 ，

GPIO_PIN_TYPE_ANALOG指定一个模拟输入（对于比较器来说）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.7 GPIOPinIntClear
清除指定管脚的中断。

函数原型：

void

GPIOPinIntClear(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是特定管脚的位组合（bit-packed）表示。

描述：

清除指定管脚的中断。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免在真正清除中断源之前从中断处理程序中返回。操作失败可能会导致立即再次进入中断处理程序。（因为

NVIC仍会把中断源看作是有效的）。

返回：

无。

10.2.2.8 GPIOPinIntDisable
关闭指定管脚的中断。

函数原型：

void

GPIOPinIntDisable(unsigned long ulPort,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

72

 广州周立功单片机发展有限公司 第 10 章 GPIO

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

屏蔽指定管脚的中断。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.9 GPIOPinIntEnable
使能指定管脚的中断。

函数原型：

void

GPIOPinIntEnable(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是特定管脚的位组合（bit-packed）表示。

描述：

不屏蔽指定管脚的中断。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.10 GPIOPinIntStatus
获取所指定 GPIO端口的中断状态。

函数原型：

long

GPIOPinIntStatus(unsigned long ulPort

tBoolean bMasked)

参数：

ulPort是 GPIO端口的基址。

bMasked指定返回的是屏蔽的中断状态还是原始的中断状态。

描述：

如果 bMasked被设置成 True，则返回屏蔽的中断状态；否则，返回原始的中断状态。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

73

 广州周立功单片机发展有限公司 第 10 章 GPIO

返回一个位填充（bit-packed）的字节，在这个字节中，置位的位用来识别一个有效的
屏蔽或原始中断，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。位
31:8应该忽略。

10.2.2.11 GPIOPinRead
读取指定管脚上出现的值。

函数原型：

long

GPIOPinRead(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

读取指定管脚（由 ucPins 指定的）的值。输入和输出管脚的值都能返回，ucPins 未指
定的管脚的值被设置成 0。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

返回一个位填充的字节，它提供了指定管脚的状态，字节的位 0代表 GPIO端口管脚 0，
位 1代表 GPIO端口管脚 1，等等。ucPins未指定的位返回 0。位 31:8应该忽略。

10.2.2.12 GPIOPinTypeADC
配置管脚，使其作为模数转换输入使用。

函数原型：

void

GPIOPinTypeADC(unsigned long ulPort，

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

模数转换输入管脚必须正确配置，使其在 DustDevil-class器件中能正常工作。这个函数
为这些管脚提供合适的配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能把任何一个管脚变做 ADC输入，它仅配置一个 ADC输入来进行正确的操作。

返回：

无。

10.2.2.13 GPIOPinTypeCAN

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

74

 广州周立功单片机发展有限公司 第 10 章 GPIO

配置管脚，使其用作一个 CAN器件。

函数原型：

void

GPIOPinTypeCAN(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed））表示。

描述：

CAN管脚必须正确配置，使 CAN外设能正常工作。这个函数为这些管脚提供了一个典
型的配置；其他配置的工作取决于板的设置（例如：使用片内上拉）

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能把任何管脚变为一个 CAN管脚；它仅配置一个 CAN管脚来进行正确操作。

返回：

无。

10.2.2.14 GPIOPinTypeComparator
配置管脚用作一个模拟比较器的输入。

函数原型：

void

GPIOPinTypeComparator(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

模拟比较器输入管脚必须正确配置，以便模拟比较器能正常工作。这个函数为用作模拟

比较器输入的管脚提供了正确的配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能用来将任意管脚都变成一个模拟输入；它只配置一个模拟比较器管脚进行正确操作。

返回：

无。

10.2.2.15 GPIOPinTypeGPIOInput
配置管脚用作 GPIO输入。

函数原型：

void

GPIOPinTypeGPIOInput(unsigned long ulPort,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

75

 广州周立功单片机发展有限公司 第 10 章 GPIO

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

GPIO管脚必须正确配置，以便 GPIO输入能正常工作。这一点，特别是对于 Fury-class
器件来说是很重要的，在 Furry-class器件中，数字输入使能在默认状态下是关闭的。这个这
个函数为用作 GPIO管脚提供了正确的配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.16 GPIOPinTypeGPIOOutput
配置管脚用作 GPIO输出。

函数原型：

void

GPIOPinTypeGPIOOutput(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

GPIO 管脚必须正确配置，以便作为 GPIO 输出能正常工作。这一点，特别是对于
Fury-class器件来说是很重要的，在 Furry-class器件中，数字输入使能在默认状态下是关闭
的。这个这个函数为用作 GPIO管脚提供了正确的配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.17 GPIOPinTypeGPIOOutputOD
配置管脚用作 GPIO开漏输出。

函数原型：

void

GPIOPinTypeGPIOOutpuODt(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

76

 广州周立功单片机发展有限公司 第 10 章 GPIO

描述：

GPIO 管脚必须正确配置，以便能作为 GPIO 输出正常工作。这一点，特别是对于
Fury-class器件来说是很重要的，在 Furry-class器件中，数字输入使能在默认状态下是关闭
的。这个这个函数为用作 GPIO管脚提供了正确的配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.18 GPIOPinTypeI2C
配置管脚供I2C外设使用。

函数原型：

void

GPIOPinTypeI2C(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

I2C管脚必须正确配置，以便I2C外设能够正常工作。这个函数为用作I2C功能的管脚提
供了正确配置。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能用来将任意管脚都变成一个 I2C管脚；它只配置一个 I2C管脚来进行正确操作。

返回：

无。

10.2.2.19 GPIOPinTypePWM
配置管脚供 PWM外设使用。

函数原型：

void

GPIOPinTypePWM(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

PWM管脚必须正确配置，以便 PWM外设能够正常工作。这个函数为这些管脚提供了
典型配置；其它配置也能正常工作，这取决于板的设置（例如使用了片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

77

 广州周立功单片机发展有限公司 第 10 章 GPIO

访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个 PWM管脚；它只配置一个 PWM管脚来进行正确操作。

返回：

无。

10.2.2.20 GPIOPinTypeQEI
配置管脚供 QEI外设使用。

函数原型：

void

GPIOPinTypeQEI(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

QEI 管脚必须正确配置，以便 QEI 外设能够正常工作。这个函数为这些管脚提供了一
种典型的配置；其它配置也能正常工作，这取决于板的设置（例如未使用片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个 QEI管脚；它只配置一个 QEI管脚来进行正确操作。

返回：

无。

10.2.2.21 GPIOPinTypeSSI
配置管脚供 SSI外设使用。

函数原型：

void

GPIOPinTypeSSI(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

SSI管脚必须正确配置，以便 SSI外设能够正常工作。这个函数为这些管脚提供了典型
配置；其它配置也能正常工作，这取决于板的设置（例如使用了片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个 SSI管脚；它只配置一个 SSI管脚进行正确操作。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

78

 广州周立功单片机发展有限公司 第 10 章 GPIO

10.2.2.22 GPIOPinTypeTimer
配置管脚供定时器外设使用。

函数原型：

void

GPIOPinTypeTimer(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

CCP 管脚必须正确配置，以便定时器外设能够正常工作。这个函数为这些管脚提供了
典型配置；其它配置也能正常工作，这取决于板的设置（例如使用了片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个定时器管脚；它只配置一个定时器管脚来进行正确操作。

返回：

无。

10.2.2.23 GPIOPinTypeUART
配置管脚供 UART外设使用。

函数原型：

void

GPIOPinTypeUART(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

描述：

UART 管脚必须正确配置，以便 UART 外设能够正常工作。这个函数为这些管脚提供
了典型配置；其它配置也能正常工作，这取决于板的设置（例如使用了片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个 UART管脚；它只配置一个 UART管脚以进行正确操作。

返回：

无。

10.2.2.24 GPIOPinTypeUSBDigtial
配置管脚供 USB外设使用。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

79

 广州周立功单片机发展有限公司 第 10 章 GPIO

GPIOPinTypeUSBDigital(unsigned long ulPort,

unsigned char ucPins)

参数：

ulPort是 USB端口的基址。

ucPins：管脚的位组合（bit-packed）表示。

描述：

某些 USB管脚必须正确配置，以便 USB外设能够正常工作。这个函数为数字 USB管
脚提供了典型配置；其它配置也能正常工作，这这取决于板的设置（例如使用了片内上拉）。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

注：这个函数不能将任意管脚都变成一个 USB管脚；它只配置一个 USB管脚以进行正确操作。

返回：

无。

10.2.2.25 GPIOPinWrite
向指定管脚写入一个值。

函数原型：

void

GPIOPinWrite(unsigned long ulPort,

unsigned char ucPins,

unsigned char ucVal)

参数：

ulPort是 GPIO端口的基址。

ucPins是管脚的位组合（bit-packed）表示。

ucVal是写入到指定管脚的值。

描述：

将对应的位值写入 ucPins 指定的输出管脚。向配置用作输入的管脚写入一个值不会产
生任何影响。

管脚用一个位组合（bit-packed）的字节来指定，在这个字节中，置位的位用来识别被
访问的管脚，字节的位 0代表 GPIO端口管脚 0、位 1代表 GPIO端口管脚 1等等。

返回：

无。

10.2.2.26 GPIOPortIntRegister
注册 GPIO端口的一个中断处理程序。

函数原型：

void

GPIOPortIntRegister(unsigned long ulPort,

void(*pfIntHandler)(void))

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

80

 广州周立功单片机发展有限公司 第 10 章 GPIO

ulPort是 GPIO端口的基址。

pfIntHandler是指向 GPIO端口中断处理函数的指针。

描述：

当从所选的 GPIO端口检测到中断时，这个函数可以确保调用 pfIntHandler指定的中断
处理程序。这个函数也使能中断控制器中对应的 GPIO中断；单个管脚的中断和中断源必须
用 GPIOPinIntEnable()来使能。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

10.2.2.27 GPIOPortIntUnregister
注销 GPIO端口的一个中断处理程序。

函数原型：

void

GPIOPortIntUnregister(unsigned long ulPort)

参数：

ulPort是 GPIO端口的基址。

描述：

这个函数将注销指定GPIO端口的中断处理程序。它还将禁止中断控制器中对应的GPIO
端口中断；单个的 GPIO中断和中断源必须用 GPIOPinIntDisable()来禁止。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

10.3 编程示例

下面的示例显示了如何用 GPIO API来初始化 GPIO、使能中断、读取管脚的数据以及
将数据写入管脚。

int iVal;

//

// 注册端口级别的中断处理程序。对于所有管脚中断来说，这个处理程序是所有管脚中断的

// 第一级别的中断处理程序。

//

GPIOPortIntRegister(GPIO_PORTA_BASE, PortAIntHandler);

//

// 初始化 GPIO管脚配置。

//

// 设置管脚 2、 4和 5作为输入，由软件控制。

//

GPIOPinTypeGPIOInput(GPIO_PORTA_BASE,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

81

 广州周立功单片机发展有限公司 第 10 章 GPIO

GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5);

//

// 设置管脚 0和 3作为输出，软件控制。

//

GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_3)

//

// 使得在管脚 2和 4的上升沿触发中断。

//

GPIOIntTypeSet(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_4),GPIO_RISING_EDGE);

//

// 使得在管脚 5的高电平触发中断。

//

GPIOIntTypeSet(GPIO_PORTA_BASE, GPIO_PIN_5, GPIO_HIGH_LEVEL);

//

// 读取一些管脚。

//

iVal = GPIOPinRead(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |

GPIO_PIN_4 | GPIO_PIN_5));

//

// 写一些管脚。尽管管脚 2、4和 5被指定，它们也不受这个写操作的影响，因为它们配置用作输入。

// 在这个写操作结束时，管脚 0的值将为 0，管脚 3的值将为 1。

//

GPIOPinWrite(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |

GPIO_PIN_4 | GPIO_PIN_5),

0xF4);

//

// 使能管脚中断。

//

GPIOPinIntEnable(GPIO_PORTA_BASE, (GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5));

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

82

 广州周立功单片机发展有限公司 第11章 冬眠模块

第11章 冬眠模块

11.1

11.2

简介

冬眠 API提供了一组供 Stellaris微控制器中的冬眠模块使用的函数。冬眠模块允许软件
应用程序移除微控制器的电源，稍后再根据某个特定时刻或外部 WAKE 管脚上的信号恢复
微控制器的电源。API提供了对唤醒条件、管理中断、读状态、保存和恢复软件状态信息、
请求冬眠模式进行配置的函数。

冬眠模块的部分特性是：

 32位实时时钟；
 微调寄存器（trim register），对 RTC速率进行良好的调谐；
 二个 RTC匹配寄存器，用于产生 RTC事件；
 外部WAKE管脚，用于开始唤醒；
 电池低电量检测；
 64个 32位字的非易失性存储器；
 可编程的冬眠事件的中断。

这个驱动程序包含在 src/hibernate.c中，src/hibernate.h包含应用程序使用的 API定义。

API函数

函数

 void HibernateClockSelect (unsigned long ulClockInput)；
 void HibernateDataGet (unsigned long ∗pulData, unsigned long ulCount) ；
 void HibernateDataSet (unsigned long ∗pulData, unsigned long ulCount) ；
 void HibernateDisable (void) ；
 void HibernateEnableExpClk (unsigned long ulHibClk) ；
 void HibernateIntClear (unsigned long ulIntFlags) ；
 void HibernateIntDisable (unsigned long ulIntFlags) ；
 void HibernateIntEnable (unsigned long ulIntFlags) ；
 void HibernateIntRegister (void (∗pfnHandler)(void)) ；
 unsigned long HibernateIntStatus (tBoolean bMasked) ；
 void HibernateIntUnregister (void) ；
 unsigned int HibernateIsActive (void) ；
 unsigned long HibernateLowBatGet (void) ；
 void HibernateLowBatSet (unsigned long ulLowBatFlags) ；
 void HibernateRequest (void) ；
 void HibernateRTCDisable (void) ；
 void HibernateRTCEnable (void) ；
 unsigned long HibernateRTCGet (void) ；
 unsigned long HibernateRTCMatch0Get (void) ；
 void HibernateRTCMatch0Set (unsigned long ulMatch) ；
 unsigned long HibernateRTCMatch1Get (void) ；
 void HibernateRTCMatch1Set (unsigned long ulMatch) ；
 void HibernateRTCSet (unsigned long ulRTCValue) ；
 unsigned long HibernateRTCTrimGet (void) ；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

83

 广州周立功单片机发展有限公司 第11章 冬眠模块

 void HibernateRTCTrimSet (unsigned long ulTrim) ；
 unsigned long HibernateWakeGet (void) ；
 void HibernateWakeSet (unsigned long ulWakeFlags) 。

11.2.1 详细描述

冬眠模块使用前必须要先使能。我们可以使用 HibernateEnableExpClk()函数来使能冬眠
模块。如果把一个晶体用作时钟源，那么正在初始化的代码在调用 HibernateEnableExpClk()
函数后必须提供足够的时间让晶体稳定下来。有关晶体稳定性时间请参考器件数据手册。如

果使用了一个振荡器，那么就无需延时。在使能模块后，必须要调用 HibernateClockSelect()
来对时钟源进行配置。

为了使用冬眠模块的 RTC特性，必须调用 HibernateRTCEnable()来使能 RTC。稍后我们
可以调用 HibernateRTCDisable()来禁止 RTC。随时都可以调用这些函数来启动和停止 RTC。
通过使用 HibernateRTCGet() 和 HibernateRTCSet() 函数，就可读取或设置 RTC的值。使用

HibernateRTCMatch0Get() 、 HibernateRTCMatch0Set() 、 HibernateRTCMatch1Get() 和
HibernateRTCMatch1Set() 函数就能读取和设置二个匹配寄存器。通过使用微调（trim）寄存
器可对实时时钟速率进行调节。为了实现时钟速率调节目的，要使用 HibernateRTCTrimGet()
和 HibernateRTCTrimSet()函数。

应用状态信息在处理器断电时能存储在冬眠模块的非易失性存储器中。用户使用

HibernateDataSet() and HibernateDataGet() 函数就能访问非易失性存储器区域。

当外部WAKE管脚有效，或一个 RTC匹配发生，或这二个情况都发生时，模块能被配
置到唤醒状态。唤醒条件通过使用 HibernateWakeSet() 函数来配置。通过调用
HibernateWakeGet()就能读取当前的条件配置。

冬眠模块能检测到一个低电池并用信号通知处理器。如果电池电压太低，它也可以被配

置成用来中止一个冬眠请求。我们可以使用 HibernateLowBatSet() 和 HibernateLowBatGet()
函数来对这个特性进行配置。

几个管理中断的函数被提供。为了把一个中断处理程序安装到向量表中或卸载向量表中

的中断处理程序，可使用 HibernateIntRegister() 和 HibernateIntUnregister() 函数。有关使用
中断向量表的注意事项，请参考 IntRegister() 函数。模块能产生几个不同的中断。用户可
使用 HibernateIntEnable() 和 HibernateIntDisable() 函数来使能和禁止特定的中断源。通过调
用 HibernateIntStatus()，就能发现当前的中断状态。在中断处理程序中，必须清除所有正在
挂起的中断。为了达到这个目的，我们可使用 HibernateIntClear() 函数。

最后，一旦模块被恰当地配置、状态已保存和软件应用程序已准备好进入冬眠，就可调

用 HibernateRequest() 函数。这将会初始化从处理器上移除电源的时序。在上电复位时，应
用软件能够用 HibernateIsActive()函数来确定冬眠模块是否已激活，如果已激活，因此就无
需使能冬眠模块。这就给软件提供了一个暗示，就是处理器正从冬眠中而不是从冷启动中唤

醒。然后软件可以使用 HibernateIntStatus() 和 HibernateDataGet()函数来查找唤醒的原因和
获取保存的系统状态。

以前版本的外设驱动程序库的 HibernateEnable() API 现已被 eHibernateEnableExpClk()
API替换。hibernate.h已提供一个宏来把旧的 API映射到新的 API中，从而允许现有的应用
能与新的 API进行连接和运行。建议新的应用程序在认同旧的 API时应要使用新的 API。

11.2.2 函数文件

11.2.2.1 HibernateClockSelect

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

84

 广州周立功单片机发展有限公司 第11章 冬眠模块

选择冬眠模块的时钟输入。

函数原型：

void

HibernateClockSelect(unsigned long ulClockInput)

参数：

ulClockInput指定时钟输入。

描述：

配置冬眠模块的时钟输入。配置选项的选择完全依靠于硬件的设计。模块的时钟输入将

会是 32.768KHz的振荡器或 4.194304MHz的晶体。ulClockFlags参数必须是下列值中的一个：

 HIBERNATE_CLOCK_SEL_RAW –使用 32.768KHz的振荡器的原始信号；
 HIBERNATE_CLOCK_SEL_DIV128 –使用晶体输入，分频因子为 128。

返回：

无。

11.2.2.2 HibernateDataGet
从冬眠模块的非易失性存储器中读取一组数据。

函数原型：

Void

HibernateDataGet(unsigned long *pulData,

unsigned long ulCount)

参数：

pulData指向即将被用来存储从休眠模块中读出的数据的位置。

ulCount是要读取的 32位字的计数值。

描述：

获取一组来自冬眠模块的非易失性存储器的数据，这些数据由之前的 HibernateDataSet()
函数来其存放到冬眠模块的非易失性存储器中。调用者必须确保 pulData指向一个足够大的
存储器块，以便它能保存所有从非易失性存储器中读出的数据。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

11.2.2.3 HibernateDataSet
把数据存储在冬眠模块的非易失性存储器中。

函数原型：

Void

 HibernateDataSet(unsigned long *pulData,

unsigned long ulCount)

参数：

pulData指向调用者想要把它存储在冬眠模块的存储器中的数据。

ulCount是要存储的 32位字的计数值。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

85

 广州周立功单片机发展有限公司 第11章 冬眠模块

描述：

把一组数据存储在冬眠模块的非易失性存储器中。当处理器的电源被关闭时，这个存储

器将会被保存起，它能存储在处理器唤醒时可用的应用程序状态信息。非易失性存储器最多

可存储 64个 32位字。通过调用 the HibernateDataGet()函数就能将数据恢复。

返回：

无。

11.2.2.4 HibernateDisable
禁止冬眠模块的操作。

函数原型：

void

HibernateDisable(void)

描述：

禁止冬眠模块的操作。在调用此函数后，将不能使用冬眠模块的任何特性。

返回：

无。

11.2.2.5 HibernateEnableExpClk
使能冬眠模块的操作。

函数原型：

void

HibernateEnableExpClk(unsigned long ulHibClk)

参数：

ulHibClk是提供给冬眠模块的时钟速率。

描述：

使能冬眠模块的操作。调用了此函数后才能使用冬眠模块的任何特性。

外设时钟将与处理器时钟相同。它将会是 SysCtlClockGet()函数所返回的值，或如果它
是一个已知常量（以便在调用 SysCtlClockGet()后可以保存代码/执行体），则可以明确此时
钟是硬编码。

此函数取代了最初的 HibernateEnable() API，并执行相同的操作。Hibernate.h中提供了
一个宏，把最初的 API映射到这个 API中。

返回：

无。

11.2.2.6 HibernateIntClear
清除冬眠模块中正在挂起的中断。

函数原型：

void

HibernateIntClear(unsigned long ulIntFlags)

参数:

ulIntFlags是要被清除的中断的位屏蔽。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

86

 广州周立功单片机发展有限公司 第11章 冬眠模块

描述：

清除特定的中断源。这必须在中断处理程序中完成，否则在退出中断处理程序后将再次

对其进行调用。

此 ulIntFlags参数的定义与 HibernateIntEnable() 函数中的 ulIntFlags参数相同。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免器件在真正清除中断源之前从中断处理程序中返回。如果不这样子做的话可会能导致立即再次进入中断

处理程序。（因为 NVIC仍会把中断源看作是有效的）

返回：

无。

11.2.2.7 HibernateIntDisable
禁止冬眠模块的中断。

函数原型：

void

HibernateIntDisable(unsigned long ulIntFlags)

参数：

ulIntFlags是要被禁止的中断的位屏蔽。

描述：

禁止冬眠模块中的特定中断源。

此 ulIntFlags参数与 HibernateIntEnable()函数中的 ulIntFlags 参数具有相同的定义。

返回：

无。

11.2.2.8 HibernateIntEnable
使能冬眠模块的中断。

函数原型：

Void

 HibernateIntEnable(unsigned long ulIntFlags)

参数：

ulIntFlags是要使能的中断的位屏蔽。

描述：

使能冬眠模块中的特定中断源。

ulIntFlags参数必须是以下值任何组合的逻辑或：

 HIBERNATE_INT_PIN_WAKE – 从管脚中断中唤醒；
 HIBERNATE_INT_LOW_BAT –低电池中断；
 HIBERNATE_INT_RTC_MATCH_0 – RTC匹配 0中断；
 HIBERNATE_INT_RTC_MATCH_1 - RTC 匹配 1中断。

返回：

无。

11.2.2.9 HibernateIntRegister

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

87

 广州周立功单片机发展有限公司 第11章 冬眠模块

注册一个冬眠模块中断的中断处理程序。

函数原型：

Void

 HibernateIntRegister(void (*pfnHandler) (void))

参数：

phnHandler指向当一个冬眠模块中断发生时要调用的函数。

描述：

把中断处理程序注册到系统中断控制器。全局中断被使能，但必须要调用

HibernationIntEnable()来使能单独的中断源。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister() 。

返回：

无。

11.2.2.10 HibernateIntStatus
获取冬眠模块的当前中断情形。

函数原型：

unsigned long

HibernateIntStatus(tBoolean bMasked)

参数：

bMasked：获取原始的中断状态时为 False，获取被屏蔽的中断状态时为 True。

描述：

返回冬眠模块的中断状态。调用者可以使用此函数来确定引起冬眠中断的原因。可返回

被屏蔽的或原始的中断状态。

返回：

返回作为一个位域（bit field）的中断状态，位域的值在 HibernateIntEnable()函数中描述。

11.2.2.11 HibernateIntUnregister
注销一个冬眠模块中断的中断处理程序。

函数原型：

Void

 HibernateIntUnregister(void)

描述：

注销系统中断控制器中的中断处理程序。关闭全局中断，并且将不再调用中断处理程序。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

11.2.2.12 HibernateIsActive

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

88

 广州周立功单片机发展有限公司 第11章 冬眠模块

查看冬眠模块上电与否。

函数原型：

unsigned int

HibernateIsActive(void)

描述：

此函数询问控制寄存器冬眠模块是否已激活。在上电复位时调用此函数可以帮助确定复

位是否由于从冬眠中唤醒或者是一个冷启动而导致的。如果冬眠模式已激活，那就无需再次

使能冬眠模块，并能立即询问到它的状态。

为了确定唤醒的原因，软件应用程序调用 HibernateIntStatus() 函数读取原始中断状态。
HibernateDataGet() 函数用来恢复状态。该函数组合能被软件用于确认处理器是否从冬眠中
唤醒，从而根据结果采取适当的操作。

返回：

如果模块已激活则返回 True，否则返回 False。

11.2.2.13 HibernateLowBatGet
获取当前所配置的低电池检测操作。

函数原型：

unsigned long

HibernateLowBatGet(void)

描述：

返回一个表示当前所配置的低电池检测操作的值。返回值将会是下列值的其中一个：

 HIBERNATE_LOW_BAT_DETECT－检测一个低电池条件；
 HIBERNATE_LOW_BAT_ABORT－检测一个低电池条件，如果检测到一个低电池
则中止冬眠。

返回：

返回一个表示所配置低电池检测值。

11.2.2.14 HibernateLowBatSet
对低电池检测进行配置。

函数原型：

void

HibernateLowBatSet(unsigned long ulLowBatFlags)

参数:

ulLowBatFlags指定低电池检测的操作。

描述：

使能电池量不足检测，并且如果检测到一个低电池时是否允许进入冬眠。如果使能了低

电池检测，那么在原始中断状态寄存器中将会指示出一个低电池条件，并且此电池条件也能

触发一个中断。如果检测到一个低电池那可以随意地中止冬眠。

ulLowBatFlags参数是下列值中的其中一个：

 HIBERNATE_LOW_BAT_DETECT－检测一个低电池条件；
 HIBERNATE_LOW_BAT_ABORT－检测一个低电池条件，如果检测到一个低电池

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

89

 广州周立功单片机发展有限公司 第11章 冬眠模块

则中止冬眠。

返回：

无。

11.2.2.15 HibernateRequest
请求冬眠模式。

函数原型：

void

HibernateRequest(void)

描述：

此函数请求冬眠模式禁止外部调节器，然后移除处理器和全部外设的电源。冬眠模块将

保持通电状态，其电源由电池或自备供电设备（auxiliary power supply）提供。

冬眠模块将会在所配置的其中一个唤醒条件（如 RTC匹配或外部WAKE管脚）发生时
重新使能外部调节器。当电源恢复时，处理器将会经历一个正常上电复位。使用

HibernateDataGet() 函数，处理器可以重新获得被保存的状态信息。在调用函数请求冬眠模
式之前，必须通过使用 HibernateWakeSet() 函数对唤醒条件进行设置。

注意，此函数可能会返回，因为在真正移除电源前或有可能根本就没有移除电源前可能

会流逝一些时间。由于这个原因，处理器将会继续在一段时间内执行指令并且调用者应该做

好这个函数会返回的心理准备。不能移除电源的原因有许多。例如，如果检测到一个低电池，

使用 HibernateLowBatSet() 函数来配置一个中止，那么如果电池电压太低将不能移除电源。
可能也会有其他原因，与外部电路板设计相关的原因，即请求冬眠可能并不会真正发生。

由于以上原因，调用者必须做好此函数返回的心理准备。最简单的处理方法就是进入一

个死循环然后等待着电源被移除。

返回：

无。

11.2.2.16 HibernateRTCDisable
禁止冬眠模块的 RTC特性。

函数原型：

void

HibernateRTCDisable(void)

描述：

禁止冬眠模块的 RTC特性。调用此函数后，将不能使用冬眠模块的 RTC特性。

返回：

无。

11.2.2.17 HibernateRTCEnable

使能冬眠模块的 RTC特性。

函数原型：

void

HibernateRTCEnable(void)

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

90

 广州周立功单片机发展有限公司 第11章 冬眠模块

使能冬眠模块的 RTC特性。RTC使处理器在某一时刻从冬眠中醒来，或在某时刻产生
中断。必须先调用此函数，然后才能使用休眠模块的任何一个 RTC特性。

返回：

无。

11.2.2.18 HibernateRTCGet
获取实时时钟（RTC）计数器的值

函数原型：

unsigned long

HibernateRTCGet(void)

描述：

获取 RTC的值并把此值返回给调用者。

返回：

返回 RTC的值。

11.2.2.19 HibernateRTCMatch0Get
获取 RTC匹配 0寄存器的值。

函数原型：

unsigned long

HibernateRTCMatch0Get(void)

描述：

获取 RTC匹配 0寄存器的值。

返回：

返回匹配寄存器的值。

11.2.2.20 HibernateRTCMatch0Set
设置 RTC匹配 0寄存器的值。

函数原型：

void

HibernateRTCMatch0Set(unsigned long ulMatch)

参数：

ulMatch是匹配寄存器的值。

描述：

设置 RTC 匹配 0 寄存器的值。冬眠模块能被配置成从冬眠中醒来，并且/或者在 RTC
计数器的值与匹配寄存器的值相同时产生一个中断。

返回：

无。

11.2.2.21 HibernateRTCMatch1Get
获取 RTC匹配 1寄存器的值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

91

 广州周立功单片机发展有限公司 第11章 冬眠模块

unsigned long

HibernateRTCMatch1Get(void)

描述：

获取 RTC匹配 1寄存器的值。

返回：

返回匹配寄存器的值。

11.2.2.22 HibernateRTCMatch1Set
设置 RTC匹配 1寄存器的值。

函数原型：

void

HibernateRTCMatch1Set(unsigned long ulMatch)

参数：

ulMatch是匹配寄存器的值。

描述：

设置 RTC 匹配 1 寄存器的值。冬眠模块能被配置成从冬眠中醒来，并且/或者在 RTC
计数器的值与匹配寄存器的值相同时产生一个中断。

返回：

无。

11.2.2.23 HibernateRTCSet
设置实时钟 RTC计数器的值。

函数原型：

void

HibernateRTCSet(unsigned long ulRTCValue)

参数：

ulRtcValue是 RTC的新值。

描述：

设置 RTC的值。如果硬件已被正确地配置，那么 RTC将会计数秒数。在调用此函数前，
要调用 HibernateRTCEnable()函数使能 RTC。

返回：

无。

11.2.2.24 HibernateRTCTrimGet
获取 RTC预分频微调寄存器的值。

函数原型：

unsigned long

HibernateRTCTrimGet(void)

描述：

获取 RTC预分频微调寄存器的值。在通过使用 HibernateRTCTrimSet()函数进行调整前，
使用此函数获取微调寄存器的当前值。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

92

 广州周立功单片机发展有限公司 第11章 冬眠模块

返回：

无。

11.2.2.25 HibernateRTCTrimSet
设置 RTC预分频微调寄存器的值。

函数原型：

void

HibernateRTCTrimSet(unsigned long ulTrim)

参数：

ulTrim是预分频微调寄存器的新值。

描述：

设置预分频微调寄存器的值。输入时间源被预分频器分频为了达到一个 1秒 1次的时钟
速率。一旦每 64 秒过去，预分频器微调（trim）寄存器的值就被应用到预分频器以允许对
RTC速率进行良好的调谐，从而可以得到正确的速率。软件应用程序能对预分频微调（trim）
寄存器进行调节，以便对中断时间源的精确变化进行计数。名义值是 0x7FFF，为了得到调
谐的 RTC速率，可以对此值进行上下调节。

返回：

无。

11.2.2.26 HibernateWakeGet
获取冬眠模块当前所配置的唤醒条件。

函数原型：

unsigned long

HibernateWakeGet(void)

描述：

返回代表冬眠模块的唤醒条件的标志。返回值将会是下列标志的组合：

 HIBERNATE_WAKE_PIN –在外部唤醒管脚有效时唤醒；
 HIBERNATE_WAKE_RTC –在其中一个 RTC匹配发生时唤醒。

返回：

返回代表冬眠模块的唤醒条件的标志

11.2.2.27 HibernateWakeSet
对冬眠模块的唤醒条件进行配置。

函数原型：

void

HibernateWakeSet(unsigned long ulWakeFlags)

参数：

ulWakeFlags指定使用哪些条件来唤醒。

描述：

使能唤醒条件，在这个唤醒条件下，冬眠模块将会唤醒。ulWakeFlags 参数是下列值的
任意组合的逻辑或：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

93

 广州周立功单片机发展有限公司 第11章 冬眠模块

 HIBERNATE_WAKE_PIN –在外部唤醒管脚有效时唤醒；
 HIBERNATE_WAKE_RTC –在其中一个 RTC匹配发生时唤醒。

返回：

无。

11.3 编程示例

以下示例显示了如何确定处理器的复位是否由于从冬眠中唤醒而引起的，并显示了如何

恢复被保存的状态：

unsigned long ulStatus;

unsigned long ulNVData[64];

//

//在唤醒/复位后，使用冬眠外设前，需要使能冬眠外设。

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//

// 确定冬眠模块是否激活。

//

if(HibernateIsActive())

{

//

//读取状态以确定唤醒的原因。

//

ulStatus = HibernateIntStatus(false);

//

// 测试状态来确定唤醒的原因。

//

if(ulStatus & HIBERNATE_INT_PIN_WAKE)

{

//

// 唤醒是由于WAKE管脚有效。

//

}

if(ulStatus & HIBERNATE_INT_RTC_MATCH_0)

{

//

// 唤醒是由于 RTC match0寄存器引致。

//

}

//

// 恢复在冬眠前被保存的程序状态信息。

//

HibernateDataGet(ulNVData, 64);

//

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

94

 广州周立功单片机发展有限公司 第11章 冬眠模块

//既然唤醒原回已确定，且状态已保存，那么程序能继续进行正常处理器和外设初如化。

//

}

//

// 冬眠模块未激活，因此这是一个冷上电/复位。

//

else

{

//

//执行正常的上电初始化。

//

}

以下示例显示了如何设置冬眠模块和以后如何用唤醒来开始一个冬眠：

unsigned long ulStatus;

unsigned long ulNVData[64];

//

//冬眠外设在使用前必须要先使能。

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//

//使能冬眠模块的时钟。

//

HibernateEnableExpClk(SysCtlClockGet());

//

// 这里由用户实施延时，从而允许晶体上电并达到稳定状态。

//

//

// 配置冬眠模块的时钟源，并使能 RTC特性。这是 4.194304MHz晶体的配置。

//

HibernateClockSelect(HIBERNATE_CLOCK_SEL_DIV128);

HibernateRTCEnable();

//

// 把 RTC置为 0或一个初始值。在冷启动后初始化系统时就能立即设置 RTC的值，

// 然后运行 RTC。或者在每个冬眠前初始化 RTC。

//

HibernateRTCSet(0);

//

// 从现在起计算，把匹配 0寄存器设置为 30秒。

//

HibernateRTCMatch0Set(HibernateRTCGet() + 30);

//

// 清除任何挂起的状态

//

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

95

 广州周立功单片机发展有限公司 第11章 冬眠模块

ulStatus = HibernateIntStatus(0);

HibernateIntClear(ulStatus);

//

// 保存软件状态信息。状态信息将被存放在 ulNVData[]数组中。

// 无需要保存全 64个数据字，只需保存软件实际所需要的数据字

//

HibernateDataSet(ulNVData, 64);

//

// Configure to wake on RTC match.

//

HibernateWakeSet(HIBERNATE_WAKE_RTC);

//

// 请求冬眠。以下调用可能会返回，因为移除电源需要消耗一定的时间。

//

HibernateRequest();

//

// 这里需要执行循环，以等待电源移除。当执行这个循环时，将会移除电源

//

for(;;)

{

}

以下示例显示了如何使用冬眠模块 RTC在某一时刻产生一个中断：

//

// 冬眠中断的处理程序

//

void

HibernateHandler(void)

{

unsigned long ulStatus;

//

// 获取中断状态，并清除任何挂起的中断

//

ulStatus = HibernateIntStatus(1);

HibernateIntClear(ulStatus);

//

// 处理 RTC匹配 0中断

//

if(ulStatus & HIBERNATE_INT_RTC_MATCH_0)

{

//

// 这里执行 RTC匹配 0中断

//

}

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

96

 广州周立功单片机发展有限公司 第11章 冬眠模块

}

//

// 主函数

//

int

main(void)

{

//

// 系统初始化代码...

//

//

// 使能冬眠模块

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

HibernateEnableExpClk(SysCtlClockGet());

//

// 等待一段时间，直到模块上电

//

//

// 配置冬眠模块的时钟源，并使能 RTC特性。这是

// 4.194304MHz晶体的配置

//

HibernateClockSelect(HIBERNATE_CLOCK_SEL_DIV128);

HibernateRTCEnable();

//

// 把 RTC置为初始值

//

HibernateRTCSet(0);

//

// 从现在起计算，设置匹配 0为 30秒

//

HibernateRTCMatch0Set(HibernateRTCGet() + 30);

//

// 设置冬眠模块的中断，以便使能 RTC匹配 0中断。清除

// 所有挂起的中断并注册中断处理程序

//

HibernateIntEnable(HIBERNATE_INT_RTC_MATCH_0);

HibernateIntClear(HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_LOW_BAT |

HIBERNATE_INT_RTC_MATCH_0 |

HIBERNATE_INT_RTC_MATCH_1);

HibernateIntRegister(HibernateHandler);

//

// 在 30秒内调冬眠处理程序（上面的处理程序）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

97

 广州周立功单片机发展有限公司 第11章 冬眠模块

//

// ...

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

98

 广州周立功单片机发展有限公司 第 12 章 I2C

第12章 I2C

12.1 简介

I2C（Inter-Integrated Circuit，内部集成电路）API提供了一组函数来使用Stellaris的I2C
主机和从机模块。这些函数用来初始化I2C模块、发送和接收数据、获取状态以及管理I2C模
块的中断。

I2C主机和从机模块可以通过一个I2C总线与其它IC器件通信。I2C总线被规定支持既能发
送数据又能接收数据的（读和写数据）器件。而且，I2C总线上的器件可以被指定用作主机
或从机。Stellaris I2C模块支持作为一个主机或从机来发送和接收数据，也支持既用作主机又
用作从机时的同时操作。Stellaris I2C模块可以在工作在两种速度下：标准（100kb/s）和快速
（400kb/s）。

主机和从机I2C模块都能产生中断。I2C主机模块将在一个发送或接收操作完成（或由于
一个错误而引起的操作中止）时产生中断。I2C从机模块将在主机发送完数据或请求数据时
产生中断。

12.1.1 主机操作

当使用I2C API来驱动I2C主机模块时，用户必须首先调用I2CMasterInitExpClk()来初始化
I2C主机模块。此函数将设置总线速度和使能主机模块。

在 I2C主机模块成功初始化后，用户就可以发送和接收数据了。先 用
I2CMasterSlaveAddrSet()设置从机地址，然后就可以传输数据了。I2CMasterSlaveAddrSet()
函数也可以用来定义传输是一次发送（主机写数据到从机）还是一次接收（主机读取从机的

数据）。接着，如果连接到一个含有多个主机的I2C总线上，Stellaris I2C主机就必须在尝试启
动所需的传输前先调用I2CMasterBusBusy()。在确定总线不忙后，如果想要发送数据，用户
就必须调用I2CMasterDataPut()函数。然后，总线上的传输可以通过用下面的一个命令调用
I2CMasterControl()函数来启动：

 I2C_MASTER_CMD_SINGLE_SEND；
 I2C_MASTER_CMD_SINGLE_RECEIVE；
 I2C_MASTER_CMD_BURST_SEND_START；
 I2C_MASTER_CMD_BURST_RECEIVE_START。

这些命令中的任何一个都将导致总线的主机仲裁、在总线上驱动起始序列以及在总线上

发送从机地址和方向位。然后，剩余的传输用轮询或中断驱动的方法被驱动。

对于一次发送和接收的情况，轮询方法包含一个I2CMasterBusy()返回的循环。一旦这个
函数指示I2C主机不再处于忙状态，就表明总线传输已经完成，可以用I2CMasterErr()来检查
错误了。如果没有检查到错误，那么数据就已经发送完成，或者已经准备好，可以用

I2CMasterDataGet()来读取了。对于突发数据发送和接收的情况，每发送和接收完一个字节
（ 用 I2C_MASTER_CMD_BURST_SEND_CONT 命 令 或 I2C_MASTER_CMD_BURST_
RECEIVE_CONT 命 令 ） 以 及 发 送 或 接 收 完 最 后 一 个 字 节 （ 用

I2C_MASTER_CMD_BURST_SEND_FINISH 命 令 或 I2C_MASTER_CMD_BURST_
RECEIVE_FINISH命令），轮询方法都会调用I2CMasterControl()。一旦在突发传输过程中检
测 到 任 何 错 误 ， 应 该 用 合 适 的 停 止 命 令 （ 用 I2C_MASTER_CMD_BURST
_SEND_ERROR_STOP命令或 I2C_MASTER_CMD_BURST_ RECEIVE_ERROR_STOP命
令）来调用I2CMasterControl()函数。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

99

 广州周立功单片机发展有限公司 第 12 章 I2C

对于中断驱动的传输，用户必须注册一个I2C器件的中断处理程序并使能I2C主机中断；
这样，当主机不再繁忙时就会产生中断。

12.1.2 从机操作

当使用I2C API驱动I2C从机模块时，用户必须首先调用I2CSlaveInit()来初始化I2C从机模
块。这样将使能I2C从机模块和初始化从机的自身地址。在初始化完成以后，用户可以用
I2CSlaveStatus()来查询从机状态，以便确定主机是否请求了一个发送或接收操作。根据请求
操作的类型，用户可以调用I2CSlaveDataPut()或I2CSlaveDataGet()来完成传输。或者，I2C从
机也可以使用I2CIntRegister注册的一个中断处理程序、通过使能I2C从机中断来处理传输。

这个驱动程序包含在 src/i2c.c中，src/i2c.h包含应用使用的 API定义。

12.2 API函数

函数

 void I2CIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 void I2CIntUnregister (unsigned long ulBase)；
 tBoolean I2CMasterBusBusy (unsigned long ulBase)；
 tBoolean I2CMasterBusy (unsigned long ulBase)；
 void I2CMasterControl (unsigned long ulBase, unsigned long ulCmd)；
 unsigned long I2CMasterDataGet (unsigned long ulBase)；
 void I2CMasterDataPut (unsigned long ulBase, unsigned char ucData)；
 void I2CMasterDisable (unsigned long ulBase)；
 void I2CMasterEnable (unsigned long ulBase)；
 unsigned long I2CMasterErr (unsigned long ulBase)；
 void I2CMasterInitExpClk (unsigned long ulBase, unsigned long ulI2CClk, tBoolean

bFast)；
 void I2CMasterIntClear (unsigned long ulBase)；
 void I2CMasterIntDisable (unsigned long ulBase)；
 void I2CMasterIntEnable (unsigned long ulBase)；
 tBoolean I2CMasterIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void I2CMasterSlaveAddrSet (unsigned long ulBase, unsigned char ucSlaveAddr,

tBoolean bReceive)；
 unsigned long I2CSlaveDataGet (unsigned long ulBase)；
 void I2CSlaveDataPut (unsigned long ulBase, unsigned char ucData)；
 void I2CSlaveDisable (unsigned long ulBase)；
 void I2CSlaveEnable (unsigned long ulBase)；
 void I2CSlaveInit (unsigned long ulBase, unsigned char ucSlaveAddr)；
 void I2CSlaveIntClear (unsigned long ulBase)；
 void I2CSlaveIntDisable (unsigned long ulBase)；
 void I2CSlaveIntEnable (unsigned long ulBase)；
 tBoolean I2CSlaveIntStatus (unsigned long ulBase, tBoolean bMasked)；
 unsigned long I2CSlaveStatus (unsigned long ulBase)。

12.2.1 详细描述

I2C API分成 3 组函数，分别执行以下功能：处理中断、处理状态和初始化以及处理发
送和接收数据。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

100

 广州周立功单片机发展有限公司 第 12 章 I2C

I2C主机和从机中断由 I2CIntRegister()、 I2CIntUnregister()、 I2CMasterIntEnable()、
I2CMasterIntDisable()、 I2CMasterIntClear()、 I2CMasterIntStatus()、 I2CSlaveIntEnable()、
I2CSlaveIntDisable()、I2CSlaveIntClear()和I2CSlaveIntStatus()来处理。

I2C模块的状态和初始化函数包括： I2CMasterInitExpClk()、 I2CMasterEnable()、
I2CMasterDisable()、I2CMasterBusBusy()、I2CMasterBusy()、I2CMasterErr()、

I2CSlaveInit()、I2CSlaveEnable()、I2CSlaveDisable()和 I2CSlaveStatus()。

I2C 模块的数据发送和接收由 I2CMasterSlaveAddrSet()、 I2CMasterControl()、
I2CMasterDataGet()、I2CMasterDataPut()、I2CSlaveDataGet()和 I2CSlaveDataPut()函数来处理。

外设驱动程序库早前版本的 I2CMasterInit()API已被 I2CMasterInitExpClk()API所取代。
在 i2c.h中已提供一个宏用来把旧的 API映射到新的 API中去，这就允许现有的应用能使用
新的 API来进行连接和运行。建议在新的应用中，在赞同旧的 API函数时可以利用新的 API
函数。

12.2.2 函数文件

12.2.2.1 I2CIntRegister
注册I2C模块的一个中断处理程序。

函数原型：

void

I2CIntRegister(unsigned long ulBase,

void(*pfnHandler)(void))

参数：

ulBase是I2C主机模块的基址。

pfnHandler是I2C中断出现时调用的函数的指针。

描述：

这个函数设置在I2C中断出现时调用的处理程序。这将会使能中断控制器中的全局中断；
特定的I2C中断必须通过I2CMasterIntEnable()和I2CSlaveIntEnable()来使能。如果有必要，由
中断处理程序通过I2CMasterIntClear()和I2CSlaveIntClear()来清除中断源。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

12.2.2.2 I2CIntUnregister
注销I2C模块的一个中断处理程序。

函数原型：

void

I2CIntUnregister(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

101

 广州周立功单片机发展有限公司 第 12 章 I2C

这个函数将清除I2C中断出现时要调用的处理程序。这也会关闭中断控制器中的中断，
以便中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

12.2.2.3 I2CMasterBusBusy
指示I2C总线是否正忙。

函数原型：

tBoolean

I2CMasterBusBusy(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

这个函数返回一个I2C总线是否正忙的指示。这个函数可以用在多主机的环境中来确定
当前是否有另一个主机正在使用总线。

返回：

如果I2C总线正忙则返回True；否则返回False。

12.2.2.4 I2CMasterBusy
指示I2C主机是否正忙。

函数原型：

tBoolean

I2CMasterBusy(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

这个函数返回一个表示I2C主机是否正在忙于发送或接收数据的指示。

返回：

如果I2C主机正忙则返回True；否则返回False。

12.2.2.5 I2CMasterControl
控制I2C主机模块的状态。

函数原型：

void

I2CMasterControl(unsigned long ulBase,

unsigned long ulCmd)

参数：

ulBase是I2C主机模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

102

 广州周立功单片机发展有限公司 第 12 章 I2C

ulCmd是发送给I2C主机模块的命令。

描述：

这个函数用来控制主机模块发送和接收操作的状态。参数 ucCmd 可以是下面的其中一
个值：

 I2C_MASTER_CMD_SINGLE_SEND;
 I2C_MASTER_CMD_SINGLE_RECEIVE；
 I2C_MASTER_CMD_BURST_SEND_START；
 I2C_MASTER_CMD_BURST_SEND_CONT；
 I2C_MASTER_CMD_BURST_SEND_FINISH；
 I2C_MASTER_CMD_BURST_SEND_ERROR_STOP；
 I2C_MASTER_CMD_BURST_RECEIVE_START；
 I2C_MASTER_CMD_BURST_RECEIVE_CONT；
 I2C_MASTER_CMD_BURST_RECEIVE_FINISH；
 I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP。

返回：

无。

12.2.2.6 I2CMasterDataGet
接收一个已发送给I2C主机的字节。

函数原型：

unsigned long

I2CMasterDataGet(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

这个函数从I2C主机数据寄存器中读取一个字节的数据。

返回：

返回从I2C主机接收到的字节，强制转换成一个无符号长整型（unsigned long）。

12.2.2.7 I2CMasterDataPut
发送I2C主机的一个字节。

函数原型：

void

I2CMasterDataPut(unsigned long ulBase,

unsigned char ucData)

参数：

ulBase是I2C主机模块的基址。

ucData是要从 I2C主机中发送出的数据。

描述：

这个函数将把提供的数据放置到I2C主机数据寄存器中。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

103

 广州周立功单片机发展有限公司 第 12 章 I2C

无。

12.2.2.8 I2CMasterDisable
禁止I2C主机模块。

函数原型：

void

I2CMasterDisable(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

这个函数将禁止I2C主机模块的操作。

返回：

无。

12.2.2.9 I2CMasterEnable
使能I2C主机模块。

函数原型：

void

I2CMasterEnable(unsigned long ulBase)

参数：

ulBase：I2C主机模块的基址。

描述：

这个函数将使能I2C主机模块的操作。

返回：

无。

12.2.2.10 I2CMasterErr
获取I2C主机模块的错误状态。

函数原型：

unsigned long

I2CMasterErr(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

这个函数用来获取主机模块发送和接收操作的错误状态。

返回：

返回错误状态，即下面的其中一个值：

 I2C_MASTER_ERR_NONE；
 I2C_MASTER_ERR_ADDR_ACK；
 I2C_MASTER_ERR_DATA_ACK；
 I2C_MASTER_ERR_ARB_LOST。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

104

 广州周立功单片机发展有限公司 第 12 章 I2C

12.2.2.11 I2CMasterInitExpClk
初始化I2C主机模块。

函数原型：

void

I2CMasterInitExpClk(unsigned long ulBase,

unsigned long ulI2CClk,

tBoolean bFast)

参数：

ulBase是I2C主机模块的基址。

ulI2CClk是提供给I2C模块的时钟频率。

bFast设置快速数据传输。

描述：

这个函数用来初始化I2C主机模块的操作。成功初始化I2C模块后，这个函数将设置好主
机的总线速度，并将使能I2C主机模块。

如果参数 bFast为 True，那么主机模块将会以 400kbps的速度来传输数据；否则将会以
100kbps的速度来传输数据。、

外设时钟将与处理器时钟相同。这个时钟值就是 SysCtlClockGet()所返回的值，或者当
它是一个已知常量时（调用 SysCtlClockGet()时用来保存代码/执行体），该时钟值就明确为
硬编码。

这个函数取代了最初的 I2CMasterInit()API函数，并执行相同的操作。i2c.h提供一个宏
来把最初的 API函数映射到此 API函数中。

返回：

无。

12.2.2.12 I2CMasterIntClear
清除I2C主机中断源。

函数原型：

void

I2CMasterIntClear(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

清除I2C主机中断源，使其不再有效。这必须在中断处理程序中执行，以防在退出时立
即再次对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。操作失败可能会导致立即再次进入中断处理程序。（因

为 NVIC仍会把中断源看作是有效的）。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

105

 广州周立功单片机发展有限公司 第 12 章 I2C

12.2.2.13 I2CMasterIntDisable
关闭I2C主机中断。

函数原型：

void

I2CMasterIntDisable(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

关闭I2C主机中断源。

返回：

无。

12.2.2.14 I2CMasterIntEnable
使能I2C主机中断。

函数原型：

void

I2CMasterIntEnable(unsigned long ulBase)

参数：

ulBase是I2C主机模块的基址。

描述：

使能I2C主机中断源。

返回：

无。

12.2.2.15 I2CMasterIntStatus
获取当前的I2C主机中断状态。

函数原型：

tBoolean

I2CMasterIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是I2C主机模块的基址。

bMasked：如果需要原始的中断状态，bMasked为 False；如果需要屏蔽的中断状态，否
bMasked就为 True。

描述：

这个函数返回I2C主机模块的中断状态。原始的中断状态或允许反映到处理器中的中断
的状态可以被返回。

返回：

返回当前的中断状态，有效时返回 True，无效时返回 False。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

106

 广州周立功单片机发展有限公司 第 12 章 I2C

12.2.2.16 I2CMasterSlaveAddrSet
设置I2C主机将放置到总线上的地址。

函数原型：

void

I2CMasterSlaveAddrSet(unsigned long ulBase,

unsigned char ucSlaveAddr,

tBoolean bReceive)

参数：

ulBase是I2C主机模块的基址。

ucSlaveAddr为 7位从机地址。

bReceive为标志，它指示与从机通信的类型。

描述：

当初始化传输时，这个函数将设置I2C主机放置到总线上的地址。当bReceive设置成True
时，地址将指示I2C主机正在启动一个读从机的操作；否则指示I2C主机正在启动一个写从机
的操作。

返回：

无。

12.2.2.17 I2CSlaveDataGet
接收一个已经发送给I2C从机的字节。

函数原型：

unsigned long

I2CSlaveDataGet(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

这个函数从I2C从机数据寄存器读取一个字节的数据。

返回：

返回从I2C从机接收到的字节，强制转换成一个无符号长整型（unsigned long）。

12.2.2.18 I2CSlaveDataPut
发送I2C从机的一个字节。

函数原型：

void

I2CSlaveDataPut(unsigned long ulBase,

unsigned char ucData)

参数：

ulBase是I2C从机模块的基址。

ucData是要从I2C从机发送出的数据。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

107

 广州周立功单片机发展有限公司 第 12 章 I2C

描述：

这个函数将提供的数据放置到I2C从机数据寄存器中。

返回：

无。

12.2.2.19 I2CSlaveDisable
禁止I2C从机模块。

函数原型：

void

I2CSlaveDisable(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

这个函数将禁止I2C从机模块的操作。

返回：

无。

12.2.2.20 I2CSlaveEnable
使能I2C从机模块。

函数原型：

void

I2CSlaveEnable(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

这个函数将使能I2C从机模块的操作。

返回：

无。

12.2.2.21 I2CSlaveInit
初始化I2C从机模块。

函数原型：

void

I2CSlaveInit(unsigned long ulBase,

unsigned char ucSlaveAddr)

参数：

ulBase是I2C从机模块的基址。

ucSlaveAddr为 7位从机地址。

描述：

这个函数初始化I2C从机模块的操作。成功初始化I2C模块后，这个函数将设置好从机地

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

108

 广州周立功单片机发展有限公司 第 12 章 I2C

址并使能完I2C从机模块。

参数ucSlaveAddr是一个将被拿来与I2C主机发送的从机地址相比较的值。

返回：

无。

12.2.2.22 I2CSlaveIntClear
清除I2C从机中断源。

函数原型：

void

I2CSlaveIntClear(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

清除I2C从机中断源，使其不再有效。这必须在中断处理程序中执行，以防在退出时立
即再次对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。操作失败可能会导致立即再次进入中断处理程序。（因

为 NVIC仍会把中断源看作是有效的）。

返回：

无。

12.2.2.23 I2CSlaveIntDisable
关闭I2C从机中断。

函数原型：

void

I2CSlaveIntDisable(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

关闭I2C从机中断源。

返回：

无。

12.2.2.24 I2CSlaveIntEnable
使能I2C从机中断。

函数原型：

void

I2CSlaveIntEnable(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

109

 广州周立功单片机发展有限公司 第 12 章 I2C

描述：

使能I2C从机中断源。

返回：

无。

12.2.2.25 I2CSlaveIntStatus
获取当前的I2C从机中断状态。

函数原型：

tBoolean

I2CSlaveIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是I2C从机模块的基址。

bMasked：如果需要原始的中断状态，bMasked为 False；如果需要屏蔽的中断状态，则
bMasked就为 True。

描述：

这个函数返回I2C从机模块的中断状态。原始的中断状态或允许反映到处理器中的中断
的状态可以被返回。

返回：

返回当前的中断状态，有效时返回 True，无效时返回 False。

12.2.2.26 I2CSlaveStatus
获取I2C从机模块的状态。

函数原型：

unsigned long

I2CSlaveStatus(unsigned long ulBase)

参数：

ulBase是I2C从机模块的基址。

描述：

这个函数返回主机请求的操作（如果有的话）。可能返回下面的其中一个值：

 I2C_SLAVE_ACT_NONE；
 I2C_SLAVE_ACT_RREQ；
 I2C_SLAVE_ACT_TREQ；
 I2C_SLAVE_ACT_RREQ_FBR。

返回：

在上面的值中，返回I2C_SLAVE_ACT_NONE表明没有任何I2C从机模块的操作被请求；
I2C_SLAVE_ACT_RREQ 表 明 一 个 I2C 主 机 已 经 把 数 据 发 送 给 I2C 从 机 模 块 ；
I2C_SLAVE_ACT_TREQ 表 明 一 个 I2C 主 机 已 经 请 求 I2C 从 机 模 块 发 送 数 据 ，
I2C_SLAVE_ACT_RREQ_FBR表明一个I2C主机已经发送数据到I2C从机，并且已接收到跟在
从机自身地址后的第一个字节。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

110

 广州周立功单片机发展有限公司 第 12 章 I2C

12.3 编程示例

下面的例子显示了如何以主机的身份使用I2C API来发送数据。

//

// 初始化主机和从机。

//

I2CMasterInitExpClk(I2C_MASTER_BASE, SysCtlClockGet(), true);
//

// 指定从机地址。

//

I2CMasterSlaveAddrSet(I2C_MASTER_BASE, 0x3B, false);
//

// 将要发送的字符放置到数据寄存器中。

//

I2CMasterDataPut(I2C_MASTER_BASE, ’Q’);
//

// 启动将字符从主机发送到从机。

//

I2CMasterControl(I2C_MASTER_BASE, I2C_MASTER_CMD_SINGLE_SEND);
//

// 延时一段时间，直至发送完成。

//

while(I2CMasterBusBusy(I2C_MASTER_BASE))

{

}

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

111

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

第13章 中断控制器（NVIC）

13.1

13.2

简介

中断控制器 API 提供了一组函数，用来处理嵌套向量中断控制器（NVIC）。这些函数
执行以下功能：使能和禁止中断、注册中断处理程序和设置中断的优先级。

NVIC提供了全局中断屏蔽、优先级排序和处理程序分派。这个版本的 Stellaris系列支
持 32个中断源和 8个优先级级别。单个的中断源可以被屏蔽，处理器中断也可以被全局屏
蔽（不影响单个中断源的屏蔽）。

NVIC 与 Cortex-M3 微处理器紧密相连。当处理器响应一个中断时，NVIC 将把直接处
理中断的函数的地址提供给处理器。这样就不再需要一个全局中断处理程序通过查询中断处

理器来确定中断源，再跳转到相应的处理程序执行，从而节省了中断响应时间。

NVIC的中断优先级排列允许高优先级中断在低优先级中断之前处理，还允许高优先级
中断抢先低优先级中断被处理。这就再次有助于缩短中断响应时间（例如，一个 1ms 的系
统控制中断不会因一个优先级比它低的 1s的内部处理的中断处理程序的执行而被拖延）。

还可能进行子优先级排列（sub-prioritization）；NVIC可以通过软件配置成具有（N-M）
位抢占式优先级和M位子优先级，而不是含有 N位抢占式优先级。在这种机制下，具有相
同的抢占式优先级而子优先级不同的两个中断不会发生抢占；这两个中断将使用末尾连锁

（tail chaining）来被一个接一个地进行处理。

如果具有相同优先级的两个中断（如果这样配置，子优先级也相同）同时产生，那么中

断编号更小的中断将先被处理。NVIC知道中断处理程序的嵌套，允许处理器在所有嵌套的
和挂起的中断被处理完后就立即从中断环境返回。

中断处理程序可以用下面其中一种方法来配置：编译时的静态配置或运行时的动态配

置。中断处理程序的静态配置通过编辑应用的启动代码中的中断处理程序表来完成。静态配

置时，中断必须先明确地通过 IntEnable()在 NVIC中被使能，然后处理器才能响应它（除了
外设本身所需要的任何中断使能之外）。

另外，中断也可以使用 IntRegister()（或每个单个的驱动程序中类似的函数）在运行时
被配置。如果使用的是 IntRegister()，中断必须像以前那样使能；如果使用的是每个独立驱
动程序中类似的中断注册函数，IntEnable()由驱动程序来调用，不需要被应用程序调用。

中断处理程序的运行时配置要求中断处理程序表被放置在 SRAM的 1kB边界（典型地，
这片区域位于 SRAM的开始处）。如果操作失败，会导致取出一个错误的向量地址来响应中
断。向量表位于一个称为“vtable”的区，它应当通过链接器脚本文件被放置在合适的地方。
因此，不支持链接器脚本的工具（例如 RV-MDK 的评估版）就不支持中断处理程序的运行
时配置（但是 RV-MDK的完整版支持中断处理程序的运行时配置）。

这个驱动程序包含在 src/interrupt.c中，src/interrupt.h包含应用使用的 API定义。

API函数

函数

 void IntDisable (unsigned long ulInterrupt)；
 void IntEnable (unsigned long ulInterrupt)；
 tBoolean IntMasterDisable (void)；
 tBoolean IntMasterEnable (void)；
 long IntPriorityGet (unsigned long ulInterrupt)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

112

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

 unsigned long IntPriorityGroupingGet (void)；
 void IntPriorityGroupingSet (unsigned long ulBits)；
 void IntPrioritySet (unsigned long ulInterrupt, unsigned char ucPriority)；
 void IntRegister (unsigned long ulInterrupt, void (*pfnHandler)(void))；
 void IntUnregister (unsigned long ulInterrupt)。

13.2.1 详细描述

中断控制器 API 的主要功能是管理 NVIC 使用的中断向量表来分派中断请求。注册中
断处理程序是一件简单的事情，就是将处理程序地址插入到表中。默认地，表内充满了永远

循环执行的内部处理程序的指针；当没有已注册的中断处理程序对中断进行处理时，就会出

现一个中断错误。因此，中断源应该在处理程序注册完之后被使能，中断源应当在处理程序

注销前被禁止。中断处理程序用 IntRegister()和 IntUnregister()来管理。

每个中断源可以通过 IntEnable()和 IntDisable()来单独使能和禁止。处理器中断可以通过
IntMasterEnable()和 IntMasterDisable()来使能和禁止；这并不会影响单个中断的使能状态。
处理器中断的屏蔽可以作为一个简单又重要的部分被使用（当处理器中断被禁止时只有

NMI能中断处理器），尽管这会对中断响应时间产生不利的影响。

每个中断源的优先级可以通过 IntPrioritySet()和 IntPriorityGet()来设置和检查。优先级分
配由硬件来定义；可以检查 8 位优先级的高 N 位来确定一个中断的优先级（对于 Stellaris
系列来说，N 为 3）。这样，并不需要真正知道所支持的优先级的级数就允许对优先级进行
定义了；转移到一个具有更多或更少优先级位的器件将继续处理具有类似优先级级别的中断

源。优先级编号越小，对应的中断优先级就越高，因此。0对应的是最高的优先级。

13.2.2 函数文件

13.2.2.1 IntDisable
禁止一个中断。

函数原型：

void

IntDisable(unsigned long ulInterrupt)

参数：

ulInterrupt指定被禁止的中断。

描述：

指定的中断在中断控制器中被禁止。其它的中断使能（例如外设级）不受这个函数的影

响。

返回：

无。

13.2.2.2 IntEnable
使能一个中断。

函数原型：

void

IntEnable(unsigned long ulInterrupt)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

113

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

ulInterrupt指定被使能的中断。

描述：

指定的中断在中断控制器中被使能。其它的中断使能（例如外设级）不受这个函数的影

响。

返回：

无。

13.2.2.3 IntMasterDisable
禁止处理器中断。

函数原型：

tBoolean

IntMasterDisable(void)

描述：

阻止处理器接收中断。这不会影响在中断控制器中已使能的中断集；它只是控制控制器

到处理器的个别中断。

注：由于该函数以前并没有返回值，因此，可以把 interrupt.h包含在内并在无需包含 hw_types.h时能

够调用该函数。然而现在的返回值为 tBoolean，在这种情况下，一个编译错误将会发生。为了阻止编译错

误发生，其方法就是在包含 interrupt.h前要先包含 hw_types.h。

返回：

在调用此函数时，如果已经禁止中断，则返回 True，如果中断已使能，则返回 False。

13.2.2.4 IntMasterEnable
使能处理器中断。

函数原型：

tBoolean

IntMasterEnable(void)

描述：

允许处理器响应中断。这不会影响在中断控制器中已使能的中断集；它只是控制控制器

到处理器的个别中断。

注：由于该函数以前并没有返回值，因此，可以把 interrupt.h包含在内并在无需包含 hw_types.h时能

够调用该函数。然而现在的返回值为 tBoolean，在这种情况下，一个编译错误将会发生。为了阻止编译错

误发生，其方法就是在包含 interrupt.h前要先包含 hw_types.h。

返回：

在调用此函数时，如果已经禁止中断，则返回 True，如果中断已使能，则返回 False。

13.2.2.5 IntPriorityGet
获取一个中断的优先级。

函数原型：

long

IntPriorityGet(unsigned long ulInterrupt)

参数：

ulInterrupt指定讨论的中断。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

114

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

描述：

这个函数获取一个中断的优先级。优先级值的定义请见 IntPrioritySet()。

返回：

返回中断优先级，如果指定了一个无效的中断则返回-1。

13.2.2.6 IntPriorityGroupingGet
获取中断控制器的优先级分组。

函数原型：

unsigned long

IntPriorityGroupingGet(void)

描述：

这个函数返回的是中断优先级规范中抢占式优先级级别和子优先级级别两者分离的结

果。

返回：

抢占式优先级的位的数目。

13.2.2.7 IntPriorityGroupingSet
设置中断控制器的优先级分组。

函数原型：

void

IntPriorityGroupingSet(unsigned long ulBits)

参数：

ulBits指定抢占式优先级的位的数目。

描述：

这个函数将中断优先级规范中的抢占式优先级级别和子优先级级别分开。分组值的范围

由具体的硬件实现决定；在 Stellaris系列上,3个位可用来决定硬件中断优先级，因此从 3到
7的优先级组具有同的优先级作用。

返回：

无。

13.2.2.8 IntPrioritySet
设置一个中断的优先级。

函数原型：

void

IntPrioritySet(unsigned long ulInterrupt,

unsigned char ucPriority)

参数：

ulInterrupt指定讨论的中断。

ucPriority指定中断的优先级。

描述：

这个函数用来设置一个中断的优先级。当多个中断同时提交时，优先级最高的中断在其

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

115

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

它优先级较低的中断之前被处理。编号越小，对应的中断优先级越高；优先级 0是最高的中
断优先级。

硬件优先级机制只查看优先级级别的高 N 位（Stellaris 系列的 N 为 3），因此，任何优
先级排列都必须在那些高 N 位中处理。剩余的位可用于中断源的子优先级排列，也可被硬
件优先级机制用在未来的器件中。这种配置允许优先级转移到不同的 NVIC中，而无需改变
中断的总的优先级排列。

返回：

无。

13.2.2.9 IntRegister
注册一个在中断出现时被调用的函数。

函数原型：

void

IntRegister(unsigned long ulInterrupt,

void (*pfnHandler)(void))

参数：

ulInterrupt指定讨论的中断。

pfnHandler是被调用函数的指针。

描述：

当给定的中断向处理器提交申请时，这个函数用来指定调用的处理程序。当中断出现时，

如果它通过 IntEnable()被使能，将在中断环境中对处理程序进行调用。由于处理程序函数可
以抢占其它代码，因此必须小心保护处理程序或其它非处理程序代码所访问的内存或外设。

注：这个函数的使用（直接使用或间接通过一个外设驱动程序的中断注册函数来使用）会将中断向量

表从 Flash移到 SRAM中。因此，在连接应用来确保 SRAM向量表位于 SRAM的起始处时必须非常小心；

另外，NVIC将不会在存储器的合适区域查看向量表（它要求向量表在 1kB的存储空间处对齐）。通常，SRAM

向量表通过使用链接器脚本来这样放置；某些工具链，例如 RV-MDK的评估版，并不支持链接器脚本，所

以无法产生一个有效的可执行体（executable）。详见本章“简介”部分中有关编译时和运行时的中断处理

程序注册的讨论。

返回：

无。

13.2.2.10 IntUnregister
注销一个中断出现时被调用的函数。

函数原型：

void

IntUnregister(unsigned long ulInterrupt)

参数：

ulInterrupt指定讨论的中断。

描述：

这个函数用来指示当给定的中断提交到处理器时不调用任何处理程序。如果必要，中断

源将通过 IntDisable()自动禁止。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

116

 广州周立功单片机发展有限公司 第 13 章 中断控制器（NVIC）

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

13.3 编程示例

下面的例子显示了如何使用中断控制器 API来注册一个中断处理程序和使能中断。

//

// 中断处理程序函数。

//

extern void IntHandler(void);

//

// 注册中断 5的中断处理程序函数。

//

IntRegister(5, IntHandler);

//

// 使能中断 5。

//

IntEnable(5);

//

// 使能中断 5。

//

IntMasterEnable();

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

117

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

第14章 内存保护单元（MPU）

14.1

14.2

简介

内存保护单元（memory protect unit）（MPU）API提供了用来配置MPU的函数。MPU
与 Cortex-M3内核紧密相连，并且MPU提供了如何设置内存区的访问许可的方法。

最多可定义 8个内存区。每个区都有一个基址和一个大小。大小被指定为 2的幂次方，
范围在 32字节与 4GB间包括 32字节和 4GB。区的基址必须对齐区的大小。每个区也具有
访问许可。一个区可以允许或不允许有代码执行体。对于权限（privileged）模式和用户模
式，区能被设置成只读访问、读/写访问或无访问权。这一般是用来设置只有内核（kernel）
或系统代码才能访问某些硬件寄存器或部分代码的环境。

MPU在每个区内创建 8个子区。任何子区或联合子区能被禁止，允许创建基于不同许
可的“空洞（holes）”或复合叠置（complex overlaying）区。通过禁止一个或多个最前（leading）
或末尾子区，子区也能被创建成一个开始或末尾不对齐的区。

一旦区已定义并且MPU使能，对区进行任何一个非法访问将会导致一个内存管理故障，
并且故障处理程序将会被激活。

驱动程序包含在 src/mpu.c中，src/mpu.h包含应用使用的 API定义。

API函数

函数

 void MPUDisable (void)；
 void MPUEnable (unsigned long ulMPUConfig)；
 void MPUIntRegister (void (*pfnHandler)(void))；
 void MPUIntUnregister (void)；
 unsigned long MPURegionCountGet (void)；
 void MPURegionDisable (unsigned long ulRegion)；
 void MPURegionEnable (unsigned long ulRegion)；
 void MPURegionGet (unsigned long ulRegion, unsigned long *pulAddr, unsigned long

*pulFlags)；
 void MPURegionSet (unsigned long ulRegion, unsigned long ulAddr, unsigned long

ulFlags)。

14.2.1 详细描述

MPU API提供了一个对MPU和内存保护区进行使能和配置的方法。

通常，内存保护区应在使能MPU之前被定义。对每一个区进行配置时，可以通过调用
MPURegionSet()一次来实现配置。

由 MPURegionSet()定义的区是最初被使能或禁止的。如果最初不使能此区，稍后可以
通过调用 MPURegionEnable()来使能此区。一个已被使能的区可以通过调用
MPURegionDisable()来将其禁止。当一个区禁止时，只要它不被覆写（重写），那么将保存
它的配置。在这种情况下，使用MPURegionEnable()就可将其再次使能，且无需重新配置此
区。

当使用MPURegionSet()来设置一个保护区时必须要小心。该函数将会改写多个寄存器，
并会受到中断的干扰。因此，有可能的是一个访问保护区的中断可能发生在保护区正被程序

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

118

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

修改时。防止这种事件的最安全的措施就是确保要先禁止区，然后才能对区的属性作出任何

的改变。否则，这就要由调用者来确保在不能被中断的代码中总是调用 MPURegionSet()，
或如果一个中断在区的属性正在发生改变时发生而代码却不受到影响，则调用者也可以从这

个代码中总是调用MPURegionSet()。

使用 MPURegionGet()函数，就能获取已被编程好的区的属性，并把属性保存起来。此
函数把属性按一定的格式保存，稍后可使用 MPURegionSet()函数把按一定的格式保存的属
性重新装载到区中。注意，区的使能状态与属性是一起被保存的，因此当区被重新装载时，

区的使能状态将会生效。

当一个或多个区已定义时，调用MPUEnable()来使能MPU。这就开启了MPU并也定义
在权限模式下和硬故障处理程序与 NMI 故障处理程序中的操作。由于 MPU 可以被配置，
因此当处在权限模式中并且全部区禁止时，则会应用一个默认内存映射。如果这个特性被禁

止，那么就产生一个内存管理故障（如果 MPU 使能且全部区不被配置和被禁止）。当在硬
故障处理程序或 NMI处理程序时，MPU也可被设置成使用一个默认内存映射，而不是使用
被配置的区。当调用 MPUEnable()时，则可选择这些的全部特性。MPU 使能时，通过调用
MPUDisable()就可将其禁止。

最后，如果应用正在使用运行时中断注册（请参考 IntRegister()），那么就可以使用
MPUIntRegister()函数来安装故障处理程序，只要发生内存保护违犯情况，就要调用故障处
理程序。此函数也将使能故障处理程序。如果使用了编译时中断注册，那么必须使用

IntEnable()函数和参数 FAULT_MPU 来使能内存管理故障处理程序。当已使用

MPUIntRegister()安装内存管理故障处理程序时，调用MPUIntUnregister()就可将其卸载。

14.2.2 函数文件

14.2.2.1 MPUDisable
禁止使用MPU。

函数原型：

void

MPUDisable(void)

描述：

此函数禁止 Cortex-M3内存保护单元。当禁止MPU时，则使用默认内存映射并且不产
生内存管理故障。

返回：

无。

14.2.2.2 MPUEnable
使能并配置MPU的用法。

函数原型：

void

MPUEnable(unsigned long ulMPUConfig)

参数：

ulMPUConfig是可能配置的逻辑或。

描述：

此函数使能 Cortex-M3内存保护单元。当在权限模式和在处理一个硬故障或 NMI时，

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

119

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

它同样也配置默认操作。在使能 MPU 前，至少有一个区必须是通过调用 MPURegionSet()
来设置的，否则，通过把 MPU_CONFIG_PRIV_DEFAULT标志传递到 MPUEnable()就可使
能权限模式下的默认区。一旦MPU使能，只要出现任何内存访问违犯的情况，就将会产生
内存管理故障。

ulMPUConfig参数应该是下列任何值的逻辑或：

 MPU_CONFIG_PRIV_DEFAULT 在处于权限模式和其他区未定义时使能默认内存
映射。如果这个选项没有被使能，那么当MPU使能时至少有一个有效的区已定义；

 MPU_CONFIG_HARDFLT_NMI 在发生一个硬故障或 NMI 异常处理程序时使能
MPU。如果这个选项没有被使能，那么在运行其中一个这些异常处理程序和应用
了默认内存映射时，MPU禁止；

 MPU_CONFIG_NONE不选择以上的任何选项。在这种情况下，权限模式不提供默
认内存映射，并且在故障处理程序中MPU将会被禁止。

返回：

无。

14.2.2.3 MPUIntRegister
注册一个内存管理故障的中断处理程序。

函数原型：

void

MPUIntRegister(void (*pfnHandler)(void))

参数：

pfnHandler是指针，指向在内存管理故障发生时要被调用的函数。

描述：

此函数设置和使能由于保护区访问违规而导致MPU产生一个内存管理故障时所调用的
函数。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()

返回：

无。

14.2.2.4 MPUIntUnregister
注销一个内存管理故障的中断处理程序。

函数原型：

void

MPUIntUnregister(void)

描述：

此函数将会禁止和清除在内存管理故障发生时所要调用的处理程序。

也可参考：

有关注销中断处理程序的重要信息，请参考 IntRegister()

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

120

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

14.2.2.5 MPURegionCountGet
获取由MPU支持的区的计数值。

函数原型：

unsigned long

MPURegionCountGet(void)

描述：

此函数一般用来获取MPU支持的区的数量。这是被支持的总数量，包括已被编程的区。

返回：

适用于使用MPURegionSet()进行编程时的内存保护区的数量。

14.2.2.6 MPURegionDisable

禁止一个特定的区。

函数原型：

void

MPURegionDisable(unsigned long ulRegion)

参数：

ulRegion是禁止的区号。

描述：

此函数一般用来禁能一个以前使能的内存保护区。如果没有调用另一个函数

MPURegionSet()来覆写此区，那么它的配置将会保留，通过调用MPURegionEnable()，则可
再次使能此区。

返回：

无。

14.2.2.7 MPURegionEnable
使能一个特定的区。

函数原型：

void

MPURegionEnable(unsigned long ulRegion)

参数：

ulRegion是要使能的区号。

描述：

此函数一般用来使能一个内存保护区。这个区应用使用函数 MPURegionSet()来设置。
一旦区使能，此区的内存保规则将会被应用，并且访问违犯将会引起一个内存管理故障。

返回：

无。

14.2.2.8 MPURegionGet
获取一个指定区的当前设置。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

121

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

MPURegionGet(unsigned long ulRegion,

unsigned long *pulAddr,

unsigned long *pulFlags)

参数：

ulRegion是要获取的区号。

pulAddr是指向存放区基址的位置。

pulFlags指向区的属性标志。

描述：

此函数获取一个指定区的配置。参数的意义和格式与MPURegionSet()函数中的相同。

此函数能保存区的配置，稍后要使用此配置和 MPURegionSet()函数。区的使能状态将
被保存在已被保存的属性中。

返回：

无。

14.2.2.9 MPURegionSet
设置指定区的访问规则。

函数原型：

void

MPURegionSet(unsigned long ulRegion,

unsigned long ulAddr,

unsigned long ulFlags)

参数：

ulRegion是要设置的区号。

ulAddr是区的基址。它必须依照 ulFlags指定的区大小对齐。

ulFlags是标志集，用以定义区的属性。

描述：

此函数设置区的保护规则。区具有一个基址和属性集以及包括区大小，其中大小必须是

2的幂次方。基址参数 ulAddr必须依照区大小来对齐。

ulFlags 参数是区中的全部属性的逻辑或。它是区大小、执行许可、读/写许可、禁止的
子区和一个标志的组合选择，以便确定区是否使能。

标志大小决定区的大小，并且区的大小必须是以下值的其中一个：

 MPU_RGN_SIZE_32B；
 MPU_RGN_SIZE_64B；
 MPU_RGN_SIZE_128B；
 MPU_RGN_SIZE_256B；
 MPU_RGN_SIZE_512B；
 MPU_RGN_SIZE_1K；
 MPU_RGN_SIZE_2K；
 MPU_RGN_SIZE_4K；
 MPU_RGN_SIZE_8K；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

122

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

 MPU_RGN_SIZE_16K；
 MPU_RGN_SIZE_32K；
 MPU_RGN_SIZE_64K；
 MPU_RGN_SIZE_128K；
 MPU_RGN_SIZE_256K；
 MPU_RGN_SIZE_512K；
 MPU_RGN_SIZE_1M；
 MPU_RGN_SIZE_2M；
 MPU_RGN_SIZE_4M；
 MPU_RGN_SIZE_8M；
 MPU_RGN_SIZE_16M；
 MPU_RGN_SIZE_32M；
 MPU_RGN_SIZE_64M；
 MPU_RGN_SIZE_128M；
 MPU_RGN_SIZE_256M；
 MPU_RGN_SIZE_512M；
 MPU_RGN_SIZE_1G；
 MPU_RGN_SIZE_2G；
 MPU_RGN_SIZE_4G。

执行许可标志必须是下列值中的其中之一：

 MPU_RGN_PERM_EXEC使能代码执行体的区；
 MPU_RGN_PERM_NOEXEC禁止代码执行体的区。

在权限和用户模式下，可以单独应用读/写访问许可。读/写访问标志必须是下列值的其
中之一：

 MPU_RGN_PERM_PRV_NO_USR_NO – 在权限或用户模式无访问权；
 MPU_RGN_PERM_PRV_RW_USR_NO – 权限的读/写，用户无访问权；
 MPU_RGN_PERM_PRV_RW_USR_RO – 权限的读/写，用户只读；
 MPU_RGN_PERM_PRV_RW_USR_RW – 权限的读/写，用户读/写；
 MPU_RGN_PERM_PRV_RO_USR_NO – 权限的只读，用户无访问权；
 MPU_RGN_PERM_PRV_RO_USR_RO – 权限只读，用户只读。

区自动地被MPU分成 8个均等大小的子区。只有 256字节大小或更大的区才能分区。
全部 8个子区中的任何子区都能禁止。这就在区中创建“洞”，它能被悬空或被具有不同属
性的另一个区覆盖。使用下列的任何标志的逻辑或，就可禁止任何 8个子区：

 MPU_SUB_RGN_DISABLE_0；
 MPU_SUB_RGN_DISABLE_1；
 MPU_SUB_RGN_DISABLE_2；
 MPU_SUB_RGN_DISABLE_3；
 MPU_SUB_RGN_DISABLE_4；
 MPU_SUB_RGN_DISABLE_5；
 MPU_SUB_RGN_DISABLE_6；
 MPU_SUB_RGN_DISABLE_7。

最后，使用下列标志中的其中一个标志就可开始使能或禁止区：

 MPU_RGN_ENABLE；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

123

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

 MPU_RGN_DISABLE。

举例来说，设置一个区具有以下属性：32KB大小、执行体使能、只读的权限和用户模
式、禁止一个子区和最初使能；则 ulFlags参数应该是以下值：

(MPU_RG_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

注：此函数将会向多个寄存器写入数据，并且它会受到中断的干扰。因此当区正在发生改变时，有可

能会出现中断访问区的情形。处理这个情形的最安全方法就是在改变区前要先将其禁止。有关此次的讨论，

请参考 API的详细描述部分。

返回：

无。

14.3 编程示例

下列示例设置了保护区的基本设置，以提供以下属性：

 只读代码执行码的一个 28Kb的 Flash区；
 在权限和用户模式下可以访问的读/写 32Kb RAM；
 只可在权限模式下使用的另一个 8Kb RAM；
 只可以在权限模式下访问的 1Mb外设空间，一个根本无法访问的 128Kb洞除外，
并且在此外设空间内的另一个 128Kb区也可在用户模式下被访问。

//

// 定义一个 28Kb的 Flash区，从 0x00000000至 0x00007000。这个区是可执行的，

//并且在权限和用户模式下都是只读的。设置区时，一个 32Kb区（#0）被定义在地址 0开始，

//接着通过禁止最后一个子区来移除一个 4Kb的洞。

// 这个区将会是最初被使能。

//

MPURegionSet(0, 0,

MPU_RGN_SIZE_32K |

MPU_RGN_PERM_EXEC |

MPU_RGN_PERM_PRV_RO_USR_RO |

MPU_SUB_RGN_DISABLE_7 |

MPU_RGN_ENABLE);
//

//从 0x20008000至 0x2000A000,在 RAM中定义另一个 8Kb的区(#2)

// 它只可在权限模式下进行读/写访问。

//这个区将会先禁止，稍后再使能。

//
MPURegionSet(2, 0x20008000,

MPU_RGN_SIZE_8K |

MPU_RGN_PERM_NOEXEC |

MPU_RGN_PERM_PRV_RW_USR_NO|

MPU_RGN_DISABLE);

//

//从 0x40000000至 0x40100000的外设空间中定义一个区(#3) (1 MB)，

//.这个区只可在权限模式下访问。从 0x40020000至 0x40040000有一个不含有外设

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

124

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

//的区域，它根本是不可访问的。这是通过禁止第二个子区（1）来产生一个洞而创建的。

//此外，从 0x40080000至 0x400A0000的一个区域也可在用户模式下对其进行访问。这是通

//过禁止第五个子区（4）并用适当的许可覆盖在此空间的另一个区（#4）来创建的。

//

MPURegionSet(3, 0x40000000,

MPU_RGN_SIZE_1M |

MPU_RGN_PERM_NOEXEC |

MPU_RGN_PERM_PRV_RW_USR_NO |

MPU_SUB_RGN_DISABLE_1 | MPU_SUB_RGN_DISABLE_4 |

MPU_RGN_ENABLE);

MPURegionSet(4, 0x40080000,

MPU_RGN_SIZE_128K |

MPU_RGN_PERM_NOEXEC |

MPU_RGN_PERM_PRV_RW_USR_RW |

MPU_RGN_ENABLE);

//

// 在这个示例中，使用了中断的编译时注册，因此并不需要注册中断处理程序。

// 然而，却一定要使能处理程序。

//

IntEnable(FAULT_MPU);

//

//当设置区时，区 2由于某些原因最初已被禁止。在某时刻需要将它使能。

//

MPURegionEnable(2);

//

//现在MPU将会被使能。它将会被配置，因此如果全部区不定义，则在权限模式下

// 具有一个有效的默认映射。MPU不会因为硬故障和 NMI处理程序而使能的，这意味着只要

//这些处理程序激活，就将使用一个默认映射，从而使故障处理程序能有效地访问全部内存，

// 且无需任何保护。

//

MPUEnable(MPU_CONFIG_PRIV_DEFAULT);

//

// 在这时MPU被配置和使能并且如果任何代码引起一个访问违犯，

//那么将会产生内存管理故障。

//

下列示例显示了如何保存和恢复区配置：
//

// 下列数组提供了用来保存地址和 4个区配置的属性的空间。

//

unsigned long ulRegionAddr[4];

unsigned long ulRegionAttr[4];
...

//

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

125

 广州周立功单片机发展有限公司 第 14 章 内存保护单元（MPU）

// 在系统代码的某时刻，我们想保存 4个区（0~3）的状态。

//

for(uIdx = 0; uIdx < 4; uIdx++)

{

MPURegionGet(uIdx, &ulRegionAddr[uIdx], &ulRegionAttr[uIdx]);

}

...

//

// 在其它某时刻，恢复之前被保存的区。

//

for(uIdx = 0; uIdx < 4; uIdx++)

{

MPURegionSet(uIdx, ulRegionAddr[uIdx], ulRegionAttr[uIdx]);

}

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

126

 广州周立功单片机发展有限公司 第15章 外设管脚映射

第15章 外设管脚映射

15.1

15.2

简介

外设管脚映射函数提供了一个如何配置一个外设管脚而无需知晓哪一个 GPIO 管与外
设管脚共用一个管脚的简易方法。这就使得配置外设管脚变得更容易（和更清楚），因为管

脚是用外设管脚名称来指定，而不是 GPIO名称（有可能更容易出错）

外设管脚到 GPIO管脚的映射在器件之间变化，意味着相关定义的变化取决于正在被使
用的器件。被使用的器件有二种方法来指定；通过源代码中的一个明确的#define 或通过被
提供到编译器的一个定义。使用一个#define 很直接，但缺乏灵活性。使用被提供到编译器
的一个定义并不是很明确（因为它不可以清楚地在源代码中表现出来），但却具有更多的灵

活性。外设管脚映射函数的真正价值是在使用不同器件的工程间共享一部分外设配置/控制
代码的能力；如果器件定义被提供到编译器而不是在源代码中，那么每一个工程都能提供它

本身的定义，并且代码将根据对象器件自动地对自身进行重新配置。

由于外设管脚映射函数每次只能配置一个管脚，因此使用 GPIOPinType*()函数来代替
PinType*()函数可使配置管脚的效率更高，虽然这就要求明确地了解所使用的 GPIO 管脚。
例如，它将会调用 PinTypeSSI()4次来配置在 SSI外设上的四个管脚，但是如果这些管脚处
于同一个 GPIO模块中，那么只需调用 GPIOPinTypeSSI()一次就可以完成以上的配置。然后
使用 GPIOPinType_()而非 PinType_()会导致代码不再自动地对自身进行重新配置（当然，不
使用代码中的明确定义）。

驱动程序包含在 src/pin_map.h中。

API函数

函数
 void PeripheralEnable (unsigned long ulName)；
 void PinTypeADC (unsigned long ulName)；
 void PinTypeCAN (unsigned long ulName)；
 void PinTypeComparator (unsigned long ulName)；
 void PinTypeI2C (unsigned long ulName)；
 void PinTypePWM (unsigned long ulName)；
 void PinTypeQEI (unsigned long ulName)；
 void PinTypeSSI (unsigned long ulName)；
 void PinTypeTimer (unsigned long ulName)；
 void PinTypeUART (unsigned long ulName)；
 void PinTypeUSBDigital (unsigned long ulName)。

15.2.1 详细描述

外设管脚映射函数要求正在被使用的器件用 PART_LM3Sxxx形式的定义来指定。xxx

部分被正在使用中的器件的器件编号替代；例如，如果正在使用 LM3S6965 微控制器，那
么定义为 PART_LM3S6965。这必须在源代码包含 pin_map.h之前定义完毕。

15.2.2 函数文件

15.2.2.1 PeripheralEnable
使能由特定的管脚所使用的外设端口。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

127

 广州周立功单片机发展有限公司 第15章 外设管脚映射

函数原型：

Void

PeripheralEnable(unsigned long ulName)

参数：

ulName是一个管脚的其中一个有效名称。

描述：

此函数为一个管脚选定了其中一个有效名称，并根据所定义的器件使能了此管脚的外设

端口。

可以使用任何一个有效管脚名称。

也可参考：

当多个管脚处于同一个端口时，为了使能单个端口，可以使用 SysCtlPeripheralEnable()。

返回：

无。

15.2.2.2 PinTypeADC
把特定的 ADC管脚配置成一个如 ADC管脚那样工作的管脚。

函数原型：

Void

PinTypeADC(unsigned long ulName)

参数：

ulName是 ADC管脚的其中一个有效名称。

描述：

此函数为 ADC管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配置成
具有它的 ADC功能的管脚。

管脚的有效名称如下：ADC0、ADC1、ADC2、ADC3、ADC4、ADC5、ADC6、

或 ADC7。

也可参考：

为了立即配置多个 ADC管脚，可以使用 GPIOPinTypeADC()。

返回：

无。

15.2.2.3 PinTypeCAN
把特定的 CAN管脚配置成一个如 CAN管脚那样工作的管脚

函数原型：

void

PinTypeCAN(unsigned long ulName)

参数：

ulName是 CAN管脚的其中一个有效名称。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

128

 广州周立功单片机发展有限公司 第15章 外设管脚映射

此函数为一个 CAN管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配
置成具有它的 ADC功能的管脚。

管脚的有效名称如下：CAN0RX、CAN0TX、CAN1RX、CAN1TX、CAN2RX或 CAN2TX。

也可参考：

为了立即配置多个 CAN管脚，可以使用 GPIOPinTypeCAN()。

返回：

无。

15.2.2.4 PinTypeComparator
把特定的比较器管脚配置成一个如比较器管脚那样工作的管脚。

函数原型：

void

PinTypeComparator(unsigned long ulName)

参数：

ulName是比较器管脚的其中一个有效名称。

描述：

此函数为一个比较器管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配

置成具有它的比较器功能的管脚。

管脚的有效名称如下：C0_MINUS、C0_PLUS、C1_MINUS、C1_PLUS、C2_MINUS
或 C2_PLUS。

也可参考：

为了立即配置多个比较器管脚，可以使用 GPIOPinTypeComparator()。

返回：

无。

15.2.2.5 PinTypeI2C
把特定的 I2C管脚配置成一个如 I2C管脚那样工作的管脚。

函数原型：

void

PinTypeI2C(unsigned long ulName)

参数：

ulName是 I2C管脚的其中一个有效名称。

描述：

此函数为一个 I2C管脚选定了其中一个有效名称，并根据所定义的零件把这个管脚配置
成具有它的 I2C功能的管脚。

管脚的有效名称如下：I2C0SCL、I2C0SDA、I2C1SCL或 I2C1SDA。

也可参考：

为了立即配置多个 I2C管脚，可以使用 GPIOPinTypeI2C()。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

129

 广州周立功单片机发展有限公司 第15章 外设管脚映射

15.2.2.6 PinTypePWM
把特定的 PWM管脚配置成一个如 PWM管脚那样工作的管脚。

函数原型：

void

PinTypePWM(unsigned long ulName)

参数：

ulName是 PWM管脚的其中一个有效名称。

描述：

此函数为一个 PWM管脚选定了其中一个有效名称，并根据所定义的零件把这个管脚配
置成具有它的 PWM功能的管脚。

管脚的有效名称如下：PWM0、PWM1、PWM2、PWM3、PWM4、PWM5或 FAULT。

也可参考：

为了能立即配置多个 PWM管脚，可以使用 GPIOPinTypePWM()。

返回：

无。

15.2.2.7 PinTypeQEI
把特定的 QEI管脚配置成一个如 QEI管脚那样工作的管脚。

函数原型：

void

PinTypeQEI(unsigned long ulName)

参数：

ulName是 QEI管脚的其中一个有效名称。

描述：

此函数为一个 QEI 管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配
置成具有它的 QEI功能的管脚。

管脚的有效名称如下：PHA0、PHB0、IDX0、PHA1、PHB1或 IDX1。

也可参考：

为了能立即配置多个 QEI管脚，可以使用 GPIOPinTypeQEI()。

返回：

无。

15.2.2.8 PinTypeSSI
把特定的 SSI管脚配置成一个如 SSI管脚那样工作的管脚。

函数原型：

void

PinTypeSSI(unsigned long ulName)

参数：

ulName是 SSI管脚的其中一个有效名称。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

130

 广州周立功单片机发展有限公司 第15章 外设管脚映射

描述：

此函数为一个 SSI管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配置
成具有它的 SSI功能的管脚。

管脚的有效名称如下：SSI0CLK、SSI0FSS、SSI0RX、SSI0TX、SSI1CLK、SSI1FSS、
SSI1RX或 SSI1TX。

也可参考：

为了能立即配置多个 SSI管脚，可以使用 GPIOPinTypeSSI()。

返回：

无。

15.2.2.9 PinTypeTimer
把特定的定时器管脚配置成一个如定时器管脚那样工作的管脚。

函数原型：

void

PinTypeTimer(unsigned long ulName)

参数：

ulName是定时器管脚的其中一个有效名称。

描述：

此函数为一个定时器管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚配

置成具有它的定时器功能的管脚。

管脚的有效名称如下：CCP0、CCP1、CCP2、CCP3、CCP4、CCP5、CCP6或 CCP7。

也可参考：

为了能立即配置多个 CCP管脚，可以使用 GPIOPinTypeTimer()。

返回：

无。

15.2.2.10 PinTypeUART
把特定的 UART管脚配置成一个如 UART管脚那样工作的管脚。

函数原型：

void

PinTypeUART(unsigned long ulName)

参数：

ulName是 UART管脚的其中一个有效名称。

描述：

此函数为一个 UART 管脚选定了其中一个有效名称，并根据所定义的器件把这个管脚
配置成具有它的 UART功能的管脚。

管脚的有效名称如下：U0RX、U0TX、U1RX、U1TX、U2RX和 U2TX。

也可参考：

为了能立即配置多个 UART管脚，可以使用 GPIOPinTypeUART()。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

131

 广州周立功单片机发展有限公司 第15章 外设管脚映射

无。

15.2.2.11 PinTypeUSBDigital
把特定的 USB数字管脚配置成一个如 USB管脚那样工作的管脚。

函数原型：

void

PinTypeUSBDigital(unsigned long ulName)

参数：

ulName是 USB数字管脚的其中一个有效名称。

描述：

此函数为一个 USB 数字管脚选定了其中一个有效名称，并根据所定义的器件把这个管
脚配置成具有它的 USB功能的管脚。

管脚的有效名称如下：EPEN或 PFAULT。

也可参考：

为了能立即配置多个 USB管脚，可以使用 GPIOPinTypeUSBDigital()。

返回：

无。

15.3 编程示例

这个示例显示了当在同一个应用程序中，在二个不同器件上配置一个 PWM管脚时代码
的差异。在这种情况下，PWM0管脚实际上是二个器件上的不同 GPIO端口，并且如果直接
使用 GPIOPinTypePWM()函数，就需要用到特别的条件代码（special conditional code）。反
之，如果使用了 PinTypePWM()，那么代码仍能保持不变，并只需要改变工程文件中的器件
定义。

PWM0管脚配置的示例，使用 PinTypePWM()：

...

//

// 把管脚配置成作为一个 PWM管脚使用。

//

PinTypePWM(PWM0);

...

PWM0管脚配置的示例，使用 GPIOPinTypePWM()：

...

#ifdef LM3S2110

//

// 把管脚配置成作为一个 PWM管脚使用。

//

GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

#endif

#ifdef LM3S2620

//

// 把管脚配置成作为一个 PWM管脚使用。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

132

 广州周立功单片机发展有限公司 第15章 外设管脚映射

//

GPIOPinTypeTimer(GPIO_PORTG_BASE, GPIO_PIN_0);

#endif

...

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

133

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

第16章 脉宽调制器(PWM)

16.1

16.2

简介

每个 Stellaris PWM模块提供 3个 PWM发生器模块和 1个输出控制模块。每个发生器
模块有 2个 PWM输出信号，它们可以单独操作，或者作为带有插入死区延时的一对信号来
使用。每个发生器模块还有一个中断输出和一个触发输出。控制模块决定了 PWM信号的极
性以及哪些信号经过模块到达管脚。

Stellaris PWM模块具有的特性有：

 3个发生器模块，每个包含：

♦ 1个 16位的递减或递增/递减计数器；

♦ 2个比较器；

♦ PWM发生器；

♦ 死区发生器。

 控制模块

♦ PWM输出使能；

♦ 输出极性控制；

♦ 同步；

♦ 故障处理；

♦ 中断状态。

这个驱动程序包含在 src/pwm.c中，src/pwm.h包含应用使用的 API定义。

API函数

函数

 void PWMDeadBandDisable (unsigned long ulBase, unsigned long ulGen)；
 void PWMDeadBandEnable (unsigned long ulBase, unsigned long ulGen, unsigned short us-

Rise, unsigned short usFall)；
 void PWMFaultIntClear (unsigned long ulBase)；
 void PWMFaultIntClearExt (unsigned long ulBase, unsigned long ulFaultInts)；
 void PWMFaultIntRegister (unsigned long ulBase, void (*pfnIntHandler)(void))；
 void PWMFaultIntUnregister (unsigned long ulBase)；
 void PWMGenConfigure (unsigned long ulBase, unsigned long ulGen, unsigned long

ulConfig)；
 void PWMGenDisable (unsigned long ulBase, unsigned long ulGen)；
 void PWMGenEnable (unsigned long ulBase, unsigned long ulGen)；
 void PWMGenFaultClear (unsigned long ulBase, unsigned long ulGen, unsigned long

ulGroup,unsigned long ulFaultTriggers)；
 void PWMGenFaultConfigure (unsigned long ulBase, unsigned long ulGen, unsigned long

ulMinFaultPeriod, unsigned long ulFaultSenses)；
 unsigned long PWMGenFaultStatus (unsigned long ulBase, unsigned long ulGen, unsigned

long ulGroup)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

134

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

 unsigned long PWMGenFaultTriggerGet (unsigned long ulBase, unsigned long ulGen,
unsigned long ulGroup)；

 void PWMGenFaultTriggerSet (unsigned long ulBase, unsigned long ulGen, unsigned long
ulGroup, unsigned long ulFaultTriggers)；

 void PWMGenIntClear (unsigned long ulBase, unsigned long ulGen, unsigned long ulInts)；
 void PWMGenIntRegister (unsigned long ulBase, unsigned long ulGen, void

(*pfnIntHandler)(void))；
 unsigned long PWMGenIntStatus (unsigned long ulBase, unsigned long ulGen, tBoolean

bMasked)；
 void PWMGenIntTrigDisable (unsigned long ulBase, unsigned long ulGen, unsigned

long ulIntTrig)；
 void PWMGenIntTrigEnable (unsigned long ulBase, unsigned long ulGen, unsigned

long ulIntTrig)；
 void PWMGenIntUnregister (unsigned long ulBase, unsigned long ulGen)；
 unsigned long PWMGenPeriodGet (unsigned long ulBase, unsigned long ulGen)；
 void PWMGenPeriodSet (unsigned long ulBase, unsigned long ulGen, unsigned long

ulPeriod)；
 void PWMIntDisable (unsigned long ulBase, unsigned long ulGenFault)；
 void PWMIntEnable (unsigned long ulBase, unsigned long ulGenFault)；
 unsigned long PWMIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void PWMOutputFault (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean

bFaultSuppress)；
 void PWMOutputFaultLevel (unsigned long ulBase, unsigned long ulPWMOutBits,

tBoolean bDriveHigh)；
 void PWMOutputInvert (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean

bInvert)；
 void PWMOutputState (unsigned long ulBase, unsigned long ulPWMOutBits, tBoolean

bEnable)；
 unsigned long PWMPulseWidthGet (unsigned long ulBase, unsigned long ulPWMOut)；
 void PWMPulseWidthSet (unsigned long ulBase, unsigned long ulPWMOut, unsigned long

ulWidth)；
 void PWMSyncTimeBase (unsigned long ulBase, unsigned long ulGenBits)；
 void PWMSyncUpdate (unsigned long ulBase, unsigned long ulGenBits)。

16.2.1 详细描述

这是一组在 PWM模块上执行高级操作的函数。尽管 Stellaris只有一个 PWM模块，这
些函数还是可以被定义成支持使用多个 PWM模块。

下面的函数给用户提供了一种方法，配置 PWM进行最常见操作，例如设置周期、产生
左对齐和中心对齐的脉冲、修改脉宽以及控制中断、触发和输出特性。但是，PWM模块是
非常通用的，它可以被配置成很多不同的方式，很多方式还超出了这个 API 的范围。为了
全面地使用 PWM模块的许多性能，建议用户使用寄存器访问宏。

当讨论到一个 PWM模块的各种部件时，这个 API使用了下列标号约定：

 3个发生器模块称为 Gen0、Gen1和 Gen2；
 与每个发生器模块相关的 2个 PWM输出信号称为 OutA和 OutB；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

135

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

 6个输出信号称为 PWM0、PWM1、PWM2、PWM3、PWM4和 PWM5；
 PWM0和 PWM1对应 Gen0、PWM2和 PWM3对应 Gen1、PWM4和 PWM5对应

Gen2。

而且，作为对这个 API 的一个简化的假设，每个发生器模块的比较器 A 专门用来调整
偶数编号的 PWM输出（PWM0、PWM2和 PWM4）的脉宽。另外，比较器 B专门用于奇
数编号的 PWM输出（PWM1、PWM3和 PWM5）脉宽。

16.2.2 函数文件

16.2.2.1 PWMDeadBandDisable
禁止 PWM死区输出。

函数原型：

void

PWMDeadBandDisable(unsigned long ulBase,

unsigned long ulGen)

参数：

ulBase是 PWM模块的基址。

ulGen 是要修改的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1 或
PWM_GEN_2或 PWM_GEN_3中的其中一个。

描述：

这个函数禁止指定 PWM发生器的死区模式。这样做可以去耦 OutA和 OutB信号。

返回：

无。

16.2.2.2 PWMDeadBandEnable
使能 PWM死区输出，设置死区延时。

函数原型：

void

PWMDeadBandEnable(unsigned long ulBase,

unsigned long ulGen,

unsigned short usRise，

unsigned short usFall)

参数：

ulBase是 PWM模块的基址。

ulGen 是要修改的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

usRise指定上升沿的延时宽度。

usFall指定下降沿的延时宽度。

描述：

这个函数设置指定 PWM 发生器的死区，在这里死区定义成发生器 OutA 信号的上升/
下降沿的 PWM时钟节拍（clock tick）数。注意，这个函数会造成 OutB到 OutA的耦合。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

136

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

返回：

无。

16.2.2.3 PWMFaultIntClear
清除一个 PWM模块的故障中断。

函数原型：

void

PWMFaultIntClear(unsigned long ulBase)

参数：

ulBase是 PWM模块的基址。

描述：

通过写所选 PWM模块的中断状态寄存器的相应位来清除故障中断。

这个函数只清除 FAULT0 中断，并保留其向后兼容的能力。建议使用
PWMFaultIntClearExt()来代替 PWMFaultIntClear，因为它支持器件提供的所有故障中断，而
且扩展 PWM故障处理程序支持可有可无均可。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

16.2.2.4 PWMFaultIntClearExt
清除一个 PWM模块的故障中断。

函数原型：

void

PWMFaultIntClearExt(unsigned long ulBase，

unsigned long ulFaultInts)

参数：

ulBase是 PWM模块的基址。

ulFaultInts指定要被清除的故障中断。

描述：

通过写所选 PWM 模块的中断状态寄存器的相应位来清除一个或多个故障中断。参数

ulFaultInts 必须是 PWM_INT_FAULT0、 PWM_INT_FAULT1、 PWM_INT_FAULT2 或
PWM_INT_FAULT3逻辑或（OR）得出的值。

当在器件上运行一个支持扩展 PWM故障处理程序时，通过执行一个给定的发生器所配
置的每一个故障触发信号的逻辑或来驱动故障中断。因此，这些中断并不与器件的 4个可能
性 PWM输入直接有关，但却表明有一个故障已经被告知给 4个可能性 PWM发生器中的一
个。在一个无需使用扩展 PWM故障处理程序的器件中，中断与单个 FAULT管脚的状态直
接相关。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

137

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

16.2.2.5 PWMFaultIntRegister
注册一个在 PWM模块中检测到的故障条件的中断处理程序。

函数原型：

void

PWMFaultIntRegister(unsigned long ulBase,

void (* pfIntHandler)(void))

参数：

ulBase是 PWM模块的基址。

pfIntHandler是 PWM故障中断出现时要调用的函数的指针。

描述：

当检测到所选 PWM模块的一个故障中断时，这个函数将确保调用 pfIntHandler指定的
中断处理程序。这个函数也将使能 NVIC中的 PWM故障中断；使能模块级别的 PWM故障
中断时，也必须使用 PWMIntEnable()。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

16.2.2.6 PWMFaultIntUnregister
注销 PWM故障条件中断处理程序。

函数原型：

void

PWMFaultIntUnregister(unsigned long ulBase)

参数：

ulBase是 PWM模块的基址。

描述：

这个函数将注销所选 PWM模块的一个 PWM故障中断的中断处理程序。这个函数也禁
止 NVIC的 PWM故障中断；禁止模块级的 PWM故障中断时，也必须使用 PWMIntDisable()。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

16.2.2.7 PWMGenConfigure

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

138

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

配置一个 PWM发生器。

函数原型：

void

PWMGenConfigure(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulConfig)

参数：

ulBase是 PWM模块的基址。

ulGen 是配置的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulConfig是 PWM发生器的配置。

描述：

这个函数用来设置一个 PWM发生器的工作模式。它可以配置成计数模式、同步模式和
调试操作。配置完后发生器处于禁止状态。

PWM发生器可以在两种不同模式中计数：计数递减模式或计数递增/递减模式。在计数
递减模式中，PWM发生器将从一个值递减计数到零，然后再恢复到预置值。这将会产生左
对齐的 PWM信号（即，发生器产生的 2个 PWM信号的上升沿同时出现）。在计数递增/递
减模式中，PWM发生器将从零递增计数到预置值，再递减计数回到零，然后重复这个过程。
这将会产生中心对齐的 PWM 信号（即，发生器产生的 PWM 信号的高/低电平周期的中心
同时出现）。

当 PWM发生器参数（周期和脉宽）被修改时，它们对输出 PWM信号上的影响可以被
延迟。在同步模式中，参数更新直到一个同步事件出现才被应用。这就允许多个参数同时被

修改和生效，而不是一次只有一个参数被修改和生效。另外，在同步模式中多个 PWM发生
器的参数可以被同时更新，允许将这些 PWM发生器当作就象是一个标准的发生器那样来对
待。在非同步模式中，参数的更新并不会等到同步事件出现的时候。在任何一种模式中，参

数更新都只会在计数器的值为 0时出现，这样来帮助阻止在更新过程中额外地形成 PWM信
号（即，一个太长或太短的 PWM脉冲）。

当处理器通过调试器被停止时，PWM发生器可以暂停或继续运行。如果配置成暂停，
PWM发生器将继续计数，直至计数到零，在计数到零这一时刻它将会暂停，直到处理器重
新启动。如果配置成继续运行，PWM发生器将继续计数，就好像没有任何事发生一样。

ulConfig参数包含所需的配置。它是下面值的逻辑或：

 设定计数模式的 PWM_GEN_MODE_DOWN或 PWM_GEN_MODE_UP_DOWN；
 设定计数装载和比较器更新同步模式的 PWM_GEN_MODE_SYNC 或

PWM_GEN_MODE_NO_SYNC；
 设 定 调 试 操 作 的 PWM_GEN_MODE_DBG_RUN 或

PWM_GEN_MODE_DBG_STOP；
 设 定 发 生 器 计 数 模 式 改 变 的 更 新 同 步 模 式 的

PWM_GEN_MODE_GEN_NO_SYNC、 PWM_GEN_MODE_GEN_SYNC_LOCAL
或 PWM_GEN_MODE_GEN_SYNC_GLOBAL；

 设定死区参数同步模式的 PWM_GEN_MODE_DB_SYNC_LOCAL、
PWM_GEN_MODE_DB_NO_SYNC或 PWM_GEN_MODE_DB_SYNC_GLOBAL；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

139

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

 设 定 故 障 条 件 是 否 被 锁 存 的 PWM_GEN_MODE_FAULT_LACTHED 或

PWM_GEN_MODE_FAULT_UNLATCHED；
 设定是否需要最小的故障周期支持的 PWM_GEN_MODE_FAULT_MINPER 或

PWM_GEN_MODE_FAULT_NO_MINPER；
 设定是否要使能扩展故障源选择支持的 PWM_GEN_MODE_FAULT_EXT 或

PWM_GEN_MODE_FAULT_LEGACY。

设置 PWM_GEN_MODE_FAULT_MINPER允许一个应用来设定一个 PWM故障信号的
最小操作时间。至少这次，故障将会被告知，即使外部故障管脚早已无效。使用该模式时必

须要小心，因为在故障信号期间，PWM发生器的故障中断仍将会持续有效。因此，如果故
障中断处理程序在故障定时时间到来之前退出，有可能会再次立即进入中断处理程序。

注：计数器模式的更改会影响产生的 PWM信号的周期。在执行完对一个发生器的计数器模式的任何

修改之后都应该调用 PWMGenPeriod()和 PWMPulseWidthSet()。

返回：

无。

16.2.2.8 PWMGenDisable
禁止一个 PWM发生器模块的定时器/计数器。

函数原型：

void

PWMGenDisable(unsigned long ulBase,

unsigned long ulGen)

参数：

ulBase是 PWM模块的基址。

ulGen 是被禁止的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

描述：

这个函数阻止 PWM时钟驱动指定发生器模块的定时器/计数器工作。

返回：

无。

16.2.2.9 PWMGenEnable
使能一个 PWM发生器模块的定时器/计数器。

函数原型：

void

PWMGenEnable(unsigned long ulBase,

unsigned long ulGen)

参数：

ulBase是 PWM模块的基址。

ulGen 是被使能的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

140

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

这个函数允许 PWM时钟驱动指定发生器模块的定时器/计数器工作。

返回：

无。

16.2.2.10 PWMGenFaultClear
清除给定的 PWM发生器的一个或多个锁存故障触发。

函数原型：

void

PWMGenFaultClear(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulGroup,

unsigned long ulFaultTriggers)

参数：

ulBase是 PWM模块的基址。

ulGen 是故障触发正被查询的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulGroup指示正在被讨论的故障子集。它必须是 PWM_FAULT_GROUP_0。

ulFaultTriggers是要被清除的故障触发集。

描述：

这个函数允许用一个应用来清除一个给定的 PWM发生器的故障触发。如果之前已调用
PWMGenConfigure()函数，且其参数 ulConfig的标志为 PWM_GEN_MODE_LATCH_FAULT
时，才会只需要使用这个函数。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

无。

16.2.2.11 PWMGenFaultConfigure
配置给定的 PWM发生器的最小故障周期和故障管脚检测（senses）。

函数原型：

void

PWMGenFaultConfigure(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulMinFaultPeriod,

unsigned long ulFaultSenses)

参数：

ulBase是 PWM模块的基址。

ulGen 是故障触发正被设定的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulMinFaultPeriod是以 PWM时钟周期表现的最小故障激活周期。

ulFaultSenses是用来指示每个 FAULT输入的哪一个检测（sense）应该被配置为“有效”

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

141

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

状态。有效值是 PWM_FAULTn_SENSE_HIGH和 PWM_FAULTn_SENSE_LOW的逻辑或组
合得出的结果。

描述：

这个函数设置一个给定发生器的最小故障周期及四个可能故障输入端中的每个管脚的

故障检测。最小故障周期是以 PWM时钟周期来表示，只有在调用 PWMGenConfigure()函数，
且其参数 ulConfig的标志为 PWM_GEN_MODE_LATCH_PER时，最小故障周期才会生效。
当一个故障输入有效时，最小故障周期定时器确保该故障输入至少在指定的时钟周期数值内

保持有效。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

无。

16.2.2.12 PWMGenFaultStatus
返回到给定的 PWM发生器的故障触发的当前状态。

函数原型：

unsigned long

PWMGenFaultStatus(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulGroup)

参数：

ulBase是 PWM模块的基址。

ulGen 是故障触发正被讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulGroup表示正被讨论的故障子集。它必须是 PWM_FAULT_GROUP_0

描述：

这个函数允许用应用来询问一个给定的 PWM发生器的每个故障触发输入的当前状态。
除非之前早已调用 PWMGenConfigure()函数 ,且这个函数的参数 ulConfig 的标志为
PWM_GEN_MODE_LATCH_FAULT，否则 PWMGenFaultStatus返回到每个故障触发输入的
当前状态。

如果锁存故障被配置，应用必须调用 PWMGenFaultClear()来清除每一个触发。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

返回到给定的 PWM发生器的故障触发的当前状态。设置位表明相关的触发被激活。对
于 PWM_FAULT_GROUP_0 来 说 ， 返 回 值 是 PWM_FAULT_FAULT0 、

PWM_FAULT_FAULT1、PWM_FAULT_FAULT2或 PWM_FAULT_FAULT3的逻辑或组合得
出的值。

16.2.2.13 PWMGenFaultTriggerGet
返回到给定的 PWM发生器当前所配置的故障触发设置（set）。

函数原型：

unsigned long

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

142

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

PWMGenFaultTriggerGet(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulGroup)

参数：

ulBase是 PWM模块的基址。

ulGen 是故障触发正被查询的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulGroup表示正被查询的故障子集。它必须是 PWM_FAULT_GROUP_0

描述：

这个函数允许用应用来询问输入的当前设置（set），这个当前设置用来产生给定的 PWM
发生器的故障条件。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

返回到给定的故障组所配置的当前故障触发。对于 PWM_FAULT_GROUP_0 来说，返
回 值 是 PWM_FAULT_FAULT0 、 PWM_FAULT_FAULT1 、 PWM_FAULT_FAULT2 或

PWM_FAULT_FAULT3的逻辑或组合得出的值。

16.2.2.14 PWMGenFaultTriggerSet
配置给定的 PWM发生器的故障触发设置。

函数原型：

void

PWMGenFaultTriggerSet(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulGroup,

unsigned long ulFaultTriggers)

参数：

ulBase是 PWM模块的基址。

ulGen 是故障触发将被设置的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulGroup表示被配置的可能性故障的子集。它必须是 PWM_FAULT_GROUP_0。

ulFaultTriggers 定义输入的设置以产生给定的 PWM 发生器的故障信号。对于

PWM_FAULT_GROUP_0 来 说 ， 该 输 入 设 置 的 值 将 会 是

PWM_FAULT_FAULT0、PWM_FAULT_FAULT1、PWM_FAULT_FAULT2 或
PWM_FAULT_FAULT3的逻辑或组合得出的值。

描述：

这个函数允许选择故障输入的设置，把这些故障输入的设置组合起来以产生一个给定的

PWM发生器的故障条件。在默认状态下，所有的发生器只使用 FAULT0(这是为了向后兼容)，
但如果调用了 ulConfig 参数为 PWM_GEN_MODE_FAULT_SRC 的 PWMGenConfigure()函
数，那么扩展故障处理使能并且必须调用这个函数来配置故障触发。

在基于以前通过调用 PWMGenFaultConfigure()来设置配置的基础上已经调整了每个

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

143

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

FAULTn输入的检测后，把 ulFaultTriggers参数中指定的输入的每个信号一起经过逻辑或计
算后，就可产生 PWM发生器的故障信号。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

无。

16.2.2.15 PWMGenIntClear
清除特定的 PWM发生器模块的特定中断。

函数原型：

void PWMGenIntClear(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulInts)

参数：

ulBase是 PWM模块的基址。

ulGen 是讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulInts指定被清除的中断。

描述：

通过写一个 1到指定的 PWM发生器的中断状态寄存器的特定位，就可以清除指定的中
断。ulInts参数是 PWM_INT_CNT_ZERO、PWM_INT_CNT_LOAD、PWM_INT_CNT_AU、
PWM_INT_CNT_AD、PWM_INT_CNT_BU或 PWM_INT_CNT_BD的逻辑或得出的值。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

16.2.2.16 PWMGenIntRegister
注册特定的 PWM发生器模块的一个中断处理程序。

函数原型：

void

PWMGenIntRegister(unsigned long ulBase,

unsigned long ulGen,

void (*pfnIntHandler)(void))

参数：

ulBase是 PWM模块的基址。

ulGen 是讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

pfIntHandler是 PWM发生器中断出现时调用的函数的指针。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

144

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

当检测到指定 PWM发生器模块的一个中断时，这个函数将确保 pfIntHandler指定的中
断处理程序被调用。这个函数也将使能中断控制器中对应的 PWM发生器中断；单个的发生
器中断和中断源必须用 PWMIntEnable()和 PWMGenIntTrigEnable()来使能。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

16.2.2.17 PWMGenIntStatus
获取指定 PWM发生器模块的中断状态。

函数原型：

unsigned long

PWMGenIntStatus(unsigned long ulBase,

unsigned long ulGen,

tBoolean bMasked)

参数：

ulBase是 PWM模块的基址。

ulGen 是讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

bMasked指定返回的是屏蔽的中断状态还是原始的中断状态。

描述：

如果 bMasked设置成 True，则返回屏蔽的中断状态；否则返回原始的中断状态。

返回：

返回指定 PWM发生器的中断状态寄存器的内容或原始中断状态寄存器的内容。

16.2.2.18 PWMGenIntTrigDisable
禁止指定 PWM发生器模块的中断。

函数原型：

void

PWMGenIntTrigDisable(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulIntTrig)

参数：

ulBase是 PWM模块的基址。

ulGen 是中断和触发被禁能的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulIntTrig指定禁止的中断和触发。

描述：

通过清零指定 PWM 发生器的中断/触发使能寄存器中的特定位来屏蔽相应的中断或触
发。ulIntTrig参数是 PWM_INT_CNT_ZERO、PWM_INT_CNT_LOAD、PWM_INT_CNT_AU、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

145

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

PWM_INT_CNT_AD、PWM_INT_CNT_BU、PWM_INT_CNT_BD、PWM_TR_CNT_ZERO、

PWM_TR_CNT_LOAD、PWM_TR_CNT_AU、PWM_TR_CNT_AD、PWM_TR_CNT_BU或

PWM_TR_CNT_BD的逻辑或得出的值。

返回：

无。

16.2.2.19 PWMGenIntTrigEnable
使能指定 PWM发生器模块的中断和触发。

函数原型：

void

PWMGenIntTrigEnable(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulIntTrig)

参数：

ulBase是 PWM模块的基址。

ulGen 是中断和触发被使能的 PWM 发生器。它的值必须是 PWM_GEN_0、
PWM_GEN_1、PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulIntTrig指定使能的中断和触发。

描述：

通过置位指定 PWM 发生器的中断/触发使能寄存器的特定位来解除屏蔽相应的中断和
触 发 。 ulIntTrig 参 数 是 PWM_INT_CNT_ZERO 、 PWM_INT_CNT_LOAD 、

PWM_INT_CNT_AU、PWM_INT_CNT_AD、PWM_INT_CNT_BU、PWM_INT_CNT_BD、
PWM_TR_CNT_ZERO、PWM_TR_CNT_LOAD、PWM_TR_CNT_AU、PWM_TR_CNT_AD、
PWM_TR_CNT_BU或 PWM_TR_CNT_BD逻辑或得出的值。

返回：

无。

16.2.2.20 PWMGenIntUnregister
注销指定 PWM发生器模块的一个中断处理程序。

函数原型：

void

PWMGenIntUnregister(unsigned long ulBase,

unsigned long ulGen)

参数：

ulBase是 PWM模块的基址。

ulGen 是讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

描述：

这个函数将注销指定 PWM发生器模块的中断处理程序。这个函数也将禁止中断控制器
中对应的 PWM 发生器中断；单个的发生器中断和中断源必须用 PWMIntDisable()和

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

146

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

PWMGenIntTrigDisable()来禁止。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

16.2.2.21 PWMGenPeriodGet
获取一个 PWM发生器模块的周期。

函数原型：

unsigned long

PWMGenPeriodGet(unsigned long ulBase,

unsigned long ulGen)

参数：

ulBase是 PWM模块的基址。

ulGen 是讨论的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

描述：

这个函数获取指定 PWM发生器模块的周期。发生器模块的周期定义成发生器模块 0信
号上的脉冲之间的 PWM时钟节拍数。

如果指定 PWM发生器的计数器更新仍然还未结束，则返回的值可能不是有效周期。返
回的值是可编程的周期，用 PWM时钟节拍来计量。

返回：

返回指定发生器模块的可编程周期，以 PWM时钟节拍来计量。

16.2.2.22 PWMGenPeriodSet
设置一个 PWM发生器的周期。

函数原型：

void

PWMGenPeriodSet(unsigned long ulBase,

unsigned long ulGen,

unsigned long ulPeriod)

参数：

ulBase是 PWM模块的基址。

ulGen 是被修改的 PWM 发生器。它的值必须是 PWM_GEN_0、PWM_GEN_1、
PWM_GEN_2或 PWM_GEN_3中的其中一个。

ulPeriod指定 PWM发生器输出的周期，用时钟节拍来测量。

描述：

这个函数设置指定 PWM发生器模块的周期。发生器模块的周期定义成发生器模块 0信
号上的脉冲之间的 PWM时钟节拍数。

注：在更新发生前，任何后续调用这个函数都会造成以前的值被覆盖。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

147

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

返回：

无。

16.2.2.23 PWMIntDisable
禁止一个 PWM模块的发生器中断和故障中断。

函数原型：

void

PWMIntDisable(unsigned long ulBase,

unsigned long ulGenFault)

参数：

ulBase是 PWM模块的基址。

ulGenFault 包含被禁止的中断。它必须是 PWM_INT_GEN_0、PWM_INT_GEN_1、
PWM_INT_GEN_2、PWM_INT_GEN_3、PWM_INT_FAULT0、PWM_INT_FAULT1、
PWM_INT_FAULT2或 PWM_INT_FAULT3的逻辑或得出的值。

描述：

通过清零所选 PWM模块的中断使能寄存器的特定位来屏蔽相应的中断。

返回：

无。

16.2.2.24 PWMIntEnable
使能一个 PWM模块的发生器中断和故障中断。

函数原型：

void

PWMIntEnable(unsigned long ulBase,

unsigned long ulGenFault)

参数：

ulBase是 PWM模块的基址。

ulGenFault包含被使能的中断。它的值必须是 PWM_INT_GEN_0、PWM_INT_GEN_1、
PWM_INT_GEN_2、 PWM_INT_GEN_3、 PWM_INT_FAULT0、 PWM_INT_FAULT1、
PWM_INT_FAULT2或 PWM_INT_FAULT3的逻辑或得出的值。

描述：

通过置位所选 PWM模块的中断使能寄存器中的特定位来取消屏蔽相应的中断。

返回：

无。

16.2.2.25 PWMIntStatus
获取一个 PWM模块的中断状态。

函数原型：

unsigned long

PWMIntStatus(unsigned long ulBase,

tBoolean bMasked)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

148

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

参数：

ulBase是 PWM模块的基址。

bMasked指定返回的是屏蔽的中断状态还是原始的中断状态。

描述：

如果 bMasked设置成 True，则返回屏蔽的中断状态；否则返回原始的中断状态。

返回：

当前的中断状态通过下面的一个位字段列举出来：PWM_INT_GEN_0、

PWM_INT_GEN_1、PWM_INT_GEN_2、PWM_INT_GEN_3、PWM_INT_FAULT0、

PWM_INT_FAULT1、PWM_INT_FAULT2和 PWM_INT_FAULT3。

16.2.2.26 PWMOutputFault
指定响应一个故障条件的 PWM输出的状态。

函数原型：

void

PWMOutputFault(unsigned long ulBase,

unsigned long ulPWMOutBits,

tBoolean bFaultSuppress)

参数：

ulBase是 PWM模块的基址。

ulPWMOutBits 是要修改的 PWM 输出。它的值必须是 PWM_OUT_0_BIT、
PWM_OUT_1_BIT、PWM_OUT_2_BIT、PWM_OUT_3_BIT、PWM_OUT_4_BIT、
PWM_OUT_5_BIT、PWM_OUT_6_BIT或 PWM_OUT_7_BIT的逻辑或。

bFaultSuppress决定在一个有效的故障条件过程中信号变成无效还是顺利通过。

描述：

这个函数设置所选 PWM输出的故障处理特性。输出用参数 ulPWMOutBits来选择。参
数 bFaultSuppress决定所选输出的故障处理特性。如果 bFaultSuppress为 True，那么所选的
输出将变得无效。如果 bFaultSuppress为 False，则所选的输出不会受检测到的故障的影响。

在支持扩展 PWM 故障处理的器件中，可用 PWMOutputFaultLevel()来配置被驱动的受
影响的输出管脚的状态。如果不配置该状态，或如果器件不支持扩展 PWM故障处理，受影
响的输出管脚在故障条件状态中将会被驱动为低。

返回：

无。

16.2.2.27 PWMOutputFaultLevel
指定被抑制的 PWM输出电平（level），以响应一个故障条件。

函数原型：

void

PWMOutputFaultLevel(unsigned long ulBase,

unsigned long ulPWMOutBits,

tBoolean bDriveHigh)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

149

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

参数：

ulBase是 PWM模块的基址。

ulPWMOutBits 是要修改的 PWM 输出。它的值必须是 PWM_OUT_0_BIT、
PWM_OUT_1_BIT、PWM_OUT_2_BIT、PWM_OUT_3_BIT、PWM_OUT_4_BIT、
PWM_OUT_5_BIT、PWM_OUT_6_BIT或 PWM_OUT_7_BIT的逻辑或。

bDriveHigh决定在一个有效的故障条件过程中信号是被驱动为高还是为低。

描述：

这个函数决定响应一个故障条件的 PWM 输出管脚将会被驱动为高还是低。通过参数

ulPWMOutBits来选择受影响的输出。参数 bDriveHigh决定被 ulPWMOutBits识别的管脚的
输出电平。如果 bDriveHigh 为 True，那么在检测到一个故障时，被选的输出将会被驱动为
高。反之如果 bDriveHigh为 False，管脚将会被驱动为低。

在故障条件中，通过调用 PWMOutputFault()而不被配置成无交效的管脚不受此函数影
响。

注：这个函数只可以用于支持扩展 PWM故障处理的器件。

返回：

无。

16.2.2.28 PWMOutputInvert
选择 PWM输出的翻转方式。

函数原型：

void

PWMOutputInvert(unsigned long ulBase,

unsigned long ulPWMOutBits,

tBoolean bInvert)

参数：

ulBase是 PWM模块的基址。

ulPWMOutBits 是要修改的 PWM 输出。它的值必须是 PWM_OUT_0_BIT、
PWM_OUT_1_BIT、PWM_OUT_2_BIT、PWM_OUT_3_BIT、PWM_OUT_4_BIT、
PWM_OUT_5_BIT、PWM_OUT_6_BIT或 PWM_OUT_7_BIT的逻辑或。

bInvert决定信号是翻转还是直接通过。

描述：

这个函数用来选择所选 PWM输出的翻转方式。输出用参数 ulPWMOutBits来选择。参
数 bInvert决定所选输出的翻转方式。如果 bInvert为 True，这个函数将使指定的 PWM输出
信号翻转或使其低有效。如果 bInvert为 False，则指定的输出按照原样通过或被使其高有效。

返回：

无。

16.2.2.29 PWMOutputState
使能或禁止 PWM输出。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

150

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

PWMOutputState(unsigned long ulBase,

unsigned long ulPWMOutBits,

tBoolean bEnable)

参数：

ulBase是 PWM模块的基址。

ulPWMOutBits 是要修改的 PWM 输出。它的值必须是 PWM_OUT_0_BIT、
PWM_OUT_1_BIT、PWM_OUT_2_BIT、PWM_OUT_3_BIT、PWM_OUT_4_BIT、
WM_OUT_5_BIT、WM_OUT_6_BIT或WM_OUT_7_BIT的逻辑或。

bEnable决定是使能信号还是禁止信号。

描述：

这个函数用来使能或禁止所选的 PWM输出。输出用参数 ulPWMOutBits来选择。参数
bEnable决定所选输出的状态。如果 bEnable为 True，那么所选的 PWM输出被使能或被置
入有效状态。如果 bEnable为 False，则所选的输出被禁止或被置入无效状态。

返回：

无。

16.2.2.30 PWMPulseWidthGet
获取一个 PWM输出的脉宽。

函数原型：

unsigned long

PWMPulseWidthGet(unsigned long ulBase,

unsigned long ulPWMOut)

参数：

ulBase是 PWM模块的基址。

ulPWMOut 是要讨论的 PWM 输出。它的值必须是 PWM_OUT_0、PWM_OUT_1、
PWM_OUT_2、PWM_OUT_3、PWM_OUT_4、PWM_OUT_5、PWM_OUT_6 或
PWM_OUT_7的其中一个。

描述：

这个函数获取指定 PWM输出的当前可编程脉宽。如果指定输出的比较器的更新仍然还
未完成，则返回的可能不是有效的脉宽。返回的值是用 PWM时钟节拍计量的可编程脉宽。

返回：

返回脉冲的宽度，用 PWM时钟节拍来计量。

16.2.2.31 PWMPulseWidthSet
设置指定 PWM输出的脉宽。

函数原型：

void

PWMPulseWidthSet(unsigned long ulBase,

unsigned long ulPWMOut,

unsigned long ulWidth)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

151

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

参数：

ulBase是 PWM模块的基址。

ulPWMOut 是要修改的 PWM 输出。它的值必须是 PWM_OUT_0、PWM_OUT_1、
PWM_OUT_2、PWM_OUT_3、PWM_OUT_4、PWM_OUT_5、PWM_OUT_6 或
PWM_OUT_7的其中一个。

ulWidth指定脉冲的正相部分宽度。

描述：

这个函数设置指定 PWM输出的脉宽，这里脉宽被定义成 PWM的时钟节拍数。

注：之后在更新前对这个函数的任何调用都会造成以前的值被覆盖。

返回：

无。

16.2.2.32 PWMSyncTimeBase
使一个或多个 PWM发生器模块的计数器同步。

函数原型：

void

PWMSyncTimeBase(unsigned long ulBase,

unsigned long ulGenBits)

参数：

ulBase是 PWM模块的基址。

ulGenBits 是要同步的 PWM 发生器模块。它的值必须是 PWM_GEN_0_BIT、
PWM_GEN_1_BIT、PWM_GEN_2_BIT或 PWM_GEN_3_BIT的逻辑或。

描述：

对于所选的 PWM模块，这个函数通过使指定发生器的计数器复位到零来同步发生器模
块的时间基准（time base）。

返回：

无。

16.2.2.33 PWMSyncUpdate
同步所有挂起的更新。

函数原型：

void

PWMSyncUpdate(unsigned long ulBase,

unsigned long ulGenBits)

参数：

ulBase是 PWM模块的基址。

ulGenBits 是要更新的 PWM 发生器模块。它必须是 PWM_GEN_0_BIT、
PWM_GEN_1_BIT、PWM_GEN_2_BIT或 PWM_GEN_3_BIT的逻辑或。

描述：

对于所选的 PWM发生器，这个函数使所有排队的周期或脉宽更新在下次对应的计数器

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

152

 广州周立功单片机发展有限公司 第 16 章 脉宽调制器（PWM）

变为 0时运用。

返回：

无。

16.3 编程示例

下面的示例显示了如何使用 PWM API初始化一个频率为 50kHz、输出信号 PWM0的占
空比为 25﹪、输出信号 PWM1的占空比为 75﹪的 PWM0（发生器模块 0）。

//

// 将 PWM发生器配置成向下计数模式，立即更新参数值。

//

PWMGenConfigure(PWM_BASE, PWM_GEN_0,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_NO_SYNC);

//

// 设置周期。对于 50KHz的频率，周期 = 1/50,000,或 20微秒。对于 20MHz的时钟来说，

// 它就变成了 400个时钟节拍。

// 用这个值来设置周期。

//

PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, 400);

//

// 设置占空比为 25%的 PWM0的脉宽。

//

PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, 100);

//

// 设置占空比为 75%的 PWM1的脉宽。

//

PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, 300);

//

// 启动发生器 0的定时器。

//

PWMGenEnable(PWM_BASE, PWM_GEN_0);

//

// 使能输出。

//

PWMOutputState(PWM_BASE, (PWM_OUT_0_BIT | PWM_OUT_1_BIT), true);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

153

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

第17章 正交编码器(QEI)

17.1

17.2

简介

正交编码器 API提供一组用来处理带索引的正交编码器（QEI）的函数。函数可以执行
以下功能：配置和读取位置和速度捕获、注册一个 QEI中断处理程序和处理 QEI中断屏蔽/
清除。

正交编码器模块提供了一个绝对或相对位置的正交编码器器件的 2 个通道和索引信号
的硬件编码。另外有一个硬件用来捕获编码器速度的一次测量，得到的只是一个固定时间周

期内的编码器脉冲计数；脉冲的数目直接与编码器速度成比例。需要注意的是速度捕获只有

在位置捕获使能时才能工作。

QEI模块支持 2种操作模式：相位模式和时钟/方向模式。在相位模式中，编码器产生 2
个相差为 90度的时钟；边沿关系用来决定旋转的方向。在时钟/方向模式中，编码器产生一
个时钟信号来指示步调，产生一个方向信号来指示旋转的方向。

在相位模式中，可以对第一个通道的边沿或两个通道的边沿进行计数；计数两个通道的

边沿能提供更高的编码器精度（如果需要）。在任何一种模式中，输入信号都可以在处理之

前被交换；这样就允许纠正电路板上的线路错误，而无需对电路板进行修改。

索引脉冲可用来复位位置计数器；这就使得位置计数器维持在绝对编码器位置。否则，

位置计数器就维持在相对位置，永远不被复位。

速度捕获有一个定时器，用来测量相等的时间周期。每个时间周期上的编码器脉冲数累

计起来作为对编码器速度的一个测量。运行的所有当前时间周期和前面时间周期的最后一个

计数可以被读取。而前面的时间周期的最后一个计数通常被用作速度测量。

当检测到索引脉冲、速度定时器计时时间已到、编码器方向改变和检测到一个相位信号

错误时，QEI模块将产生中断。这些中断源可以被单独屏蔽，只允许感兴趣的事件产生处理
器中断。

这个驱动程序包含在 src/qei.c中，src/qei.h包含应用使用的 API定义。

API函数

函数

 void QEIConfigure (unsigned long ulBase, unsigned long ulConfig, unsigned long
ulMaxPosition)；

 long QEIDirectionGet (unsigned long ulBase)；
 void QEIDisable (unsigned long ulBase)；
 void QEIEnable (unsigned long ulBase)；
 tBoolean QEIErrorGet (unsigned long ulBase)；
 void QEIIntClear (unsigned long ulBase, unsigned long ulIntFlags)；
 void QEIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void QEIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void QEIIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long QEIIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void QEIIntUnregister (unsigned long ulBase)；
 unsigned long QEIPositionGet (unsigned long ulBase)；
 void QEIPositionSet (unsigned long ulBase, unsigned long ulPosition)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

154

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

 void QEIVelocityConfigure (unsigned long ulBase, unsigned long ulPreDiv, unsigned
longulPeriod)；

 void QEIVelocityDisable (unsigned long ulBase)；
 void QEIVelocityEnable (unsigned long ulBase)；
 unsigned long QEIVelocityGet (unsigned long ulBase)。

17.2.1 详细描述

正交编码器 API 分成 3 组函数，分别执行以下功能：处理位置捕获、处理速度捕获以
及处理中断。

位置捕获由 QEIEnable()、QEIDisable()、QEIConfigure()和 QEIPositionSet()来管理。位
置信息用 QEIPositionGet()、QEIDirectionGet()和 QEIErrorGet()来获取。

速度捕获用 QEIVelocityEnable()、QEIVelocityDisable()和 QEIVelocityConfigure()来管理。
用 QEIVelocityGet()来获取计算的编码器速度。

QEI 中断的中断处理程序由 QEIIntRegister()和 QEIIntUnregister()来管理。由
QEIIntEnable()、QEIIntDisable()、QEIIntStatus()和 QEIIntClear()来管理 QEI模块内的单个中
断源。

17.2.2 函数文件

17.2.2.1 QEIConfigure

配置正交编码器。

函数原型：

void

QEIConfigure(unsigned long ulBase,

unsigned long ulConfig,

unsigned long ulMaxPosition)

参数：

ulBase是正交编码器模块的基址。

ulConfig是正交编码器的配置。有关这个参数请见下面的描述。

ulMaxPosition指定最大的位置值。

描述：

这个函数配置正交编码器的操作。ulConfig参数提供编码器的配置，它是下面几个值的
逻辑或：

 QEI_CONFIG_CAPTURE_A 或 QEI_CONFIG_CAPTURE_A_B：指定通道 A 的边
沿或通道 A和 B的边沿是否应该由位置积分器和速度累加器进行计数；

 QEI_CONFIG_NO_RESET或 QEI_CONFIG_RESET_IDX：指定检测到索引脉冲时
是否复位位置积分器；

 QEI_CONFIG_QUADRATURE或 QEI_CONFIG_CLOCK_DIR：指定在 ChA和 ChB
上正在提供的是正交信号还是方向信号和时钟；

 QEI_CONFIG_NO_SWAP或 QEI_CONFIG_SWAP：设定 ChA和 ChB上提供的信
号在处理前是否被交换。

ulMaxPosition是位置积分器的最大值，也是在处于索引复位模式和在反方向（负方向）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

155

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

移动时用来复位位置捕获的值。

返回：

无。

17.2.2.2 QEIDirectionGet
获取当前的旋转方向。

函数原型：

long

QEIDirectionGet(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数返回当前的旋转方向。在这种情况下，当前是指最近检测到的编码器的方向；

它可能不是当前正在移动的方向，但这是编码器停止前最后移动的方向。

返回：

在正方向移动时返回 1；在反方向移动时返回-1。

17.2.2.3 QEIDisable
禁止正交编码器。

函数原型：

void

QEIDisable(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数将会禁止正交编码器模块的操作。

返回：

无。

17.2.2.4 QEIEnable
使能正交编码器。

函数原型：

void

QEIEnable(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数将使能正交编码器模块的操作。编码器必须在使能前配置。

也可参考：

QEIConfigure()。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

156

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

返回：

无。

17.2.2.5 QEIErrorGet
获取编码器错误指示器。

函数原型：

tBoolean

QEIErrorGet(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数返回正交编码器的错误指示器。它是两个正交输入信号同时改变时的错误。

返回：

错误已经出现时返回 True；否则返回 False。

17.2.2.6 QEIIntClear
清除正交编码器中断源。

函数原型：

void

QEIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是正交编码器模块的基址。

ulIntFlags 是要清除的中断源的位屏蔽。它可以是 QEI_INTERROR、QEI_INTDIR、
QEI_INTTIMER或 QEI_INTINDEX值中的任何一个。

描述：

清除指定的正交编码器中断源，使其不再有效。这必须在中断处理程序中执行，以防在

退出时立刻对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

17.2.2.7 QEIIntDisable
禁止单个正交编码器中断源。

函数原型：

void

QEIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

157

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

参数：

ulBase是正交编码器模块的基址。

ulIntFlags 是要禁止的中断源的位屏蔽。它可以是 QEI_INTERROR、QEI_INTDIR、
QEI_INTTIMER或 QEI_INTINDEX值中的任何一个。

描述：

禁止指示的正交编码器中断源。只有使能的中断源才能反映为处理器中断；禁能的中断

源对处理器没有任何影响。

返回：

无。

17.2.2.8 QEIIntEnable
使能单个正交编码器的中断源。

函数原型：

void

QEIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是正交编码器模块的基址。

ulIntFlags 是要使能的中断源的位屏蔽。它可以是 QEI_INTERROR、QEI_INTDIR、
QEI_INTTIMER或 QEI_INTINDEX值中的任何一个。

描述：

使能指示的正交编码器中断源。只有使能的中断源才能反映为处理器中断；禁止的中断

源对处理器没有任何影响。

返回：

无。

17.2.2.9 QEIIntRegister
注册一个正交编码器中断的中断处理程序。

函数原型：

void

QEIIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

参数：

ulBase是正交编码器模块的基址。

pfnHandler是正交编码器中断出现时调用的函数的指针。

描述：

这个函数设置在正交编码器中断出现时调用的处理程序。这将会使能中断控制器中的全

局中断；特定的正交编码器中断必须通过 QEIIntEnable()来使能。由中断处理程序负责用
QEIIntClear()将中断清除。

也可参考：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

158

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

17.2.2.10 QEIIntStatus
获取当前的中断状态。

函数原型：

unsigned long

QEIIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是正交编码器模块的基址。

bMasked：如果需要的是原始的中断状态，则 bMasked 为 False；如果需要的是屏蔽的
中断状态，则 bMasked为 True。

描述：

这个函数返回正交编码器模块的中断状态。原始的中断状态或允许反映到处理器中的中

断的状态被返回。

返回：

返回当前的中断状态，通过下面的一个位字段列举出来：QEI_INTERROR、
QEI_INTDIR、QEI_INTTIMER和 QEI_INTINDEX。

17.2.2.11 QEIIntUnregister
注销一个正交编码器中断的中断处理程序。

函数原型：

void

QEIIntUnregister(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

当一个正交编码器中断出现时，这个函数将清除要调用的处理程序。这也会关闭中断控

制器中的中断，以便中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

17.2.2.12 QEIPositionGet
获取当前的编码器位置。

函数原型：

unsigned long

QEIPositionGet(unsigned long ulBase)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

159

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数返回编码器的当前位置。根据编码器的配置和索引脉冲的事件，这个值可能包

含也可能不包含期望的数据（即，在索引模式的复位中，如果还未遇到一个索引脉冲，位置

计数器将仍然不和索引脉冲对齐）。

返回：

编码器的当前位置。

17.2.2.13 QEIPositionSet
设置当前的编码器位置。

函数原型：

void

QEIPositionSet(unsigned long ulBase,

unsigned long ulPosition)

参数：

ulBase是正交编码器模块的基址。

ulPosition是编码器的新位置。

描述：

这个函数设置编码器的当前位置；然后编码器位置相对这个值进行测量。

返回：

无。

17.2.2.14 QEIVelocityConfigure
配置速度捕获。

函数原型：

void

QEIVelocityConfigure(unsigned long ulBase,

unsigned long ulPreDiv,

unsigned long ulPeriod)

参数：

ulBase是正交编码器模块的基址。

ulPreDiv 指定在计数前应用于输入正交信号的预分频器；它的值可以是下面的其中一
个：QEI_VELDIV_1、QEI_VELDIV_2、QEI_VELDIV_4、QEI_VELDIV_8、QEI_VELDIV_16、
QEI_VELDIV_32、QEI_VELDIV_64或 QEI_VELDIV_128。

ulPeriod指定时钟节拍数，在这个时钟节拍上对速度进行测量；该参数的值必须为非零。

描述：

这个函数配置正交编码器速度捕获部分的操作。位置递增信号在被速度捕获累计前被

ulPreDiv指定的值预分频。经过分频的信号在 ulPeriod系统时钟上被累计，然后再保存起来，
并复位累加器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

160

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

返回：

无。

17.2.2.15 QEIVelocityDisable
禁止速度捕获。

函数原型：

void

QEIVelocityDisable(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数禁止正交编码器模块中的速度捕获操作。

返回：

无。

17.2.2.16 QEIVelocityEnable
使能速度捕获。

函数原型：

void

QEIVelocityEnable(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数使能正交编码器模块中的速度捕获操作。该操作必须在使能前被配置。如果正

交编码器未使能，速度捕获将不会出现。

也可参考：

QEIVelocityConfigure()和 QEIEnable()。

返回：

无。

17.2.2.17 QEIVelocityGet
获取当前的编码器速度。

函数原型：

unsigned long

QEIVelocityGet(unsigned long ulBase)

参数：

ulBase是正交编码器模块的基址。

描述：

这个函数返回编码器的当前速度。返回的值是在指定的时间周期内检测到的脉冲数；这

个数目可以与每秒的时钟周期数相乘再除以每次旋转的脉冲数来得到每秒的旋转次数。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

161

 广州周立功单片机发展有限公司 第 17 章 正交编码器（QEI）

返回：

返回给定时间周期内捕获的脉冲数。

17.3 编程示例

下面的示例显示了如何使用正交编码器 API来配置正交编码器和读回一个绝对位置。

//

// 配置正交编码器捕获两个信号的边沿，通过索引脉冲上的复位来维持一个绝对位置。

// 在每线的 4个边沿使用一个 1000线编码器，每次旋转就有 4000个脉冲；

// 由于计数从 0开始，因此将最大位置设置成 3999。

//

QEIConfigure(QEI_BASE, (QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX |

QEI_CONFIG_QUADRATURE | QEI_CONFIG_NO_SWAP), 3999);

//

// 使能正交编码器。

//

QEIEnable(QEI_BASE);

//

// 延时一段时间…

//

//

// 读取编码器位置。

//

QEIPositionGet(QEI_BASE)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

162

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

第18章 同步串行接口(SSI)

18.1 简介

同步串行接口（SSI）模块提供了一些函数，用来处理器件与外围设备的串行通信，SSI
可配置成使用Motorola®SPITM、National Semiconductor® Microwire或Texas Instrument®同步串
行接口的帧格式。数据帧的大小也可以配置，可以设置成在 4位到 16位之间（包括 4位和
16位在内）。

SSI模块对接收到的外围设备的数据执行串行-并行转换，对发送给外围设备的数据执行
并行-串行转换。TX和 RX通路由内部 FIFO进行缓冲，允许单独保存多达 16位的值。

SSI 模块可以配置成一个主机或一个从机设备。作为一个从机设备，SSI 模块还能配置
成禁止它的输出，这就允许一个主机设备与多个从机设备相连。

SSI 模块还包含一个可编程的位速率时钟分频器和预分频器来产生输出串行时钟（从
SSI模块的输入时钟获得）。产生的位速率取决于输入时钟和连接的外设支持的最大位速率。

对于包含一个 DMA 控制器的器件，SSI 模块也提供一个 DMA 接口以便通过 DMA 来
实现数据传输。

这个驱动程序包含在 src/ssi.c，src/ssi.h包含应用使用的 API定义。

18.2 API函数

函数

 void SSIConfigSetExpClk (unsigned long ulBase, unsigned long ulSSIClk, unsigned
long ulProtocol, unsigned long ulMode, unsigned long ulBitRate, unsigned long
ulDataWidth)；

 void SSIDataGet (unsigned long ulBase, unsigned long *pulData)；
 long SSIDataGetNonBlocking (unsigned long ulBase, unsigned long *pulData)；
 void SSIDataPut (unsigned long ulBase, unsigned long ulData)；
 long SSIDataPutNonBlocking (unsigned long ulBase, unsigned long ulData)；
 void SSIDisable (unsigned long ulBase)；
 void SSIDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)；
 void SSIDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)；
 void SSIEnable (unsigned long ulBase)；
 void SSIIntClear (unsigned long ulBase, unsigned long ulIntFlags)；
 void SSIIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void SSIIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void SSIIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long SSIIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void SSIIntUnregister (unsigned long ulBase)。

18.2.1 详细描述

SSI API分成 3组函数，分别执行以下功能：处理配置和状态、处理数据和管理中断。

SSI模块的配置由SSIConfigSetExpClk()函数来管理，而状态由SSIEnable()和SSIDisable()
函数来管理。DMA接口由 SSIDMAEnable()和 SSIDMADisable()函数来使能或禁止。

由 SSIDataPut()、SSIDataPutNonBlocking()、SSIDataGet()和 SSIDataGetNonBlocking()

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

163

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

函数来执行数据处理。

由 SSIIntClear()、SSIIntDisable()、SSIIntEnable()、SSIIntRegister()、SSIIntStatus()和
SSIIntUnregister()函数来管理 SSI模块的中断。

以前版本的外设驱动程序库中的 SSIConfig()、 SSIDataNonBlockingGet()、和
SSIDataNonBlockingPut() API 已被 SSIConfigSetExpClk()、 SSIDataGetNonBlocking()和
SSIDataPutNonBlocking() API所取代。ssi.h已提供一个宏把旧的 API映射到新的 API中，
从而允许现有的应用能与新的 API 进行连接和运行。建议在赞同旧的 API 时新应用应使用
新的 API。

18.2.2 函数文件

18.2.2.1 SSIConfigSetExpClk
配置同步串行接口。

函数原型：

void

SSIConfigSetExpClk(unsigned long ulBase,

unsigned long ulSSIClk,

unsigned long ulProtocol,

unsigned long ulMode,

unsigned long ulBitRate,

unsigned long ulDataWidth)

参数：

ulBase指定 SSI模块的基址。

ulSSIClk是提供到 SSI模块的时钟速率。

ulProtocol指定数据传输协议。

ulMode指定工作模式。

ulBitRate指定时钟速率。

ulDataWidth指定每帧传输的位数。

描述：

这个函数配置同步串行接口。它设置 SSI协议、工作模式、位速率和数据宽度。

参数 ulProtocol 定义了数据帧格式。参数 ulProtocol 可以是下面的一个值：
SSI_FRF_MOTO_MODE_0 、 SSI_FRF_MOTO_MODE_1 、 SSI_FRF_MOTO_MODE_2 、
SSI_FRF_MOTO_MODE_3、SSI_FRF_TI或 SSI_FRF_NMW。Motorola帧格式隐含着以下极
性和相位配置：

极性 相位 模式

0 0 SSI_FRF_MOTO_MODE_0

0 1 SSI_FRF_MOTO_MODE_1

1 0 SSI_FRF_MOTO_MODE_2

1 1 SSI_FRF_MOTO_MODE_3

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

164

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

参数 ulMode 定义了 SSI 模块的工作模式。SSI 模块可以用作一个主机或从机；如果用
作一个从机，SSI 可以配置成禁止它的串行输出线的输出。参数 ulMode 可以是下面的其中
一个值：SSI_MODE_MASTER、SSI_MODE_SLAVE或 SSI_MODE_SLAVE_OD。

参数 ulBitRate定义了 SSI的位速率。这个位速率必须满足下面的时钟比率标准：

 FSSI > =2×位速率（主机模式）；
 FSSI > =12×位速率（从机模式）。

此处，FSSI是提供给 SSI模块的时钟频率。

参数 ulDataWidth定义了数据传输的宽度。参数 ulDataWidth可以是 4和 16之间（包括
4和 16在内）的一个值。

外设时钟与处理器的时钟相同。这个时钟就是 SysCtlClockGet()所返回的值，或该时钟
为已知常量时（用来保存调用 SysCtlClockGet()时的代码/执行体），它可以明确为硬编码。

这个函数将会取代最初的 SSIConfig()API，并可以执行相同的操作。ssi.h提供一个宏来
把最初的 API映射到这个 API中。

返回：

无。

18.2.2.2 SSIDataGet
从 SSI接收 FIFO中获取一个数据单元。

函数原型：

void

SSIDataGet(unsigned long ulBase,

unsigned long *pulData)

参数：

ulBase指定 SSI模块的基址。

pulData是一个存储单元的指针，该单元存放着在 SSI接口上接收到的数据。

描述：

这个函数从指定 SSI模块的接收 FIFO获取接收到的数据，并将数据放置到 pulData参
数指定的单元中。

注：只有写入 pulData的低 N位值包含有效数据，这里的 N是 SSIConfigSetExpClk()配置的数据宽度。

例如，如果接口配置成 8位的数据宽度，则写入 pulData的值只有低 8位包含有效数据。

返回：

无。

18.2.2.3 SSIDataGetNonBlocking
从 SSI接收 FIFO中获取一个数据单元。

函数原型：

long

SSIDataGetNonBlocking(unsigned long ulBase,

unsigned long *pulData)

参数：

ulBase指定 SSI模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

165

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

pulData是一个存储单元的指针，该单元存放着从 SSI接口接收到的数据。

描述：

这个函数从指定 SSI模块的接收 FIFO获取接收到的数据，并将数据放置到 pulData参
数指定的单元中。如果 FIFO中没有任何数据，则这个函数将返回一个零值。

此函数取代了最初的 SSIDataNonBlockingGet() API，并执行相同的操作。ssi.h中提供了
一个宏把最初的 API映射到这个 API中。

注：只有写入 pulData的低 N位值包含有效数据，这里的 N是 SSIConfigSetExpClk()配置的数据宽度。

例如，如果接口配置成 8位的数据宽度，则只有写入 pulData的值的低 8位包含有效数据。

返回：

返回从 SSI接收 FIFO中读出的数据单元数量。

18.2.2.4 SSIDataPut
把一个数据单元放置到 SSI发送 FIFO中。

函数原型：

void

SSIDataPut(unsigned long ulBase,

unsigned long ulData)

参数：

ulBase指定 SSI模块的基址。

ulData是通过 SSI接口发送的数据。

描述：

这个函数将把提供的数据放置到特定的 SSI模块的发送 FIFO中。

注：ulData的高 32-N位将会被硬件舍弃，这里的 N是指由 SSIConfigSetExpClk()配置的数据宽度。例

如，如果该接口被配置为 8位数据宽度，则 ulData的高 24位将会被舍弃。

返回：

无。

18.2.2.5 SSIDataPutNonBlocking
将一个数据单元放置到 SSI发送 FIFO。

函数原型：

long

SSIDataPutNonBlocking (unsigned long ulBase,

unsigned long ulData)

参数：

ulBase指定 SSI模块的基址。

ulData是通过 SSI接口发送的数据。

描述：

这个函数将提供的数据放置到指定 SSI模块的发送 FIFO中。如果 FIFO中没有空闲的
空间，则这个函数将返回一个零值。

此函数取代了最初的 SSIDataNonBlockingPut() API，并执行相同的操作。ssi.h中提供了

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

166

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

一个宏把最初的 API映射到这个 API中

注：ulData的高（32-N）位被硬件丢弃，这里的 N是 SSIConfigSetExpClk()配置的数据宽度。例如，

如果接口配置成 8位的数据宽度，则 ulData的高 24位被丢弃。

返回：

返回写入 SSI发送 FIFO的数据单元的数量。

18.2.2.6 SSIDisable
禁止同步串行接口。

函数原型：

void

SSIDisable(unsigned long ulBase)

参数：

ulBase指定 SSI模块的基址。

描述：

这个函数将禁止同步串行接口的操作。

返回：

无。

18.2.2.7 SSIDMADisable
禁止 SSI DMA操作。

函数原型：

void

SSIDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

参数：

ulBase是 SSI端口的基址。

ulDMAFlags是要禁止 DMA特性的位屏蔽。

描述：

这个函数用来禁止被 SSIDMAEnable()使能的 SSI DMA特性。指定的 SSI DMA特性被
禁止。ulDMAFlags参数是以下值的逻辑或：

 SSI_DMA_RX-禁止用于接收的 DMA；
 SSI_DMA_TX-禁止用于发送的 DMA。

返回：

无。

18.2.2.8 SSIDMAEnable
使能 SSI DMA操作。

函数原型：

void

SSIDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

167

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

参数：

ulBase是 SSI端口的基址。

ulDMAFlags是要使能的 DMA特性的位屏蔽。

描述：

指定的 SSI DMA特性被使能。SSI可以配置成用使用 DMA来发送和/或接收数据传输。
ulDMAFlags参数是以下值的逻辑或：

 SSI_DMA_RX-使能用于接收的 DMA；
 SSI_DMA_TX-使能用于发送的 DMA。
注：uDMA控制器同样也必须在 DMA与 SSI一起工作前被设置。

返回：

无。

18.2.2.9 SSIEnable
使能同步串行接口。

函数原型：

void

SSIEnable(unsigned long ulBase)

参数：

ulBase指定 SSI模块的基址。

描述：

这个函数使能同步串行接口的操作。同步串行接口必须在使能前配置。

返回：

无。

18.2.2.10 SSIIntClear
清除 SSI中断源。

函数原型：

void

SSIIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase指定 SSI模块的基址。

ulIntFlags是要清除的中断源的位屏蔽。

描述：

清除指定的 SSI中断源，使其不再有效。这必须在中断处理程序中处理，防止在退出时
立刻再次对其进行调用。参数 ulIntFlags的值可以是 SSI_RXTO和 SSI_RXOR中的一个或两
个。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

168

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

返回：

无。

18.2.2.11 SSIIntDisable
禁止单个 SSI中断源。

函数原型：

void

SSIIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase指定 SSI模块的基址。

ulIntFlags是要禁止的中断源的位屏蔽。

描述：

禁止指示的 SSI中断源。参数 ulIntFlags可以是 SSI_TXFF、SSI_RXFF、SSI_RXTO或
SSI_RXOR中的任何一个。

返回：

无。

18.2.2.12 SSIIntEnable
使能单个 SSI中断源。

函数原型：

void

SSIIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase指定 SSI模块的基址。

ulIntFlags是使能的中断源的位屏蔽。

描述：

使能指示的 SSI中断源。只有使能的中断源能反映为处理器中断；禁止的中断源对处理
器不产生任何影响。参数 ulIntFlags可以是 SSI_TXFF、SSI_RXFF、SSI_RXTO或 SSI_RXOR
中的任何一个。

返回：

无。

18.2.2.13 SSIIntRegister
注册一个同步串行接口的中断处理程序。

函数原型：

void

SSIIntRegister(unsigned long ulBase,

void (*pfnHandler) (void))

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

169

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

ulBase指定 SSI模块的基址。

pfnHandler是同步串行接口中断出现时调用的函数的指针。

描述：

这个函数设置 SSI中断出现时调用的处理程序。这将会使能中断控制器中的全局中断；
特定的 SSI 中断必须通过 SSIIntEnable()来使能。如果有必要，由中断处理程序负责通过
SSIIntClear()将中断源清除。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

18.2.2.14 SSIIntStatus
获取当前的中断状态。

函数原型：

unsigned long

SSIIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase指定 SSI模块的基址。

bMasked：如果需要的是原始的中断状态，则 bMasked 为 False；如果需要的是屏蔽的
中断状态，则 bMasked为 True。

描述：

这个函数返回 SSI模块的中断状态。原始的中断状态或允许反映到处理器中的中断的状
态都可以被返回。

返回：

返回当前的中断状态，通过下面的一个位字段列举出来：SSI_TXFF、SSI_RXFF、
SSI_RXTO和 SSI_RXOR。

18.2.2.15 SSIIntUnregister
注销同步串行接口的一个中断处理程序。

函数原型：

void

SSIIntUnregister(unsigned long ulBase)

参数：

ulBase指定 SSI模块的基址。

描述：

这个函数清除 SSI中断出现时调用的处理程序。这也会关闭中断控制器中的中断，使得
中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

170

 广州周立功单片机发展有限公司 第 18 章 同步串行接口(SSI)

返回：

无。

18.3 编程示例

下面的示例显示了如何使用 SSI API来配置 SSI模块用作一个主机设备以及如何执行一
次简单的数据发送。

char *pcChars = "SSI Master send data.";

long lIdx;

//

// 配置 SSI。

//

SSIConfigSetExpClk(SSI_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE0,

SSI_MODE_MASTER, 2000000, 8);

//

// 使能 SSI模块。

//

SSIEnable(SSI_BASE);

//

// 发送一些数据。

//

lIdx = 0;

while(pcChars[lIdx])

{

if(SSIDataPut(SSI_BASE, pcChars[lIdx]))

{

lIdx++;

}

}

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

171

 广州周立功单片机发展有限公司 第19章 系统控制

第19章 系统控制

19.1 简介

系统控制决定了器件的全部操作。它控制着器件的时钟、使能的外设集、器件的配置以

及器件的复位，并提供了器件的相关信息。

Stellaris系列的器件成员具有不同的外设集和内存大小。器件有一组只读寄存器，它们
指示了内存的大小、出现在器件中的外设和出现在外设（具有不同数目管脚）中的管脚。这

些信息可以用来编写适合在多个 Stellaris系列器件成员上运行的软件。

器件的时钟可以由下面 5个时钟源中的其中一个提供：外部振荡器、主振荡器、内部振
荡器、4分频的内部振荡器或 PLL。PLL可以将另外 4个振荡器中的任何一个作为它的输入。
由于内部振荡器的误差范围太宽（+/-50﹪），所以它不能用在对时序有特别要求的应用中；
内部振荡器的真正用途是用来检测主振荡器和 PLL 的故障，以及用在确切响应外部事件且
不使用基于时间的外设的应用（例如 UART）中。当使用 PLL 时，输入时钟频率限制在
3.579545MHz～8.192MHz的范围内（即该范围内的标准晶体频率）。当直接使用外部振荡器
或主振荡器作为时钟时，频率限制在 0Hz～50MHz之间（由具体的元件来决定）。内部振荡
器为 15MHz，+/-50﹪；它的频率随着器件、电压和温度的不同而变化。内部振荡器未提供
调谐或频率管理机制；它的频率是不可调的。

几乎整个器件都工作在同一个时钟下。ADC 和 PWM 模块有自己的时钟。为了使用

ADC，PLL必须使用；PLL输出将被用来产生 ADC所需的时钟。PWM有它自己的可选分
频器（来自系统时钟）；它的分频值为 2的幂次方值，范围在 1～64之间。

Stellaris系列支持 3种工作模式：运行模式、睡眠模式和深度睡眠模式。在运行模式中，
处理器主动执行代码。在睡眠模式中，器件的时钟不变，但处理器不再执行代码（和不再计

时）。在深度睡眠模式中，器件的时钟可以改变（由运行模式的时钟配置决定），而处理器也

不再执行代码（和不再计时）。中断可以使器件从任何一种睡眠模式返回到运行模式；睡眠

模式也可以因为代码的请求而进入。

器件有一个内部 LDO，用来产生片内 2.5V 的电源；LDO 的输出电压可以在 2.25V～
2.75V之间调节。根据具体的应用，较低的电压有利于节省功耗，较高的电压有利于提高性
能。将两者较好地折衷可以得到一个 2.5V的默认设置，如果没经过仔细的考虑和评估，不
要随意更改这个电压值。

有几个系统事件，当检测到它们时系统控制会使器件复位。这些事件是：输入电压降至

过低、LDO 电压降至过低、外部复位、软件复位请求和看门狗超时。某些事件的属性可以
配置，复位的原因可以由系统控制决定。

器件中的每个外设可以单独使能、禁止或复位。另外，在睡眠模式和深度睡眠模式中仍

保持使能的一系列外设可以被配置，允许对定制的睡眠和深度睡眠模式进行定义。尽管在深

度睡眠模式中 PLL 不再使用、系统时钟由输入晶体提供，但是仍然要非常小心深度睡眠模
式。由于时钟速率的改变，依赖于特定输入时钟速率的外设（例如 UART）在深度睡眠模式
下不能像期望的那样工作；这些外设必须要么在进入或退出深度模式时重新配置，要么在深

度睡眠模式中禁止。

有些系统事件，当检测到它们时会使系统控制产生一个处理器中断。这些事件是：PLL
完成锁定、超出内部 LDO电流限制、内部振荡器故障、主振荡器故障、输入电压降至过低、
内部 LDO电压降至过低、PLL故障。这些中断中的每一个都能单独使能或禁止，中断出现
时中断处理程序必须清除中断源。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

172

 广州周立功单片机发展有限公司 第19章 系统控制

这个驱动程序包含在 src/sysctl.c，src/sysctl.h包含应用使用的 API定义。

19.2 API函数

函数

 unsigned long SysCtlADCSpeedGet (void)；
 void SysCtlADCSpeedSet (unsigned long ulSpeed)；
 void SysCtlBrownOutConfigSet (unsigned long ulConfig, unsigned long ulDelay)；
 void SysCtlClkVerificationClear (void)；
 unsigned long SysCtlClockGet (void)；
 void SysCtlClockSet (unsigned long ulConfig)；
 void SysCtlDeepSleep (void)；
 void SysCtlDelay (unsigned long ulCount)；
 unsigned long SysCtlFlashSizeGet (void)；
 void SysCtlGPIOAHBDisable (unsigned long ulGPIOPeripheral)；
 void SysCtlGPIOAHBEnable (unsigned long ulGPIOPeripheral)；
 void SysCtlIntClear (unsigned long ulInts)；
 void SysCtlIntDisable (unsigned long ulInts)；
 void SysCtlIntEnable (unsigned long ulInts)；
 void SysCtlIntRegister (void (*pfnHandler)(void))；
 unsigned long SysCtlIntStatus (tBoolean bMasked)；
 void SysCtlIntUnregister (void)；
 void SysCtlIOSCVerificationSet (tBoolean bEnable)；
 void SysCtlLDOConfigSet (unsigned long ulConfig)；
 unsigned long SysCtlLDOGet (void)；
 void SysCtlLDOSet (unsigned long ulVoltage)；
 void SysCtlMOSCVerificationSet (tBoolean bEnable)；
 void SysCtlPeripheralClockGating (tBoolean bEnable)；
 void SysCtlPeripheralDeepSleepDisable (unsigned long ulPeripheral)；
 void SysCtlPeripheralDeepSleepEnable (unsigned long ulPeripheral)；
 void SysCtlPeripheralDisable (unsigned long ulPeripheral)；
 void SysCtlPeripheralEnable (unsigned long ulPeripheral)；
 tBoolean SysCtlPeripheralPresent (unsigned long ulPeripheral)；
 void SysCtlPeripheralReset (unsigned long ulPeripheral)；
 void SysCtlPeripheralSleepDisable (unsigned long ulPeripheral)；
 void SysCtlPeripheralSleepEnable (unsigned long ulPeripheral)；
 tBoolean SysCtlPinPresent (unsigned long ulPin)；
 void SysCtlPLLVerificationSet (tBoolean bEnable)；
 unsigned long SysCtlPWMClockGet (void)；
 void SysCtlPWMClockSet (unsigned long ulConfig)；
 void SysCtlReset (void)；
 void SysCtlResetCauseClear (unsigned long ulCauses)；
 unsigned long SysCtlResetCauseGet (void)；
 void SysCtlSleep (void)；
 unsigned long SysCtlSRAMSizeGet (void)；
 void SysCtlUSBPLLDisable (void)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

173

 广州周立功单片机发展有限公司 第19章 系统控制

 void SysCtlUSBPLLEnable (void)。

19.2.1 详细描述

SysCtl API分成 8组，它们完成 8种以下功能：提供器件信息、处理器件时钟、提供外
设控制、处理 SysCtl中断、处理 LDO、处理睡眠模式、处理复位源、处理掉电复位、处理
时钟验证定时器。

器件的相关信息由SysCtlSRAMSizeGet()、SysCtlFlashSizeGet()、SysCtlPeripheralPresent()
和 SysCtlPinPresent()来提供。

器件的时钟由 SysCtlClockSet()和 SysCtlPWMClockSet()来配置。器件的时钟信息由
SysCtlClockGet()和 SysCtlPWMClockGet()来提供。

外 设 使 能 和 复 位 由 SysCtlPeripheralReset() 、 SysCtlPeripheralEnable() 、 SysCtl
PeripheralDisable()、SysCtlPeripheralSleepEnable()、SysCtlPeripheralSleepDisable()、SysCtl
PeripheralDeepSleepEnable()、 SysCtlPeripheralDeepSleepDisable()和 SysCtlPeripheralClock
-Gating()来控制。

系统控制中断由 SysCtlIntRegister()、 SysCtlIntUnregister()、 SysCtlIntEnable()、
SysCtlIntDisable()、SysCtlIntClear()和 SysCtlIntStatus()来管理。

LDO 由 SysCtlLDOSet()和 SysCtlLDOConfigSet()来控制。它的状态由 SysCtlLDOGet()
来提供。

SysCtlSleep()和 SysCtlDeepSleep()使器件进入睡眠模式。

复位源由 SysCtlResetCauseGet()和 SysCtlResetCauseClear()来管理。软件复位由
SysCtlReset()来执行。

掉电复位由 SysCtlBrownOutConfigSet()来配置。

时钟验证定时器由 SysCtlIOSCVerificationSet()、 SysCtlMOSCVerificationSet()、
SysCtlPLLVerificationSet()和 SysCtlClkVerificationClear()来管理。

19.2.2 函数文件

19.2.2.1 SysCtlADCSpeedGet
获取 ADC的采样速率。

函数原型：

unsigned long

SysCtlADCSpeedGet(void)

描述：

这个函数获取 ADC的当前采样速率。

返回：

返回当前的 ADC 采样速率。返回值是 SYSCTL_ADCSPEED_1MSPS、SYSCTL_
ADCSPEED_500KSPS、SYSCTL_ADCSPEED_250KSPS或 SYSCTL_ADCSPEED_125KSPS
中的其中一个。

19.2.2.2 SysCtlADCSpeedSet
设置 ADC的采样速率。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

174

 广州周立功单片机发展有限公司 第19章 系统控制

SysCtlADCSpeedSet(unsigned long ulSpeed)

参数：

ulSpeed 是希望的 ADC 采样速率；其值必须是 SYSCTL_ADCSPEED_1MSPS、
SYSCTL_ADCSPEED_500KSPS、SYSCTL_ADCSPEED_250KSPS或 SYSCTL_ADCSPEED
_125KSPS中的其中一个。

描述：

这个函数设置 ADC 模块捕获的 ADC 采样的速率。采样速率可能受到硬件的限制，因
此，最终的采样速率可能比预期的慢。SysCtlADCSpeedGet()将返回使用的实际速率。

返回：

无。

19.2.2.3 SysCtlBrownOutConfigSet
配置掉电控制。

函数原型：

void

SysCtlBrownOutConfigSet(unsigned long ulConfig,

unsigned long ulDelay)

参数：

ulConfig 是希望的掉电控制的配置。它必须是 SYSCTL_BOR_RESET 和/或 SYSCTL
_BOR_RESAMPLE的逻辑或。

ulDelay 是重新采样一个有效的掉电信号之前要等待的内部振荡器周期数。这个值只在
SYSCTL_BOR_RESAMPLE被设置并且小于 8192时才有意义。

描述：

这个函数配置掉电控制的操作。它可以通过只观察掉电输出来检测掉电，或者，也可以

在 2次连续采样的时间内等待掉电输出有效（2次连续的采样由一个可配置的时间分隔开）。
当它检测到掉电条件时，它会复位器件或产生一个处理器中断。

返回：

无。

19.2.2.4 SysCtlClkVerificationClear
清除时钟验证状态。

函数原型：

void

SysCtlClkVerificationClear(void)

描述：

这个函数清除时钟验证定时器的状态，允许它们提交其它的故障（如果检测到的话）。

时钟验证定时器只可用于 Sandstorm-class器件中。

返回：

无。

19.2.2.5 SysCtlClockGet

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

175

 广州周立功单片机发展有限公司 第19章 系统控制

获取处理器时钟速率。

函数原型：

unsigned long

SysCtlClockGet(void)

描述：

这个函数决定了处理器时钟的时钟速率。这也是所有外设模块的时钟速率（PWM除外，
它有自己的时钟分频器）。

注：如果还没有调用 SysCtlClockSet()来配置器件的时钟，或者器件时钟直接由一个晶体（或一个时钟

源）来提供且该晶体或时钟源并不属于支持的晶体频率范围，则这个函数不会返回精确的结果。在后者的

情况中，这个函数应该被修改来直接返回正确的系统时钟速率。

返回：

处理器时钟速率。

19.2.2.6 SysCtlClockSet
设置器件的时钟。

函数原型：

void

SysCtlClockSet(unsigned long ulConfig)

参数：

ulConfig是器件时钟所需的配置。

描述：

这个函数配置器件的时钟。输入晶体频率、使用的振荡器、PLL的使用和系统时钟分频
器全部用这个函数来配置。

ulConfig参数是几个不同值的逻辑或，这些值中的某些值组合成组，其中只有一组值能
被选用。

系统时钟分频器用下面的一个值来选择：SYSCTL_SYSDIV_1、SYSCTL_ SYSDIV_2、
SYSCTL_SYSDIV_3 、 …SYSCTL_SYSDIV_64 。 在 Sandstorm-class 器 件 中 ， 只 有
SYSCTL_SYSDIV_1到 SYSCTL_SYSDIV_16是有效的。

PLL的使用由 SYSCTL_USE_PLL或 SYSCTL_USE_OSC来选择。

外 部 晶 体 频 率 用 下 面 的 一 个 值 来 选 择 ： SYSCTL_XTAL_1MHZ 、
SYSCTL_XTAL_1_84MHZ 、 SYSCTL_XTAL_2MHZ 、 SYSCTL_XTAL_2_45MHZ 、
SYSCTL_XTAL_3_57MHZ 、 SYSCTL_XTAL_3_68MH 、 SYSCTL_XTAL_4MHZ 、

SYSCTL_XTAL_4_09MHZ 、 SYSCTL_XTAL_4_91MHZ 、 SYSCTL_XTAL_5MHZ 、
SYSCTL_XTAL_5_12MHZ 、 SYSCTL_XTAL_6MHZ 、 SYSCTL_XTAL_6_14MHZ 、
SYSCTL_XTAL_7_37MHZ 、 SYSCTL_XTAL_8MHZ 、 SYSCTL_XTAL_8_19MHZ 、
SYSCTL_XTAL_10MHZ 、 SYSCTL_XTAL_12MHZ 、 SYSCTL_XTAL_12_2MHZ 、

SYSCTL_XTAL_13_5MHZ 、 SYSCTL_XTAL_14_3MHZ 、 SYSCTL_XTAL_16MHZ 或

SYSCTL_XTAL_16_3MHZ。低于 SYSCTL_XTAL_3_57MHZ的值在 PLL被操作时无效。在
Sandstorm-class和 Fury-class器件中，高于 SYSCTL_XTAL_8_19MHZ的值是无效的。

振荡器源用下面的一个值来选择：SYSCTL_OSC_MAIN、SYSCTL_OSC_INT、
SYSCTL_OSC_INT4、SYSCTL_OSC_INT30 或 SYSCTL_OSC_EXT32。在 Standstorm-class

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

176

 广州周立功单片机发展有限公司 第19章 系统控制

器件中，SYSCTL_OSC_INT30 和 SYSCTL_OSC_EXT32 是无效的。SYSCTL_OSC_EXT32
只可用于具有休眠模式的器件，并只在休眠模块已被使能时有效。

内部振荡器和主振荡器分别用SYSCTL_INT_OSC_DIS和SYSCTL_MAIN_OSC_DIS标
志来禁止。为了使用外部时钟源，外部振荡器必须被使能。注意，尝试禁止振荡器用作器件

计时将会被硬件阻止。

使用 SYSCTL_USE_OSC| SYSCTL_OSC_MAIN来选择由外部源（例如一个外部晶体振
荡器）提供系统时钟。使用 SYSCTL_USE_OSC | SYSCTL_OSC_MAIN来选择由主振荡器
提供系统时钟。为了使系统时钟由 PLL 来提供，请使用 SYSCTL_USE_PLL |
SYSCTL_OSC_MAIN，并根据 SYSCTL_XTAL_xxx值选择合适的晶体。

注：如果选择 PLL作为系统时钟源（即，通过 SYSCTL_USE_PLL），这个函数将轮询 PLL锁定中断

来决定 PLL是何时锁定的。如果系统控制中断的一个中断处理程序已经就绪，并且响应和清除了 PLL锁定

中断，这个函数将延迟，直至出现超时，而不是一旦 PLL达到锁定就结束函数的执行。

返回：

无。

19.2.2.7 SysCtlDeepSleep
使处理器进入深度睡眠模式。

函数原型：

void

SysCtlDeepSleep(void)

描述：

这个函数使处理器进入深度睡眠模式；在处理器返回到运行模式之前函数不会返回。通

过 SysCtlPeripheralDeepSleepEnable()使能的外设继续运行，而且，外设还可以唤醒处理器，
（如果自动时钟门控通过 SysCtlPeripheralClockGating()被使能时，否则所有的外设继续运
行）。

返回：

无。

19.2.2.8 SysCtlDelay
提供一个小延时。

函数原型：

void

SysCtlDelay(unsigned long ulCount)

参数：

ulCount是要执行的延时循环反复的次数。

描述：

该函数提供了一个产生恒定长度延时的方法。它是用用汇编写的，以保持跨越工具链的

延时一致，从而避免了在应用上依据工具链来调节延时的要求。

循环占用 3个周期/循环。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

177

 广州周立功单片机发展有限公司 第19章 系统控制

19.2.2.9 SysCtlFlashSizeGet
获取 Flash的大小。

函数原型：

unsigned long

SysCtlFlashSizeGet(void)

描述：

这个函数决定了 Stellaris器件中的 Flash大小。

返回：

返回 Flash的总字节数。

19.2.2.10 SysCtlGPIOAHBDisable
禁止一个用高速总线进行访问的 GPIO外设。

函数原型：

void

SysCtlGPIOAHBDisable(unsigned long ulGPIOPeripheral)

参数：

ulGPIOPeripheral是要禁止的 GPIO外设。

描述：

这个函数将禁止用高速总线进行访问的特定 GPIO外设。一旦禁止后，可用外设总线来
访问 GPIO外设。

ulGPIOPeripheral 参 数 必 须 是 以 下 值 中 的 一 个 ： SYSCTL_PERIPH_GPIOA 、
SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 或

SYSCTL_PERIPH_GPIOH。

返回：

无。

19.2.2.11 SysCtlGPIOAHBEnable
使能一个用高速总线进行访问的 GPIO外设。

函数原型：

void

SysCtlGPIOAHBEnable(unsigned long ulGPIOPeripheral)

参数：

ulGPIOPeripheral是要使能的 GPIO外设。

描述：

这个函数用来使能用高速总线进行访问的特定 GPIO外设，而不是使用外设总线。当一
个 GPIO外设被使能用于高速访问时，基址的_AHB_BASE形式应该用于 GPIO函数。例如，
将 GPIO_PORTA_AHB_BASE作为 GPIO函数的基址，而不是 GPIO_PORTA_BASE。

ulGPIOPeripheral 参 数 必 须 是 以 下 值 中 的 一 个 ： SYSCTL_PERIPH_GPIOA 、
SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

178

 广州周立功单片机发展有限公司 第19章 系统控制

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 或

SYSCTL_PERIPH_GPIOH。

返回：

无。

19.2.2.12 SysCtlIntClear
清除系统控制中断源。

函数原型：

void

SysCtlIntClear(unsigned long ulInts)

参数：

ulInts 是要清除的中断源的位屏蔽。它的值必须是 SYSCTL_INT_PLL_LOCK、
SYSCTL_INT_CUR_LIMIT 、 SYSCTL_INT_IOSC_FAIL 、 SYSCTL_INT_MOSC_FAIL 、
SYSCTL_INT_POR、SYSCTL_INT_BOR和/或 SYSCTL_INT_PLL_FAIL的逻辑或。

描述：

清除指定的系统控制中断源，使之不再有效。这必须在中断处理程序中处理，防止退出

时再次对其进行调用。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

19.2.2.13 SysCtlIntDisable
禁止单个系统控制中断源。

函数原型：

void

SysCtlIntDisable(unsigned long ulInts)

参数：

ulInts 是要禁止的中断源的位屏蔽。它必须是 SYSCTL_INT_PLL_LOCK、
SYSCTL_INT_CUR_LIMIT 、 SYSCTL_INT_IOSC_FAIL 、 SYSCTL_INT_MOSC_FAIL 、
SYSCTL_INT_POR、SYSCTL_INT_BOR和/或 SYSCTL_INT_PLL_FAIL的逻辑或。

描述：

禁止指示的系统控制中断源。只有使能的中断源才能反映为处理器中断；禁止的中断源

对处理器没有任何影响。

返回：

无。

19.2.2.14 SysCtlIntEnable
使能单个系统控制中断源。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

179

 广州周立功单片机发展有限公司 第19章 系统控制

void

SysCtlIntEnable(unsigned long ulInts)

参数：

ulInts 是要使能的中断源的位屏蔽。它必须是 SYSCTL_INT_PLL_LOCK、
SYSCTL_INT_CUR_LIMIT 、 SYSCTL_INT_IOSC_FAIL 、 SYSCTL_INT_MOSC_FAIL 、
SYSCTL_INT_POR、SYSCTL_INT_BOR和/或 SYSCTL_INT_PLL_FAIL的逻辑或。

描述：

使能指示的系统控制中断源。只有使能的中断源才能反映为处理器中断；禁止的中断源

对处理器没有任何影响。

返回：

无。

19.2.2.15 SysCtlIntRegister
注册一个系统控制中断的中断处理程序。

函数原型：

void

SysCtlIntRegister(void (*pfnHandler) (void)

参数：

pfnHandler是系统控制中断出现时调用的函数的指针。

描述：

这个函数设置在系统控制中断出现时调用的处理程序。这将会使能中断控制器的全局中

断；特定的系统控制中断必须通过 SysCtlIntEnable()来使能。由中断处理程序负责通过
SysCtlIntClear()来清除中断源。

当 PLL达到锁定，如果内部 LDO电流超出限制、内部振荡器出现故障、主振荡器出现
故障、内部 LDO输出电压下降太多、外部电压下降太多或 PLL出现故障时，系统控制都会
产生中断。

也可参考：

有关注册中断处理程序的重要信息还可参考 IntRegister()。

返回：

无。

19.2.2.16 SysCtlIntStatus
获取当前的中断状态。

函数原型：

unsigned long

SysCtlIntStatus(tBoolean bMasked)

参数：

bMasked：如果需要原始的中断状态，则 bMasked为 False；如果需要屏蔽的中断状态，
则 bMasked为 True。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

180

 广州周立功单片机发展有限公司 第19章 系统控制

这个函数返回系统控制器的中断状态。返回的是原始的中断状态或允许反映到处理器中

的中断的状态。

返回：

返回当前的中断状态，通过下面的一个位字段列举出来：SYSCTL_INT_PLL_LOCK、
SYSCTL_INT_CUR_LIMIT、SYSCTL_INT_IOSC_FAIL、SYSCTL_INT_MOSC_FAIL、

SYSCTL_INT_POR、SYSCTL_INT_BOR和 SYSCTL_INT_PLL_FAIL。

19.2.2.17 SysCtlIntUnregister
注销系统控制中断的中断处理程序。

函数原型：

void

SysCtlIntUnregister(void)

描述：

这个函数将清除系统控制中断出现时调用的处理程序。这也将关闭中断控制器中的中

断，以致中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息还可参考 IntRegister()。

返回：

无。

19.2.2.18 SysCtlIOSCVerificationSet
配置内部振荡器验证定时器。

函数原型：

void

SysCtlIOSCVerificationSet(tBoolean bEnable)

参数：

bEnable是一个逻辑值；它在内部振荡器验证定时器应当被使能时为 True。

描述：

这个函数允许内部振荡器验证定时器被使能或禁止。当内部振荡器验证定时器使能时，

如果内部振荡器停止工作将会导致产生中断。

内部振荡器验证定时器只可用于 Standstorm-class器件中。

注：为了使主振荡器可以校验内部振荡器，主振荡器和内部振荡器都必须使能。

返回：

无。

19.2.2.19 SysCtlLDOConfigSet
配置 LDO故障控制。

函数原型：

void

SysCtlLDOConfigSet(unsigned long ulConfig)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

181

 广州周立功单片机发展有限公司 第19章 系统控制

ulConfig 是所需的 LDO 故障控制设置；其值可以是 SYSCTL_LDOCFG_ARST 或
SYSCTL_LDOCFG_NORST。

描述：

这个函数允许 LDO被配置成在输出电压变得不可调时产生一次处理器复位。

LDO故障控制只可用于 Sandstorm-class器件。

返回：

无。

19.2.2.20 SysCtlLDOGet
获取 LDO的输出电压。

函数原型：

unsigned long

SysCtlLDOGet(void)

描述：

这个函数决定了 LDO的输出电压，就如控制寄存器指定的一样。

返回：

返回 LDO 的当前电压；返回的是下面的其中一个值：SYSCTL_LDO_2_25V、
SYSCTL_LDO_2_30V、SYSCTL_LDO_2_35V、SYSCTL_LDO_2_40V、SYSCTL_LDO_2_
45V、SYSCTL_LDO_2_50V、SYSCTL_LDO_2_55V、SYSCTL_LDO_2_60V、SYSCTL_LDO
_2_65V、SYSCTL_LDO_2_70V或 SYSCTL_LDO_2_75V。

19.2.2.21 SysCtlLDOSet
设置 LDO的输出电压。

函数原型：

void

SysCtlLDOSet(unsigned long ulVoltage)

参数：

ulVoltage是所需的 LDO的输出电压。它必须是下面的其中一个值：SYSCTL_LDO_2_

25V、SYSCTL_LDO_2_30V、SYSCTL_LDO_2_35V、SYSCTL_LDO_2_40V、SYSCTL_
LDO_2_45V、SYSCTL_LDO_2_50V、SYSCTL_LDO_2_55V、SYSCTL_LDO_2_60V、
SYSCTL_LDO_2_65V、SYSCTL_LDO_2_70V或 SYSCTL_LDO_2_75V。
描述：

这个函数设置 LDO的输出电压。默认的电压是 2.5V；它可以在+/-10﹪范围内调整。

返回：

无。

19.2.2.22 SysCtlMOSCVerificationSet
配置主振荡器验证定时器。

函数原型：

void

SysCtlMOSCVerificationSet(tBoolean bEnable)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

182

 广州周立功单片机发展有限公司 第19章 系统控制

参数：

bEnable是一个逻辑值，当主振荡器验证定时器应当被使能时为 True。

描述：

这个函数允许主振荡器验证定时器被使能或禁止。当使能时，如果主振荡器停止工作则

将会产生一个中断。

主振荡器验证定时器只可用于 Sandstorm-class器件中。

注：为了使内部振荡器可以校验主振荡器，主振荡器和内部振荡器都必须使能。

返回：

无。

19.2.2.23 SysCtlPeripheralClockGating
控制睡眠和深度睡眠模式中的外设时钟门控。

函数原型：

void

SysCtlPeripheralClockGating(tBoolean bEnable)

参数：

bEnable是一个逻辑值，如果应当使用睡眠和深度睡眠的外设配置时，bEnable为 True；
否则 bEnable为 False。

描述：

这个函数控制着处理器进入睡眠或深度睡眠模式时的外设时钟。默认情况下，这时的外

设时钟和运行模式下的相同；如果外设时钟门控使能，它们就根据 SysCtlPeripheral-
SleepEnable()、SysCtlPeripheralSleepDisable()、SysCtlPeripheralDeepSleepEnable()和 SysCtl-
PeripheralDeepSleepDisable()设置的配置来计时。

返回：

无。

19.2.2.24 SysCtlPeripheralDeepSleepDisable
禁止处在深度睡眠模式下的外设。

函数原型：

void

SysCtlPeripheralDeepSleepDisable(unsigned long ulPeripheral)

参数：

ulPeripheral是在深度睡眠模式下要禁止的外设。

描述：

这个函数使一个外设在处理器进入深度睡眠模式时停止工作。在深度睡眠模式中禁止外

设有助于降低器件的电流消耗，并可以使需要一个特殊时钟频率的外设在由于进入深度睡眠

模式而引起时钟改变的情况下停止工作。如果外设通过 SysCtlPeripheralEnable()被使能，当
处理器离开深度睡眠模式时，外设将自动恢复操作，保持进入深度睡眠模式之前的状态。

外设的深度睡眠模式时钟必须通过 SysCtlPeripheralClockGating()来使能；如果被禁止，
外设的深度睡眠模式配置就保持不变，进入深度睡眠模式时也不生效

ulPeripheral参数的值必须是下面的其中一个：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

183

 广州周立功单片机发展有限公司 第19章 系统控制

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

返回：

无。

19.2.2.25 SysCtlPeripheralDeepSleepEnable
使能处于深度睡眠模式下的外设。

函数原型：

void

SysCtlPeripheralDeepSleepEnable(unsigned long ulPeripheral)

参数：

ulPeripheral是在深度睡眠模式下要使能的外设。

描述：

这个函数允许外设在处理器进入深度睡眠模式时继续工作。由于器件的时钟配置可能会

改变，因此并非所有的外设都能在处理器处于睡眠模式中时安全地继续工作。如果时钟改变

了，那些必须运行在特定频率下的外设（例如 UART）就不能按照所期望的那样工作。由调
用者负责做出明智的选择。

外设的深度睡眠模式时钟必须通过 SysCtlPeripheralClockGating()来使能；如果被禁止，
外设的深度睡眠模式配置就保持不变，进入深度睡眠模式时也不生效。

ulPeripheral参数的值必须是下面的其中一个：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

184

 广州周立功单片机发展有限公司 第19章 系统控制

返回：

无。

19.2.2.26 SysCtlPeripheralDisable
禁止一个外设。

函数原型：

void

SysCtlPeripheralDisable(unsigned long ulPeripheral)

参数：

ulPeripheral是要禁止的外设。

描述：

此函数禁止外设。一旦被禁止，外设就不能工作或响应寄存器的读/写操作。

ulPeripheral参数必须取下面的其中一个值：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、
SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

返回：

无。

19.2.2.27 SysCtlPeripheralEnable
使能一个外设。

函数原型：

void

SysCtlPeripheralEnable(unsigned long ulPeripheral)

参数：

ulPeripheral是要使能的外设。

描述：

此函数使能外设。上电时全部的外设都被禁止；为了使外设能工作或响应寄存器的读/
写操作，它们必须被使能。

ulPeripheral参数必须取下面的其中一个值：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

185

 广州周立功单片机发展有限公司 第19章 系统控制

SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

注：写操作后，在外设真正被使能前需要用到五个时钟周期来使能外设。在这段时间内，尝试访问外

设将会导致一个总线故障。因此必须要小心确保在这个短暂的时间周期内不要访问外设。

返回：

无。

19.2.2.28 SysCtlPeripheralPresent
决定一个外设是否在器件中出现。

函数原型：

tBoolean

SysCtlPeripheralPresent(unsigned long ulPeripheral)

参数：

ulPeripheral是讨论的外设。

描述：

这个函数决定某个特定的外设是否在器件中出现。Stellaris系列的每个成员都有一个不
同的外设集合；这将会决定哪些外设会在这个器件中出现。

ulPeripheral参数必须取下面的其中一个值：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_IEEE1588 、 SYSCTL_PERIPH_MPU 、

SYSCTL_PERIPH_PLL 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TEMP 、 SYSCTL_PERIPH_TIMER0 、 SYSCTL_PERIPH_TIMER1 、
SYSCTL_PERIPH_TIMER2 、 SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、
SYSCTL_PERIPH_UART1 、 SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、
SYSCTL_PERIPH_USB0或 SYSCTL_PERIPH_WDOG。

返回：

如果指定的外设在器件中出现，则返回 True；否则返回 False。

19.2.2.29 SysCtlPeripheralReset

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

186

 广州周立功单片机发展有限公司 第19章 系统控制

执行一个外设的软件复位。

函数原型：

void

SysCtlPeripheralReset(unsigned long ulPeripheral)

参数：

ulPeripheral是要复位的外设。

描述：

这个函数执行指定外设的软件复位。单个外设的复位信号在一个短时间内有效，然后再

变为无效，而外设保持工作状态但仍处于复位条件的范围。

ulPeripheral参数必须取下面的其中一个值：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

返回：

无。

19.2.2.30 SysCtlPeripheralSleepDisable
禁止处于睡眠模式下的外设。

函数原型：

void

SysCtlPeripheralSleepDisable(unsigned long ulPeripheral)

参数：

ulPeripheral是在睡眠模式下要禁止的外设。

描述：

这个函数使一个外设在处理器进入睡眠模式时停止工作。在睡眠模式中禁止外设有助于

降低器件的电流消耗。如果外设通过 SysCtlPeripheralEnable()被使能，当处理器离开深度睡
眠模式时，外设将自动恢复操作，保持进入睡眠模式之前的状态。

外设的睡眠模式时钟必须通过 SysCtlPeripheralClockGating()来使能；如果被禁止，外设
的睡眠模式配置就保持不变，进入深度睡眠模式时也不生效。

ulPeripheral参数的值必须是下面的其中一个：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

187

 广州周立功单片机发展有限公司 第19章 系统控制

SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

返回：

无。

19.2.2.31 SysCtlPeripheralSleepEnable
使能处于睡眠模式下的外设。

函数原型：

void

SysCtlPeripheralSleepEnable(unsigned long ulPeripheral)

参数：

ulPeripheral是在睡眠模式下要使能的外设。

描述：

这个函数允许外设在处理器进入睡眠模式时继续工作。由于器件的时钟配置不会改变，

因此任何外设都能在处理器处于睡眠模式中时安全地继续工作，从而可以将处理器从睡眠模

式中唤醒。

外设的睡眠模式时钟必须通过 SysCtlPeripheralClockGating()来使能；如果被禁止，外设
的睡眠模式配置就保持不变，进入睡眠模式时也不生效。

ulPeripheral参数的值必须是下面的其中一个：

SYSCTL_PERIPH_ADC 、 SYSCTL_PERIPH_CAN0 、 SYSCTL_PERIPH_CAN1 、

SYSCTL_PERIPH_CAN2 、 SYSCTL_PERIPH_COMP0 、 SYSCTL_PERIPH_COMP1 、
SYSCTL_PERIPH_COMP2 、 SYSCTL_PERIPH_ETH 、 SYSCTL_PERIPH_GPIOA 、

SYSCTL_PERIPH_GPIOB 、 SYSCTL_PERIPH_GPIOC 、 SYSCTL_PERIPH_GPIOD 、

SYSCTL_PERIPH_GPIOE 、 SYSCTL_PERIPH_GPIOF 、 SYSCTL_PERIPH_GPIOG 、

SYSCTL_PERIPH_GPIOH、 SYSCTL_PERIPH_HIBERNATE、 SYSCTL_PERIPH_I2C0、
SYSCTL_PERIPH_I2C1 、 SYSCTL_PERIPH_PWM 、 SYSCTL_PERIPH_QEI0 、

SYSCTL_PERIPH_QEI1 、 SYSCTL_PERIPH_SSI0 、 SYSCTL_PERIPH_SSI1 、

SYSCTL_PERIPH_TIMER0、 SYSCTL_PERIPH_TIMER1、 SYSCTL_PERIPH_TIMER2、
SYSCTL_PERIPH_TIMER3 、 SYSCTL_PERIPH_UART0 、 SYSCTL_PERIPH_UART1 、
SYSCTL_PERIPH_UART2 、 SYSCTL_PERIPH_UDMA 、 SYSCTL_PERIPH_USB0 或

SYSCTL_PERIPH_WDOG。

返回：

无。

19.2.2.32 SysCtlPinPresent

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

188

 广州周立功单片机发展有限公司 第19章 系统控制

决定一个管脚是否在器件中出现。

函数原型：

tBoolean

SysCtlPinPresent(unsigned long ulPin)

参数：

ulPin是讨论的管脚。

描述：

决定一个特定管脚是否在器件中出现。Stellaris 系列成员的 PWM、模拟比较器、ADC
和定时器拥有不同数目的管脚；这个函数将决定哪些管脚会在器件中出现。

ulPin参数的值必须是下面的其中一个：

SYSCTL_PIN_PWM0、SYSCTL_PIN_PWM1、SYSCTL_PIN_PWM2、SYSCTL_PIN_PWM3、
SYSCTL_PIN_PWM4 、 SYSCTL_PIN_PWM5 、 SYSCTL_PIN_C0MINUS 、

SYSCTL_PIN_C0PLUS 、 SYSCTL_PIN_C0O 、 SYSCTL_PIN_C1MINUS 、

SYSCTL_PIN_C1PLUS 、 SYSCTL_PIN_C1O 、 SYSCTL_PIN_C2MINUS 、

SYSCTL_PIN_C2PLUS、SYSCTL_PIN_C2O、SYSCTL_PIN_ADC0、SYSCTL_PIN_ADC1、
SYSCTL_PIN_ADC2、SYSCTL_PIN_ADC3、SYSCTL_PIN_ADC4、SYSCTL_PIN_ADC5、
SYSCTL_PIN_ADC6、SYSCTL_PIN_ADC7、SYSCTL_PIN_CCP0、SYSCTL_PIN_CCP1、
SYSCTL_PIN_CCP2、SYSCTL_PIN_CCP3、SYSCTL_PIN_CCP4、SYSCTL_PIN_CCP5、
SYSCTL_PIN_CCP6 、 SYSCTL_PIN_CCP7 、 SYSCTL_PIN_32KHZ 或

SYSCTL_PIN_MC_FAULT0。

返回：

如果指定的管脚在器件上出现，则返回 True；否则返回 False。

19.2.2.33 SysCtlPLLVerificationSet
配置 PLL验证定时器。

函数原型：

void

SysCtlPLLVerificationSet(tBoolean bEnable)

参数：

bEnable是一个逻辑值，当 PLL验证定时器应该被使能时为 True。

描述：

这个函数允许 PLL验证定时器被使能或禁止。当验证定时器使能时，如果 PLL停止工
作会导致产生一个中断。

PLL验证定时器只可用于 Sandstorm-class器件中。

注：当验证定时器用来检查 PLL时，主振荡器必须被使能。并且，如果 PLL正在通过 SysCtlClockSet()

进行重新配置时，应该禁止验证定时器。

返回：

无。

19.2.2.34 SysCtlPWMClockGet
获取当前的 PWM时钟配置。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

189

 广州周立功单片机发展有限公司 第19章 系统控制

函数原型：

unsigned long

SysCtlPWMClockGet(void)

描述：

这个函数返回当前的 PWM时钟配置。

返回：

返回当前的 PWM时钟配置；返回的将是下面的其中一个值：

SYSCTL_PWMDIV_1 、 SYSCTL_PWMDIV_2 、 SYSCTL_PWMDIV_4 、

SYSCTL_PWMDIV_8 、 SYSCTL_PWMDIV_16 、 SYSCTL_PWMDIV_32 或

SYSCTL_PWMDIV_64。

19.2.2.35 SysCtlPWMClockSet
设置 PWM时钟配置。

函数原型：

void

SysCtlPWMClockSet(unsigned long ulConfig)

参数：

ulConfig 是 PWM 时钟的配置；它必须是下面的其中一个值：SYSCTL_PWMDIV_1、
SYSCTL_PWMDIV_2、SYSCTL_PWMDIV_4、SYSCTL_PWMDIV_8、SYSCTL_PWMDIV
_16、SYSCTL_PWMDIV_32或 SYSCTL_PWMDIV_64。

描述：

这个函数将提供给 PWM模块的时钟速率作为一个处理器时钟的系数来设置。PWM模
块使用这个时钟来产生 PWM信号；它的速率形成了所有 PWM信号的基础。

注：PWM的时钟由 SysCtlClockSet()配置的系统时钟速率来决定。

返回：

无。

19.2.2.36 SysCtlReset
复位器件。

函数原型：

void

SysCtlReset(void)

描述：

这个函数将执行整个器件的软件复位。处理器和所有的外设都被复位，所有的器件寄存

器都返回到默认值（复位源寄存器除外，它将保持为当前值，但也使软件复位位置位）。

返回：

这个函数不返回。

19.2.2.37 SysCtlResetCauseClear
清除复位原因。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

190

 广州周立功单片机发展有限公司 第19章 系统控制

void

SysCtlResetCauseClear(unsigned long ulCauses)

参数：

ulCause是要清除的复位原因；它必须是SYSCTL_CAUSE_LDO、SYSCTL_CAUSE_SW、
SYSCTL_CAUSE_WDOG 、 SYSCTL_CAUSE_BOR 、 SYSCTL_CAUSE_POR 和 / 或
SYSCTL_CAUSE_EXT的逻辑或。

描述：

这个函数清除特定的相关复位原因。一旦清除后，可以检测到相同原因引起的另一个复

位，而且其它原因引起的复位可以被区分开来（而不是置位 2个复位源）。如果这个复位源
被一个应用使用，则所有的复位原因在它们通过 SysCtlResetCauseGet()获得后都应该被清
除。

返回：

无。

19.2.2.38 SysCtlResetCauseGet
获取一个复位原因。

函数原型：

unsigned long

SysCtlResetCauseGet(void)

描述：

这个函数将返回复位原因。由于复位原因会一直保持着直至通过软件清除或外部复位，

所以，如果发生了多个复位，可能会返回多个复位原因。复位原因是 SYSCTL_CAUSE_LDO、
SYSCTL_CAUSE_SW 、 SYSCTL_CAUSE_WDOG 、 SYSCTL_CAUSE_BOR 、

SYSCTL_CAUSE_POR和/或 SYSCTL_CAUSE_EXT的逻辑或。

返回：

返回复位的原因。

19.2.2.39 SysCtlSleep
使处理器进入睡眠模式。

函数原型：

void

SysCtlSleep(void)

描述：

这个函数使处理器进入睡眠模式；该函数不会返回，直至处理器返回到运行模式。通过

SysCtlPeripheralSleepEnable()使能的外设继续工作，并且这些外设还可以唤醒处理器（如果
自动时钟门控通过 SysCtlPeripheralClockGating()来使能，否则，所有的外设继续工作）。

返回：

无。

19.2.2.40 SysCtlSRAMSizeGet
获取 SRAM的大小。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

191

 广州周立功单片机发展有限公司 第19章 系统控制

unsigned long

SysCtlSRAMSizeGet(void)

描述：

这个函数决定了 Stellaris器件的 SRAM大小。

返回：

SRAM的总字节数。

19.2.2.41 SysCtlUSBPLLDisable
使 USB PLL掉电。

函数原型：

void

SysCtlUSBPLLDisable(void)

描述：

这个函数将会禁止被自身的物理层(physical layer)使用的 USB控制器的 PLL。USB寄存
器仍是可用的，但物理层将不再运行。

返回：

无。

19.2.2.42 SysCtlUSBPLLEnable
使 USB PLL上电。

函数原型：

void

SysCtlUSBPLLEnable(void)

描述：

这个函数将会使能被自身的物理层(physical layer)使用的 USB控制器的 PLL。在连接到
任何外部器件之前，调用这个函数是必不可少的。

返回：

无。

19.3 编程示例

下面的示例显示了如何使用 SysCtl API来配置器件进行正常操作。

//

// 配置器件运行在 20MHz频率下，该频率来自 PLL（使用一个 4MHz的晶体作为输入）。

//

SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_XTAL_4MHZ |

SYSCTL_OSC_MAIN);

//

// 使能 GPIO模块和 SSI。

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

192

 广州周立功单片机发展有限公司 第19章 系统控制

//

// 使 GPIO模块和 SSI在睡眠模式中使能。

//

SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOA);

SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);

SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_SSI);

//

// 使能外设时钟门控。

//

SysCtlPeripheralClockGating(true);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

193

 广州周立功单片机发展有限公司 第 20 章 系统节拍(SysTick)

第20章 系统节拍(SysTick)

20.1 简介

SysTick 是一个简单的定时器，它是 Cortex-M3 微处理器中 NVIC 控制器的一部分。
SysTick的主要目的是为 RTOS提供一个周期性中断，而它也可以用作其它简单定时目的。

SysTick中断处理程序并不需要清除 SysTick中断源。当调用 SysTick中断处理程序时，
它将会由 NVIC自动清除 SysTick中断源。

这个驱动程序包含在 src/systick.c中，src/systick.h包含应用使用的 API定义。

20.2 API函数

函数

 void SysTickDisable (void)；
 void SysTickEnable (void)；
 void SysTickIntDisable (void)；
 void SysTickIntEnable (void)；
 void SysTickIntRegister (void (*pfnHandler)(void))；
 void SysTickIntUnregister (void)；
 unsigned long SysTickPeriodGet (void)；
 void SysTickPeriodSet (unsigned long ulPeriod)；
 unsigned long SysTickValueGet (void)。

20.2.1 详细描述

SysTick API就像 SysTick一样，非常简单。其中，SysTickEnable()、SysTickDisable()、
SysTickPeriodSet()、SysTickPeriodGet()和 SysTickValueGet()函数用来配置和使能 SysTick；
SysTickIntRegister()、SysTickIntUnregister()、SysTickIntEnable()和 SysTickIntDisable()用来处
理 SysTick的中断处理程序。

20.2.2 函数文件

20.2.2.1 SysTickDisable
禁止 SysTick计数器。

函数原型：

void

SysTickDisable(void)

描述：

这个函数停止 SysTick计数器。如果已经注册了一个中断处理程序，则这个中断处理程
序在 SysTick重新启动之前不会被调用。

返回：

无。

20.2.2.2 SysTickEnable
使能 SysTick计数器。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

194

 广州周立功单片机发展有限公司 第 20 章 系统节拍(SysTick)

void

SysTickEnable(void)

描述：

这个函数将启动 SysTick计数器。如果已经注册了一个中断处理程序，当 SysTick计数
器翻转时，中断处理程序将被调用。

注：调用这个函数将会导致 SysTick计数器从其当前值开始（重新开始）计数。计数器并不能够自动

重新装载之前调用 SysTickPeriodSet()所指定的周期。如果需要立即进行重载，必须对 NVIC_ST_CURRENT

寄存器进行写操作来强制执行此操作。对 NVIC_ST_CURRENT寄存器进行任何一个写作操作均可以把

SysTick计数器清除为 0，并将把在下一个时钟提供的周期重载入 SysTick计数器。

返回：

无。

20.2.2.3 SysTickIntDisable
禁止 SysTick中断。

函数原型：

void

SysTickIntDisable(void)

描述：

这个函数将禁止 SysTick中断，防止它反映到处理器中。

返回：

无。

20.2.2.4 SysTickIntEnable
使能 SysTick中断。

函数原型：

void

SysTickIntEnable(void)

描述：

这个函数将使能 SysTick中断，允许它反映到处理器中。

注：SysTick中断处理程序并不需要清除 SysTick中断源，因为在调用中断处理程序时，NVIC自动清

除 SysTick中断源。

返回：

无。

20.2.2.5 SysTickIntRegister
注册一个 SysTick中断的中断处理程序。

函数原型：

void

SysTickIntRegister(void (*pfnHandler) (void)

参数：

pfnHandler是 SysTick中断出现时调用的函数的指针。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

195

 广州周立功单片机发展有限公司 第 20 章 系统节拍(SysTick)

描述：

这个函数设置 SysTick中断出现时调用的处理程序。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

20.2.2.6 SysTickIntUnregister
注销 SysTick中断的中断处理程序。

函数原型：

void

SysTickIntUnregister(void)

描述：

这个函数将清除 SysTick中断出现时调用的处理程序。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

20.2.2.7 SysTickPeriodGet
获取 SysTick计数器的周期。

函数原型：

unsigned long

SysTickPeriodGet(void)

描述：

这个函数返回 SysTick计数器绕回计数（wrap）的速率；它与两个中断之间的处理器时
钟数相等。

返回：

返回 SysTick计数器的周期。

20.2.2.8 SysTickPeriodSet
设置 SysTick计数器的周期。

函数原型：

void

SysTickPeriodSet(unsigned long ulPeriod)

参数：

ulPeriod是每个 SysTick计数器周期的时钟节拍数；它的值必须在 1～16,777,216之间（1
和 16,777,216包括在内）。

描述：

这个函数设置 SysTick计数器绕回计数（wrap）的速率；它与相邻中断之间的处理器时
钟数相等。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

196

 广州周立功单片机发展有限公司 第 20 章 系统节拍(SysTick)

注：调用这个函数并不会使 SysTick计数器立即重载。如果需要进行立即重载，必须对

NVIC_ST_CURRENT寄存器进入写操作。对 NVIC_ST_CURRENT寄存器进行的任何一个写操作均可以把

SysTick计数器清除为 0，并将会重载一个在使能 SysTick后下一个时钟提供的 ulPeriod到计数器中。

返回：

无。

20.2.2.9 SysTickValueGet
获取 SysTick计数器的当前值。

函数原型：

unsigned long

SysTickValueGet(void)

描述：

这个函数返回 SysTick计数器的当前值；它的值将在（周期－1）到 0之间（（周期－1）
和 0两个值包括在内）。

返回：

返回 SysTick计数器的当前值。

20.3 编程示例

下面的示例显示了如何使用 SysTick API来配置 SysTick计数器和读取它的值。

unsigned long ulValue;

//

// 配置和使能 SysTick计数器。

//

SysTickPeriodSet(1000);

SysTickEnable();

//

// 延时一段时间…

//

//

// 读取当前的 SysTick值。

//

ulValue = SysTickValueGet();

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

197

 广州周立功单片机发展有限公司 第21章 定时器

第21章 定时器

21.1 简介

定时器 API 提供了一组函数来处理定时器模块。这些函数用来配置和控制定时器、修
改定时器/计数器的值以及管理定时器的中断处理。

定时器模块提供 2个 16位的定时器/计数器，它们可以配置成用作独立的定时器或事件
计数器，也可以用作一个 32位的定时器或一个 32位的实时时钟（RTC）。对于这个定时器
API来说，提供的 2个定时器称为 TimerA和 TimerB。

当配置用作一个 32位或 16位的定时器时，定时器可设置成作为一个单次触发的定时器
或一个连续的定时器来运行。如果配置用作一个单次触发的定时器，定时器的值到达零时将

停止计数。如果配置用作一个连续的定时器，定时器的值到达零时将从重装值开始继续计数。

当定时器配置用作一个 32位的定时器时，它也可以用作一个 RTC。如果这样，定时器就希
望由一个 32kHz的外部时钟来驱动，这个时钟被分频来产生 1秒的时钟节拍。

在 16位的模式中，定时器也可以配置用于事件捕获或脉宽调制器（PWM）发生器。当
配置用于事件捕获时，定时器用作一个计数器。定时器可以配置成计数两个事件之间的时间

或计数事件本身。被计数的事件类型可以配置成上升沿、下降沿或者上升和下降沿。当定时

器配置用作一个 PWM发生器时，用来捕获事件的输入线变成了输出线，定时器被用来驱动
一个边沿对准的脉冲到这条线上。

定时器模块还提供了控制其它功能参数，例如输出翻转、输出触发和终止过程中的定时

器行为的能力。

除此之外，还提供了中断源和事件的控制。用产生中断来指示一个事件的捕获或特定数

量事件的捕获。当定时器递减计数到零或 RTC匹配某个特定值时也可以产生中断。

这个驱动程序包含在 src/timer.c中，src/timer.h包含应用使用的 API定义。

21.2 API函数

函数

 void TimerConfigure (unsigned long ulBase, unsigned long ulConfig)；
 void TimerControlEvent (unsigned long ulBase, unsigned long ulTimer, unsigned long

ulEvent)；
 void TimerControlLevel (unsigned long ulBase, unsigned long ulTimer, tBoolean

bInvert)；
 void TimerControlStall (unsigned long ulBase, unsigned long ulTimer, tBoolean

bStall)；
 void TimerControlTrigger (unsigned long ulBase, unsigned long ulTimer, tBoolean

bEnable)；
 void TimerDisable (unsigned long ulBase, unsigned long ulTimer)；
 void TimerEnable (unsigned long ulBase, unsigned long ulTimer)；
 void TimerIntClear (unsigned long ulBase, unsigned long ulIntFlags)；
 void TimerIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void TimerIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void TimerIntRegister (unsigned long ulBase, unsigned long ulTimer, void

(*pfnHandler)(void))；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

198

 广州周立功单片机发展有限公司 第21章 定时器

 unsigned long TimerIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void TimerIntUnregister (unsigned long ulBase, unsigned long ulTimer)；
 unsigned long TimerLoadGet (unsigned long ulBase, unsigned long ulTimer)；
 void TimerLoadSet (unsigned long ulBase, unsigned long ulTimer, unsigned long

ulValue)；
 unsigned long TimerMatchGet (unsigned long ulBase, unsigned long ulTimer)；
 void TimerMatchSet (unsigned long ulBase, unsigned long ulTimer, unsigned long

ulValue)；
 unsigned long TimerPrescaleGet (unsigned long ulBase, unsigned long ulTimer)；
 void TimerPrescaleSet (unsigned long ulBase, unsigned long ulTimer, unsigned long

ulValue)；
 void TimerRTCDisable (unsigned long ulBase)；
 void TimerRTCEnable (unsigned long ulBase)；
 unsigned long TimerValueGet (unsigned long ulBase, unsigned long ulTimer)。

21.2.1 详细描述

定时器 API 分成 3 组函数，分别执行以下功能：处理定时器配置和控制、处理定时器
内容和执行中断处理。

定时器配置由 TimerConfigure()来处理，这个函数执行定时器模块的高级设置；也就是
说，它用来设置32或16位模式，在PWM、捕获和定时器操作之间进行选择。由TimerEnable()、
TimerDisable() 、 TimerControlLevel() 、 TimerControlTrigger() 、 TimerControlEvent() 、
TimerControlStall()、TimerRTCEnable()、TimerRTCDisable()来执行定时器控制。

定时器内容由 TimerLoadSet()、TimerLoadGet()、TimerPrescaleSet()、TimerPrescaleGet()、
TimerMatchSet()、TimerMatchGet()、TimerPrescaleMatchSet()、TimerPrescaleMatchGet()和
TimerValueGet()来管理。

定时器中断的中断处理程序由 TimerIntRegister()和 TimerIntUnregister()来管理。定时器
模块内的单个中断源由 TimerIntEnable()、TimerIntDisable()、TimerIntStatus()和 TimerIntClear()
来管理。

以前版本的外设驱动程序库的 TimerQuiesce()API 已经被否定，而应该使用
SysCtlPeripheralReset()来使定时器返回到其复位状态。

21.2.2 函数文件

21.2.2.1 TimerConfigure
配置定时器。

函数类型：

void

TimerConfigure(unsigned long ulBase

unsigned long ulConfig)

参数：

ulBase是定时器模块的基址。

ulConfig是定时器的配置。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

199

 广州周立功单片机发展有限公司 第21章 定时器

这个函数配置定时器的工作模式。定时器模块在配置前被禁止，并保持在禁止状态。

ulConfig指定的配置为下面的其中一个：

 TIMER_CFG_32_BIT_OS：32位单次触发定时器；
 TIMER_CFG_32_BIT_PER：32位周期定时器；
 TIMER_CFG_32_RTC：32位实时时钟定时器；
 TIMER_CFG_16_BIT_PAIR：2个 16位的定时器。

当配置成一对 16位的定时器时，每个定时器单独配置。通过将 ulConfig设置成下列其
中一个值和 ulConfig的逻辑或结果的方法来配置第一个定时器：

 TIMER_CFG_A_ONE_SHOT：16位的单次触发定时器；
 TIMER_CFG_A_PERIODIC：16位的周期定时器；
 TIMER_CFG_A_CAP_COUNT：16位的边沿计数捕获；
 TIMER_CFG_A_CAP_TIME：16位的边沿时间捕获；
 TIMER_CFG_A_PWM：16位 PWM输出。

类似地，通过将 ulConfig 设置成一个相应的 TIMER_CFG_B_*值和 ulConfig 的逻辑或
结果的方法来配置第二个定时器。

返回：

无。

21.2.2.2 TimerControlEvent
控制事件类型。

函数原型：

void

TimerControlEvent(unsigned long ulBase,

unsigned long ulTimer,

unsigned long ulEvent)

参数：

ulBase是定时器模块的基址。

ulTimer指定要被调整的定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH
中的一个。

ulEvent 指 定 事 件 的 类 型 ； 它 的 值 必 须 是 TIMER_EVENT_POS_EDGE 、
TIMER_EVENT_NEG_EDGE或 TIMER_EVENT_BOTH_EDGES中的一个。

描述：

这个函数设置在捕获模式中触发定时器的信号沿。

返回：

无。

21.2.2.3 TimerControlLevel
控制输出电平。

函数原型：

void

TimerControlLevel(unsigned long ulBase,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

200

 广州周立功单片机发展有限公司 第21章 定时器

unsigned long ulTimer,

tBoolean bInvert)

参数：

ulBase是定时器模块的基址。

ulTimer指定调整的定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中
的一个。

bInvert指定输出电平。

描述：

这个函数设置指定定时器的 PWM输出电平。如果参数 bInvert为 True，则定时器的输
出低电平有效；否则，定时器的输出高电平有效。

返回：

无。

21.2.2.4 TimerControlStall
控制停止处理。

函数原型：

void

TimerControlStall(unsigned long ulBase,

unsigned long ulTimer,

tBoolean bStall)

参数：

ulBase是定时器模块的基址。

ulTimer指定调整的定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中
的一个。

bStall指定对一个停止信号的响应。

描述：

这个函数控制指定定时器的停止响应。如果 bStall参数为 True，则定时器将在处理器进
入调试模式时停止计数；否则，在调试模式中定时器将继续运行。

返回：

无。

21.2.2.5 TimerControlTrigger
使能或禁止触发输出。

函数原型：

void

TimerControlTrigger(unsigned long ulBase,

unsigned long ulTimer,

tBoolean bEnable)

参数：

ulBase是定时器模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

201

 广州周立功单片机发展有限公司 第21章 定时器

ulTimer指定调整的定时器；必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

bEnable指定希望的触发状态。

描述：

这个函数控制指定定时器的触发输出。如果参数 bEnable为 True，则使能定时器的输出
触发；否则，禁止定时器的输出触发。

返回：

无。

21.2.2.6 TimerDisable
禁止定时器。

函数原型：

void

TimerDisable(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定禁止的定时器；必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

描述：

这个函数将禁止定时器模块的操作。

返回：

无。

21.2.2.7 TimerEnable
使能定时器。

函数原型：

void

TimerEnable(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定使能的定时器；必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

描述：

这个函数将使能定时器模块的操作。定时器必须在使能前进行配置。

返回：

无。

21.2.2.8 TimerIntClear
清除定时器中断源。

函数原型：

void

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

202

 广州周立功单片机发展有限公司 第21章 定时器

TimerIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是定时器模块的基址。

ulIntFlags是被清除的中断源的位屏蔽。

描述：

清除指定的定时器中断源，使其不再有效。这必须在中断处理程序中处理，以防在退出

时再次对其立即进行调用。

参数 ulIntFlags与 TimerIntEnable()的 ulIntFlags参数有着相同的定义。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以

避免器件在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理

程序。（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

21.2.2.9 TimerIntDisable
禁止单个定时器中断源。

函数原型：

void

TimerIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是定时器模块的基址。

ulIntFlags是被禁止的中断源的位屏蔽。

描述：

禁止指示的定时器中断源。只有使能的中断源才能反映为处理器中断；禁止的中断源对

处理器没有任何影响。

参数 ulIntFlags与 TimerIntEnable()的 ulIntFlags参数有着相同的定义。

返回：

无。

21.2.2.10 TimerIntEnable
使能单个定时器中断源。

函数原型：

void

TimerIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是定时器模块的基址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

203

 广州周立功单片机发展有限公司 第21章 定时器

ulIntFlags是被使能的中断源的位屏蔽。

描述：

使能指示的定时器中断源。只有使能的中断源才能反映为处理器中断；禁能的中断源对

处理器没有任何影响。

参数 ulIntFlags必须是下列值任意组合的逻辑或：

 TIMER_CAPB_EVENT：捕获 B事件中断；
 TIMER_CAPB_MATCH：捕获 B匹配中断；
 TIMER_TIMB_TIMEOUT：定时器 B超时中断；
 TIMER_RTC_MATCH：RTC中断屏蔽；
 TIMER_CAPA_EVENT：捕获 A事件中断；
 TIMER_CAPA_MATCH：捕获 A匹配中断；
 TIMER_TIMA_TIMEOUT：定时器 A超时中断。

返回：

无。

21.2.2.11 TimerIntRegister
注册一个定时器中断的中断处理程序。

函数原型：

void

TimerIntRegister(unsigned long ulBase,

unsigned long ulTimer,

void (*pfnHandler) (void)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

pfnHandler是定时器中断出现时调用的函数的指针。

描述：

此函数设置一个定时器中断出现时调用的处理程序。这将使能中断控制器中的全局中

断；特定的定时器中断必须通过 TimerIntEnable()来使能。由中断处理程序负责通过
TimerIntClear()来清除中断源。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

21.2.2.12 TimerIntStatus
获取当前的中断状态。

函数原型：

unsigned long

TimerIntStatus(unsigned long ulBase,

tBoolean bMasked)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

204

 广州周立功单片机发展有限公司 第21章 定时器

参数：

ulBase是定时器模块的基址。

bMasked：如果需要的是原始的中断状态，则 bMasked 为 False；如果需要的是屏蔽的
中断状态，则 bMasked为 True。

描述：

这个函数返回定时器模块的中断状态。原始的中断状态或允许反映到处理器中的中断的

状态被返回。

返回：

返回当前的中断状态，通过 TimerIntEnable()描述的一个位字段的值列举出来。

21.2.2.13 TimerIntUnregister
注销一个定时器中断的中断处理程序。

函数原型：

void

TimerIntUnregister(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

描述：

这个函数清除一个定时器中断出现时调用的处理程序。这也会关闭中断控制器中的中

断，使得中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

21.2.2.14 TimerLoadGet
获取定时器装载值。

函数原型：

unsigned long

TimerLoadGet(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A或 TIMER_B中的一个。当定时器配置成
执行 32位的操作时，只使用 TIMER_A。

描述：

这个函数获取指定定时器的当前可编程时间间隔装载值。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

205

 广州周立功单片机发展有限公司 第21章 定时器

返回定时器的装载值。

21.2.2.15 TimerLoadSet
设置定时器装载值。

函数原型：

void

TimerLoadSet(unsigned long ulBase,

unsigned long ulTimer,

unsigned long ulValue)

参数：

ulBase是定时器模块的基址。

ulTimer指定调整的定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中
的一个。当定时器配置成执行 32位的操作时，只使用 TIMER_A。

ulValue是装载值。

描述：

这个函数设置定时器装载值；如果定时器正在运行，则该值将立刻被装载入定时器中。

返回：

无。

21.2.2.16 TimerMatchGet
获取定时器匹配值。

函数原型：

unsigned long

TimerMatchGet(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A或 TIMER_B中的一个。当定时器配置成
执行 32位的操作时，只使用 TIMER_A。

描述：

这个函数获取指定定时器的匹配值。

返回：

返回定时器的匹配值。

21.2.2.17 TimerMatchSet
设置定时器匹配值。

函数原型：

void
TimerMatchSet(unsigned long ulBase,

unsigned long ulTimer,

unsigned long ulValue)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

206

 广州周立功单片机发展有限公司 第21章 定时器

参数：

ulBase是定时器模块的基址。

ulTimer指定调整的定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中
的一个。当定时器配置成执行 32位的操作时，只使用 TIMER_A。

ulValue是匹配值。

描述：

这个函数设置一个定时器的匹配值。在捕获计数模式中用它来决定何时中断处理器，在

PWM模式中用它来决定输出信号的占空比。

返回：

无。

21.2.2.18 TimerPrescaleGet
获取定时器预分频器的值。

函数原型：

unsigned long

TimerPrescaleGet(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A或 TIMER_B中的一个。

描述：

这个函数获取输入时钟预分频器的值。预分频器只在 16位的模式中工作，用来扩展 16
位定时器模式的范围。

返回：

返回定时器预分频器的值。

21.2.2.19 TimerPrescaleSet
设置定时器预分频器值。

函数原型：

void

TimerPrescaleSet(unsigned long ulBase,

unsigned long ulTimer,

unsigned long ulValue)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A、TIMER_B或 TIMER_BOTH中的一个。

ulValue是定时器预分频器的值；它的值必须在 0到 255之间，包括 0和 255。

描述：

这个函数设置输入时钟预分频器的值。预分频器只在 16位的模式中工作，用来扩展 16
位定时器模式的范围。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

207

 广州周立功单片机发展有限公司 第21章 定时器

返回：

无。

21.2.2.20 TimerRTCDisable
禁止 RTC计数。

函数原型：

void

TimerRTCDisable(unsigned long ulBase)

参数：

ulBase是定时器模块的基址。

描述：

在 RTC模式中，这个函数使定时器停止计数。

返回：

无。

21.2.2.21 TimerRTCEnable
使能 RTC计数。

函数原型：

void

TimerRTCEnable(unsigned long ulBase)

参数：

ulBase是定时器模块的基址。

描述：

在 RTC模式中，这个函数使定时器开始计数。如果没有配置成 RTC模式，这个函数将
不执行任何操作。

返回：

无。

21.2.2.22 TimerValueGet
获取当前的定时器值。

函数原型：

unsigned long

TimerValueGet(unsigned long ulBase,

unsigned long ulTimer)

参数：

ulBase是定时器模块的基址。

ulTimer指定定时器；它的值必须是 TIMER_A或 TIMER_B中的一个。当定时器配置成
执行 32位的操作时，只使用 TIMER_A。

描述：

这个函数读取指定定时器的当前值。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

208

 广州周立功单片机发展有限公司 第21章 定时器

返回：

返回定时器的当前值。

21.3 编程示例

下面的示例显示了如何使用定时器 API将定时器配置用作一个 16位的单次触发定时器
和一个 16位的边沿捕获计数器。

//

// 将 TimerA配置用作一个 16位的单次触发定时器，TimerB配置用作一个 16位的边沿捕获计数器。

//

TimerConfigure(TIMER0_BASE, (TIMER_CFG_16_BIT_PAIR | TIMER_CFG_A_ONE_SHOT |

TIMER_CFG_B_CAP_COUNT));

//

// 配置计数器（TimerB），对两个边沿进行计数。

//

TimerControlEvent(TIMER0_BASE, TIMER_B, TIMER_EVENT_BOTH_EDGES);

//

// 使能定时器。

//

TimerEnable(TIMER0_BASE, TIMER_BOTH);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

209

 广州周立功单片机发展有限公司 第 22 章 UART

第22章 UART

22.1 简介

通用异步收发器（UART）API提供了一组使用 Stellaris UART模块的函数。提供的函
数用来配置和控制 UART模块、发送和接收数据、管理 UART模块的中断。

Stellaris UART执行并串转换和串并转换功能。它在功能上与 16C550 UART非常类似，
但是两者的寄存器不兼容。

Stellaris UART的一些特性描述如下：

 一个 16×12位的接收 FIFO和一个 16×8位的发送 FIFO；

 可编程的波特率发生器；

 起始位、停止位和奇偶位的自动产生和撤除（stripping）；

 线路断开（Line break）的产生和检测；

 可编程的串行接口：

♦ 5、6、7或 8个数据位；
♦ 奇校验位、偶校验位、粘附（stick）奇偶校验位或无奇偶校验位的产生和检测；
♦ 1或 2个停止位的产生；
♦ 波特率的产生（从 DC到处理器时钟/16）。

 IrDA串行 IR（SIR）编码器/解码器；
 DMA接口。

这个驱动程序包含在 src/uart.c中，src/uart.h包含应用使用的 API定义。

22.2 API函数

 void UARTBreakCtl (unsigned long ulBase, tBoolean bBreakState)；
 long UARTCharGet (unsigned long ulBase)；
 long UARTCharGetNonBlocking (unsigned long ulBase)；
 void UARTCharPut (unsigned long ulBase, unsigned char ucData)；
 tBoolean UARTCharPutNonBlocking (unsigned long ulBase, unsigned char ucData)；
 tBoolean UARTCharsAvail (unsigned long ulBase)；
 void UARTConfigGetExpClk (unsigned long ulBase, unsigned long ulUARTClk,

unsigned long *pulBaud, unsigned long *pulConfig)；
 void UARTConfigSetExpClk (unsigned long ulBase, unsigned long ulUARTClk,

unsigned long ulBaud, unsigned long ulConfig)；
 void UARTDisable (unsigned long ulBase)；
 void UARTDisableSIR (unsigned long ulBase)；
 void UARTDMADisable (unsigned long ulBase, unsigned long ulDMAFlags)；
 void UARTDMAEnable (unsigned long ulBase, unsigned long ulDMAFlags)；
 void UARTEnable (unsigned long ulBase)；
 void UARTEnableSIR (unsigned long ulBase, tBoolean bLowPower)；
 void UARTFIFOLevelGet (unsigned long ulBase, unsigned long *pulTxLevel, unsigned

long *pulRxLevel)；
 void UARTFIFOLevelSet (unsigned long ulBase, unsigned long ulTxLevel, unsigned

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

210

 广州周立功单片机发展有限公司 第 22 章 UART

long ulRxLevel)；
 void UARTIntClear (unsigned long ulBase, unsigned long ulIntFlags)；
 void UARTIntDisable (unsigned long ulBase, unsigned long ulIntFlags)；
 void UARTIntEnable (unsigned long ulBase, unsigned long ulIntFlags)；
 void UARTIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long UARTIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void UARTIntUnregister (unsigned long ulBase)；
 unsigned long UARTParityModeGet (unsigned long ulBase)；
 void UARTParityModeSet (unsigned long ulBase, unsigned long ulParity)；
 tBoolean UARTSpaceAvail (unsigned long ulBase)。

22.2.1 详细描述

UART API提供了实现一个中断驱动的 UART驱动程序所需的一系列函数。这些函数可
以用来控制 Stellaris微控制器上任何可用的 UART端口，它们可以和一个端口一起使用而不
会与其它端口相冲突。

UART API分成 3组函数，分别执行以下功能：处理 UART模块的配置和控制、发送和
接收数据以及处理中断。

UART 的 配 置 和 控 制 由 UARTConfigGetExpClk() 、 UARTConfigSetExpClk() 、
UARTDisable()、UARTEnable()、UARTParityModeGet()和 UARTParityModeSet()函数来处理。
DMA接口可以由 UARTDMAEnable()和 UARTDMADisable()函数来使能和禁止。

UART 的 数 据 发 送 和 接 收 由 UARTCharGet() 、 UARTCharGetNonBlocking() 、
UARTCharPut() 、 UARTCharPutNonBlocking() 、 UARTBreakCtl() 、 UARTCharsAvail() 和
UARTSpaceAvail()函数来处理。

UART中断由 UARTIntClear()、UARTIntDisable()、UARTIntEnable()、UARTIntRegister()、
UARTIntStatus()和 UARTIntUnregister()函数来管理。

以 前 版 本 的 外 设 驱 动 库 的 UARTConfigSet() 、 UARTConfigGet() 、
UARTCharNonBlockingGet() 和 UARTCharNonBlockingPut() API 已 经 分 别 被

UARTConfigSetExpClk() 、 UARTConfigGetExpClk() 、 UARTCharGetNonBlocking() 和
UARTCharPutNonBlocking() API 取代。在 uart.h 中已提供宏来把旧的 API 映射到新的 API
中，这就允许现有的应用可以与新的 API 进行连接和运行。建议在赞同利用旧的 API 基础
上，新的应用应利用新的 API。

22.2.2 函数文件

22.2.2.1 UARTBreakCtl
使得一个 BREAK条件被发送。

函数原型：

void

UARTBreakCtl(unsigned long ulBase,

tBoolean bBreakState)

参数：

ulBase是 UART端口的基址。

bBreakState控制输出电平。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

211

 广州周立功单片机发展有限公司 第 22 章 UART

描述：

在 bBreakState参数被设置成 True时，调用这个函数将在 UART上声明一个中止条件；
在 bBreakState参数被设置成 False时，调用这个函数将删除中止条件。为了便于中止命令的
正确发送，中止必须至少在 2个完整的帧内有效。

返回：

无。

22.2.2.2 UARTCharGet
等待指定端口的一个字符。

函数原型：

long

UARTCharGet(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

从指定端口的接收 FIFO中获取一个字符。如果没有可用的字符，这个函数将一直等待，
直至接收到一个字符，然后再返回。

返回：

返回从指定端口读取的字符，强制转换成 long类型。

22.2.2.3 UARTCharGetNonBlocking
从指定端口接收一个字符。

函数原型：

long

UARTChaGetrNonBlocking (unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

从指定端口的接收 FIFO中获取一个字符。

这个函数取代了最初的 UARTCharNonBlockGet()API，并执行相同的操作。uart.h 中提
供一个宏来把最初的 API映射到这个新的 API中。

返回：

返回从指定端口读取的字符，强制转换成 long类型。如果当前在接收 FIFO中没有字符，
则返回-1。在尝试调用这个函数前应该先调用 UARTCharsAvail()。

22.2.2.4 UARTCharPut
等待着把指定端口的字符发送出去。

函数原型：

void

UARTCharPut(unsigned long ulBase,

unsigned char ucData)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

212

 广州周立功单片机发展有限公司 第 22 章 UART

参数：

ulBase是 UART端口的基址。

ucData是要发送的字符。

描述：

把字符 ucData发送到指定端口的发送 FIFO中。如果发送 FIFO中没有多余的可用空间，
这个函数将会一直等待，直至在返回前发送 FIFO中有可用的空间。

返回：

无。

22.2.2.5 UARTCharPutNonBlocking
发送一个字符到指定端口。

函数原型：

tBoolean

UARTCharPutNonBlocking (unsigned long ulBase,

unsigned char ucData)

参数：

ulBase是 UART端口的基址。

ucData是要发送的字符。

描述：

将字符 ucData写入指定端口的发送 FIFO。这个函数不会停滞（block），因此，如果发
送 FIFO中没有可用的空间，则函数返回 False，应用迟点将会再尝试执行这个函数。

这个函数取代了最初的 UARTCharNonBlockPut() API，并执行相同的操作。uart.h中提
供一个宏来把最初的 API映射到这个新的 API中。

返回：

如果字符被成功放置到发送 FIFO中则返回 True；如果发送 FIFO中没有可用的空间则
返回 False。

22.2.2.6 UARTCharsAvail
确定接收 FIFO中是否有字符。

函数原型：

tBoolean

UARTCharsAvail(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

这个函数返回一个标志，用来指示接收 FIFO中是否有可用的数据。

返回：

如果接收 FIFO中有数据则返回 True；如果接收 FIFO中没有数据则返回 False。

22.2.2.7 UARTConfigGetExpClk
获取 UART的当前配置。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

213

 广州周立功单片机发展有限公司 第 22 章 UART

函数原型：

void

UARTConfigGetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,

unsigned long *pulBaud,

unsigned long *pulConfig)

参数：

ulBase是 UART端口的基址。

ulUARTClk是提供给 UART模块的时钟速率。

pulBaud是一个指针，指向波特率存放的位置。

pulConfig是一个指针，指向数据格式存放的位置。

描述：

确定 UART的波特率和数据格式，给出一个明确提供的外设时钟（以 ExpClk为后缀）。
返回的波特率是实际的波特率；它可以不是所需的确切波特率或一个“正式的”波特率。

pulConfig返回的数据格式与 UARTConfigSetExpClk ()的 ulConfig参数列举出来的值相同。

外设时钟将与处理器的时钟相同。该时钟值将会是 SysCtlClockGet()返回的值，或如果
该时钟为已知常量时（调用 SysCtlClockGet()时用来保存代码/执行体），可以明确时钟是硬
编码。

这个函数取代了最初的 UARTConfigGet() API，并执行相同的操作。uart.h中提供一个
宏来把最初的 API映射到这个新的 API中。

返回：

无。

22.2.2.8 UARTConfigSetExpClk
设置一个 UART的配置。

函数原型：

void

UARTConfigSetExpClk(unsigned long ulBase,

unsigned long ulUARTClk,

unsigned long ulBaud,

unsigned long ulConfig)

参数：

ulBase是 UART端口的基址。

ulUARTClk是提供给 UART模块的时钟速率。

ulBaud是希望的波特率。

ulConfig是端口的数据格式（数据位的数目、停止位的数目和奇偶位）。

描述：

此函数将配置 UART在指定的数据格式下工作。波特率由 ulBaud参数提供，数据格式
由 ulConfig参数提供。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

214

 广州周立功单片机发展有限公司 第 22 章 UART

ulConfig 参数是数据位数目、停止位数目和奇偶位 3 个值的逻辑或。
UART_CONFIG_WLEN_8 、 UART_CONFIG_WLEN_7 、 UART_CONFIG_WLEN_6 和

UART_CONFIG_WLEN_5 分 别 用 来 选 择 每 个 字 节 含 有 8 ～ 5 个 数 据 位 。

UART_CONFIG_STOP_ONE和UART_CONFIG_STOP_TWO分别用来选择 1或 2个停止位。

UART_CONFIG_PAR_NONE、UART_CONFIG_PAR_EVEN、UART_CONFIG_PAR_ODD、
UART_CONFIG_PAR_ONE和 UART_CONFIG_PAR_ZERO选择奇偶模式（分别选择无奇偶
位、偶校验位、奇校验位、奇偶位总是为 1和奇偶位总是为 0）。

外设时钟将与处理器的时钟相同。该时钟值将会是 SysCtlClockGet()返回的值，或如果
该时钟为已知常量时（调用 SysCtlClockGet()时用来保存代码/执行体），可以明确此时钟是
硬编码。

这个函数取代了最初的 UARTConfigSet() API，并执行相同的操作。uart.h中提供一个宏
来把最初的 API映射到这个新的 API中。

返回：

无。

22.2.2.9 UARTDisable
禁止发送和接收。

函数原型：

void

UARTDisable(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

清零 UARTEN、TXE和 RXE位，再等待当前字符发送结束，然后刷新发送 FIFO。

返回：

无。

22.2.2.10 UARTDisableSIR
禁止指定 UART的 SIR（IrDA）模式。

函数原型：

void

UARTDisableSIR(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

清零 SIREN（IrDA）和 SIRLP（低功耗）位。

注：只有 Fury-class器件才支持 SIR（IrDA）操作。

返回：

无。

22.2.2.11 UARTDMADisable
禁止 UART DMA操作。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

215

 广州周立功单片机发展有限公司 第 22 章 UART

函数原型：

void

UARTDMADisable(unsigned long ulBase,

unsigned long ulDMAFlags)

参数：

ulBase是 UART端口的基址。

ulDMAFlags是禁止的 DMA特性的位屏蔽。

描述：

这个函数用来禁止由 UARTDMAEnable()使能的 UART DMA特性。指定的 UART DMA
特性被禁止。ulDMA标志参数是以下任意值的逻辑或:

 UART_DMA_RX – 禁止接收的 DMA；
 UART_DMA_TX – 禁止发送的 DMA；
 UART_DMA_ERR_RXSTOP – 不禁止在 UART错误时的 DMA接收。

返回：

无。

22.2.2.12 UARTDMAEnable
使能 UART DMA操作。

函数原型：

void

UARTDMAEnable(unsigned long ulBase,

unsigned long ulDMAFlags)

参数：

ulBase是 UART端口的基址。

ulDMAFlags是使能的 DMA特性的位屏蔽。

描述：

使能指定的 UART DMA特性。UART可以被配置成使用 DMA来发送或接收数据，并
且在发生错误时禁止接收数据。ulDMAFlags参数是以下任意值的逻辑或：

 UART_DMA_RX –使能 DMA接收；
 UART_DMA_TX – 使能 DMA发送；
 UART_DMA_ERR_RXSTOP –禁止 UART错误时的 DMA接收。
注：uDMA控制器必须在 UART与 DMA一起被使用前被设置。

返回：

无。

22.2.2.13 UARTEnable
使能发送和接收。

函数原型：

void

UARTEnable(unsigned long ulBase)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

216

 广州周立功单片机发展有限公司 第 22 章 UART

ulBase是 UART端口的基址。

描述：

设置 UARTEN、TXE和 RXE位，并使能发送和接收的 FIFO。

返回：

无。

22.2.2.14 UARTEnableSIR
使能指定 UART的 SIR(IrDA)模式。

函数原型：

void

UARTEnableSIR(unsigned long ulBase,

tBoolean bLowPower)

参数：

ulBase是 UART端口的基址。

bLowPower表示 SIR低功耗模式是否被使用。

描述：

使能 UART中的 IrDA模式的 SIREN控制位。如果 bLowPower标志被设置，则 SIRLP
位也将会被设置。

注：SIR（IrDA）操作只可于 Fury-class器件中。

返回：

无。

22.2.2.15 UARTFIFOLevelGet
获取产生中断的 FIFO触发点（FIFO level）。

函数原型：

void

UARTFIFOLevelGet(unsigned long ulBase,

unsigned long *pulTxLevel,

unsigned long *pulRxLevel)

参数：

ulBase是 UART端口的基址。

pulTxLevel 是指针，指向发送 FIFO 触发点的存放单元，返回 UART_FIFO_TX1_8、
UART_FIFO_TX2_8 、 UART_FIFO_TX4_8 、 UART_FIFO_TX6_8 或

UART_FIFO_TX7_8中的一个。

pulRxLevel 是指针，指向接收 FIFO 触发点的存放单元，返回 UART_FIFO_RX1_8、
UART_FIFO_RX2_8 、 UART_FIFO_RX4_8 、 UART_FIFO_RX6_8 或

UART_FIFO_RX7_8中的一个。

描述：

这个函数获取将产生发送和接收中断的 FIFO触发点。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

217

 广州周立功单片机发展有限公司 第 22 章 UART

无。

22.2.2.16 UARTFIFOLevelSet
设置产生中断的 FIFO触发点（FIFO level）。

函数原型：

void

UARTFIFOLevelSet(unsigned long ulBase,

unsigned long ulTxLevel,

unsigned long ulRxLevel)

参数：

ulBase是 UART端口的基址。

pulTxLevel 是发送 FIFO 的中断触发点，其值指定为 UART_FIFO_TX1_8、
UART_FIFO_TX2_8 、 UART_FIFO_TX4_8 、 UART_FIFO_TX6_8 或

UART_FIFO_TX7_8中的一个。

pulRxLevel 是接收 FIFO 中断触发点，其值指定为 UART_FIFO_RX1_8、
UART_FIFO_RX2_8 、 UART_FIFO_RX4_8 、 UART_FIFO_RX6_8 或

UART_FIFO_RX7_8中的一个。

描述：

这个函数设置将产生发送和接收中断的 FIFO触发点。

返回：

无。

22.2.2.17 UARTIntClear
清除 UART中断源。

函数原型：

void

UARTIntClear(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是 UART端口的基址。

ulIntFlags是要清除的中断源的位屏蔽。

描述：

清除指定的 UART 中断源，使其不再有效。这必须在中断处理程序中处理，以防在退
出时再次对其进行调用。

此参数 ulIntFlags与 UARTIntEnable()的 ulIntFlags参数具有相同的定义。

注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正地把中

断源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后操作中才清除中断源）以避

免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致立即再次进入中断处理程序。

（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

218

 广州周立功单片机发展有限公司 第 22 章 UART

22.2.2.18 UARTIntDisable
禁止单个的 UART中断源。

函数原型：

void

UARTIntDisable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是 UART端口的基址。

ulIntFlags是要禁止的中断源的位屏蔽。

描述：

禁止指示的 UART 中断源。只有使能的中断源才能反映为处理器中断；禁止的中断不
对处理器产生任何影响。

此参数 ulIntFlags与 UARTIntEnable()的 ulIntFlags参数具有相同的定义。

返回：

无。

22.2.2.19 UARTIntEnable
使能单个 UART中断源。

函数原型：

void

UARTIntEnable(unsigned long ulBase,

unsigned long ulIntFlags)

参数：

ulBase是 UART端口的基址。

ulIntFlags是要使能的中断源的位屏蔽。

描述：

使能指示的 UART 中断源。只有使能的中断源才能反映为处理器中断；禁止的中断不
对处理器产生任何影响。

参数 ulIntFlags是下列值任何组合的逻辑或：

 UART_INT_OE：过载错误中断；
 UART_INT_BE：中止错误中断；
 UART_INT_PE：奇偶错误中断；
 UART_INT_FE：帧错误中断；
 UART_INT_RT：接收超时中断；
 UART_INT_TX：发送中断；
 UART_INT_RX：接收中断。

返回：

无。

22.2.2.20 UARTIntRegister
注册一个 UART中断的中断处理程序。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

219

 广州周立功单片机发展有限公司 第 22 章 UART

函数原型：

void

UARTIntRegister(unsigned long ulBase,

void (*pfnHandler) (void))

参数：

ulBase是 UART端口的基址。

pfnHandler是 UART中断出现时调用的函数的指针。

描述：

这个函数真正地注册这个中断处理程序。这将会使能中断控制器中的全局中断；特定的

UART中断必须通过 UARTIntEnable()来使能。由中断处理程序负责清除中断源。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

22.2.2.21 UARTIntStatus
获取当前的中断状态。

函数原型：

unsigned long

UARTIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是 UART端口的基址。

bMasked：如果需要原始的中断状态，则 bMasked为 False；如果需要屏蔽的中断状态，
bMasked就为 True。

描述：

这个函数返回指定 UART 的中断状态。原始的中断状态或允许反映到处理器中的中断
的状态被返回。

返回：

返回当前的中断状态，作为 UARTIntEnable()中描述的一个位字段值列举出来。

22.2.2.22 UARTIntUnregister
注销一个 UART中断的中断处理程序。

函数原型：

void

UARTIntUnregister(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

这个函数真正地注销这个中断处理程序。它将会清除 UART 中断出现时要调用的处理

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

220

 广州周立功单片机发展有限公司 第 22 章 UART

程序。这也将关闭中断控制器中的中断，使得中断处理程序不再被调用。

也可参考：

有关注册中断处理程序的重要信息请见 IntRegister()。

返回：

无。

22.2.2.23 UARTParityModeGet
获取当前正在使用的奇偶类型。

函数原型：

unsigned long

UARTParityModeGet(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

这个函数获取用于发送数据和期望接收数据时的奇偶类型。

返回：

返 回 当 前 的 奇 偶 设 置 ， 其 值 设 定 为 UART_CONFIG_PAR_NONE 、
UART_CONFIG_PAR_EVEN、UART_CONFIG_PAR_ODD、UART_CONFIG_PAR_ONE或

UART_CONFIG_PAR_ZERO中的一个。

22.2.2.24 UARTParityModeSet
设置奇偶类型。

函数原型

void

UARTParityModeSet(unsigned long ulBase,

unsigned long ulParity)

参数：

ulBase是 UART端口的基址。

ulParity指定使用的奇偶类型。

描述：

设置发送时使用的奇偶类型和接收时期望的奇偶类型。ulParity 参数的值必须是以下值
中的一个：UART_CONFIG_PAR_NONE、UART_CONFIG_PAR_EVEN、UART_CONFIG-

_PAR_ODD、UART_CONFIG_PAR_ONE或 UART_CONFIG_PAR_ZERO。

后面两个值允许直接控制奇偶位；它们总是为 1或总是为 0，由具体的模式来决定。

返回：

无。

22.2.2.25 UARTSpaceAvail
确定发送 FIFO中是否有任何可用的空间。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

221

 广州周立功单片机发展有限公司 第 22 章 UART

tBoolean

UARTSpaceAvail(unsigned long ulBase)

参数：

ulBase是 UART端口的基址。

描述：

这个函数返回一个标志，用来指示发送 FIFO中是否有可用的空间。

返回：

如果发送 FIFO 中有可用的空间返回 True；如果发送 FIFO 中没有可用的空间则返回
False。

22.3 编程示例

下面的示例显示了如何使用 UART API来初始化 UART、发送字符和接收字符。

//

// 初始化 UART。设置波特率、数据位的数目、关闭奇偶、停止位的数目和粘附模式（stick mode）。

//

UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 38400,

(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE));

//

// 使能 UART。

//

UARTEnable(UART0_BASE);

//

// 检查字符。这个操作将不停地循环，直至有一个字符被放置到接收 FIFO中。

//

while(!UARTCharsAvail(UART0_BASE))

{

}

//

// 获取接收 FIFO中的字符。

//

while(UARTCharNonBlockingGet(UART0_BASE))

{

}

//

// 获取接收 FIFO中的字符。

//

while(UARTCharGetNonBlocking(UART0_BASE))

{

}

//
将一个字符放置到输出缓冲区中。

//

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

222

 广州周立功单片机发展有限公司 第 22 章 UART

UARTCharPut(UART0_BASE, ’c’));

//

// 禁能 UART。

//

UARTDisable(UART0_BASE);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

223

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

第23章 uDMA控制器

23.1 简介

microDMA（uDMA）API提供了对 Stellaris uDMA（Direct Memory Access）控制器进行
配置的函数。uDMA控制器被设计成能与 ARM Cortex-M3处理器一起工作，并且它提供了
一个在系统中传输数据块的方法⎯高效且低开销的方法。

uDMA控制器具有以下特性：

 具有所支持外设的专用通道；
 对于具有接收和发送通道的器件，一条通道用于发送，一条通道用于接收；
 具有由软件启动数据传输的专用通道；
 可以对通道进行单独的配置和操作；
 每个通道的仲裁方案（arbitration scheme）是可配置的；
 二个优先级别；
 服从 Cortex-M3处理器总线用法；
 数据大小为 8、16或 32位。
 地址增量可分为字节、半字、字增量或无增量。
 可屏蔽的设备请求（maskable device requests）；
 可以在任一通道中使用可选软件来开始数据传输；
 传输完成时产生中断。

uDMA 控制器支持几种不同的传输模式，从而允许执行复杂的传输程序。以下是提供
的传输模式：

 基本模式：器件的请求有效时执行一个简单的传输。在数据传输时，只要外设提交
请求行命令，此模式适合与外设一起使用。如果请求无效，那么将停止传输，即使

传输仍未结束。
 自动请求模式：执行一个由请求启动的简单传输，即使请求无效，此模式仍将总会
完成整个传输。此模式适用于由软件引起传输。

 Ping-Pong模式：此模式一般是用于两个缓冲区间的收发数据，在填充每个缓冲区
时，可从一个缓冲区切换到另一个缓冲区。在需要确保外设能接收或发送连续的数

据流这一方式时，这个模式则适用于与外设一起使用。然而，在中断处理程序中建

立需要的代码来管理 ping-pong缓冲区变得更为复杂；
 存储器分散-聚集模式：是一个复杂模式。它提供了一个设置 uDMA控制器的传输
“任务”列表的方法。数据块能在存储器的任意位置（arbitrary location）被来回传
送；

 外设分散-聚集模式：类似于存储器分散-聚集模式模式，除了它是由外设请求控制
之外。

各个传输模式的详细解释超出了此文档的范围。有关 uDMA 控制器操作的更多信息，
请参考器件数据手册。

microDMA控制器的命名惯例是用希腊字母“mu”代表“micro”。在此文档和软件库函
数名中，都将使用一个小写字母“u”来取代“mu”，此时控制器可用“uDMA”表示。

驱动程序包含在 src/udma.c中，src/udma.h包含应用程序使用的 API定义。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

224

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

23.2 API函数

函数
 void uDMAChannelAttributeDisable (unsigned long ulChannel, unsigned long ulAttr)；
 void uDMAChannelAttributeEnable (unsigned long ulChannel, unsigned long ulAttr)；
 unsigned long uDMAChannelAttributeGet (unsigned long ulChannel)；
 void uDMAChannelControlSet (unsigned long ulChannel, unsigned long ulControl)；
 void uDMAChannelDisable (unsigned long ulChannel)；
 void uDMAChannelEnable (unsigned long ulChannel)；
 tBoolean uDMAChannelIsEnabled (unsigned long ulChannel)；
 unsigned long uDMAChannelModeGet (unsigned long ulChannel)；
 void uDMAChannelRequest (unsigned long ulChannel)；
 unsigned long uDMAChannelSizeGet (unsigned long ulChannel)；
 void uDMAChannelTransferSet (unsigned long ulChannel, unsigned long ulMode, void

*pvSrcAddr, void *pvDstAddr, unsigned long ulTransferSize)；
 void * uDMAControlBaseGet (void)；
 void uDMAControlBaseSet (void *pControlTable)；
 void uDMADisable (void)；
 void uDMAEnable (void)；
 void uDMAErrorStatusClear (void)；
 unsigned long uDMAErrorStatusGet (void)；
 void uDMAIntRegister (unsigned long ulIntChannel, void (*pfnHandler)(void))；
 void uDMAIntUnregister (unsigned long ulIntChannel)。

23.2.1 详细描述

uDMA API提供了一个使能和配置 Stellaris microDMA控制器从而可以执行 DMA传输
的方法。

设置和执行一个 uDMA传输时，函数调用的顺序如下：

 调用 uDMAEnable()一次来使能控制器；
 调用 uDMAControlBaseSet()一次来设置通道控制表；
 调用 uDMAChannelAttributeEnable()一次或很少调用它来配置通道的操作；
 uDMAChannelControlSet()一般用来设置数据传输的特性。如果数据传输的特性并
不发生改变，那么只须调用此函数一次；

 uDMAChannelTransferSet()一般用来设置一次传输的缓冲区指针和尺寸。在开始一
次新传输之前调用此函数；

 uDMAChannelEnable()使能一个通道以便执行数据传输；
 uDMAChannelRequest()一般用来开始一个基于软件的传输。这个函数通常不用于
基于外设的传输。

为了使用 uDMA控制器，您必须先调用 uDMAEnable()来将其使能。如果不再需要使用
它，稍后您可以调用 uDMADisable()来将其禁止。

一旦 uDMA 控制器使能，您必须告诉它到哪里去查找系统存储器中的通道控制结构。
这一步通过使用函数 uDMAControlBaseSet()和把一个指针传给通道控制结构的底部来完成。
控制结构必须由应用程序分配。分配的方法是声明一个数据数组类型为 char 或 unsigned
char。为了支持全部通道和传输模式，控制表数组应为 1024 个字节，但根据所用的传输模

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

225

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

式和实际使用的通道数，它的值可少于 1024个字节。

注：控制表必须对齐一个 1024字节边界。

uDMA控制器支持若干个通道。每个通道都具有一组属性标志来控制某些 uDMA特性
和 通 道 操 作 。 属 性 标 志 由 函 数 uDMAChannelAttributeEnable() 设 置 和 函 数
uDMAChannelAttributeDisable()清除。通过使用函数 uDMAChannelAttributeGet()就可询问通
道属性标志的设置。

下一步，必须设置 DMA传输的控制参数。这些参数控制着要被传输的数据项目的大小
和地址增量。函数 uDMAChannelControlSet()一般用来设置这些控制参数。

全部所提及的函数到目前为止都只是被使用一次或很少被使用来对 uDMA 通道和传输
进 行 设 置 。 为 了 设 置 传 输 地 址 、 传 输 大 小 和 传 输 模 式 ， 可 以 使 用 函 数

uDMAChannelTransferSet()。在开始每一个新的传输时，必须要调用这个函数。一旦所有事
情都已设置好，那么就可以调用 uDMAChannelEnable()来使能通道，而这一步必须在开始一
个新传输之前处理。在完成传输时， uDMA 控制器将会自动禁止通道。调用

uDMAChannelDisable()，就可以手动禁止通道。

用户也可以使用其它的函数来询问通道的状态，无论是通过中断处理还是查询。函数

uDMAChannelSizeGet()一般用来查找通道中的剩余要传输的数据量。当传输完成时，它的值
将会为 0。函数 uDMAChannelModeGet()一般用来查找一个 uDMA通道的传输模式。它一般
用来查看模式指示已停止是否意味着之前正在运行的通道的传输已完成。函数

uDMAChannelIsEnabled()一般用来确定一个特殊的通道是否使能。

如果应用程序正在使用运行时（run-time）中断注册（请参考 IntRegister()）,那么可以
使用函数 uDMAIntRegister()来安装 uDMA控制器的一个中断处理程序。这个函数也将会使
能系统中断控制器的中断。如果使用编译时（compile-time）中断注册，则可调用函数
IntEnable()来使能 uDMA 中断。当一个中断处理程序已被 uDMAIntRegister()安装完毕后，
则可以调用 uDMAIntUnregister()来将其卸载。

这个中断处理程序只供软件开始传输或错误使用。外设的 uDMA 中断发生在外设的专
用中断通道中，这些中断应该由外设中断处理程序进行处理。因此无需应答或清除 uDMA
中断源。这些中断源在进行中断服务时会被自动清除。

uDMA中断处理程序使用函数 uDMAErrorStatusGet()来测试一个 uDMA错误是否发生。
如果发生，则调用 uDMAErrorStatusClear()来清除中断。

注：许多 API函数使用这样的一个通道参数：它包括用 UDMA_PRI_SELECT或 UDMA_ALT_SELECT

的值中的其中一个的逻辑或来选择主要（primary）的或轮流的控制结构。对于基本模式和自动传模式，只

需要使用主要的控制结构（primary control structure）。只有 Pingpong或分散/聚集的复杂传输模式才使用轮

流控制结构（alternate contol structure）。有关传输模式的详情，请参考器件数据手册。

23.2.2 函数文件

23.2.2.1 uDMAChannelAttributeDisable
禁止一个 uDMA通道的属性。

函数原型：

void

uDMAChannelAttributeDisable(unsigned long ulChannel,

unsigned long ulAttr)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

226

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

ulChannel是要配置的通道。

ulAttr是通道的组合属性。

描述：

此函数用来禁止一个 uDMA通道的属性。

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART0发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX；
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

ulAttr参数是下列值的任何一个的逻辑或：

 UDMA_ATTR_USEBURST用来限制传输，以便只能使用一个突发模式；
 UDMA_ATTR_ALTSELECT用来选择这个通道的备用控制结构；
 UDMA_ATTR_HIGH_PRIORITY用来把这个通道设置为高优先级；
 UDMA_ATTR_REQMASK用来屏蔽这个通道的外设硬件请求信号。

返回：
无。

23.2.2.2 uDMAChannelAttributeEnable
使能一个 uDMA通道的属性。

函数原型：

Void

uDMAChannelAttributeEnable(unsigned long ulChannel,

unsigned long ulAttr)

参数：

ulChannel是要配置的通道。

ulAttr是通道的组合属性。

描述：

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

227

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

ulAttr参数是下列值的任何一个的逻辑或：

 UDMA_ATTR_USEBURST用来限制传输，以便只能使用一个突发模式；
 UDMA_ATTR_ALTSELECT用来选择这个通道的备用控制结构；
 UDMA_ATTR_HIGH_PRIORITY用来把这个通道设置为高优先级；
 UDMA_ATTR_REQMASK用来屏蔽这个通道的外设硬件请求信号。

返回：
无。

23.2.2.3 uDMAChannelAttributeGet
获取一个 uDMA通道的使能属性。

函数原型：

unsigned long

uDMAChannelAttributeGet(unsigned long ulChannel)

参数：

ulChannel是要配置的通道。

描述：

此函数返回一个表示 uDMA通道属性的标志组合。

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

228

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

返回：

返回 uDMA通道属性的逻辑或，它的值是下列值的任何一个：

 UDMA_ATTR_USEBURST用来限制传输，以便只能使用一个突发模式；
 UDMA_ATTR_ALTSELECT用来选择这个通道的备用控制结构；
 UDMA_ATTR_HIGH_PRIORITY用来把这个通道设置为高优先级；
 UDMA_ATTR_REQMASK用来屏蔽这个通道的外设硬件请求信号。

23.2.2.4 uDMAChannelControlSet
设置一个 uDMA通道的控制参数。

函数原型：

void

uDMAChannelControlSet(unsigned long ulChannel,

unsigned long ulControl)

参数：

ulChannel是 uDMA通道号与UDMA_PRI_SELECT或UDMA_ALT_SELECT的逻辑或。

ulControl是设置通道控制参数的几个控制值的逻辑或。

描述：

此函数一般用来设置 uDMA传输的控制参数。这是典型的参数，不会经常发生变动。

ulChannel 参数是已在 uDMAChannelEnable()函数中文件说明的其中一个选择。它应该
是通道与其中一个 UDMA_PRI_SELECT或 UDMA_ALT_SELECT的逻辑或，以便选择是使
用主要数据结构还是使用备用数据结构。

ulControl 参数是五个值的逻辑或：数据大小、源地址增量、目的地址增量、仲裁大小
和使用的突发标志。这些可选择使用的每一组值描述如下：

从 UDMA_SIZE_8、UDMA_SIZE_16或 UDMA_SIZE_32当中选取一个数据大小，以选
定 8、16或 32位的数据大小。

从 UDMA_DST_INC_8 、 UDMA_DST_INC_16 、 UDMA_DST_INC_32 或

UDMA_DST_INC_NONE当中选取一个增量大小，以选定 8位字节、16位半字、32位字或
无增量的地址增量。

仲裁大小在 uDMA控制器重新仲裁总线前确定传输了多少个项目。从 UDMA_ARB_1、
UDMA_ARB_2、UDMA_ARB_4、UDMA_ARB_8直到 UDMA_ARB_1024当中选择一个仲
载大小，以便选择出 1至 1024个项目的仲载大小，大小为 2的幂次方。

UDMA_NEXT_USEBURST 值用于强制通道在分散-聚集传输结束的末尾时对突发请求
作出响应。

注：地址增量不能少于数据大小。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

229

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

返回：
无。

23.2.2.5 uDMAChannelDisable
禁止 uDMA通道的操作。

函数原型：

void

uDMAChannelDisable(unsigned long ulChannel)

参数：

ulChannel是要禁止的通道号。

描述：

此函数禁止一个特定的 uDMA通道。一旦禁止，通道将不会对 uDMA传输请求进行响
应，直至它被 uDMAChannelEnable()函数重新使能。

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

返回：

无。

23.2.2.6 uDMAChannelEnable
使能 uDMA通道的操作。

函数原型：

void

uDMAChannelEnable(unsigned long ulChannel)

参数：

ulChannel是要使能的通道号。

描述：

此函数使能一个使用的特定的 uDMA 通道。此函数必须先使能一个通道，然后才能执

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

230

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

行一次 uDMA传输。

当一次 uDMA传输完成时，uDMA控制器将会自动禁止此通道。因此，此函数应要在
启动任何新传输前被调用。

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

返回：

无。

23.2.2.7 uDMAChannelIsEnabled
检查是否使能 uDMA通道的操作。

函数原型：

tBoolean

uDMAChannelIsEnabled(unsigned long ulChannel)

参数：

ulChannel是要检查的通道号。

描述：

此函数检查一个特定的 uDMA 通道是否使能。这能查看一个传输的状态，因为当一个
uDMA传输完成时，uDMA控制器将会自动禁止此通道。

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

231

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。

返回：

如果通道使能返回 True，否则返回 False。

23.2.2.8 uDMAChannelModeGet
获取一个 uDMA通道的传输模式。

函数原型：

unsigned long

uDMAChannelModeGet(unsigned long ulChannel)

参数：

ulChannel是 uDMA通道号与UDMA_PRI_SELECT或UDMA_ALT_SELECT的逻辑或。

描述：

此函数获取 uDMA 通道的传输模式。它能询问在通道中的传输情形。当传输结束时，
模式将会为 UDMA_MODE_STOP。

ulChannel 参数是在 uDMAChannelEnable()函数中文件说明的其中一个选择。它是通道
号与 UDMA_PRI_SELECT或 UDMA_ALT_SELECT的逻辑或，用以选择是使用主要数据结
构还是使用备用数据结构。

返回：

返回特定通道的传输模式和控制结构，控制结构将会是下列值中的其中一个值：

UDMA_MODE_STOP 、 UDMA_MODE_BASIC 、 UDMA_MODE_AUTO 、

UDMA_MODE_PINGPONG 、 UDMA_MODE_MEM_SCATTER_GATHER 或

UDMA_MODE_PER_SCATTER_GATHER。

23.2.2.9 uDMAChannelRequest
请求一个 uDMA通道启动传输。

函数原型：

void

uDMAChannelRequest(unsigned long ulChannel)

参数：

ulChannel是这个通道来请求一个 uDMA传输的通道号。

描述：

此函数允许用软件来请求一个 uDMA 通道开始一次传输。这个函数可用于执行存储器
到存储器的传输，或如果由于某些原因，需要由软件而不是与此通道相关的外设来开始的一

次传输。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

232

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

ulChannel参数必须是下列中的一个：

 UART0接收通道的 UDMA_CHANNEL_UART0RX；
 UART0发送通道的 UDMA_CHANNEL_UART0TX；
 UART1接收通道的 UDMA_CHANNEL_UART1RX；
 UART1发送通道的 UDMA_CHANNEL_UART1TX；
 SSI0接收通道的 UDMA_CHANNEL_SSI0RX；
 SSI0发送通道的 UDMA_CHANNEL_SSI0TX；
 SSI1接收通道的 UDMA_CHANNEL_SSI1RX；
 SSI1发送通道的 UDMA_CHANNEL_SSI1TX；
 软件专用的 uDMA通道的 UDMA_CHANNEL_SW。

具有一个 USB外设的微控制器的 ulChannel参数必须是下列中的一个：

 USB端点 1接收的 UDMA_CHANNEL_USBEP1RX；
 USB端点 1发送的 UDMA_CHANNEL_USBEP1TX；
 USB端点 2接收的 UDMA_CHANNEL_USBEP2RX；
 USB端点 2发送的 UDMA_CHANNEL_USBEP2TX
 USB端点 3接收的 UDMA_CHANNEL_USBEP3RX；
 USB端点 3发送的 UDMA_CHANNEL_USBEP3TX。
注：如果通道是 UDMA_CHANNEL_SW，并使用了中断，那么在 uDMA特有的中断产生时将发出传

输结束的信号。如果使用了一个外设通道，那么在外设中断产生时将发出传输结束的信号。

返回：

无。

23.2.2.10 uDMAChannelSizeGet
获取 uDMA通道的当前传输大小。

函数原型：

unsigned long

uDMAChannelSizeGet(unsigned long ulChannel)

参数：

ulChannel是 uDMA通道号与UDMA_PRI_SELECT或UDMA_ALT_SELECT的逻辑或。

描述：

此函数获取通道的 uDMA 传输大小。传输大小是要传输的项目数，这里的项目大小可
能是 8位、16位或 32位。如果部分传输已发生，那么将返回剩余的项目数。如果传输已结
束，那么将返回 0。

ulChannel 参数是在 uDMAChannelEnable()函数中文件说明的其中一个选择。它是通道
与 UDMA_PRI_SELECT或 UDMA_ALT_SELECT的逻辑或，用以选择是使用主要数据结构
还是使用备用数据结构。

返回：

返回要传输的剩余项目数。

23.2.2.11 uDMAChannelTransferSet
设置 uDMA通道的传输参数。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

233

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

void

uDMAChannelTransferSet(unsigned long ulChannel,

unsigned long ulMode,

void *pvSrcAddr,

void *pvDstAddr,

unsigned long ulTransferSize)

参数：

ulChannel是 uDMA通道号与UDMA_PRI_SELECT或UDMA_ALT_SELECT的逻辑或。

ulMode是 uDMA传输的类型。

pvSrcAddr是传输的源地址。

pvDstAddr是传输的目的地址。

ulTransferSize是要传输的数据项目数。

描述：

此函数设置 uDMA 通道的传输参数。这些参数通常是经常变动的。在调用此函数前，
必须要至少调用 uDMAChannelControlSet()函数一次。

ulChannel 参数是在 uDMAChannelEnable()函数中文件说明的其中一个选择。它是通道
与 UDMA_PRI_SELECT或 UDMA_ALT_SELECT的逻辑或，用以选择是使用主要数据结构
还是使用备用数据结构。

ulMode参数应该是以下值的其中一个值：

 UDMA_MODE_STOP停止 uDMA传输。在传输结束时，控制器设置此值的模式。
 UDMA_MODE_BASIC根据请求执行一个基本的传输。
 UDMA_MODE_AUTO执行一个传输，传输一旦开始，它总是会完成的，即使请求
被取消。

 UDMA_MODE_PINGPONG 设置一个在主要和备用控制结构间切换的通道传输。
在进行 uDMA传输时，这允许使用 ping-pong缓冲。

 UDMA_MODE_MEM_SCATTER_GATHER设置一个存储器分散-聚集传输。
 UDMA_MODE_PER_SCATTER_GATHER设置一个外设分散-聚集传输。

pvSrcAddr和 pvDstAddr参数是指针，指向将要数据被传输的第一个位置。这些地址应
按照项目大小对齐。编译器要对指针是否正指向存放适当的数据类型的存放处负责。

ulTransferSize参数是数据项目数，不是字节数。

二个分散/聚集模式，存储器和外设，根据所选择的是主要控制结构还是备用控制结构，
这 二 个 模 式 实 际 上 是 不 相 同 的 。 此 函 数 将 会 寻 找 UDMA_PRI_SELECT 和

UDMA_ALT_SELECT 标志和通道号，同时并将会对分散/聚集模式进行适当的设置，以使
它们能适用于主要或备用控制结构。

在调用此函数后，同样必须要使用 uDMAChannelEnable()来使能通道。除非通道已完成
设置和使能，否则将不能开始传输。注意，在传输结束后，通道会被自动禁止，意味着在建

立下一次传输时后，必须要再次调用 uDMAChannelEnable()。

注：请谨慎注意不要修改正在使用中的通道控制结构，否则将会出现不可预知的后果，包括存储器（或

外设）接收或发送非期望的数据传输的可能性。对于 BASIC和 AUTO模式，在通道禁止或 uDMAChannel-

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

234

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

ModeGet()返回 UDMA_MODE_STOP时，发生变化则是安全的。对于 PINGPONG或 SCATTER_GATHER

模式中的其中一种模式，只有当另一个模式正在被使用时，修改主要或备用控制结构是安全的。当不激活

通道控制结构时，uDMAChannelModeGet()函数将会返回 UDMA_MODE_STOP，并能安全地对它进行修改。

返回：

无。

23.2.2.12 uDMAControlBaseGet
获取通道控制表的基址。

函数原型：

void *

uDMAControlBaseGet(void)

描述：

此函数获取通道控制表的基址。这个表位于系统存储器，并保存着每一个 uDMA 通道
的控制信息。

返回：

返回指向通道控制表的基址的指针。

23.2.2.13 uDMAControlBaseSet
设置通道控制表的基址。

函数原型：

void

uDMAControlBaseSet(void *pControlTable)

参数：

pControlTable是指针，指向 uDMA通道控制表中以 1024字节对齐的基址。

描述：

此函数设置通道控制表的基址。这个表位于系统存储器，并保存着每一个 uDMA 通道
的控制信息。这个表必须对齐 1024字节边界。必须先设置基址，然后才能使用任何通道函
数。

通道控制表的大小取决于 uDMA 通道号和使用的传输模式。有关通道控制表的更多信
息，请参考介绍性的正文和微控制器数据手册。

返回：

无。

23.2.2.14 uDMADisable
禁止使用 uDMA控制器。

函数原型：

void

uDMADisable(void)

描述：

此函数禁止 uDMA控制器。一旦禁止，uDMA控制器将不能操作，直至用 uDMAEnable()
重新使能。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

235

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

返回：

无。

23.2.2.15 uDMAEnable
使能 uDMA控制器的用法。

函数原型：

void

uDMAEnable(void)

描述：

此函数使能 uDMA控制器。在 uDMA控制器能被配置和使用前，必须使能 uDMA控制
器。

返回：

无。

23.2.2.16 uDMAErrorStatusClear
清除 uDMA错误中断。

函数原型：

void

uDMAErrorStatusClear(void)

描述：

此函数清除一个正在挂起的 uDMA错误中断。应该在 uDMA错误中断处理程序里面调
用此函数来清除中断。

返回：

无。

23.2.2.17 uDMAErrorStatusGet
获取 uDMA错误状态。

函数原型：

unsigned long

uDMAErrorStatusGet(void)

描述：

此函数返回 uDMA错误状态。应该在 uDMA错误中断处理程序里面调用此函数来确定
是否发生一个 uDMA错误

返回：

如果一个 uDMA错误正挂起，返回一个非零值。

23.2.2.18 uDMAIntRegister
注册一个 uDMA控制器的中断处理程序。

函数原型：

void

uDMAIntRegister(unsigned long ulIntChannel,

void (*pfnHandler)(void))

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

236

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

参数：

ulIntChannel：确定要注册哪一个 uDMA中断。

pfnHandler：指针，指向在中断被激活时要调用的函数。

描述：

当 uDMA 控制器产生一个中断时，此函数设置和使能将要被调用的处理程序。
ulIntChannel参数是以下值的其中一个值：

 UDMA_INT_SW 注册一个中断处理程序，以便处理 uDMA 软件通道的中断
（UDMA_CHANNEL_SW）；

 UDMA_INT_ERR注册一个中断处理程序，以便处理 uDMA错误中断。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

注：当使用 UDMA_CHANNEL_SW通道时，uDMA的中断处理程序用于完成传输和错误中断。每个

外设通道的中断由单独的外设中断处理程序来处理。

返回：

无。

23.2.2.19 uDMAIntUnregister
注销一个 uDMA控制器的中断处理程序。

函数原型：

void

uDMAIntUnregister(unsigned long ulIntChannel)

参数：

ulIntChannel确定要注销哪一个 uDMA中断。

描述：

此函数将会禁止和清除特定的 uDMA 中断调用的处理程序。ulIntChannel 参数是函数
uDMAIntRegister()文件说明的 UDMA_INT_SW或 UDMA_INT_ERR中的一个。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

23.3 编程示例

下列示例设置了 uDMA控制器来执行一个软件开始的存储器到存储器的传输：
//

// 应用必须分配通道控制表。

// 这是所有模式和通道的完整表。

//注：这个表必须对齐 1024字节。

//

unsigned char ucDMAControlTable[1024];

//

// DMA传输使用的源缓冲区和目的文件缓冲区。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

237

 广州周立功单片机发展有限公司 第 23 章 uDMA 控制器

//

unsigned char ucSourceBuffer[256];

unsigned char ucDestBuffer[256];

//

//使能 uDMA控制器。

//

uDMAEnable();

//

// 设置通道控制表的基址。

//

uDMAControlBaseSet(&ucDMAControlTable[0]);

//

// 对于一个基于软件的传输，无需设置属性。

// 默认时它们会被清除，这里说的是明确地清除，

//以防止它们在别处被设置。

//

uDMAChannelAttributeDisable(UDMA_CONFIG_ALL);
//

// 现在设置传输特性，可以是 8位数据大小，

//带以字节计的源和目的增量，从而执行字节方式的缓冲区复制。

/使用了大小为 8的总线仲裁。
//

uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_SIZE_8 | UDMA_SRC_INC_8 |

UDMA_DST_INC_8 | UDMA_ARB_8);

//

// 即将配置传送缓冲区和传送大小。

// 传送将使用 AUTO模式，这就意味着在第一次请求后，

//传送将会自动运行直至传送结束。

//

uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_MODE_AUTO, ucSourceBuffer, ucDestBuffer,

sizeof(ucDestBuffer));

//

//最后，必须使能通道。由于这是一个软件开始的传送，

//因此也必须要发出一个请求。这将启动传输运行。

//

uDMAChannelEnable(UDMA_CHANNEL_SW);

uDMAChannelRequest(UDMA_CHANNEL_SW);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

238

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

第24章 USB控制器

24.1 简介

USB API提供了用来访问 Stellaris USB器件控制器或主机控制器的函数集。依照位于微
控制器的 USB控制器所提供的功能将 API按组分类。由于这样的分类，驱动程序不得不对
只有一个 USB 器件接口、一个主机和/或器件接口的微控制器，或含有一个 USB 器件控制
器的微控制器进行处理。API 分组如下：USBDev、USBHost、USBOTG、USBEndpoint 和
USBFIFO。含有一个 USB器件控制器的微控制器只使用 USBDev组的 API。带有一个 USB主机
控制器的微控制器只使用 USBHost中的 API。具有一个 OTG接口的微控制器使用 USBOTG组
的 API。具有 USB OTG控制器的微控制器，一旦配置完 USB控制器的模式，则应使用器件（即
从机）或主机 API。余下的 API 均可被 USB 主机和 USB 器件控制器使用。USBEndpoint 组的
API一般用来配置和访问端点，而和 USBFIFO组的 API则能配置 FIFO的大小和位置。

24.2 结合 uDMA控制器使用 USB

不管主机和设备发送或接收数据，USB控制器都能够结合 uDMA使用。不能用 uDMA
控制器来访问端点 0，但是其他的所有端点却能够被 uDMA控制器访问。USB的 uDMA通
道编号由下列值定义：

 DMA_CHANNEL_USBEP1RX；
 DMA_CHANNEL_USBEP1TX；
 DMA_CHANNEL_USBEP2RX；
 DMA_CHANNEL_USBEP2TX；
 DMA_CHANNEL_USBEP3RX；
 DMA_CHANNEL_USBEP3TX。

由于 uDMA控制器把传输看作是发送或接收，并且 USB控制器在 IN/OUT传输中进行
操作，因此必须小心要使用正确的 uDMA通道和正确的端点。USB主机 IN端点和 USB器
件 OUT端点二者均能使用接收 uDMA通道，而 USB主机 OUT端点和 USB器件 IN端点将
使用发送 uDMA通道。

当配置端点时需要设置另外的DMA。为了配置一个端点而调用USBDevEndpointConfig()
时将会使用 uDMA，这就需要向参数 ulFlags 添加一个额外的标志。这些标志是
USB_EP_DMA_MODE_0或 USB_EP_DMA_MODE_1中的一个，它控制着 DMA传输的模
式，一旦包就绪就可用 USB_EP_AUTO_SET 来允许自动发送数据。只要 FIFO 中有更多的
可用空间，USB_EP_DMA_MODE_0 将会产生一个中断。这就允许应用代码执行每一个包
之间的操作。USB_EP_DMA_MODE_1只有在 DMA传输结束时或存在某种类型的错误条件
时才产生中断。这可用于要求包之间无交互的更大传输。当使用 uDMA 来阻止用代码来启
动实际数据传输的需求时，应正常地指定 USB_EP_AUTO_SET。

示例：器件 IN端点的端点配置：

//

// 使用 DMA时，端点 1是一个器件模式 BULK IN端点

//

USBDevEndpointConfig(

USB0_BASE,

USB_EP_1,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

239

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

64,

USB_EP_MODE_BULK | USB_EP_DEV_IN |

USB_EP_DMA_MODE_0 | USB_EP_AUTO_SET);

应用必须提供实际的 uDMA 控制器配置。首先，为了清除以前的任何设置，应用应调
用 DMAChannelAttributeClear()。其次应用应调用 DMAChannelAttributeSet()，以配置与端点
相应的 uDMA通道，并指定 DMA_CONFIG_USEBURST标志。

注：USB控制器使用的全部 uDMA传输必须使能为突发模式。

应用需要指明每一个 DMA传输的大小，DMA 传输是源增量和目增量以及 uDMA 控制
器的仲裁级别（arbitration level）结合而成。

示例：对端点 1的发送通道进行配置。

//

//设置 USB发送的 DMA

//

DMAChannelAttributeClear(

DMA_CHANNEL_USBEP1TX,

DMA_CONFIG_ALL);

//

// 使能 uDMA突发模式

//

DMAChannelAttributeSet(

DMA_CHANNEL_USBEP1TX,

DMA_CONFIG_USEBURST);

//

// 数据大小是 8位，并且源只有一个 1字节的增量

// 目的文件作为一个 FIFO时没有增量

//

DMAChannelControlSet(

DMA_CHANNEL_USBEP1TX,

DMA_DATA_SIZE_8,

DMA_ADDR_INC_8,

DMA_ADDR_INC_NONE,

DMA_ARB_64,

0);

一旦数据已准备好被发送，下一步就是真正启动 uDMA 传输。应用只需调用二个函数
就能启动一次新传输。通常以前的 uDMA 配置全部能保持不变。第一次调用

DMAChannelTransferSet()，复位 DMA传输的源地址和目的地址，并指定将被发送的数据量。
第二次调用 DMAChannelEnable()，它实际上允许 DMA控制器开始请求数据。

示例：启动端点 1的数据传输：

//

// 配置要传输的数据的地址和大小

//

DMAChannelTransferSet(

DMA_CHANNEL_USBEP1TX,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

240

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

DMA_MODE_BASIC,

pData,

USBFIFOAddr(USB0_BASE, USB_EP_1),

64);

//

// 启动传输

//

DMAChannelEnable(DMA_CHANNEL_USBEP1TX);

因为 uDMA中断和其他任何 USB中断占用同一个中断向量，所以应用必须执行一个额
外的检查以确定真正的中断源是什么。必须要慎重注意，这个 DMA 中断并不意味着 USB
传输完成，但却能表示数据已被传输到 USB 控制器的 FIFO 中。同样将有一个中断能表明
USB 传输已完成。然而，这二个事件需要在同一个中断程序中处理。这是因为如果系统的
其它代码关闭了 USB 中断程序，那么在调用 USB 中断处理程序之前 uDMA 中断结束和传
输完成都能够发生。USB没有能表示这个中断是由于完成一次 DMA传输而造成的状态位，
这就意味着应用必须紧记是否正在执行一次 DMA传输。下面的示例显示了将使用 g_ulFlags
全局变量来紧记正在挂起的一次 DMA传输。

示例：带有 uDMA的中断处理。

if((g_ulFlags & EP1_DMA_IN_PEND) &&

(DMAChannelModeGet(DMA_CHANNEL_USBEP1TX) == DMA_MODE_STOP))

{

//

// 处理 DMA结束情况

//

...

}

//

// 获取中断状态

//

ulStatus = USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_IN_EP1)

{

//

// 处理传输结束情况

//

...

}

为了能共同使用端点 OUT与 USB设备控制器，应用必须使用一个接收 uDMA通道。
当调用 USBDevEndpointConfig()对一个使用 uDMA的端点进行配置时，应用必须在 ulFlags
参数设置额外的标志。USB_EP_DMA_MODE_0和 USB_EP_DMA_MODE_1控制着传输的
模式，USB_EP_AUTO_CLEAR允许自动接收数据而无需对已读取到的数据进行人工应答。
USB_EP_DMA_MODE_0在通过 USB发送每一个包时将不会产生一个中断，而在完成 DMA
传输时才将会产生一个中断。USB_EP_DMA_MODE_1在完成 DMA传输时或接收到一个短
包时将产生中断。这对于不能预先知道将要接收多少个数据的 BULK 端点是很有用的。当
使用 uDMA 但不需要用应用程序对已读取到的 FIFO 数据进行应答时，应正常地将

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

241

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

USB_EP_AUTO_CLEAR列入参数表。下面示例把端点 1配置成一个器件模式 Bulk OUT端
点，使用 DMA模式 1，具有 64字节最大包。

示例：对端点 1的接收通道进行配置：

//

//，端点 1是一个使用 DMA的器件模式 BULK OUT端点

//

USBDevEndpointConfig(

USB0_BASE,

USB_EP_1,

64,

USB_EP_DEV_OUT | USB_EP_MODE_BULK |

USB_EP_DMA_MODE_1 | USB_EP_AUTO_CLEAR);

接着需要对实际的 uDMA 控制器进行配置。如发送情况一样，第一次调用

DMAChannelAttributeClear() 以 清 除 任 何 以 前 的 设 置 。 然 后 再 调 用 含 有

DMA_CONFIG_USEBURST值的 DMAChannelAttributeSet()。

注：USB控制器所使用的全部uDMA传输必须使用突发模式。

最后调用是把读访问尺寸设置为 8位宽，源地址增量为 0、目的文件增量为 8位且 uDMA
仲裁大小为 64字节。

示例：对端点 1的发送通道进行配置。

//

// 清除任何 uDMA设置

//

DMAChannelAttributeClear(

DMA_CHANNEL_USBEP1RX,

DMA_CONFIG_ALL);

DMAChannelAttributeSet(

DMA_CHANNEL_USBEP1RX,

DMA_CONFIG_USEBURST);

DMAChannelControlSet(

DMA_CHANNEL_USBEP1RX,

DMA_DATA_SIZE_8,

DMA_ADDR_INC_NONE,

DMA_ADDR_INC_8,

DMA_ARB_64,

0);

下一步是真正启动 uDMA 传输。与传输不同，如果应用已就绪，那么就可以马上设置
传输，等待着接收数据。与发送情况相类似，只有这些调用是启动一个新传输所需要的，通

常以前的全部 uDMA配置能保持原样。

示例：启动端点 1的数据请求。

//
// 配置要传输的数据地址和大小。传输是从

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

242

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

// 端点 0的 USB FIFO到 g_DataBufferIn
//

DMAChannelTransferSet(

DMA_CHANNEL_USBEP1RX,

DMA_MODE_BASIC,

USBFIFOAddr(USB0_BASE, USB_EP_1),

g_DataBufferIn,

64);

//

// 使能 uDMA通道并等待数据

//

DMAChannelEnable(DMA_CHANNEL_USBEP1RX);

uDMA中断和其他任何 USB中断占用同一个中断向量，这就意味着应用必须检看真正
的中断源是什么。有可能 USB中断并不表示 USB传输已完成。一个短包、错误、或甚至是
一个发送完成同样也能造成一个中断。这就要求应用查看这二个接收情况以确定这是否与在

这个端点上接收数据有关。因为 USB 没有能够表示中断是由于完成一个 DMA 传输而造成
的状态位，所以应用必须要紧记是否在执行一个 DMA传输。

示例：用uDMA进行中断处理。
//

// 获取当前中断状态

//

ulStatus = USBIntStatus(USB0_BASE);

if(ulStatus & USB_INT_DEV_OUT_EP1)

{

//

// 处理一个短包

//

...

}

else if((g_ulFlags & EP1_DMA_OUT_PEND) &&

(DMAChannelModeGet(DMA_CHANNEL_USBEP1RX) == DMA_MODE_STOP)

{

//

// 处理 DMA完成的情况

//

...

//

// 如有需要重启接收 DMA

//

...

}

24.3 API函数

函数

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

243

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

 unsigned long USBDevAddrGet (unsigned long ulBase)；
 void USBDevAddrSet (unsigned long ulBase, unsigned long ulAddress)；
 void USBDevConnect (unsigned long ulBase)；
 void USBDevDisconnect (unsigned long ulBase)；
 void USBDevEndpointConfig (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulMaxPacketSize, unsigned long ulFlags)；
 void USBDevEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint,

tBoolean bIsLastPacket)；
 void USBDevEndpointStall (unsigned long ulBase, unsigned long ulEndpoint, unsigned

long ulFlags)；
 void USBDevEndpointStallClear (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulFlags)；
 void USBDevEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulFlags)；
 long USBEndpointDataGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned

char *pucData, unsigned long *pulSize)；
 long USBEndpointDataPut (unsigned long ulBase, unsigned long ulEndpoint, unsigned

char *pucData, unsigned long ulSize)；
 long USBEndpointDataSend (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulTransType)；
 void USBEndpointDataToggleClear (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulFlags)；
 unsigned long USBEndpointStatus (unsigned long ulBase, unsigned long ulEndpoint)；
 unsigned long USBFIFOAddrGet (unsigned long ulBase, unsigned long ulEndpoint)；
 void USBFIFOConfigGet (unsigned long ulBase, unsigned long ulEndpoint, unsigned

long *pulFIFOAddress, unsigned long *pulFIFOSize, unsigned long ulFlags)；
 void USBFIFOConfigSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned

long ulFIFOAddress, unsigned long ulFIFOSize, unsigned long ulFlags)；
 void USBFIFOFlush (unsigned long ulBase, unsigned long ulEndpoint, unsigned long

ulFlags)；
 unsigned long USBFrameNumberGet (unsigned long ulBase)；
 unsigned long USBHostAddrGet (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulFlags)；
 void USBHostAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned long

ulAddr, unsigned long ulFlags)；
 void USBHostEndpointConfig (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulMaxPayload, unsigned long ulNAKPollInterval, unsigned long
ulTargetEndpoint, unsigned long ulFlags)；

 void USBHostEndpointDataAck (unsigned long ulBase, unsigned long ulEndpoint)；
 void USBHostEndpointDataToggle (unsigned long ulBase, unsigned long ulEndpoint,

tBoolean bDataToggle, unsigned long ulFlags)；
 void USBHostEndpointStatusClear (unsigned long ulBase, unsigned long ulEndpoint,

unsigned long ulFlags)；
 unsigned long USBHostHubAddrGet (unsigned long ulBase, unsigned long ulEndpoint,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

244

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

unsigned long ulFlags)；
 void USBHostHubAddrSet (unsigned long ulBase, unsigned long ulEndpoint, unsigned

long ulAddr, unsigned long ulFlags)；
 void USBHostPwrDisable (unsigned long ulBase)；
 void USBHostPwrEnable (unsigned long ulBase)；
 void USBHostPwrFaultConfig (unsigned long ulBase, unsigned long ulFlags)；
 void USBHostPwrFaultDisable (unsigned long ulBase)；
 void USBHostPwrFaultEnable (unsigned long ulBase)；
 void USBHostRequestIN (unsigned long ulBase, unsigned long ulEndpoint)；
 void USBHostRequestStatus (unsigned long ulBase)；
 void USBHostReset (unsigned long ulBase, tBoolean bStart)；
 void USBHostResume (unsigned long ulBase, tBoolean bStart)；
 unsigned long USBHostSpeedGet (unsigned long ulBase)；
 void USBHostSuspend (unsigned long ulBase)；
 void USBIntDisable (unsigned long ulBase, unsigned long ulFlags)；
 void USBIntEnable (unsigned long ulBase, unsigned long ulFlags)；
 void USBIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long USBIntStatus (unsigned long ulBase)；
 void USBIntUnregister (unsigned long ulBase)；
 void USBOTGSessionRequest (unsigned long ulBase, tBoolean bStart)。

24.3.1 详细描述

USB API提供了应用执行一个 USB器件或 USB主机堆栈所需的全部函数。API根据使
用的 USB控制器类型摘要出 IN/OUT端点的特性。每一个使用 IN/OUT术语的 API函数将
会遵从这些项目的标准 USB阐释。例如，在一个仅有设备接口的微控制器上的 OUT端点，
它实际上将会在这个端点接收数据，而一个具有一个主机接口的微控制器实际上将会在一个

OUT端点上发送数据。

要理解的另一个重要事情是在 USB 控制器的全部端点，无论是主机还是设备，它们都
具有二“面”用法。这就允许每一个端点都能用于发送数据和接收数据。应用可以在 IN和
OUT传输中使用单个端点。例如：在从机模式下，端点 1能被配置成由端点 1处理 BULK IN
和 BULK OUT。慎重注意，使用的端点号是报告给主机的端点号。对于具有主控制器的微
控制器，应用也能使用一个端点与不同类型的 IN 端点和 OUT 端点进行通信。例如：可以
使用端点 2在同一时刻与一个设备的中断 IN端点和另一个设备的 bulk OUT端点进行通信。
这就有效地给予应用一个专一的控制端点用于处理端点 0 上的 IN 或 OUT 控制传输和三个
IN端点、三个 OUT端点的控制传输。

USB控制器在具有一个 USB从机控制器的设备和那些具有一个主机控制器的设备中包
含有可配置的 FIFO。FIFO RAM的总尺寸是 4096字节。慎重注意，这个内存的前 64个字
节是专门用于控制传输的端点 0。余下的 4032 个字节可按应用的要求配置。通常在应用开
始时设置 FIFO 的配置，并且一旦正在使用 USB 控制器就不能修改 FIFO 配置。FIFO 配置
使用 USBFIFOConfig() API来设置每一个端点的特有的 FIFO的起始地址和大小。

示例：FIFO配置。

0-64 – 端点 0 IN/OUT（64字节）。

64-576 -端点 1 IN（512字节）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

245

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

576-1088 -端点 1 OUT（512字节）。

1088-1600 -端点 2 IN（512字节）。

//

// 端点 1 IN的 FIFO的起始地址是 64，其尺寸是 512字节
//

USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_512, USB_EP_DEV_IN);

//

//端点 1OUT的 FIFO的起始地址是 576，其尺寸是 512字节

//

USBFIFOConfig(USB0_BASE, USB_EP_1, 576,

USB_FIFO_SZ_512, USB_EP_DEV_OUT);

//

//端点 2 IN的 FIFO的起始地址是 1088，其尺寸是 512字节

//

USBFIFOConfig(USB0_BASE, USB_EP_2, 1088, USB_FIFO_SZ_512, USB_EP_DEV_IN);

24.3.2 函数文件

24.3.2.1 USBDevAddrGet

返回从机模式下的当前从机地址。

函数原型：

unsigned long

USBDevAddrGet(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数将返回当前从机地址。这个地址是通过调用 USBDevAddrSet()来设置。

注：只在从机模式下才应调用此函数。

返回：

当前从机地址。

24.3.2.2 USBDevAddrSet

从机模式下设置地址。

函数原型：

void

USBDevAddrSet(unsigned long ulBase,

unsigned long ulAddress)

参数：

ulBase指定 USB模块基址。

ulAddress是从机使用的地址。

描述：

此函数将会设置在 USB 总线上的从机地址。通过一个主控制器的设置地址命令就可接

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

246

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

收到这个地址。

注：应只在从机模式下调用此函数。

返回：

无。

24.3.2.3 USBDevConnect
在从机模式下把 USB控制器连接到总线。

函数原型：

void

USBDevConnect(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数将使能 USB 控制器的软件连接特性。调用 USBDisconnect()就可将 USB 设备从
总线上移除。

注：应只在从机模式下调用此函数。

返回：

无。

24.3.2.4 USBDevDisconnect

在从机模式下把 USB控制器从总线上移除。

函数原型：

void

USBDevDisconnect(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数将使能 USB控制器的软件连接特性，以便把设备从 USB总线上移除。为了把设
备重新连接到总线，需要调用 USBDevConnect()。

注：应只在从机模式下调用此函数。

返回：

无。

24.3.2.5 USBDevEndpointConfig

设置一个端点的配置。

函数原型：

void

USBDevEndpointConfig(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulMaxPacketSize,

unsigned long ulFlags)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

247

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulMaxPacketSize是这个端点的最大包尺寸。

ulFlag一般用来对其它端点设置进行配置。

描述：

此函数将在器件模式下设置一个端点的基本配置。由于端点 0并不具有动态配置，因此
对于端点 0来说，不应调用此函数。ulFlags参数确定某些配置，而其他参数则提供余下的配置。

USB_EP_MODE_ flags定义给定端点的类型。

 USB_EP_MODE_CTRL是一个控制端点；
 USB_EP_MODE_ISOC是一个同步端点；
 USB_EP_MODE_BULK是一个 bulk端点；
 USB_EP_MODE_INT是一个中断端点。

USB_EP_DMA_MODE_ 标志确定访问端点数据 FIFO 的 DMA 类型。选择 DMA 的模
式则要根据如何配置 DMA控制器和如何使用 DMA控制器来决定。有关 DMA配置的更多
信息，请参考“结合 uDMA控制器使用 USB”这一部分。

当配置一个 IN端点时，只要 ulMaxPacketSize个数据字节被写入这个端点的 FIFO，那
么 USB_EP_AUTO_SET 位专门是用来启动 USB 总线上的自动传输数据。在不需要交互作
用来启动数据传输时，这一般是结合 DMA使用。

当配置一个 OUT端点时，一旦 FIFO中已有足够的空间接收大于 ulMaxPacketSize个数
据字节时，那么 USB_EP_AUTO_REQUEST 位是专门用来触发请求更多数据的请求。同样
对于 OUT 端点，一旦已从 FIFO 中读取数据，USB_EP_AUTO_CLEAR 位能自动清除数据
包准备标志。如果不使用这个位，那么也可以通过调用 USBDevEndpointStatusClear()来手动
清除此标志。当在 DMA模式下使用控制器时，这二个设置能消除额外调用函数的需要。

注：应只在从机模式下调用此函数。

返回：

无。

24.3.2.6 USBDevEndpointDataAck
在从机模式下，对从给定端点的 FIFO中读出的数据进行应答。

函数原型：

Void

USBDevEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint,

tBoolean bIsLastPacket)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

bIsLastPacket表示这是否是最后一个包。

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

248

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

此函数对从给定端点的 FIFO中读出的数据进行应答。如果这是端点 0上的连续数据包
中的最后一个包，bIsLastPacket参数被设为 True。bIsLastPacket参数不用于端点，端点 0除
外。如果在对数据进行读取和对已被读取的数据进行应答间处理被要求时，则能调用此函数。

注：应只在从机模式下调用此函数。

返回：

无。

24.3.2.7 USBDevEndpointStall
在从机模式下停止特定的端点。

函数原型：

void

USBDevEndpointStall(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定要停止的端点。

ulFlags指定是要停止 IN端点还是 OUT端点。

描述：

此函数将使检查通过的端点号进入停止条件。如果 ulFlags参数是 USB_EP_DEV_IN，
那么函数将会停止这个端点的 IN部分。如果 ulFlags参数是 USB_EP_DEV_OUT，那么函数
将会停止这个端点的 OUT部分。

注：应只在器件模式下调用此函数。

返回：

无。

24.3.2.8 USBDevEndpointStallClear
在器件模式下，清除特定端点的停止条件。

函数原型：

void USBDevEndpointStallClear(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定要移除哪一个端点的停止条件。

ulFlags指定是要移除这个端点的 IN部分停止条件还是 OUT部分停止条件。

描述：

此函数将使所传送入的端点号退出停止条件。如果 ulFlags参数是 USB_EP_DEV_IN，
那么函数将会清除这个端点的 IN部分的停止条件。如果 ulFlags参数是USB_EP_DEV_OUT，
那么函数将会清除这个端点的 OUT部分停止条件。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

249

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

注：只在器件模式下才应调用此函数。

返回：

无。

24.3.2.9 USBDevEndpointStatusClear

在器件模式下清除此端点的状态位。

函数原型：

void

USBDevEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFlags是将会被清除的状态位。

描述：

此函数将清除被传递入 ulFlags 参数的任何状态位。 ulFlags 参数可以是调用
USBEndpointStatus()所返回的值。

注：应只在器件模式下调用此函数。

返回：

无。

24.3.2.10 USBEndpointDataGet

获取给定的端点 FIFO中的数据。

函数原型：

long

USBEndpointDataGet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned char *pucData,

unsigned long *pulSize)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

pucData是指向数据区的指针，用于保存从 FIFO中返回的数据。

pulSize 是通过 pucData 参数而被传递到这个调用函数的缓冲区大小。它将被设置为在
缓冲区中返回的数据量。

描述：

此函数将返回给定端点的 FIFO中的数据。pulSize参数应该表示被传递到 pucData参数
的缓冲区的大小。pulSize 参数中的数据将被更改，以便与 pucData 参数所返回的数据量匹
配。如果接收到一个零字节包，那么此函数不会返回一个错误，但将会返回 pulSize参数为

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

250

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

0的值。只有在无数据包可用时，才会出现返回错误的情况。

返回：

此调用将返回 0，或没有接收到包则返回-1。

24.3.2.11 USBEndpointDataPut

把数据放置到给定端点的 FIFO。

函数原型：

long

USBEndpointDataPut(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned char *pucData,

unsigned long ulSize)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

pucData是指针，指向用作为要放入 FIFO的数据源的数据区。

ulSize是放入 FIFO的数据量。

描述：

此函数将把 pucData 参数中的数据放置到这个端点的 FIFO。如果已有一个包正在挂起
等待传送，那么此函数将不会把任何数据放置到 FIFO，并返回-1。必须要谨慎的是，不要
向 FIFO写入大于调用 USBFIFOConfig()而分配到的 FIFO空间所能容纳的数据。

返回：

调用成功则返回 0，如果返回-1则表示 FIFO正在使用中并且不能写入。

24.3.2.12 USBEndpointDataSend
启动一个端点的 FIFO中的数据传输。

函数原型：

long

USBEndpointDataSend(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulTransType)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulTransType是被设置为指示哪类型的数据正在被发送。

描述：

此函数将启动一个给定的端点的 FIFO 数据传输。如果端点的 USB_EP_AUTO_SET 位
被禁止，那么调用此函数是必要的。对 ulTransType 参数进行设置将允许在 USB 总线上发
出恬当的信号—正在请求的传输类型。ulTransType参数应该为下列值的其中一个：

 USB_TRANS_OUT是用于主模式下任何端点上的 OUT传输；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

251

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

 USB_TRANS_IN是用于器件模式下任何端点上的 IN交易；
 USB_TRANS_IN_LAST是用于在一个 IN传输序列中的端点 0上的最后一次 IN传
输；

 USB_TRANS_SETUP是用于在端点 0上设置传输；
 USB_TRANS_STATUS是用于端点 0上的状态结果。

返回：

调用成功则返回 0，如果正在处理一次传输则返回-1。

24.3.2.13 USBEndpointDataToggleClear
把一个端点上的数据翻转设置为 0。

函数原型：

void

USBEndpointDataToggleClear(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定复位数据翻转的端点。

ulFlags指定是访问 IN端点还是 OUT端点。

描述：

此函数将使控制器清除一个端点的数据翻转。这个调用对端点 0是无效的，并且主控制
器或设备控制器能调用这个函数。

ulFlags参数应该是 USB_EP_HOST_OUT、USB_EP_HOST_IN、USB_EP_DEV_OUT
或 USB_EP_DEV_IN中的一个。

返回：

无。

24.3.2.14 USBEndpointStatus

返回一个端点的当前状态。

函数原型：

unsigned long

USBEndpointStatus(unsigned long ulBase,

unsigned long ulEndpoint)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定访问的端点。

描述：

此函数将返回一个给定端点的状态。如果需要清除这些状态位中的任何状态位，那么必

须通过调用 USBDevEndpointStatusClear()或 USBHostEndpointStatusClear()函数来清除这些
值。

以下是主模式的状态标志：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

252

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

 USB_HOST_IN_PID_ERROR – 在给定端点上的 PID错误；
 USB_HOST_IN_NOT_COMP – 器件对一个 IN请求的响应失败；
 USB_HOST_IN_STALL – 在一个 IN端点上接收到一个停止信号；
 USB_HOST_IN_DATA_ERROR – 同步模式下一个 IN端点上有一个 CRC或位填
充错误；

 USB_HOST_IN_NAK_TO – 在这个 IN端点上接收到NAK时间大于指定的超时周
期；

 USB_HOST_IN_ERROR – 使用这个 IN端点与一个器件进行通信失败；
 USB_HOST_IN_FIFO_FULL – 这个 IN端点的 FIFO已满；
 USB_HOST_IN_PKTRDY – 这个 IN端点的数据包就绪；
 USB_HOST_OUT_NAK_TO – 在这个OUT端点接收到的NAK时间大于指定的超
时周期；

 USB_HOST_OUT_NOT_COMP – 器件对一个 OUT请求的响应失败；
 USB_HOST_OUT_STALL – 在这个 OUT端点上接收到一个停止信号；
 USB_HOST_OUT_ERROR – 使用这个 OUT端点与一个器件进行通信失败；
 USB_HOST_OUT_FIFO_NE – 这个端点的 OUT FIFO并不为空；
 USB_HOST_OUT_PKTPEND – 这个 OUT端点的数据传输并未结束；
 USB_HOST_EP0_NAK_TO – 端点 0上接收到 NAK的时间大于指定的超时周期；
 USB_HOST_EP0_ERROR – 器件对端点 0上的请求响应失败；
 USB_HOST_EP0_IN_STALL – 一次 IN传输时，端点 0上接收到一个停止信号；
 USB_HOST_EP0_IN_PKTRDY – 一次 IN传输时，端点 0上的数据包就绪。

以下是器件模式的状态标志：

 USB_DEV_OUT_SENT_STALL – 在这个 OUT端点上发送一个停止信号；
 USB_DEV_OUT_DATA_ERROR – OUT端点上有一个 CRC或位填充错误；
 USB_DEV_OUT_OVERRUN – 由于 FIFO已满，故不能装载一个 OUT包；
 USB_DEV_OUT_FIFO_FULL – OUT端点的 FIFO已满；
 USB_DEV_OUT_PKTRDY – OUT端点的 FIFO中的一个数据包就绪；
 USB_DEV_IN_NOT_COMP – 一个更大的包被分裂，进入更多的数据；
 USB_DEV_IN_SENT_STALL – 在这个 IN端点上发送一个停止信号；
 USB_DEV_IN_UNDERRUN – 在这个 IN端点上请求数据并且没有数据就绪；
 USB_DEV_IN_FIFO_NE – IN端点的 FIFO并不为空；
 USB_DEV_IN_PKTPEND -这个 IN端点的数据传输并未结束
 USB_DEV_EP0_SETUP_END – 一个控制传输在发送数据结束条件前结束；
 USB_DEV_EP0_SENT_STALL – 在端点 0上发送一个停止信号；
 USB_DEV_EP0_IN_PKTPEND – 端点 0上的数据传输并未结束；
 USB_DEV_EP0_OUT_PKTRDY – 在端点 0的 FIFO中有一个数据包就绪。

返回：

根据模式返回端点的当前状态标志。

24.3.2.15 USBFIFOAddrGet

返回一个给定端点的绝对 FIFO地址。

函数原型：

unsigned long

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

253

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

USBFIFOAddrGet(unsigned long ulBase,

unsigned long ulEndpoint)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定要返回哪一个端点的 FIFO地址。

描述：

此函数返回 FIFO 的实际物理地址。当即将结合 uDMA 控制器使用 USB 时返回 FIFO
的实际物理地址必要的，并且必须把源地址或目的地址设置为一个给定端点的物理 FIFO地
址。

返回：

无。

24.3.2.16 USBFIFOConfigGet

返回一个端点的 FIFO配置。

函数原型：

void

USBFIFOConfigGet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long *pulFIFOAddress,

unsigned long *pulFIFOSize,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

pulFIFOAddress是 FIFO的起始地址。

pulFIFOSize是以字节为单位的 FIFO大小。

ulFlags指定要从 FIFO配置中获取什么样的信息。

描述：

此函数将返回一个给定端点的起始地址和 FIFO尺寸。由于端点 0不具有一个动态配置
的 FIFO，因此端点 0不应调用此函数。ulFlags参数指定是应该读取端点的 OUT FIFO还是
读取端点的 IN FIFO。如果在主模式下，ulFlags 参数应该是 USB_EP_HOST_OUT 或
USB_EP_HOST_IN，如果在器件模式下，ulFlags 参数应该是 USB_EP_DEV_OUT 或
USB_EP_DEV_IN。

返回：

无。

24.3.2.17 USBFIFOConfigSet

设置一个端点的 FIFO配置。

函数原型：

void USBFIFOConfigSet(unsigned long ulBase,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

254

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

unsigned long ulEndpoint,

unsigned long ulFIFOAddress,

unsigned long ulFIFOSize,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFIFOAddress是 FIFO的起始地址。

ulFIFOSize是以字节为单位的 FIFO尺寸。

ulFlags指定要对 FIFO配置进行什么样信息的设置。

描述：

此函数将对一个给定的端点的 FIFO RAM起始地址和 FIFO的大小进行设置。由于端点
0 并不具有一个动态配置的 FIFO，因此端点 0 不应调用此函数。ulFIFOSize 参数应该是
USB_FIFO_SZ_值中的其中一个值。如果端点正使用双缓冲，那么它应该使用未尾为_DB的
值。例如，为了得到一个 16 字节的双缓冲区 FIFO，应使用 USB_FIFO_SZ_16_DB 对一个
端点进行配置。如果使用了一个双缓冲区的 FIFO，那么 FIFO的实际大小将会是 ulFIFOSize
参数所指示的大小的二倍。这就意味着 USB_FIFO_SZ_16_DB 值将使用了 32 字节的 USB
控制器的 FIFO内存。

ulFIFOAddress值应是 8字节的整数倍并直接指示 USB控制器的 FIFO RAM的起始地
址。例如，取值为 64就表示 FIFO应当把起始的 64个字节存入 USB控制器的 FIFO存储器
中。ulFlags 值指定是要配置端点的 OUT FIFO 还是 IN FIFO。如果是主机模式，使用
USB_EP_HOST_OUT 或 USB_EP_HOST_IN。如果是设备模式，使用 USB_EP_DEV_OUT
或 USB_EP_DEV_IN。

返回：

无。

24.3.2.18 USBFIFOFlush

强制刷新一个端点的 FIFO。

函数原型：

void

USBFIFOFlush(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFlags指定是要访问 IN端点还是 OUT端点。

描述：

此函数将强制控制器刷新 FIFO中的数据。无论是主控制器还是从机控制器，均可调用
此 函 数 ， 并 且 要 求 ulFlags 参数 是 USB_EP_HOST_OUT 、 USB_EP_HOST_IN、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

255

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

USB_EP_DEV_OUT或 USB_EP_DEV_IN中的一个。

返回：

无。

24.3.2.19 USBFrameNumberGet

获取当前的帧编号。

函数原型：

unsigned long

USBFrameNumberGet(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数返回最后接收到的帧编号。

返回：

最后接收到的帧编号。

24.3.2.20 USBHostAddrGet

获取一个端点的当前功能设备地址。

函数原型：

unsigned long

USBHostAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFlags确定这是一个 IN端点还是一个 OUT端点。

描述：

此函数返回当前功能地址，端点正在使用这个功能地址与一个设备进行通信。ulFlags
参数确定是要返回一个 IN端点还是一个 OUT端点。

注：应只在主机模式下调用此函数。

返回：

返回一个端点正在使用的当前功能地址。

24.3.2.21 USBHostAddrSet

设置一个在主模式下与一个端点相连接的设备的功能地址。

函数原型：

void USBHostAddrSet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulAddr,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

256

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulAddr是用作该端点的控制器的功能地址。

ulFlags确定这是一个 IN端点还是一个 OUT端点。

描述：

此函数将设置器件的功能地址，这个器件将使用这个端点来进行通信。ulAddr 参数是
目标器件的地址，而这个端点将被用来与这个器件进行通信。ulFlags 参数表示应该是要设
置 IN端点还是 OUT端点。

注：应只在主模式下调用此函数。

返回：

无。

24.3.2.22 USBHostEndpointConfig

设置一个主机端点的基础配置。

函数原型：

void

USBHostEndpointConfig(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulMaxPayload,

unsigned long ulNAKPollInterval,

unsigned long ulTargetEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulMaxPayload这个端点的最大有效载荷。

ulNAKPollInterval是 NAK超时限制或查询间隔，这取决于端点的类型。

ulTargetEndpoint是主机端点正将其作为目标的端点。

ulFlags一般是对其他端点设置进行配置。

描述：

此函数将对主机模式下的一个端点的发送或接收部分进行基本的配置。ulFlags 参数确
定一些配置而其他参数则提供余下的配置。ulFlags 参数也确定是要访问 IN 端点设置还是
OUT端点设置。

USB_EP_MODE_标志控制着端点的类型：

 USB_EP_MODE_CTRL是控制端点；
 USB_EP_MODE_ISOC是同步端点；
 USB_EP_MODE_BULK是 bulk端点；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

257

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

 USB_EP_MODE_INT是中断端点。

根据USB_EP_MODE的值和端点 0或另一个端点是否调用这个函数，ulNAKPollInterval
参数具有不同的含义。对于端点 0或任何 Bulk端点，这个值总是表示允许一个设备在认为
它是一个超时值前用 NAK信号进行应答的帧数量。如果端点是一个同步或中断端点，那么
这个值就是这个端点的查询间隔值。

对于中断端点，查询间隔简化为查询一个中断端点间的帧数量。对于同步端点，这个值

代表着 2^(ulNAKPollInterval - 1)个帧的查询间隔。当被用作一个 NAK 超时时，

ulNAKPollInterval 值在发布一个超时前指定为 2^ (ulNAKPollInterval - 1)个帧。在设置
ulNAKPollInterval 值时，有二种特别的方法来指定超时值。第一种方法是使用
MAX_NAK_LIMIT，它是能被传递给这个变量的最大值。另一种方法是使用
DISABLE_NAK_LIMIT，它表示不应该限制 NAK的数量。

USB_EP_DMA_MODE_标志使能用于访问端点的数据 FIFO的 DMA类型。根据如何配
置 DMA控制器和如何使用 DMA控制器来选择 DMA模式。有关 DMA配置的更多信息，
请参考“结合 uDMA控制器使用 USB”这一节。

当对一个端点 OUT部分进行配置时，只要 ulMaxPayload所指定的字节数已被写入到这
个端点的 OUT FIFO，那么就可以指定 USB_EP_AUTO_SET位来启动 USB总线上的数据传
输。

当对一个端点 IN部分进行配置时，一旦 FIFO具有足够的空间容纳 ulMaxPayload个字
节，那么就可以指定 USB_EP_AUTO_REQUEST 位来触发请求更多数据的请求。一旦已从
FIFO中读取数据，那么可以使用 USB_EP_AUTO_CLEAR自动清除数据包准备标志。如果
不 使 用 此 方 法 ， 那 么 必 须 要 通 过 调 用 USBDevEndpointStatusClear() 或
USBHostEndpointStatusClear()来手动将其清除。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.23 USBHostEndpointDataAck

在主机模式下对从给定的端点的 FIFO中读出的数据进行应答。

函数原型：

void

USBHostEndpointDataAck(unsigned long ulBase,

unsigned long ulEndpoint)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

描述：

此函数对从端点的 FIFO中读出的数据进行应答。如果在对数据进行读取和对已被读取
的数据进行应用之间需要处理，则调用此函数。

注：应只在主机模式下调用此函数。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

258

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

24.3.2.24 USBHostEndpointDataToggle

在主机模式下，对一个端点的上的数据翻转值进行设置。

函数原型：

void

USBHostEndpointDataToggle(unsigned long ulBase,

unsigned long ulEndpoint,

tBoolean bDataToggle,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint指定复位数据翻转的端点。

bDataToggle指定是把状态设置为 DATA0还是为 DATA1。

ulFlags指定是设置 IN端点还是 OUT端点。

描述：

此函数一般是用来在主机模式下强制数据状态翻转。如果传递给 bDataToggle参数的值
是 False，那么数据翻转将被设置为 DATA0状态。如果为 True，那么被设为 DATA1状态。
为了能对这个端点的预期部分进行访问，ulFlags 参数可以为 USB_EP_HOST_IN 或

USB_EP_HOST_OUT。对于端点 0，ulFlags参数被忽略。

注：应只在主模式下调用此函数。

返回：

无。

24.3.2.25 USBHostEndpointStatusClear

在主机模式下清除这个端点的状态位。

函数原型：

void

USBHostEndpointStatusClear(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFlags是将会被清除的状态位。

描述：

此函数将会清除被传递给 ulFlags 参数的任何状态位。ulFlags 参数可以是调用
USBEndpointStatus()所返回的值。

注：应只在主机模式下调用此函数。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

259

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

24.3.2.26 USBHostHubAddrGet

获取这个端点的当前设备集线器地址。

函数原型：

unsigned long

USBHostHubAddrGet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulFlags确定这是一个 IN端点还是一个 OUT端点。

描述：

此函数将返回这个端点的当前设备集线器地址，端点正是使用此地址与设备进行通信。

ulFlags参数确定返回的是 IN端点的设备地址还是 OUT端点的设备地址。

注：应只在主机模式下调用此函数。

返回：

此函数返回端点正在使用的当前集线器地址。

24.3.2.27 USBHostHubAddrSet

设置连接到端点的设备集线器地址。

函数原型：

void

USBHostHubAddrSet(unsigned long ulBase,

unsigned long ulEndpoint,

unsigned long ulAddr,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulEndpoint是要访问的端点。

ulAddr是使用这个端点的设备集线器地址。

ulFlags确定这是一个 IN端点还是一个 OUT端点。

描述：

此函数将设置设备集线器地址，而设备正是使用这个点进行通信。ulFlags 参数确定这
次调用是设置 IN端点的从机地址还是 OUT端点的从机地址。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.28 USBHostPwrDisable

禁止外部电源管脚。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

260

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

函数原型：

void

USBHostPwrDisable(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数禁止 USBEPEN信号，以便在主机模式操作下禁止外部电源。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.29 USBHostPwrEnable

使能外部电源管脚。

函数原型：

void

USBHostPwrEnable(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数使能 USBEPEN信号，以便在主机模式操作下使能外部电源。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.30 USBHostPwrFaultConfig

对 USB电源故障进行设置。

函数原型：

void

USBHostPwrFaultConfig(unsigned long ulBase,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulFlags指定电源故障的配置。

描述：

此函数将在电源故障和 USBPEN管脚的操作期间内设置 USB控制器的操作。标志指定
电源故障电平敏感性（power fault level sensitivity）、电源故障操作、电源使能电平和来源。
可从下列值中选择其中一个作为电源电平敏感性：

 USB_HOST_PWRFLT_LOW – 被驱动为低的管脚表示电源故障；
 USB_HOST_PWRFLT_HIGH - 被驱动为高的管脚表示电源故障；

可从下列值中选择一个作为电源故障操作：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

261

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

 USB_HOST_PWRFLT_EP_NONE – 当检测到电源故障时不执行自动操作；
 USB_HOST_PWRFLT_EP_TRI – 在电源故障时 USBEPEN管脚自动变为三态；
 USB_HOST_PWRFLT_EP_LOW- 在电源故障时自动驱动 USBEPEN管脚为低；
 USB_HOST_PWRFLT_EP_HIGH – 在电源故障时自动驱动 USBEPEN管脚为高。

可从下列值中选择一个作为电源使能电平和来源：

 USB_HOST_PWREN_LOW – 当使能电源时，USBEPEN被驱动为低；
 USB_HOST_PWREN_HIGH – 当使能功率时，USBEPEN被驱动为高；
 USB_HOST_PWREN_VBLOW – 当 VBUS为低时，USBEPEN被驱动为高；
 USB_HOST_PWREN_VBHIGH - 当 VBUS为高时，USBEPEN被驱动为高；
注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.31 USBHostPwrFaultDisable

禁止电源故障检测。

函数原型：

void

USBHostPwrFaultDisable(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数在 USB控制器下禁止电源故障检测。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.32 USBHostPwrFaultEnable

使能电源故障检测。

函数原型：

void

USBHostPwrFaultEnable(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数在 USB控制器中使能电源故障检测。如果不正在使用 USBPFLT管脚，那么就不
应使用此函数。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.33 USBHostRequestIN

主机模式下，预定一个端点上的一个 IN传输请求。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

262

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

函数原型：

void

USBHostRequestIN(unsigned long ulBase,

unsigned long ulEndpoint)

参数：

ulBase指定 USB模块基址。

ulEndpoint要访问的端点。

描述：

此函数将会预定一个 IN传输请求。当正在通信的 USB设备对数据作出回应时，通过调
用 USBEndpointDataGet()或一个 DMA传输就可获取数据。

注：应只在主模式下调用此函数。

返回：

无。

24.3.2.34 USBHostRequestStatus

在端点 0上发布一个状态 IN传输请求。

函数原型：

void

USBHostRequestStatus(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数一般用来在端点 0上从一个设备中提出一个状态 IN传输的请求。这个函数只能
与端点 0一起使用，因为只有控制端点支持这功能。这一般是用来结束设备的最后控制传输
阶段。当接收完状态包时，将会发出一个中断信号。

注：应只在主模式下调用此函数。

返回：

无。

24.3.2.35 USBHostReset

处理 USB总线复位条件。

函数原型：

void

USBHostReset(unsigned long ulBase,

tBoolean bStart)

参数：

ulBase指定 USB模块基址。

bStart指定是在 USB总线上启动发出复位信号还是停止发出复信号。

描述：

当此函数中的 bStart参数被设为 True并调用此函数时，这个函数将使 USB总线上的复

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

263

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

位条件启动。调用者应至少要延时 20ms，然后才能再次调用这个 bStart 参数被设为 False
的函数。

注：应只在主模式下调用此函数。

返回：

无。

24.3.2.36 USBHostResume

处理 USB总线重新开始条件。

函数原型：

void

USBHostResume(unsigned long ulBase,

tBoolean bStart)

参数：

ulBase指定 USB模块基址。

bStart指定 USB控制器是进入重新开始发信号状态还是离开重新开始发信号状态。

描述：

在从机模式下，此函数将令 USB 控制器不处于中止状态。首次调用此函数时 bStart 参
数应该被设为 True 以启动重新开始发信号状态。然后器件应用应至少延时 10ms 但不能超
过 15ms，接着才能调用 bStart参数被设为 False时的函数。

在主机模式下，此函数将发出一个令器件离开中止状态的信号。首次调用此函数时 bStart
参数应该被设为 True以启动重新开始发信号状态。然后主机应用应至少延时 20ms，接着才
能调用 bStart参数被设为 False时的函数。这将使控制器在 USB总线上完成重新开始发信号
状态。

返回：

无。

24.3.2.37 USBHostSpeedGet

返回 USB器件当前连接速度。

函数原型：

unsigned long

USBHostSpeedGet(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数将会返回 USB总线的当前速度。

注：应只在主机模式下调用此函数。

返回：

返回 USB_LOW_SPEED, USB_FULL_SPEED或 USB_UNDEF_SPEED。

24.3.2.38 USBHostSuspend

使 USB总线处于暂停状态。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

264

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

函数原型：

void

USBHostSuspend(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

当在主机模式下使用此函数时，它将使 USB总线处于暂停状态。

注：应只在主机模式下调用此函数。

返回：

无。

24.3.2.39 USBIntDisable

关闭 USB中断源。

函数原型：

void

USBIntDisable(unsigned long ulBase,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulFlags指定关闭哪些中断。

描述：

此函数将禁止 USB 控制器产生 ulFlags 参数所表示的中断。三组中断源是：IN 端点、
OUT 端点和通用状态变化，它们由 USB_INT_HOST_IN、USB_INT_HOST_OUT、
USB_INT_DEV_IN 、 USB_INT_DEV_OUT 和 USB_INT_STATUS 指 定 。 如 果 指 定

USB_INT_ALL时，全部中断将被禁止。

返回：

无。

24.3.2.40 USBIntEnable

使能 USB中断源。

函数原型：

void

USBIntEnable(unsigned long ulBase,

unsigned long ulFlags)

参数：

ulBase指定 USB模块基址。

ulFlags指定使能哪些中断。

描述：

此函数将使能 USB控制器的操作以便产生 ulFlags参数所表示的中断。三组中断源是：
IN端点、OUT端点和通用状态变化，它们由 USB_INT_HOST_IN、USB_INT_HOST_OUT、

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

265

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

USB_INT_DEV_IN、USB_INT_DEV_OUT和 USB_STATUS指定。如果指定 USB_INT_ALL
时，全部中断将被使能。

注：为接收中断，必须调用一个函数使能主中断控制器的中断。USBIntRegister() API使能这个控制器

电平中断。如果使用静态中断处理程序，那么必须调用 IntEnable()以允许产生任何 USB中断。

返回：

无。

24.3.2.41 USBIntRegister

注册一个 USB控制器的中断处理程序。

函数原型：

void

USBIntRegister(unsigned long ulBase,

void (*pfnHandler)(void))

参数：

ulBase指定 USB模块基址。

pfnHandler是指针，指向在出现一个 USB中断时要调用的函数。

描述：

此函数对出现一个 USB 中断时要调用的中断处理程序进行设置。同时这也将会使能中
断控制器的全局 USB中断。必须通过单独调用 USBIntEnable()使能特定期望的 USB中断。
由中断处理程序负责通过调用 USBIntStatus()来清除中断源。

也可参考：

有关注册中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

24.3.2.42 USBIntStatus

返回 USB中断的状态。

函数原型：

unsigned long

USBIntStatus(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数将读取 USB 控制器的中断源。三组中断源是：IN 端点、OUT 端点和通用状态
变化。此函数将返回这些全部中断的当前状态。返回的位值应该与 USB_HOST_IN、
USB_HOST_OUT、USB_HOST_EP0、USB_DEV_IN、USB_DEV_OUT和 USB_DEV_EP0 的
值进行比较。

注：这个调用将会清除全部通用状态中断源。

返回：

返回 USB控制器的中断源的状态。

24.3.2.43 USBIntUnregister

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

266

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

注销一个 USB控制器的中断处理程序。

函数原型：

void

USBIntUnregister(unsigned long ulBase)

参数：

ulBase指定 USB模块基址。

描述：

此函数注销中断处理程序。此函数也将会关闭中断控制器的 USB中断。

也可参考：

有关注册或注销中断处理程序的重要信息，请参考 IntRegister()。

返回：

无。

24.3.2.44 USBOTGSessionRequest

启动或结束一个会话。

函数原型：

void

USBOTGSessionRequest(unsigned long ulBase,

tBoolean bStart)

参数：

ulBase指定 USB模块基址。

bStart指定这个调用是启动一次会话还是结束一次会话。

描述：

在 OTG模式下使用此函数以便启动一次会话请求或结束一次会话。如果 bStart参灵敏
被设为 True，那么此函数启动一次会话，如果为 False则结束一次会话。

返回：

无。

24.4 编程示例

这个示例为了在从机模式下把端点 1配置成一个 bulk IN端点而使得这些调用是必不可
少的。首次调用是把端点 1 配置成具有 64 字节的最大包尺寸，并把它配置成一个 bulk IN
端点。调用 USBFIFOConfig()则是要把起始地址设置成 64字节宽（in）和 64字节长。它指
定用 USB_EP_DEV_IN表示这是一个从机模式的 IN端点。接下来两个调用示范了如何填充
这个端点的数据 FIFO，然后把数据 FIFO预定好在 USB总线上传送。USBEndpointDataPut()
调用只是将数据放入 FIFO但却不会实际上启动数据传送。主控制器下一次在这个端点上请
求数据时，USBEndpointDataSend()调用将会安排好何时开始传送数据。

//

// 配置端点 1

//

USBDevEndpointConfig(USB0_BASE, USB_EP_1, 64, DISABLE_NAK_LIMIT,

USB_EP_MODE_BULK | USB_EP_DEV_IN);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

267

 广州周立功单片机发展有限公司 第 24 章 USB 控制器

//

// 把 FIFO配置成一个器件 IN端点 FIFO，它的起始地址是 64，且尺寸是 64字节

//

USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_64, USB_EP_DEV_IN);

...

//

// 把数据放入 FIFO

//

USBEndpointDataPut(USB0_BASE, USB_EP_1, pucData, 64);

//

// 启动数据传送

//

USBEndpointDataSend(USB0_BASE, USB_EP_1, USB_TRANS_IN);

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

268

 广州周立功单片机发展有限公司 第25章 看门狗定时器

第25章 看门狗定时器

25.1 简介

看门狗定时器 API提供了一组函数来使用 Stellaris看门狗定时器模块。提供的函数用来
处理看门狗定时器中断、处理看门狗定时器的状态和配置。

看门狗定时器的功能是防止系统挂起。看门狗定时器模块由一个 32位的递减计数器、
一个可编程的装载寄存器、中断产生逻辑和一个锁定寄存器组成。一旦看门狗定时器配置完

成，锁定寄存器就被写入，防止定时器配置被意外更改。

看门狗定时器可以配置成在第一次超时的时候向处理器产生一个中断，在第二次超时的

时候产生一个复位信号。看门狗定时器模块在 32位计数器使能后计数值到达零时产生第一
个超时信号；使能了计数器也就使能了看门狗定时器中断。在第一个超时事件之后，32 位
计数器重新装入看门狗定时器装载寄存器的值，定时器继续从这个装入的值开始递减计数。

如果定时器在第一个超时中断清除之前再次递减计数到零，并且复位信号已经被使能，那么

看门狗定时器就会向系统提交复位信号。如果中断在 32位计数器到达它的第二次超时前被
清除，则 32位计数器装入装载寄存器的值，并继续从这个装载值开始计数。如果装载寄存
器在看门狗定时器计数器正在计数时被写入一个新的值，那么计数器就装入这个新的值并继

续计数。

这个驱动程序包含在 src/watchdog.c中，src/watchdog.h包含应用使用的 API定义。

25.2 API函数

函数

 void WatchdogEnable (unsigned long ulBase)；
 void WatchdogIntClear (unsigned long ulBase)；
 void WatchdogIntEnable (unsigned long ulBase)；
 void WatchdogIntRegister (unsigned long ulBase, void (*pfnHandler)(void))；
 unsigned long WatchdogIntStatus (unsigned long ulBase, tBoolean bMasked)；
 void WatchdogIntUnregister (unsigned long ulBase)；
 void WatchdogLock (unsigned long ulBase)；
 tBoolean WatchdogLockState (unsigned long ulBase)；
 unsigned long WatchdogReloadGet (unsigned long ulBase)；
 void WatchdogReloadSet (unsigned long ulBase, unsigned long ulLoadVal)；
 void WatchdogResetDisable (unsigned long ulBase)；
 void WatchdogResetEnable (unsigned long ulBase)；
 tBoolean WatchdogRunning (unsigned long ulBase)；
 void WatchdogStallDisable (unsigned long ulBase)；
 void WatchdogStallEnable (unsigned long ulBase)；
 void WatchdogUnlock (unsigned long ulBase)；
 unsigned long WatchdogValueGet (unsigned long ulBase)。

25.2.1 详细描述

看门狗定时器 API分成 2组函数，分别执行以下功能：处理中断、处理状态和配置。

看 门 狗 定 时 器 中 断 由 WatchdogIntRegister() 、 WatchdogIntUnregister() 、
WatchdogIntEnable()、WatchdogIntClear()和WatchdogIntStatus()函数来处理。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

269

 广州周立功单片机发展有限公司 第25章 看门狗定时器

看门狗定时器模块的状态和配置函数有：WatchdogEnable()、WatchdogRunning()、
WatchdogLock() 、 WatchdogUnlock() 、 WatchdogLockState() 、 WatchdogReloadSet() 、
WatchdogReloadGet()、WatchdogValueGet()、WatchdogResetEnable()、WatchdogResetDisable()、
WatchdogStallEnable()和WatchdogStallDisable()。

25.2.2 函数文件

25.2.2.1 WatchdogEnable
使能看门狗定时器。

函数原型：

void

WatchdogEnable(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

这个函数将使能看门狗定时器计数器和中断。

注：如果看门狗定时器已经被锁定了，则这个函数就没有任何效果了。

也可参考：

WatchdogLock()、WatchdogUnlock()。

返回：

无。

25.2.2.2 WatchdogIntClear
清除看门狗定时器中断。

函数原型：

void

WatchdogIntClear(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。
描述：

清除看门狗定时器中断，使其不再有效。
注：由于在 Cortex-M3处理器包含有一个写入缓冲区，处理器可能要过几个时钟周期才能真正把中断

源清除。因此，建议在中断处理程序中要早些把中断源清除掉（反对在最后的操作中才清除中断源）以避

免在真正清除中断源之前从中断处理程序中返回。如果操作失败可能会导致器件立即再次进入中断处理程

序。（因为 NVIC仍会把中断源看作是有效的）。

返回：

无。

25.2.2.3 WatchdogIntEnable
使能看门狗定时器中断。

函数原型：

void
WatchdogIntEnable(unsigned long ulBase)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

270

 广州周立功单片机发展有限公司 第25章 看门狗定时器

参数：

ulBase是看门狗定时器模块的基址。

描述：

使能看门狗定时器中断。

注：如果看门狗定时器已经被锁定了，则这个函数就没有任何效果了。

也可参考：

WatchdogLock()、WatchdogUnlock()、WatchdogEnable()。

返回：

无。

25.2.2.4 WatchdogIntRegister
注册一个看门狗定时器中断的中断处理程序。

函数原型：

void

WatchdogIntRegister(unsigned long ulBase,

void (*pfnHandler) (void))

参数：

ulBase是看门狗定时器模块的基址。

pfnHandler是一个指针，指向看门狗定时器中断出现时调用的函数。

描述：

这个函数真正地注册中断处理程序。这将会使能中断控制器中的全局中断；看门狗定时

器中断必须通过WatchdogEnable()来使能；由中断处理程序负责通过WatchdogIntClear()来清
除中断源。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

25.2.2.5 WatchdogIntStatus
获取当前的看门狗定时器中断状态。

函数原型：

unsigned long

WatchdogIntStatus(unsigned long ulBase,

tBoolean bMasked)

参数：

ulBase是看门狗定时器模块的基址。

bMasked：如果需要原始的中断状态，bMasked 为 False；如果需要屏蔽的中断状态，
bMasked就为 True。

描述：

这个函数返回看门狗定时器模块的中断状态。原始的中断状态或允许反映到处理器中的

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

271

 广州周立功单片机发展有限公司 第25章 看门狗定时器

中断的状态都可以被返回。

返回：

返回当前的中断状态，为 1时表明看门狗中断有效；为 0时表明看门狗中断无效。

25.2.2.6 WatchdogIntUnregister
注销看门狗定时器中断的一个中断处理程序。

函数原型：

void

WatchdogIntUnregister(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

这个函数真正地注销中断处理程序。它将清除一个看门狗定时器中断出现时要调用的处

理程序。这也将关闭中断控制器中的中断，使得不再调用中断处理程序。

也可参考：

有关注册中断处理程序的重要信息请参考 IntRegister()。

返回：

无。

25.2.2.7 WatchdogLock
使能看门狗定时器锁定机制。

函数原型：

void

WatchdogLock(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

停止写看门狗定时器配置寄存器。

返回：

无。

25.2.2.8 WatchdogLockState
获取看门狗定时器锁定机制的状态。

函数原型：

tBoolean

WatchdogLockState(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

返回看门狗定时器寄存器的锁定状态。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

272

 广州周立功单片机发展有限公司 第25章 看门狗定时器

返回：

如果看门狗定时器寄存器被锁定，返回 True；如果看门狗定时器寄存器未被锁定则返
回 False。

25.2.2.9 WatchdogReloadGet
获取看门狗定时器的重载值。

函数原型：

unsigned long

WatchdogReloadGet(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。
描述：

当计数第一次到达零时，这个函数获取载入看门狗定时器的值。
也可参考：

WatchdogReloadSet()。

返回：

无。

25.2.2.10 WatchdogReloadSet
设置看门狗定时器重载值。

函数原型：

void
WatchdogReloadSet(unsigned long ulBase,

unsigned long ulLoadVal)
参数：

ulBase是看门狗定时器模块的基址。

ulLoadVal是看门狗定时器的装载值。

描述：

当计数第一次达到零时，这个函数设置载入看门狗定时器的值；如果调用这个函数时看

门狗定时器正在运行，那么这个值将立刻被载入看门狗定时器计数器。如果参数 ulLoadVal
为 0，则立刻产生一个中断。

注：如果看门狗定时器已经被锁定了，那么这个函数就没有任何效果了。

也可参考：

WatchdogLock()、WatchdogUnlock()、WatchdogReloadGet()。
返回：

无。

25.2.2.11 WatchdogResetDisable
禁止看门狗定时器复位。

函数原型：

void

WatchdogResetDisable(unsigned long ulBase)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

273

 广州周立功单片机发展有限公司 第25章 看门狗定时器

参数：

ulBase是看门狗定时器模块的基址。

描述：

当又一个超时条件出现时，禁止看门狗定时器向处理器发布一次复位。

注：如果看门狗定时器已经被锁定了，那么这个函数就没有任何效果了。

也可参考：

WatchdogLock()、WatchdogUnlock()。

返回：

无。

25.2.2.12 WatchdogResetEnable
使能看门狗定时器复位。

函数原型：

void

WatchdogResetEnable(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

当又一个超时条件出现时，使能看门狗定时器向处理器发布一次复位。

注：如果看门狗定时器已经被锁定了，那么这个函数就没有任何效果了。

也可参考：

WatchdogLock()、WatchdogUnlock()。

返回：

无。

25.2.2.13 WatchdogRunning
确定看门狗定时器是否被使能。

函数原型：

tBoolean

WatchdogRunning(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

这个函数将查看门狗定时器是否使能。

返回：

如果看门狗定时器使能，则返回 True；否则返回 False。

25.2.2.14 WatchdogStallDisable
禁止在调试事件过程中终止看门狗定时器。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

274

 广州周立功单片机发展有限公司 第25章 看门狗定时器

void

WatchdogStallDisable(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。

描述：

这个函数禁止在调试模式中终止看门狗定时器。这样，不管处理器的调试状态怎样，看

门狗定时器都将继续计数。

返回：

无。

25.2.2.15 WatchdogStallEnable
在调试事件过程中使能终止看门狗定时器。

函数原型：

void

WatchdogStallEnable(unsigned long ulBase)

参数：

ulBase是看门狗定时器模块的基址。
描述：

当调试器将处理器停止时，这个函数允许看门狗定时器停止计数。通过这样做来防止看

门狗到达计时时间（从人类的时间角度看这通常是一个极短的时间）和复位系统（如果复位

使能）。在调试执行完一定数量的处理器周期后（或在处理器重新启动后的适当时间），看门

狗将继续计数到达计时时间。

返回：

无。

25.2.2.16 WatchdogUnlock
禁止看门狗定时器锁定机制。

函数原型：

void

WatchdogUnlock(unsigned long ulBase)
参数：

ulBase是看门狗定时器模块的基址。

描述：

使能对看门狗定时器配置寄存器的写访问。
返回：

无。

25.2.2.17 WatchdogValueGet
获取当前的看门狗定时器值。

函数原型：

unsigned long

WatchdogValueGet(unsigned long ulBase)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

275

 广州周立功单片机发展有限公司 第25章 看门狗定时器

参数：

ulBase是看门狗定时器模块的基址。

描述：

这个函数读取看门狗定时器的当前值。

返回：

返回看门狗定时器的当前值。

25.3 编程示例

下面的示例显示了在两次超时后如何设置看门狗定时器 API来复位处理器。

//

// 检查寄存器是否被锁定，如果锁定了寄存器，将它们释放。

//

if(WatchdogLockState(WATCHDOG_BASE) = = true)

{

WatchdogUnlock(WATCHDOG_BASE);

}

//

// 初始化看门狗定时器。

//

WatchdogReloadSet(WATCHDOG_BASE, 0xFEEFEE);

//

// 使能复位。

//

WatchdogResetEnable(WATCHDOG_BASE);

//

// 使能看门狗定时器。

//

WatchdogEnable(WATCHDOG_BASE);

//

// 等待复位的产生。

//

while(1)

{

}

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

276

 广州周立功单片机发展有限公司 第 26 章 使用 ROM

第26章 使用 ROM

26.1 简介

Stellaris DustDevil-class器件有一部分外设驱动程序库存储在片内 ROM中。通过使用片
内 ROM中的代码，可得到更多可用的 Flash空间供应用使用。引导加载程序也包含在 ROM
中，它被应用程序调用以启动固件更新。

26.2 直接调用 ROM

为了调用 ROM，必须执行以下步骤：

 必须先定义器件，应用程序将在这个器件上运行。这一步通过定义一个预处理器符
号来处理，而定义预处理器符号，则可以在源代码中完成，或在编译应用程序的工

程中完成。如果在工程间共享了代码，那么后者的方法更为灵活；
 源代码包括 src/rom.h文件，需要用到这个文件来调用 ROM；
 调用外设驱动程序库的 ROM 版本函数。例如，如果在 ROM 中将要调用

GPIPDirModeSet()，那么可以用 ROM_GPIODirModeSet()取而代之。

由于 ROM 中一系列可用的函数必须是一个编译时的决策（compile-time decision），因
此定义一般用来选择将要使用的器件；由于调用 ROM和 Flash版本的 API都位于 Flash应
用映象中，因此在运行时间进行检测并不能提供任何 Flash保存。

以下定义经 src/rom.h验证：

TARGET_IS_DUSTDEVIL_RA0 该用法被编译，以便在 DustDevil 系列芯片上运行
（硅片版本 A0）。

通过使用 ROM_Function()，就可明确地调用 ROM。如果讨论的函数不能在 ROM中运
行，那么将会产生一个编译错误。

有关可在 ROM中运行的 API函数，详情请参考 Stellaris ROM用户指南。

以下是在 ROM中调用一个函数的示例，使用源文件中的而非工程文件中的#define来定
义讨论的器件：

#define TARGET_IS_DUSTDEVIL_RA0

#include "../src/rom.h"

#include "../src/systick.h"

int
main(void)

{

ROM_SysTickPeriodSet(0x1000);

ROM_SysTickEnable();

// ...

}

26.3 调用映射的 ROM

当在工程间共享代码时，一些工程在带有 ROM器件上运行，而另一些工程则在不带有
ROM的器件上运行，此时最方便的做法是让代码自动调用 ROM或 Flash版本的 API，从而
使代码无需包含#ifdef-s。rom_map.h提供一个自动进行映射特性，用于访问 ROM。类似于
rom.h提供的 ROM_Function() API，rom_map.h提供一组MAP_Function() API。如果函数能

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

277

 广州周立功单片机发展有限公司 第 26 章 使用 ROM

在ROM中使用，那么MAP_Function()将会简单地调用ROM_Function()；否则调用Function()。

为了使用映射的 ROM调用，必须执行以下几个步骤：

 遵从上面包含和使用 src/rom.h的步骤；
 包含 src/rom_map.h；
 继续上面的示例，在源代码中调用MAP_GPIODirModeSet()。

类似于直接 ROM调用的方，在编译时（compile-time）就会作出是调用 ROM还是调用
Flash版本 API的选择。只通过 ROM映射特性来提供的 API就是那些可在 ROM中使用的
API函数，并不是每一个这样的 API都可用于外设驱动程序库。

下面是一个在共享代码中调用一个函数的示例，这里讨论的器件是在工程文件中定义：

#include "../src/rom.h"

#include "../src/rom_map.h"

#include "../src/systick.h"

void

SetupSysTick(void)

{

MAP_SysTickPeriodSet(0x1000);

Map_SysTickEnable();

}

当对一个不含有 ROM的器件进行编译时，这就等价于：

#include "../src/systick.h"

void

SetupSysTick(void)

{

SysTickPeriodSet(0x1000);

SysTickEnable();

}

当对一个含有 ROM的器件进行编译时，这就等价于：

#include "../src/rom.h"

#include "../src/systick.h"

void

SetupSysTick(void)

{

ROM_SysTickPeriodSet(0x1000);

ROM_SysTickEnable();

}

26.4 更新固件

函数

 void UpdateI2C (void)；
 void UpdateSSI (void)；
 void UpdateUART (void)。

26.4.1 详细描述

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

278

 广州周立功单片机发展有限公司 第 26 章 使用 ROM

ROM 中有一组用来重启引导加载程序的 API，以便能开始更新固件。因为每一次都选
择特别的接口来用于更新处理，并绕过正常引导加载程序的接口选择步骤（包括 UART 接
口的自动波特率），所以能提供多个调用函数。

有关 ROM中的固件更新 API，详情请参考 Stellaris ROM的用户指南。

26.4.2 函数文件

26.4.2.1 UpdateI2C

通过 I2C0接口启动更新。

函数原型：

void

UpdateI2C(void)

描述：

调用此函数就可以通过 I2C0接口开始更新固件。此函数假设 I2C0接口已配置，且当前
处于运行状态。I2C 从机用来进行数据传输，而 I2C0 主机用来监视总线忙碌条件（因此，
二者都必须使能）。

返回：

从不返回。

26.4.2.2 UpdateSSI

通过 SSI0接口启动更新。

函数原型：

void

UpdateSSI(void)

描述：

调用此函数就可以通过 SSI0接口开始更新固件。此函数假设 SSI0接口已配置，且当前
处于运行状态。

返回：

从不返回。

26.4.2.3 UpdateUART

通过 UART0接口启动更新。

函数原型：

void

UpdateUART(void)

描述：

调用此函数就可以通过 UART0 接口开始更新固件。此函数假设 UART0 接口已配置，
且当前处于运行状态。

返回：

从不返回。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

279

 广州周立功单片机发展有限公司 第27章 实用函数

第27章 实用函数

27.1 简介

实用函数是一个零散函数的集合，集合中的函数并不是针对某一种特定的 Stellaris外设
或板。这些函数提供了一些机制，用来与调试器进行通信，并为一个 UARTs提供简单的串
行终端。这当然也有用于 pritf类的格式化输出（printf style formatted output）的轻量级实现
函数（lightweight implementations）。

27.2 API函数

函数

 int CmdLineProcess (char *pcCmdLine)；
 int DiagClose (int iHandle)；
 char * DiagCommandString (char *pcBuf, unsigned long ulLen)；
 void DiagExit (int iRet)；
 long DiagFlen (int iHandle)；
 int DiagOpen (const char *pcName, int iMode)；
 int DiagOpenStdio (void)；
 void DiagPrintf (int iHandle, const char *pcString,...)；
 int DiagRead (int iHandle, char *pcBuf, unsigned long ulLen, int iMode)；
 int DiagWrite (int iHandle, const char *pcBuf, unsigned long ulLen, int iMode)；
 unsigned char * FlashPBGet (void)；
 void FlashPBInit (unsigned long ulStart, unsigned long ulEnd, unsigned long ulSize)；
 void FlashPBSave (unsigned char *pucBuffer)；
 void lwIPEthernetIntHandler (void)；
 void lwIPInit (const unsigned char *pucMAC, unsigned long ulIPAddr, unsigned long

ulNetMask, unsigned long ulGWAddr, unsigned long ulIPMode)；
 unsigned long lwIPLocalGWAddrGet (void)；
 unsigned long lwIPLocalIPAddrGet (void)；
 void lwIPLocalMACGet (unsigned char *pucMAC)；
 unsigned long lwIPLocalNetMaskGet (void)；
 void lwIPNetworkConfigChange (unsigned long ulIPAddr, unsigned long ulNetMask,

unsigned long ulGWAddr, unsigned long ulIPMode)；
 void lwIPTimer (unsigned long ulTimeMS)；
 void UARTFlushRx (void)；
 void UARTFlushTx (tBoolean bDiscard)；
 int UARTgets (char *pcBuf, unsigned long ulLen)；
 int UARTPeek (unsigned char ucChar)；
 void UARTprintf (const char *pcString,...)；
 void UARTStdioInit (unsigned long ulPortNum)；
 void ulocaltime (unsigned long ulTime, tTime *psTime)；
 int usnprintf (char *pcBuf, unsigned long ulSize, const char *pcString,...)；
 int usprintf (char *pcBuf, const char *pcString,...)；
 char * ustrstr (const char *pcHaystack, const char *pcNeedle)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

280

 广州周立功单片机发展有限公司 第27章 实用函数

 unsigned long ustrtoul (const char *pcStr, const char **ppcStrRet, int iBase)；
 int uvsnprintf (char *pcBuf, unsigned long ulSize, const char *pcString, va_list

vaArgP)。

27.2.1 详细描述

实用函数的第一组是用于与调试器相结合的诊断函数（“Diag”）（如果调试器支持这个
特性）。Diag函数允许软件编程打开在主机系统的文件系统上的句柄（handle），允许对这个
文件进行读或写操作，或与控制台进行通信。这个特性有时被看作为“半主机”（semihosting）。
并不是所有的调试器都支持这些全部特性。在连接到应用中的源文件提供调试器特定的支

持。调试器支持的源文件可以在“utils”目录下找到。

Diag函数分别分执行以下功能：DiagOpen()用来打开主机系统的文件。DiagOpenStdio()
用来打开控制台的句柄（handle），具有代表性的作用就是向用户显示信息。一旦打开句柄，
可以用 DiagClose()来关闭该句柄。函数 DiagRead()和 DiagWrite()用来对主机进行读和写操
作，而 DiagPrintf()可以提供 printf 类格式化输出。DiagFlen()用来找出一个文件的大小，
DiagCommandString()用来获取调试器命令行参数，DiagExit()用来退出程序并返回到调试器
的控制。

实用函数的第二组是用来提供一个简单的基于 UART的控制台。UARTStdioInit()用来初
始化一个指定的 UART，使其作为串行端口来使用。然后函数 UARTpritf()就能把格式化的
输出发送到串行端口，这样 UARTgets()就可以从串行控制台获取一个行输入。在默认状态
下，uartstdio模块在块模式下操作。为了在发送和接收缓冲区中使用非块操作和在中断控制
下管理数据传输，需要定义一个编译时间开关（build-time switch）（UART_BUFFERED）

上面的函数与 CmdLineProcess()可以用来执行一个简单命令行处理器。函数
CmdLineProcess()将在缓冲区的所有命令行分类成“argc，argv”形式的命令行参数，使其与
命令表中的命令名称的第一个参数相匹配，然后再调用执行该命令的函数。

第三组函数用来给某些标准程序库（字符）串格式函数提供简单的形式。如果简化的函

数符合格式化输出应用的需求，那么这些简化的函数将会替代相等的标准程序库函数，从而

可以节省完整的代码尺寸。

程序库格式函数是 usprintf()，它是 sprintf()的简化取代函数。同样地，usnprintf()和
uvsnprintf()是标准程序库中 snpprintf()和 vsnprintf()的简化取代函数。这些简化函数具有比等
价（相等）的程序库函数更轻的重量，因为他们能提供更简化的选项和减少了转换的选项，

并消除了浮点型支持功能。如果用户需要用到这些特性，那么仍可以使用标准程序库。

第四组函数提供一个简单的、容错的、持久的存储机制来存放应用的参数信息。

FlashPBInit()函数用来初始化一个参数块。参数块的主要条件就是被用来存放参数块的
Flash 区域必须至少包含二个 Flash 擦除块，以确保容错、和参数块的尺寸必须是一个擦除
块尺寸的整除因子（integral divisor）。FlashPBGet()和 FlashPBSave()用来把参数块数据读入
或写入参数区域。参数块的内容的唯一约束就是块的前二个字节被保留起来，被保留的二个

字节分别作为一个序列编号和校验和（checksum）被读/写函数使用。

第五组函数为 IwIP版本 1.3.0 TCP/IP堆栈提供一个简单的抽象层。

IwIPInit()函数在基于 Iwipopts.h所定义的的选项基础上对 IwIP TCP/IP堆栈进行初始化。
IwIPEthernetlntHandler()是与 IwIP TCP/IP堆栈一起使用的中断处理程序函数。这个处理程序
将会处理发送和接收包。即使没有 RTOS正在被使用，中断处理程序也将会服务于 IwIP 定
时器。周期性地调用 IwIPTimer()函数来支持 TCP、ARP、DHCP和 IwIP TCP/IP堆栈所使用
的其他定时器。如果没有 RTOS 正在被使用，这个定时器函数将会简单地触发一个以太网

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

281

 广州周立功单片机发展有限公司 第27章 实用函数

中断，允许中断处理程序服务定时器。

有关它的源文件和头文件的名称，请参考各个函数文件。

27.2.2 函数文件

27.2.2.1CmdLineProcess
把一个命令行串处理成参数并执行该命令。

函数原型：

int

CmdLineProcess(char *pcCmdLine)

参数：

pcCmdLine 指向一个包含一个命令行的字符串，该命令行由应用通过某些方法来来获
得。
描述：

这个函数将会执行被提供的命令行字符串，并把它分类成单独的参数变量。第一个参数

变量被看作为一个命令并可以在命令表中搜索这个命令。如果找到这个命令，那么就调用该

命令函数，并且所有的命令行参数被分类成普通 argc,argv形式的参数。

命令表被包含在一个名为 g_sCmdTable的数组中，必须在应用中执行这个数组。

这个函数包含在 utils/cmdline.c中，utils/cmdline.h包含应用使用的 API定义。

返回：

如果没有找到命令，则返回 CMDLINE_BAD_CMD，如果存在过多的可解析参数，则
返回 CMDLINE_TOO_MANY_ARGS。否则函数返回被命令函数所返回的代码。

27.2.2.2 DiagClose
关闭一个主机文件系统文件。

函数原型：

int
DiagClose(int iHandle)

参数：

iHandle是要关闭的文件的句柄。
描述：

这个函数关闭前面用 DiagOpen()打开的一个文件；它类似于 C库的 fclose()函数。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。
返回：

操作成功时返回零，失败时返回非零。

27.2.2.3 DiagCommandString
获取调试器的命令行参数。

函数原型：

char*

DiagCommandString(char *pcBuf,

unsigned long ulLen)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

282

 广州周立功单片机发展有限公司 第27章 实用函数

参数：

pcBuf是指向装满命令行参数的缓冲区的指针。

ulLen是缓冲区的长度。

描述：

如果调试器能够提供命令行参数，这个函数就获取调试器的命令行参数。返回原始的命

令行字符串；由应用负责将它们解析到 argc/argv对中（如果需要）。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

操作成功时返回一个指向返回的命令行（通常与提供的缓冲区中的命令行相同）的指针；

如果没有可用的命令行，则返回 NULL。

27.2.2.4 DiagExit
终止应用。

函数原型：

void

DiagExit(int iRet)

参数：

iRet是应用的返回值。

描述：

这个函数终止应用；它类似于 C库的 exit()函数。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

不返回。

27.2.2.5 DiagFlen
获取一个主机文件系统文件的长度。

函数原型：

long

DiagFlen(int iHandle)

参数：

iHandle是查询的文件的句柄。

描述：

这个函数确定前面用 DiagOpen()打开的一个文件的长度；它的操作类似于先用 fseek()
查找文件的末尾，然后在执行一个 ftell()函数，所不同的是，执行这个函数时文件指针不会
移动。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

283

 广州周立功单片机发展有限公司 第27章 实用函数

返回文件中的字节数。

27.2.2.6 DiagOpen
打开一个主机文件系统文件。

函数原型：

int

DiagOpen(const char *pcName,

int iMode)

参数：

pcName是要打开的文件的名称。

iMode是用来打开文件的模式。

描述：

这个函数打开主机文件系统上的文件；它类似于 C库中的 fopen()函数。

iMode 参数必须是下列值中至少一个的逻辑或（类似于 C 库中 fopen()函数的 mode 参
数）：

 OPEN_R：打开文件进行读操作；
 OPEN_W：打开文件进行写操作；
 OPEN_A：在文件末尾追加数据；
 OPEN_B：访问二进制模式的文件，这就意味着没有做行结束转换；
 OPEN_PLUS：打开文件进行读操作和写操作。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

操作成功时返回一个正值；失败时返回-1。

27.2.2.7 DiagOpenStdio
打开 stdio函数（stdin和 stdout）的句柄。

函数原型：

int

DiagOpenStdio(void)

描述：

这个函数打开一个句柄，以便通过调试器与用户相互作用（类似于 stdin和 stdout）。这
个句柄应当传递给 DiagRead()来获取用户的输入，传递给 DiagWrite()来向用户显示信息（例
如，通过 DiagPrintf()）。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

操作成功时返回一个正值；失败时返回-1。

27.2.2.8 DiagPrintf
一个简单的诊断 printf函数，支持%c、%d、%p、%s、%u、%x和%X。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

284

 广州周立功单片机发展有限公司 第27章 实用函数

void

DiagPrintf(int iHandle,

const char *pcString,

...)

参数：

iHandle是写入字符串的数据流的句柄。

pcstring是格式串。

...是可选的参数，它们的值取决于格式串的内容。

描述：

这个函数非常类似于 C 库的 fprintf()函数。它的所有输出都将用提供的句柄发送给
DiagWrite()。只支持下面的格式字符：

 ％c：显示一个字符；
 ％d：显示一个十进制值；
 ％s：显示一个字符串；
 ％u：显示一个无符号十进制值；
 ％x：用小写字母显示一个十六进制值；
 ％X：用小写字母显示一个十六进制值（而不是以往所使用的大写字母）；
 ％p：显示一个十六进制值的指针；
 ％％：显示一个％字符。

对于％s、％d、％u、％p、％x和％X，在％和格式字符之间可以有一个可选择的数值，
这个数值指定了显示的值的最少字符数；如果％的后面是 0，则附加的字符应当填入零（而
不是空格）。例如，“％8d”将使用 8 个字符来显示十进制值，添加空格来达到所要求的 8
个字符数；“％08d”也将使用 8个字符来显示十进制值，但是为了达到所要求的字符数添加
的是零、而不是空格。

pcString后面的参数类型必须满足格式串的要求。例如，如果在需要一个串的地方传递
的是一个整型，则很可能会出现某种类型的错误。

这个函数包含在调试器特定的 utils/diagprintf.c中，utils/diagprintf.h包含应用使用的 API
定义。

返回：

无。

27.2.2.9 DiagRead
从一个主机文件系统文件读取数据。

函数类型：

int

DiagRead(int iHandle,

char *pcBuf,

unsigned long ulLen,

int iMode)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

285

 广州周立功单片机发展有限公司 第27章 实用函数

iHandle是读取的文件的句柄。

pcBuf是包含读取数据的缓冲区的指针。

ulLen是从文件中读取的字节数。

iMode是用来打开文件的模式。

描述：

这个函数从前面用 DiagOpen()打开的文件中读取数据；这个函数类似于 C库中的 fread()
函数。

iMode 参数可以用在某些调试器接口中来调整数据从文件中读取的方式。如果传递给
DiagOpen()的同一个值并未传递给 DiagRead()，那么可能会出现未预料到的结果。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

操作成功时返回零；返回一个正数指示未读取的字节数；返回一个MSB置位的数指示
未读取的字节数，并指示碰到了 EOF；返回-1来指示出错。

27.2.2.10 DiagWrite
向一个主机文件系统文件写入数据。

函数原型：

int

DiagWrite(int iHandle,

const char *pcBuf,

unsigned long ulLen,

int iMode)

参数：

iHandle是写入的文件的句柄。

pcBuf是指向写入数据的指针。

ulLen是写入文件的字节数。

iMode是用来打开文件的模式。

描述：

这个函数向前面用 DiagOpen()打开的文件写入数据；这个函数类似于 C库中的 fwrite()
函数。

iMode 参数可以用在某些调试器接口中来调整数据写入文件的方式。如果传递给
DiagOpen()的同一个值并未传递给 DiagWrite()，那么可能会出现未预料到的结果。

这个函数包含在调试器特定的 utils/<debugger>.?中，utils/diag.h包含应用使用的 API定
义。

返回：

操作成功时返回零；返回一个正数指示未写入的字节数（这是一个分类的错误）；返回

一个负数来指示出错。

27.2.2.11 FlashPBGet

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

286

 广州周立功单片机发展有限公司 第27章 实用函数

获取最近的（most recent）参数块的地址。

函数原型：

unsigned char *

FlashPBGet(void)

描述：

这个函数返回存放在 Flash中的最近参数块的地址。

这个函数包含在 utils/flash_pb.c中，utils/flash_pb.h包含应用使用的 API定义。

返回：

返回最近的参数块的地址，或如果 Flash中没有有效的参数块，则返回 NULL。

27.2.2.12 FlashPBInit
初始化 Flash参数块。

函数原型：

void

FlashPBInit(unsigned long ulStart,

unsigned long ulEnd,

unsigned long ulSize)

参数：

ulStart是用来存放 Flash参数块的 Flash内存的地址；它必须是 Flash中的一个擦除块的
起始地址。

ulEnd是用来存放 Flash参数块的 Flash内存的末端地址；它必须是 Flash中的一个擦除
块的起始地址（第一块并不是被使用的 Flash 内存的一部分）；或这个地址是在
使用 Flash的最后一个块时，Flash数组后的第一个字的地址。

ulSize是存放在 Flash中的参数块的大小；它的值必须是 2的幂次方，同时也必须少于
或等于 Flash擦除块的大小（通常为 1024）。

描述：

这个函数初始化一个容错、持久存储机制，供应用的参数块使用。Flash 的最后几个擦
除块（由 ulStart和 ulEnd指定）用来存放数据；为了达到容错的目的，需要用到多于一个的
擦除块。

参数块是一个包含用于应用的持久参数的字节数组。参数块唯一的特别要求就是第一个

字节是一个序列编号（请看 FlashBSave 中的解释）和第二个字节是用来验证数据的正确性
的校验和（checksum）（校验和字节就是参数块中全部字节的和为 0的字节）。

用于存放参数块的部分 Flash被分成 N个大小相等的区域，这里的每个区域的大小就是
参数块的大小（ulSize）。扫描每个区域来寻找最新有效的参数块。具有有效的校验和以及最
高序列编号的区域被看作是当前参数块。

为了使这个函数有效和有效率，必须要符合二个条件。第一个条件：必须指定 ulStart
和 ulEnd参数，至少要有两个 Flash擦除块是专门用于存放参数块。如果没有，那么不能保
证可以得到容错，因为单个擦除块将会留下一个 Flash中含有无效参数块的窗口。第二个条
件：参数块的大小（ulSize）必须是一个 Flash擦除块尺寸的整除因子（integral dividsor）。
否则，参数块将会结束两个 Flash擦除块的取值范围，使其变得更难以管理。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

287

 广州周立功单片机发展有限公司 第27章 实用函数

当最初编程微控制器时，用于参数块存储的 Flash块处于擦除状态。

必须先调用这个函数，然后才可以调用其他 Flash参数块函数。

这个函数包含在 utils/flash_pb.c中，utils/flash_pb.h包含应用使用的 API定义。

返回：

无。

27.2.2.13 FlashPBSave
写一个新的参数块到 Flash中。

函数原型：

void

FlashPBSave(unsigned char *pucBuffer)

参数：

pucBuffer是要被写入到 Flash的参数块的地址。

描述：

这个函数将写一个参数块到 Flash中。保存这个新的参数块包括以下三个步骤：

 设置序列编号，该编号要比 Flash中的最新的参数块的序列编号要大 1；
 计算参数块的校验和；
 紧跟着 Flash中的最新的参数后，立即写参数块入存储块。如果存储块位于一个擦
除块的起始区域，那么首先擦除这个擦除块。

这样处理后，总会得到一个在 Flash中有效的参数块。如果在写一个参数块的过程中断
电，那么校验和将不匹配，并且部分被写入的参数块将会被忽略。就是这样子的过程才会出

现这样子的容错。

这样编程的另一个好处就是它可以在 Flash 中提供磨损平衡（wear leveling）功能。由
于多个参数块适合每个 Flash 擦除块，并且多个擦除块能用于参数块存储，因此在对 Flash
进行重写前要先保存几个参数块。

这个函数包含在 utils/flash_pb.c中，utils/flash_ph.h包含应用使用的 API定义。

返回：

无。

27.2.2.14 lwIPEthernetIntHandler

处理 IwIP TCP/IP协议栈的以太网中断。

函数原型：

void

lwIPEthernetIntHandler(void)

描述：

这个函数处理 lwIP TCP/IP堆栈的以太网中断。在最低电平时，所有接收包被放置到一
个包队列（packet queue）中，以便在一个较高的电平时能对其进行处理。同样，先对发送
包队列进行检验，然后按照需求通过以太网 MAC 把包发送出去。如果系统并没有配置有
RTOS，那么在中断电平时要执行一个额外的处理。由 lwIP TCP/IP代码来处理包队列，并使
用 lwIP周期定时器服务（当有需要时）。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

288

 广州周立功单片机发展有限公司 第27章 实用函数

无。

27.2.2.15 lwIPInit

初始化 lwIP TCP/IP堆栈。

函数原型：

void

lwIPInit(const unsigned char *pucMAC,

unsigned long ulIPAddr,

unsigned long ulNetMask,

unsigned long ulGWAddr,

unsigned long ulIPMode)

参数：

pucMAC是指针，指向一个用在接口上的含有MAC地址的六字节数组。

ulIPAddr是要用到的 IP地址（静态）。

ulNetMask是要用到的网络掩码（network mask）（静态）。

ulGWAddr是要用到的网关地址（静态）。

ulIPMode是 IP地址模式。模式 0将会强制使用静态 IP地址，模式 1将会强制把具有备
用的 DHCP服务器用于连接本地网络（Link Local）（自动 IP），而模式 2只
会强制使用本地连接。

描述：

这个函数按配置的要求来初始化 Stellaris以太网MAC、包括 DHCP和/或自动 IP的 lwIP
TCP/IP协议栈。

返回：

无。

27.2.2.16 lwIPLocalGWAddrGet

返回该接口的网关地址。

函数原型：

unsigned long

lwIPLocalGWAddrGet(void)

描述：

这个函数将读取和返回 Stellaris以太网接口的当前所分配的网关地址。

返回：

返回该接口分配的网关地址。

27.2.2.17 lwIPLocalIPAddrGet

返回该接口的 IP地址。

函数原型：

unsigned long

lwIPLocalIPAddrGet(void)

描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

289

 广州周立功单片机发展有限公司 第27章 实用函数

这个函数将读取和返回 Stellaris以太网接口的当前分配的 IP地址。

返回：

返回该接口分配的 IP地址。

27.2.2.18 lwIPLocalMACGet

返回该接口的本地MAC/HW地址。

函数原型：

void

lwIPLocalMACGet(unsigned char *pucMAC)

参数：

pucMAC是指针，指向一个用来存放MAC地址的字节数组。

描述：

该函数将读取当前分配的MAC地址并将其保存到 pucMAC的数组里。

返回：

无。

27.2.2.19 lwIPLocalNetMaskGet
返回该接口的网络掩码。

函数原型：

unsigned long

lwIPLocalNetMaskGet(void)

描述：

这个函数将读取和返回 Stellaris以太网接口的当前分配网络掩码。

返回：

返回分配给该接口的网络掩码。

27.2.2.20 lwIPNetWorkConfigChange
改变 lwIP网络接口的配置。

函数原型：

void

lwIPNetworkConfigChange(unsigned long ulIPAddr,

unsigned long ulNetMask,

unsigned long ulGWAddr,

unsigned long ulIPMode)

参数：

ulIPAddr是要用到的新 IP地址（静态）。

ulNetMask是要用到的新网络掩码（静态）。

ulGWAddr是要用到的新网关地址（静态）。

ulIPMode是 IP地址模式。模式 0将会强制使用静态 IP地址，模式 1将会强制把具有备
用的 DHCP服务器用于本地连接（Link Local）（自动 IP），而模式 2只会强制

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

290

 广州周立功单片机发展有限公司 第27章 实用函数

用于本地连接。

描述：

这个函数将评估新配置数据。如有必要，接口将会被拉低，重新进行配置，然后在新的

配置中被拉回到高。

返回：

无。

27.2.2.21 lwIPTimer
处理 lwIP TCP/IP堆栈的周期性定时器事件。

函数原型：

void

lwIPTimer(unsigned long ulTimeMS)

参数：

ulTimeMS是这个周期性中断的增量时间。

描述：

这个函数将会通过 ulTimeMS 中的值来更新本地定时器。如果系统被配置成无须使用
RTOS时，则将会触发一个以太网中断，以允许 lwIP周期性定时器在以太网中断里被服务。

返回：

无。

27.2.2.22 UARTFlushRx
清洗接收缓冲区。

函数原型：

void

UARTFlushRx(void)

描述：

建立的模块只有在缓冲模式下使用UART_BUFFERED来进行操作时，这个函数才可用，
它也能用来舍弃从 UART接收到的但并未用 UARTgets()来读取的任何数据。

这个函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义。

返回：

无。

27.2.2.23 UARTFlushTx
清洗发送缓冲区。

函数原型：

void

UARTFlushTx(tBoolean bDiscard)

参数：

bDiscard表示任何保留在缓冲区的数据应该是被舍弃（True）还是被发送（False）。

描述：

建立的模块只有在缓冲模式下使用UART_BUFFERED来进行操作时，这个函数才可用，

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

291

 广州周立功单片机发展有限公司 第27章 实用函数

它也能用来清洗发送缓冲区，也可舍弃或发送通过调用 UARTprintf()而接收到的，但仍未被
发送出去的数据。返回时，发送缓冲区将是空的。

这个函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义。

返回：

无。

27.2.2.24 UARTgets
一个简单的、基于 UART的、获取字符串的函数，它带有一些行处理。

函数原型：

int

UARTgets(char *pcBuf,

unsigned long ulLen)

参数：

pcBuf指向从 UART进入的字符串的缓冲区。

ulLen是用来存放字符串的缓冲区的长度，包括尾缀 0（trailing 0）。

描述：

这个函数将会从 UART 输入接收一个字符串，并把字符存放到 pcBuf 指向的缓冲区。
字符将会继续被存放，直至接收到一个终止字符。终止字符是 CR、LF或 ESC。一个 CRLF
对被看作单个终止字符。终止字符并不存放在字符串中。将以一个 0来终止字符串，然后函
数将返回。

无论是在缓冲和还是无缓冲模式里，该函数被暂停（this function will block），直至接收
到一个终止字符。如果在缓冲模式中要求非阻塞式赋值（non-blocking）操作，那么在调用
UARTget()之前可以调用 UARTPeek()来确定一个终止字符是否已存在于接收缓冲区中。

由于字符串以 null终止，因此用户必须确保有足够大的缓冲区来存放额外的 null字符。

这个函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义。

返回：

返回存储的字符计数值，不包括括尾缀 0（trailing 0）。

27.2.2.25UARTPeek
在接收缓冲区里查找一个特殊的字符。

函数原型：

int

UARTPeek(unsigned char ucChar)

参数：

ucChar是要寻找的字符。

描述：

建立的模块只有在缓冲模式下使用UART_BUFFERED来进行操作时，这个函数才可用，
它也可以寻找接收缓冲区中的一个特殊字符，如果找到，就会报告这个字符的所在位置。它

的典型用法是确定用户输入的一个完整行（complete line）是否可用，在这种情况下，ucChar
应该被设置成 CR（‘\r’），CR（‘\r’）作为接收缓冲区的行尾标记(line end marker)使用。

这个函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

292

 广州周立功单片机发展有限公司 第27章 实用函数

返回：

返回-1 表示所请求的字符并不存在于接收缓冲区中。如果字符被找到，并且在这个值
代表着相对于接收缓冲区读指针的首个 ucChar的位置情况下，则返回一个非负的数。

27.2.2.26UARTprintf
一个简单的，基于 UART 的 printf 函数，它支持%c、%d、%p、%s、%u、%x 和 %X

字符。

函数原型：

void

UARTprintf(const char *pcString,

...)

参数：

pcString是格式字符串。

…是可选参数，取决于格式字符串的内容。

描述：

这个函数非常类似于 C库的 fprintf()函数。它的所有输出交将会被发送到 UART。只支
持以下的格式化字符：

 %c：显示一个字符；
 %d：显示一个十进制的数值；
 %s：显示一个（字符）串；
 %u：显示一个无符号十进制数值；
 %x：用小写字母来显示一个十六进制数值；
 %X：用小写字母来显示一个十六进制数值（而不是以往所使用的大写字母）；
 %p：显示一个作为十六进制数值的指针；
 %%：显示一个%字符。

对于％s、％d、％u、％p、％x和％X，在％和格式字符之间可以有一个可选择的数值，
这个数值指定了显示的值的最少字符数；如果％的后面是 0，则附加的字符应当填入零（而
不是空格）。例如，“％8d”将使用 8 个字符来显示十进制值，添加空格来达到所要求的 8
个字符数；“％08d”也将使用 8个字符来显示十进制值，但是为了达到所要求的字符数添加
的是零、而不是空格。

pcString后面的参数类型必须满足格式串的要求。例如，如果在需要一个串的地方传递
的是一个整型，则很可能会出现某种类型的错误。

这个函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义。

返回：

无。

27.2.2.27 UARTStdioInit
初始化 UART控制台。

函数原型：

void

UARTStdioInit(unsigned long ulPortNum)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

293

 广州周立功单片机发展有限公司 第27章 实用函数

ulPortNum是用于串行控制台（0-2）的 UART端口编号。

描述：

这个函数将初始化指定串行端口，使其用作一个串行控制台。串行参数被设置为

115200，8-N-1。

必须先调用这个函数，然后才能调用其他UART控制台函数中的任何一个：UARTprintf()
或 UARTgets()。为了使这个函数能正确工作，必须先调用 SysCtlClockSet()，再调用该函数。

假设调用者之前已把用于操作的相关 UART管脚配置成一个 UART，而不是一个 GPIO。

函数包含在 utils/uartstdio.c中，utils/uartstdio.h包含应用使用的 API定义。

返回：

无。

27.2.2.28 ulocaltime
把秒数转换成日历算法的日期和时间。

函数原型：

void

ulocaltime(unsigned long ulTime,

tTime *psTime)

参数：

ulTime是秒数值。

psTime是指针，指向以分开的日期和时间（borken down date and time）代替的时间结
构。

描述：

这个函数把在 1970年 1月 1日的午夜 GMT（传统 Unix时期）之后的秒数值转换成等
价的月、日、年、时、分和秒表示法。

返回：

无。

27.2.2.9 usnprintf
一个简单的 snprintf函数，它支持%c、%d、%p、%s、%u、%x和%X字符。

函数原型：

int

usnprintf(char *pcBuf,

unsigned long ulSize,

const char *pcString,

...)

参数：

pcBuf是用来存放转换串的缓冲区。

ulSize是缓冲区的大小。

pcString是格式串。

…是可选择参数，取决于格式串的内容。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

294

 广州周立功单片机发展有限公司 第27章 实用函数

描述：

这个函数非常类似于 C库的 sprintf()函数。只支持以下的格式化字符：

 %c：显示一个字符；
 %d：显示一个十进制的数值；
 %s：显示一个（字符）串；
 %u：显示一个无符号十进制数值；
 %x：用小写字母来显示一个十六进制数值；
 %X：用小写字母来显示一个十六进制数值（而不是以往所使用的大写字母）；
 %p：显示一个作为十六进制数值的指针；
 %%：显示一个%字符。

对于％d、％p、％s、％u、％x和％X，在％和格式字符之间可以有一个可选择的数值，
这个数值指定了显示的值的最少字符数；如果％的后面是 0，则附加的字符应当填入零（而
不是空格）。例如，“％8d”将使用 8 个字符来显示十进制值，添加空格来达到所要求的 8
个字符数；“％08d”也将使用 8个字符来显示十进制值，但是为了达到所要求的字符数添加
的是零、而不是空格。

pcString后面的参数类型必须满足格式串的要求。例如，如果在需要一个串的地方传递
的是一个整型，则很可能会出现某种类型的错误。

此函数把最大 ulSize-1的字符复制到缓冲区 pcBuf中。缓冲区保留了一个空间，用来存
放 null终止字符。

如果缓冲区大小没有限制的话，函数将会返回到被转换的字符数值。因此，函数有可能

会返回到一个比指定的缓冲区大小还要大的计数值。如果这种情况发生，意味着输出被调度

（truncated）。

返回：

返回要被存放的字符数值，但不包括 NULL终止字符，无论缓冲区的空间是否可用。

27.2.2.30 usprintf
一个简单 sprintf函数，支持%c、%d、%p、%s、%u、%x和%X字符。

函数原型：

int

usprintf(char *pcBuf,

const char *pcString,

...)

参数：

pcBuf是用来存放转换串的缓冲区。

pcString是格式串。

…是可选择参数，取决于格式串的内容。

描述：

这个函数非常类似于 C库的 sprintf()函数。只支持以下的格式化字符：

 %c：显示一个字符；
 %d：显示一个十进制的数值；
 %s：显示一个（字符）串；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

295

 广州周立功单片机发展有限公司 第27章 实用函数

 %u：显示一个无符号十进制数值；
 %x：用小写字母来显示一个十六进制数值；
 %X：用小写字母来显示一个十六进制数值（而不是以往所使用的大写字母）；
 %p：显示一个作为十六进制数值的指针；
 %%：显示一个%字符。

对于％d、％p、％s、％u、％x和％X，在％和格式字符之间可以有一个可选择的数值，
这个数值指定了显示的值的最少字符数；如果％的后面是 0，则附加的字符应当填入零（而
不是空格）。例如，“％8d”将使用 8 个字符来显示十进制值，添加空格来达到所要求的 8
个字符数；“％08d”也将使用 8个字符来显示十进制值，但是为了达到所要求的字符数添加
的是零、而不是空格。

pcString后面的参数类型必须满足格式串的要求。例如，如果在需要一个串的地方传递
的是一个整型，则很可能会出现某种类型的错误。

调用者必须确保缓冲区 pcBuf足够大来保存全部转换字符串，包括 null终止字符。

返回：

返回写入到输出缓冲区的字符计数值，不包括 NULL终止字符。

27.2.2.31 ustrstr
在一个（字符）串内寻找一个子串。

函数原型：

char *

ustrstr(const char *pcHaystack,

const char *pcNeedle)

参数：

pcHaystack是指针，指向将要寻找的（字符）串。

pcNeedle是指针，指向要在 pcHaystack内寻找的子串。

描述：

这个函数非常类似于 C 库的 strstr()函数。它扫描一个（字符）串来实现查找给定子串
的首个图例，并返回该子串的指针。如果没有寻找到这个子串，则返回一个 NULL指针。

返回：

返回 pcHaystack内的 pcNeedle的首个发生图例事件的指针，或在没有找到匹配的子串
时返回 NULL。

27.2.2.32 ustrtoul
把一个（字符）串转换成与其等价的数字。

函数原型：

unsigned long

ustrtoul(const char *pcStr,

const char **ppcStrRet,

int iBase)

参数：

pcStr是指针，指向含有整数的（字符）串。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

296

 广州周立功单片机发展有限公司 第27章 实用函数

ppcStrRet是指针，将被设置为指向检查过的字符串里的整数之后的首个字符。

iBase是用来转换的基（数）；它的值可以是从 0~自动选择基选择或可以在 2~16间明确
地指定这个基（数）。

描述：

这个函数非常类似于 C 库的 strtoul()函数。它扫描一个（字符）串来实现首个令牌包
（token）（即，非空白 non-whitespace），并把在字符串单元的值转换成一个整数值。

返回：

返回转换所得的结果值。

27.2.2.33 uvsnprintf
一个简单的 vsnprintf函数，支持%c、%d、%p、%s、%u、%x和%X字符。

函数原型：

int

uvsnprintf(char *pcBuf,

unsigned long ulSize,

const char *pcString,

va_list vaArgP)

参数：

pcBuf指向存放转换（字符）串的缓冲区。

ulSize是缓冲区的大小。

pcString是格式串。

vaArgP是可选择参数的列表，它取决于格式串的内容。

描述：

这个函数非常类似于 C库的 vsnprintf()函数。它只支持以下的格式化字符：

 %c：显示一个字符；
 %d：显示一个十进制的数值；
 %s：显示一个（字符）串；
 %u：显示一个无符号十进制数值；
 %x：用小写字母来显示一个十六进制数值；
 %X：用小写字母来显示一个十六进制数值（而不是以往所使用的大写字母）；
 %p：显示一个作为十六进制数值的指针；
 %%：显示一个%字符。

对于％d、％p、％s、％u、％x和％X，在％和格式字符之间可以有一个可选择的数值，
这个数值指定了显示的值的最少字符数；如果％的后面是 0，则附加的字符应当填入零（而
不是空格）。例如，“％8d”将使用 8 个字符来显示十进制值，添加空格来达到所要求的 8
个字符数；“％08d”也将使用 8个字符来显示十进制值，但是为了达到所要求的字符数添加
的是零、而不是空格。

pcString后面的参数类型必须满足格式串的要求。例如，如果在需要一个串的地方传递
的是一个整型，则很可能会出现某种类型的错误。

ulSize参数限制着将要被存储在 pcBuf指向的缓冲区的字符数值，防止缓冲区溢出的可
能性。缓冲区应该要具有足够大的尺寸来存放希望转换的输出串，包括 null终止字符。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

297

 广州周立功单片机发展有限公司 第27章 实用函数

如果没有限制缓冲区的大小，函数将会返回想要转换的字符数值。因此，有可能函数返

回的字符计数值比指定的缓冲区大小还要大。如果这种情况发生，意味着输出被调度。

返回：

返回要被存储的字符数值，不包括 NULL终止字符，无论缓冲区是否存在可用的空间。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

298

 广州周立功单片机发展有限公司 第28章 错误处理

第28章 错误处理

在驱动库中，用一种非传统的方法来处理无效参数和错误条件。通常，函数检查自己的

参数，确保它们有效（如果需要；某些参数可能是无条件有效的，例如，用作 32位定时器
装载值的一个 32位值）。如果一个无效参数被提供，则函数会返回一个错误代码。然后调用
者必须检查每次函数调用的返回代码来确保调用成功。

这会导致在每个函数中有大量的参数检查代码，在每个调用的地方有大量的返回代码检

查代码。对于一个自我完备（self-contained）的应用，一旦应用被调试，这些额外的代码就
变成了不需要的负担。有一种方法可以将这些代码删除，使得最终的代码规模更小，从而使

应用运行得更快。

在外设驱动库中，大多数函数不返回错误（FlashProgram()、FlashErase()、FlashProtectSet()
和 FlashProtectSave()例外）。通过调用 ASSERT宏（在 src/debug.h中提供）来执行参数检查。
这个宏有着一个断言宏的常规定义；它接受一个“必须”为 True 的表达式。可以通过使这
个宏变成空来从代码中删除参数检查。

在 src/debug.h中提供了 ASSERT宏的两个定义；一个是 ASSERT宏为空（通常情况下
都使用这个定义），一个是 ASSERT宏被用来判断表达式（当库在调试中编译时使用这个定
义）。调试版本将在表达式不为真时调用_error_函数，传递文件名称和 ASSERT宏调用的行
编号。_error_函数的函数原型在 src/debug.h 中，必须由应用来提供，因为是由应用来负责
处理错误条件的。

通过在_error_函数中设置一个断点，调试器就能在应用出现错误时立刻停止运行（用其
它的错误检查方法来处理可能会非常困难）。当调试器停止时，_error_函数的参数和堆栈的
回溯（backtrace）会精确地指出发现错误的函数，发现的问题和它被调用的地方。举例如下：

void

UARTParityModeSet(unsigned long ulBase, unsigned long ulParity)

{

//

//检查参数。

//

ASSERT((ulBase == UART0_BASE) || (ulBase == UART1_BASE) ||

(ulBase == UART2_BASE));

ASSERT((ulParity == UART_CONFIG_PAR_NONE) ||

(ulParity == UART_CONFIG_PAR_EVEN) ||

(ulParity == UART_CONFIG_PAR_ODD) ||

(ulParity == UART_CONFIG_PAR_ONE) ||

(ulParity == UART_CONFIG_PAR_ZERO));

每个参数分别被检查，因此，失败 ASSERT 的行编号会指示出无效的参数。调试器能
够显示参数的值（来自堆栈回溯（backtrace））和参数错误函数的调用者。这就能以较少的
代码代价快速地识别出问题。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

299

 广州周立功单片机发展有限公司 第29章 引导加载程序

第29章 引导加载程序

29.1 简介

引导加载程序是一小段代码，它能在 Flash的起始处编程，作为一个应用加载程序运行，
同时也作为一个运行在 Stellaris微控制器中的应用的更新机制。引导加载程序能被编译为使
用 UART0、SSI0、I2C0或以太网端口中的一个来更新微控制器中的代码。引导加载程序是
通过源代码修正、或在编译时简单地决策要包含的程序来定制的。由于提供了全部的源代码，

因此引导加载程序能够完全地实现定制化。

我们可以使用二个更新协议。在使用 UART0、SSI0和 I2C0时，使用定制协议（custom
protocol）来与下载实用程序（utility）进行通信，以传输固件镜象（image）并把它编程到
Flash中。当使用以太网时，则要使用标准引导程序协议（BOOTP）。

当配置成使用UART0或以太网时，LM Flash Programmer GUI可通过引导加载程序来下
载一个应用。LM Flash Programmer实用程序可在www.luminarymicro.com下载。

注：编译引导加载程序需要使用链接器脚本，编译运行在自身控制下的应用时则需要有指定 Flash的

起始地址，而不是 Flash的起始处的功能。评估版 Keil RealView微控制器开发板并不含有上述的二种功能；

因此引导加载程序不能发挥作用，除非使用完整版。另外，可以简单地忽略引导加载程序的 uVision工程文

件中特定的链接器脚本，这样，就可以成功地链接到引导加载程序，但是镜象（映象）并不能正确地操作。

29.1.1 头文件

以下是对含有引导加载程序的源代码的结构的概述。

bl_autobaud.c： 用来在 UART 端口执行自动波特率操作的代码。这是从
UART 余下来的代码中分离出来的，因此当不需要用到这
源代码时，链接器能将它移除。

bl_check.c： 用来检测是是否需要更新固件或用户是否正在请求更新固
件的代码。

bl_check.h： 更新检查代码的函数原型。

bl_commands.h： 命令和引导加载程序支持的返回报文的列表。

bl_config.c： 仿真信号源（dummy source）文件，用来把 bl_config.h C
头文件转换成能被包含在汇编代码中的头文件。Keil 工具
链需要用到这个文件，因为其不能通过 C预编译器来汇编
源代码。

bl_config.h.tmpl： 引导加载程序配置文件的模板。它包含全部可能性的配置
值。

bl_decrypt.c： 用来对所下载的固件镜像执行内置译码的一种代码。其实
在这个文件中并没有执行任何译码；它只是一个能被扩展

来执行要求的译码的存根（stub）。

bl_decrypt.h： 内置（in-place）译码程序的原型。

bl_enet.c： 通过以太网端口来执行固件更新的函数。

bl_i2c.c： 通过 I2C0端口来传输数据的函数。

bl_i2c.h： I2C0传输函数的原型。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

300

 广州周立功单片机发展有限公司 第29章 引导加载程序

bl_link.ld： 使用 codered、gcc或 sourcerygxx编译器对引导加载程序进
行编译时所使用的链接器脚本。

bl_link.sct： 使用 rvmdk编译器对引导加载程序进行编译时所使用的链
接器脚本。

bl_link.xcl： 使用 ewarm编译器对引导加载程序进行编译时所使用的链
接器脚本。

bl_main.c： 引导加载程序的主控制循环。

bl_packet.c： 用于处理命令和响应的包操作的函数。

bl_packet.h： 包处理函数的原型。

bl_ssi.c： 通过 SSI0端口来传输数据的函数。

bl_ssi.h： SSI0传输函数的原型。

bl_startup_codered.S： 使用 codered 编译器对引导加载程序进行编译时所使用的
启动代码。

bl_startup_ewarm.S： 使用 ewarm编译器对引导加载程序进行编译时所使用的启
动代码。

bl_startup_gcc.S： 使用 gcc编译器对引导加载程序进行编译时所使用的启动
代码。

bl_startup_rvmdk.S： 使用 rvmdk编译器对引导加载程序进行编译时所使用的启
动代码。

bl_startup_sourcerygxx.S： 使用 sourcerygxx 编译器对引导加载程序进行编译时所使
用的启动代码。

bl_uart.c： 通过 UART0端口传输数据的函数。

bl_uart.h： UART0传输函数的原型。

29.1.2 启动（Start-up）代码

启动代码包含了一组最小的代码，我们需要这些代码来配置向量表、初始化内存、把引

导加载程序从 Flash复制到 SRAM中，并从 SRAM中执行引导加载程序。因为一些工具链
特定的结构是用于表明代码、数据和 bss段在内存的位置，所以每一个支持的工具链都具有
执行启动代码的自身拥有的独立文件。启动代码包含在下列文件中：

 bl_startup_codered.S (Code Red Technologies tools)；
 bl_startup_ewarm.S (IAR Embedded Workbench)；
 bl_startup_gcc.S (GNU GCC)；
 bl_startup_rvmdk.S (Keil RV-MDK)；
 bl_startup_sourcerygxx.S (CodeSourcery Sourcery G++)。

伴随着每一个工具链的启动代码的是链接器脚本，它是用来把向量表、代码段、数据段

初始化软件和数据段放置到内存恰当的位置中。脚本位于以下文件中：

 bl_link.ld (Code Red Technologies tools, GNU GCC, and CodeSourcery Sourcery
G++)；

 bl_link.sct (Keil RV-MDK)；
 bl_link.xcl (IAR Embedded Workbench)。

引导加载程序的代码和它相应的链接器脚本使用了整个存在于 SRAM 中的内存布局

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

301

 广州周立功单片机发展有限公司 第29章 引导加载程序

（memory layout）。这就意味着代码和只读数据的装载地址并不同于执行体地址。内存映射
允许引导加载程序进行自我更新，因为它实际上只是从 SRAM 中运行。SRAM 的第一部分
被用作引导加载程序的复制空间，而余下的部分被保留起来用于引导加载程序的堆栈和读/
写数据。一旦引导加载程序调用应用，全部 SRAM都变成应用可用的 SRAM。

Cortex-M3微处理器的向量表包含四个所需的入口：初始的堆栈指针入口、复位处理程
序地址入口、NMI 处理程序地址入口和硬故障处理程序地址入口。复位后，处理器先装载
初如化的堆栈指针，再开始执行复位处理程序。初始化堆栈指针是必不可少的，因为 NMI
或硬故障能随时发生；同时我也们也需要用到这个堆栈来处理这些中断，因为处理器会自动

把 8个项目压入堆栈中。

Vectors数组包含引导加载程序的向量表，它根据自动波率的增加特性改变自身的大小。
自动波特率特性要求一个中断并细微地扩展向量表。由于引导加载程序是从 SRAM 中而不
是从 Flash中开始执行，因此工具链特有的结构被用来为链接器提供一个提示，这个数组位
于 0x2000.0000中。

IntDefaultHandler函数包含默认故障处理程序。这是一个简单的死循环，如果任何一个
未预期到的故障出现时，它能有效地停止应用。因此，应用的状态被保存，以便于调试器进

行检查。如有需要，定制的引导加载程序通过把适当的处理程序添加到 Vectors数组中就能
提供自身拥有的处理程序。

复位后，启动代码把引导加载程序从 Flash复制到 SRAM中，并跳转到 SRAM中的引
导加载程序的副本，然后查看是否要调用 CheckForceUpdate()来执行应用更新。如果不需要
更新，则调用应用。否则，就调用 ConfigureDevice()（对于 UART0、SSI0 和 I2C0）或
ConfigureEnet()（对于以太网）来初始化微控制器，最后调用在 Updater()（对于 UART0、SSI0
和 I2C0）或 UpdateBOOTP()中的引导加载程序的循环控制。

一个应用更新（在 CheckForceUpdate()）的检查由二个部分组成：检查应用区域的起始
处和随意检查一个 GPIO管脚的状态。如果第一个单元是一个有效的堆栈指针（即，它位于
SRAM中，并且它的值为 0x2xxx.xxxx），而第二个单元是一个有效的复位处理程序地址（即，
它位于 Flash中，并且它的值为 0x000x.xxxx，这里的值是个零头（odd）），则假设应用是
有效的。如果这些测试都失败的话，则假设应用是无效的，并强制执行更新。GPIO管脚的
检查能被 ENABLE_UPDATE_CHECK使能，在这种情况下，通过改变一个 GPIP管脚的状
态（例如，用一个按钮）就可强制执行更新。如果应用有效且 GPIO管脚并不请求进行更新，
则调用应用。否则就要通过进入引导加载程序的主循环来启动更新。

另外，应用也可调用引导加载程序以便对应用进行直接更新。在这种情形下，引导加载

程序假定正在用于更新的外设已被应用配置完毕，并且它必须被引导加载程序简单地使用以

执行更新。因此引导加载程序要先把自身复制到 SRAM中，接着跳转到引导加载程序 SRAM
中的副本，最后通过调用 U pdater()（对于 UART0、SSI0和 I2C0）或 UpdateBooTP()（对于
以太网）来启动更新。向量表里的 SVCall 入口包含了应用程序直接更新的入口点
（application-directed update entry point）位置。

29.1.3 以太网更新

当执行一个以太网更新时，ConfigureEnet()用来配置以太网控制器，使它准备好被用来
更新固件。然后，UpdateBOOTP()开始固件更新处理。

DHCP协议的前任是引导程序协议（BOOTP），它用来发现客户机的 IP地址、服务器
的 IP地址和要使用的固件镜像名称。BOOTP使用 UDP/IP包在客户机和服务器间进行通信；
引导加载程序作为客户机运行。首先客户机将会使用一个广播报文来发送一个BOOTP请求。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

302

 广州周立功单片机发展有限公司 第29章 引导加载程序

当服务器接收到此请求时，它将进行回复，从而可以通知客户机其自身的 IP 地址、服务器
的 IP地址和固件镜像名称。一旦客户机接收到这个回复，BOOTP协议结束。

那么接下来的就是简单文件传输协议（TFTP），它用来把固件镜像从服务器传输到客
户机中。TFTP 也使用 UDP/IP 包在客户机和服务器之间进行通信。在这个协议中，引导加
载程序作为客户机运行。当每一个数据块被接收到时，它都被编程到 Flash中。一旦全部的
数据块被接收和被编程完毕，器件复位，从而使它能启动运行新固件镜像。

uIP堆栈（http://www.sics.se/_adam/uip）用来实现 UDP/IP连接。由于不需要 TCP的支
持，因此可以将其禁能，从而能大大减少了堆栈的尺寸。

注：当使用以太网更新时，引导加载程序不能进行自我更新，因为 BOOTP中没有能够在固件镜像与

引导加载程序镜像间进行辨别的机制。因此，引导加载程序确实不能知道这个给定的镜像是一个新的引导

加载程序镜像还是一个新的固件镜像。它会假定全部提供的镜像都是固件镜像。

 RFC951（ http://tools.ietf.org/html/rfc951.html）定义引导程序协议（ bootstrap
protocol）；

 RFC1350（http://tools.ietf.org/html/rfc1350.html）定义简单文件传输协议（trivial file
transfer protocol）。

29.1.4 串口更新

当通过一个串行端口（UART0、SSI0 或 I2C0）来执行一个更新时，ConfigureDevice()
用来配置被选的串行端口，使它准备好被用来更新固件。然后 Updater()进入无休止的循环，
接受命令和在被请求进行更新固件时更新固件。命令将在命令这一部分中作详细的解释。所

有在这个主程序中进行的传输都使用包处理程序函数（SendPacket()、ReceivePacket()、
AckPacket()和 NakPacket()）。一旦更新完成，通过向到引导加载程序发布一个复位命令，
就可以复位引导加载程序。

当对应用进行更新的请求成功且 FLASH_CODE_PROTECTION已定义，那么引导加载
程序首先擦除整个应用区域，然后才接受新应用的二进制代码。这就防止 Flash中的部分擦
除区域在新的二进制代码被下载到微控制器之前暴露任何代码。引导加载程序本身会适当地

留下来，因此它并不会引导一个部分被擦除的程序。一旦成功擦除全部应用 Flash区域，引
导加载程序将会继续进行下载新的二进制代码。当 FLASH_CODE_PROTECTION未定义时，
引导加载程序只擦除刚好能容纳正在下载的新应用的空间。

在引导加载程序需要进行自我更新的事件中，引导加载程序必须要在 Flash中把自已给
替换掉。通过在地址 0x0000.0000上执行一个下载，那么就可以认为对引导加载程序进行更
新。引导加载程序会再次执行不同的操作，这取决于 FLASH_CODE_PROTECTION的设置。
当 FLASH_CODE_PROTECTION已定义且下载地址指示一个引导加载程序更新时，引导加
载程序通过在擦除和替换自身之前先擦除整个应用区域来保护已位于微控制器中的任何应

用代码。如果此处理在任何点被中断时，则原先的旧引导加载程序仍位于 Flash中且不会引
导部分应用，或应用代码将被擦除。当 FLASH_CODE_PROTECTION未定义时，引导加载
程序仅擦除刚好能容纳下自身的代码空间，而留下完整的应用程序空间。

29.1.4.1 包处理

 引导加载程序使用定义明确的数据包，确保能与更新的程序进行可靠的通信。在器件
间进行通信时，包总是被应答或不被应答。包使用相同的格式来接收包和发送包。这包含成

功地或未成功地对接收到的数据包进行应答的方法。当在串行端口发出的真实信号不同时，

包格式的传送数据的方法仍保持独立。

为了把一个包发送到另一个器件中，引导加载程序使用了 SendPacket()函数。这个函数

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

303

 广州周立功单片机发展有限公司 第29章 引导加载程序

压缩了需要用来把一个有效的数据包发送到另一个器件的所有步骤，包括等待其他器件作出

应答信号或不作出应答信号。为了能成功发送一个包，必须执行下列步骤：

1.发送将被发送到器件的包大小。这个包大小总是等于数据+2。

2.为了帮助确保恰当地传输命令，发送数据缓冲区的校验和。校验和算法是在所提供的
CheckSum()函数中实现的，仅是简单的数据字节之和。

3.发送真实的数据字节。

4.等待器件对单个字节作出应答，器件能恰当地接收数据或在传输中检测到一个错误。

接收包的格式与发送包的格式相同。为了接收或等待另一个器件的包，引导加载程序使

用了 ReceivePacket()函数。这个函数并在意对其它设备数据包作出应答信号或非应答信号，
这就允许函数先检测包的内容，然后才发送回一个响应信号。为了能成功接收到一个包，必

须执行下列步骤：

1.等待非零数据从器件中返回。这一点是很重要的，因为器件可能在发送和接收包间发
送了零字节。第一个接收到的非零字节将会是正在接收到的包的大小。

2.读取下一个字节，这个字节将会是包的校验和。

3.读取器件中的数据字节。在数据接收状态期间，将会发送出（包大小-2）个字节大小
的数据。例如，如果包大小为 3，那么就只能接收到一个数据字节。

4.计算数据字节的校验，并确保它是否与在包中所接收到的校验和匹配。

5.向器件发送一个应答或无答应的信号，以表明接收包成功或不成功。

这些对接收包作出应答的必要步骤是在 AckPacket()函数中实施的。只要成功地接收到
一个包并且它由引导加载程序校验过，那么就可以发送出应答字节。

只要一个发送的包被测到含有一个错误时就可以发送出一个无应答字节，通常这个错误

是校验和错误或包的畸形数据造成的。这就允许了发送者可以重新发送上一次的数据包。

29.1.4.2 传输层

引导加载程序支持通过 I2C0、SSI0 和 UARTO 端口来进行的更新，而这些端口都可用
于 Stellaris微控制器中。SSI具有支持更高和更为灵活的数据速率的优势，但它也要求与微
控制器有更多的连接。虽然 UART 具有只能支持稍低和灵活性稍差的数据速率的劣势，但
是它要求用到更少的管脚，而且能很容易地与任何标准 UART连接一起执行。I2C接口也能
提供一个标准的接口，且只使用二条线，但却能在与 UART 和 SSI 接口不相伯仲的速率下
进行操作。

29.1.4.3 I2C传输

I2C 处理函数是 I2CSend()、I2CReceive()和 I2CFlush()函数。连接时需要使用到的 I2C
端口是如下的管脚：I2CSCL 和 I2CSDA。器件与引导加载程序进行通信时，器件必须作为
一个 I2C主机进行操行，并能提供 I2CSCL信号。I2CSDA处于开漏状态，它能被主机或 I2C
器件从机驱动。

29.1.4.4 SSI 传输

SSI处理函数是 SSISend()、SSIReceive()和 SSIFlush()。连接时需要使用到的 SSI端口是
如下的四个管脚：SSITx、SSIRx、SSIClk 和 SSIFss。器件与引导加载程序进行通信是为了
驱动 SSIRx、SSIClk 和 SSIFss管脚，而 Stellaris微控制器则驱动 SSITx 管脚。用于 SSI 通
信的格式是 SPH和 SPO都置为 1的Motorola格式（有关此格式的更多信息，请参考 Stellaris
系列的数据手册）。SSI接口具有一个硬件要求，它限制 SSI时钟的最大速率最多只能为微

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

304

 广州周立功单片机发展有限公司 第29章 引导加载程序

控制器在运行引导加载程序时的频率的 1/12。

29.1.4.5 UART传输

UART处理函数是 UARTSend()、UARTReceive()和 UARTFlush()。连接时需要使用到的
UART 端口是如下的二个管脚：U0Tx 和 U0Rx。器件与引导加载程序进行通信是为了驱动
在 Stellaris微控制器中的 U0Rx管脚，而 Stellaris微控制器则驱动 U0Tx管脚。

当波特率是灵活可变时，UART串行格式固定为 8个数据位，无奇偶，并有一个停止位。
用于通信的波特率可以是由引导加载程序自动检测到的波特率，如果自动波特率使能；它也

可以是一个固定的波特率，此波特率是器件与引导加载程序进行通信时所支持的波特率。对

波特率唯一要求就是它不能超过正在运行引导加载程序的微控制器的频率的 1/32。这就是对
在任何 Stellaris微控制器上的 UART的最大值波特率的硬件要求。

当使用一个固定的波特率时，必须指定连接到微控制器的晶体频率。否则，引导加载程

序将不能配置 UART，使 UART不能在所要求的波特率下进行操作。

引导加载程序提供了一种自动检测波特率的方法，此波特率是器件正要与引导加载程序

进行通信的波特率。这个自动波特率检测在 UARTAutoBaud()函数中实现。自动波特函数尝
试与更新应用同步，并能指示出它是否能成功地检测到波特率或它是否不能恰当地检测到波

特率。如果第一次调用失败，引导加载程序可以多次调用 UARTAutoBaud()，尝试再次与更
新应用同步。在所提供的引导加载程序示例中，当自动波特率特性使能时，引导加载程序将

会始终等待主机的一个有效的同步式样。

29.1.5 定制（Customization）

引导加载程序考虑了它的定制特性和用来更新微控制器的接口。这就允许引导加载程序

只包含了应用所需的特性。我们可以定制二种类型的特性。第一类是在编译时有条件地被包

含或排除的特性。第二类是更多地有关的和包含定制引导加载程序使用的真实代码的特性。

引导加载程序能被修改成具有任何功能。例如，主循环能够被整个替换掉，以使用不同

的命令集，而仍然可以运用来自引导加载程序的数据包和传输函数。当翻转 GPIO来检测一
个更新请求并不是最佳的解决方案时，我们可以修改检测一个强制更新的方法来迎合应用的

需要。如果引导加载程序的包格式并不符合应用的需要，那么可以通过替换 ReceivePacket()、
SendPacket()、AckPacket()和 NakPacket()来完全取代原先的包格式。

引导加载程序同样提供了增加一个新的传输接口的方法，而这新的接口超出了引导加载

程序所提供的 UART、SSI和 I2C接口。为了使包函数能使用这个新的传输函数，需要修改
SendData、ReceiveData和 FlushData这些定义，以便于使用这个新函数。例如：

#ifdef FOO_ENABLE_UPDATE

#define SendData FooSend

#define FlushData FooFlush

#define ReceiveData FooReceive

#endif

对于假设的 Foo外设，应该要使用这些函数。

这些定制性的特性的组合为我们提供了这样一种框架：允许引导加载程序定义它所需要

的任何协议，或它可以使用任何它所需要的端口来执行对微控制器的更新操作。

29.1.6 命令

下列命令由 UART0、SSI0和 I2C0端口的定制协议使用：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

305

 广州周立功单片机发展有限公司 第29章 引导加载程序

COMMAND_PING：此命令用来接收引导加载程序中的一个应答信号，表明通信已建
立。此命令是单字节。

命令的格式如下：

unsigned char ucCommand[1]；

ucCommand[0] = COMMAND_PING；

COMMAND_DOWNLOAD：此命令被发送到引导加载程序中以指示存放数据的位置和随后
COMMAND_SEND_DATA命令将发送的字节数。命令由二个32
位的数值组成，二者传输时都是最高位（MSB）优先。第一个
32位值就是启动编程数据的地址，而第二个则是将被发送的数
据的32位大小。此命令也可触发Flash中的完整应用区域或有可
能是整个Flash的擦除，这要取决于所使用的地址。这就导致命
令发送ACK/NAK要用到更久的时间以便响应命令。这个命令
应该被COMMAND_GET_STATUS跟随着，从而可以确保运行
引导加载程序的微控制器的编程地址和编程大小是有效的。
命令格式如下：

unsigned char ucCommand[9]；

ucCommand[0] = COMMAND_DOWNLOAD；

ucCommand[1] = Program Address [31:24]；

ucCommand[2] = Program Address [23:16]；

ucCommand[3] = Program Address [15:8]；

ucCommand[4] = Program Address [7:0]；

ucCommand[5] = Program Size [31:24]；

ucCommand[6] = Program Size [23:16]；

ucCommand[7] = Program Size [15:8]；

ucCommand[8] = Program Size [7:0]；

COMMAND_RUN：此命令被发送到引导加载程序以便把执行体控制传送到特定的地
址。命令被一个 32位值、传输时最高位优先的数值跟随着，即执
行体控制被传输时的地址跟随着。

命令的格式如下：

unsigned char ucCommand[5];

ucCommand[0] = COMMAND_RUN;

ucCommand[1] = Run Address [31:24];

ucCommand[2] = Run Address [23:16];

ucCommand[3] = Run Address [15:8];

ucCommand[4] = Run Address [7:0];

COMMAND_GET_STATUS：此命令返回最后发布的命令状态。通常这个命令应该在发
送每一个命令后被接收到，以确保前一个命令发送成功，

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

306

 广州周立功单片机发展有限公司 第29章 引导加载程序

或如果发送不成功时，以便能适当地用发送失败信号作出

响应。此命令需要包的一个数据字节并且引导加载程序应

通过发送一个包来进行响应，其中这个包的一个数据字节

含着当前状态代码。

命令格式如下：

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_GET_STATUS;

以下是可能状态值的定义，当 COMMAND_GET_STATUS
被发送到微控制器时，可能状态值能从引导加载程序中返

回。

COMMAND_RET_SUCCESS

COMMAND_RET_UNKNOWN_CMD

COMMAND_RET_INVALID_CMD

COMMAND_RET_INVALID_ADD

COMMAND_RET_FLASH_FAIL

COMMAND_SEND_DATA：此命令应只能跟随着 COMMAND_DOWNLOAD命令或另
一个 COMMAND_SEND_DATA命令，如果需要更多的数
据。连续发送数据命令将会使地址自动递增，并从上一个

位置继续进行编程。引导加载程序中的接收缓冲区大小（由

BUFFER_SIZE 参数配置）限制了传输的大小。一旦
COMMAND_DOWNLOAD 命令指示的字节数已被接收
完，命令就会终止编程。每一次调用此函数时，它应被

COMMAND_GET_STATUS命令跟随着，以确保成功地把
数据编程到 Flash中。如果引导加载程序发送一个 NAK到
此命令中，那么引导加载程序将不会递增当前地址，从而

允许重新传输上一次的数据。

命令格式如下：

unsigned char ucCommand[9];

ucCommand[0] = COMMAND_SEND_DATA

ucCommand[1] = Data[0];

ucCommand[2] = Data[1];

ucCommand[3] = Data[2];

ucCommand[4] = Data[3];

ucCommand[5] = Data[4];

ucCommand[6] = Data[5];

ucCommand[7] = Data[6];

ucCommand[8] = Data[7];

COMMAND_RESET：此命令告诉引导加载程序要复位。首先下载一个新镜像到微控制

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

307

 广州周立功单片机发展有限公司 第29章 引导加载程序

器中，才能使用此命令，从而使新应用或新引导加载程序从复位

启动。复位后正常引导序列发生，且镜像象从硬件复位后那样运

行。如果发生一个很严重的错误并且主机器件希望与引导加载程

序重新进行通信，那么也可用此命令复位引导加载程序。

引导加载程序先用一个 ACK 信号对主机器件作出响应，然后才
真正执行对运行引导加载程序的微控制器的软件复位。这就通知

更新应用已成功接收命令，并且器件将复位。

命令格式如下：

unsigned char ucCommand[1];

ucCommand[0] = COMMAND_RESET;

29.1.7 配置

一系列定义被用来对引导加载程序的操作进行配置。这些定义位于 bl_config.h 头文件
中，在这个头文件中有一个提供引导加载程序的模板（bl_config.h.tmpl）。

配置选项如下：

CRYSTAL_FREQ 这定义了微控制器在运行引导加载程序时所使用的
晶体频率。如果在产品出厂时此值是未知的，那么可

以使用 UART_AUTOBAUD 特性恰当地配置 UART
的频率。

 如果使用 UART来进行更新且不使用自动波
特率的特性时，以及在使用以太网来进行更
新时，必须定义此值。

BOOST_LDO_VOLTAGE 使能此配置将会使 LDO电压增加到 2.75V。为了得到可
以使能具有 PLL勘误表的器件中的 PLL（即，使用以太
网端口）的引导加载程序配置，应该使能此配置。可以

对 A2版本的 Fury-class器件应用这个配置。

APP_START_ADDRESS 应用的起始地址。它必须是 1024 字节的整数倍（使
它能对齐页的边界）。在这个位置中可预期到一个向

量表，并且向量表感觉的有效性（堆栈位于 SRAM
的中，复位向量位于 Flash中）被用作指示应用镜像
的有效性。

 必须定义此值。引导加载程序的 Flash镜象一

定不能大于此值。

FLASH_RSVD_SPACE： Flash未尾保留的空间数量。它必须是 1024个字节的
整数倍（使它能对齐页的边界）。当进行应用更新时，

这个保留起来的空间并没有被擦除，从而提供了用来

存放参数的非易失性存储空间。

STACK_SIZE： 专为引导加载程序而保留的堆栈空间的字数量。

 此值必须定义。

BUFFER_SIZE： 用于接收包的数据缓冲区中的字数量。这个值必须至

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

308

 广州周立功单片机发展有限公司 第29章 引导加载程序

少为 3。如果在 UART中使用了自动波特率，则这个
值必须至少为 20。最大的可用值是 65（更大的值将
会导致缓冲区中有剩余的空间）。当通过以太网端口

进行更新时，不使用这个值。

 此值必须定义。

ENABLE_BL_UPDATE： 使能引导加载程序的更新。更新引导加载程序是一
项不安全的操作，因为它并不是完全故障容错（器

件中途断电可能会导致引导加载程序不再出现在

Flash 中）。不能通过以太网端口来更新引导加载程
序。

FLASH_CODE_PROTECTION 此定义将会使引导加载程序在更新引导加载程序过
程中擦除整个 Flash或在更新应用时擦除整个应用区
域。这个定义在更新固件前就擦除 Flash中任何未被
使用的扇区。

ENABLE_DECRYPTION 使能译码调用，要先对下载的数据进行译码，然后才
能把它写入 Flash。在参考引导加载程序源中的译码
程序是空的，只是简单地提供了一个占位符以添加实

际的译码算法。

ENABLE_UPDATE_CHECK 使能基于管脚的强制性的更新检查。当使能此配置
时，如果管脚在一个特殊的极性状态中被读取，引导

加载程序将会进入更新模式而非调用应用，强制进行

更新操作。在任一情况下，应用仍能够返回对引导加

载程序的控制，以便启动更新。

FORCED_UPDATE_PERIPH 为了检查一个强制性的更新，要使能 GPIO 模块。
这个值将会是SYSCTL_RCGC2_GPIOx中的一个值，
这里的“x”用端口名称来替换（如 B）。“x”的值应
该要与 FORCED_UPDATE_PORT的“x”值相配。

 如果 ENABLE_UPDATE_CHECK已定义，那

么必须要定义这个值。

FORCED_UPDATE_PORT 对强制更新进行检查的 GPIO 端口。这个值将会是
GPIO_PORTx_BASE中的一个值，这里的这里的“x”
用端口名称来替换（如 B）。“x”的值应该要与
FORCED_UPDATE_PERIPH的“x”值相配。

 如果 ENABLE_UPDATE_CHECK已定义，那
么必须要定义这个值。

FORCED_UPDATE_PIN 对强制更新进行检查的管脚。这个值在 0到 7之间。

 如果 ENABLE_UPDATE_CHECK已定义，那
么必须要定义这个值。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

309

 广州周立功单片机发展有限公司 第29章 引导加载程序

FORCED_UPDATE_POLARITY GPIO管脚的极性导致执行强制性更新。如果此管脚
应该为低则这个值为 0，如果此管脚应该为高则这个
值为 1。

 如果 ENABLE_UPDATE_CHECK已定义，那
么必须要定义这个值

UART_ENABLE_UPDATE 选择 UART作为与引导加载程序进行通信的端口。

UART_AUTOBAUD 使能自动的波特率检测。如果晶体频率是未知的，
或要求在不同的波特率下进行操作时，则可以使用

此配置。

UART_FIXED_BAUDRATE 选择使用于 UART的波特率。

SSI_ENABLE_UPDATE 选择SSI端口作为与引导加载程序进行通信的端口。

I2C_ENABLE_UPDATE 选择 I2C 端口作为与引导加载程序进行通信的端
口。

I2C_SLAVE_ADDR 指定引导加载程序的 I2C地址。

 如果 I2C_UPDATE_UPDATE已定义，那么必
须要定义这个值。

ENET_ENABLE_UPDATE 通过以太网端口选择一个更新。

ENET_ENABLE_LEDS 使能以太网状态 LED输出的用法，以指示通信量和
连接状态。

ENET_MAC_ADDR? 指定以太网接口的硬编码 MAC 地址。六个单独的
值（ENET_MAC_ADDR0~ENET_MAC_ADDR6）
提 供 六 个 字 节 的 MAC 地 址 ， 其 中

ENET_MAC_ADDR0~ENET_MAC_ADDR2 提供
组 织 独 特 的 标 识 符 （ OUI ） ，

ENET_MAC_ADDR3~ENET_MAC_ADDR5 提供
了扩展标识符。如果并没有提供这些值，那么将从

用户寄存器中提取MAC地址。

ENET_BOOTP_SERVER 指定 BOOTP服务器的名称，我们从这个服务器上
请求信息。此说明符（specifier）的用法允许一个
板特定（board-specific）的 BOOTP服务器在网络
中能与作为网络基础设施的一部份的 DHCP 服务
器共存（co-exist）。Luminary Micro 所提供的
BOOTP服务器要求把这设为“stellaris”。

29.2 函数

函数

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

310

 广州周立功单片机发展有限公司 第29章 引导加载程序

 void AckPacket (void)；
 char BOOTPThread (void)；
 unsigned long CheckForceUpdate (void)；
 unsigned long CheckSum (const unsigned char ∗pucData, unsigned long ulSize)；
 void ConfigureDevice (void)；
 void ConfigureEnet (void)；
 void DecryptData (unsigned char ∗pucBuffer, unsigned long ulSize)；
 void GPIOIntHandler (void)；
 void I2CFlush (void)；
 void I2CReceive (unsigned char ∗pucData, unsigned long ulSize)；
 void I2CSend (const unsigned char ∗pucData, unsigned long ulSize)；
 void NakPacket (void)；
 int ReceivePacket (unsigned char ∗pucData, unsigned long ∗pulSize)；
 int SendPacket (unsigned char ∗pucData, unsigned long ulSize)；
 void SSIFlush (void)；
 void SSIReceive (unsigned char ∗pucData, unsigned long ulSize)；
 void SSISend (const unsigned char ∗pucData, unsigned long ulSize)；
 void SysTickIntHandler (void)；
 int UARTAutoBaud (unsigned long ∗pulRatio)；
 void UARTFlush (void)；
 void UARTReceive (unsigned char ∗pucData, unsigned long ulSize)；
 void UARTSend (const unsigned char ∗pucData, unsigned long ulSize)；
 void UpdateBOOTP (void)；
 void Updater (void)。

29.2.1 详细描述

引导加载程序由下列的函数构成。为了使引导加载程序的大小保持最小，将不使用外设

驱动程序库中的任何一个 API。

29.2.2 函数文件

29.2.2.1 AckPacket
发送一个应答包。

函数原型：

void

AckPacket(void)

描述：

调用此函数来对微控制器已接收到的包作出应答。

此函数包含在 bl_packet.c中。

返回：

无。

29.2.2.2 BOOTPThread
处理 BOOTP操作。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

311

 广州周立功单片机发展有限公司 第29章 引导加载程序

函数原型：

char

BOOTPThread(void)

描述：

此函数包含用于处理 BOOTP操作的 proto-thread。它先与 BOOTP服务器进行通信，获
取到引导参数（IP地址、服务器地址和文件名称），然后再与在特定的服务器中的 TFTP服
务器进行通信以便读取固件镜像文件。

此函数包含在 bl_enet.c中。

返回：

无。

29.2.2.3 CheckForceUpdate
检查是否需要进行更新或是否正在请求进行更新。

函数原型：

unsigned long

CheckForceUpdate(void)

描述：

此函数检查是否正在请求进行更新或微控制器当前是否存在着无效的代码。这函数一般

用来告诉是否要输入更新代码。

此函数包含在 bl_check.c中。

返回：

如果需要进行更新或正在请求进行更新代码，返回一个非零的值，否则返回一个 0。

29.2.2.4 CheckSum
计算一个 8位的校验和。

函数原型：

unsigned long

CheckSum(const unsigned char *pucData,

unsigned long ulSize)

参数：

pcuData是指针，指向 ulSize大小的 8位数据的数组。

ulSizeulSize是将被执行校验和算法的数组大小。

描述：

此函数在数据通过时简单地计算一个 8位的校验和。

此函数包含在 bl_packet.c中。

返回：

返回计算得到的校验和。

29.2.2.5 ConfigureDevice
配置微控制器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

312

 广州周立功单片机发展有限公司 第29章 引导加载程序

函数原型：

void

ConfigureDevice(void)

描述：

此函数配置这个微控制器的外围设备和 GPIO，使微控制器准备好被引导加载程序使用。
已被选择用作更新端口的接口将被配置，并且如有需要时，将执行自动波率配置。

此函数包含在 bl_main.c中。

返回：

无。

29.2.2.6 ConfigureEnet
配置以太网控制器。

函数原型：

void

ConfigureEnet(void)

描述：

此函数配置以太网控制器，使它准备好被引导加载程序使用。

此函数包含在 bl_enet.c中。

返回：

无。

29.2.2.7 DecryptData
对所下载的数据执行一个适当的译码操作。

函数原型：

void

DecryptData(unsigned char *pucBuffer,

unsigned long ulSize)

参数:

pucBuffer是用来存放要译码的数据的缓冲区。

ulSize 是缓冲区的大小，它以字节来计算；这里的缓冲区是经由 pucBuffer 参数指向的
缓冲区。

描述：

此函数是一个存根，它能对正在被下载到器件中的数据进行适当的译码。

此函数包含在 bl_decrypt.c中。

返回：

无。

29.2.2.8 GPIOIntHandler
处理 UART Rx GPIO中断。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

313

 广州周立功单片机发展有限公司 第29章 引导加载程序

void

GPIOIntHandler(void)

描述：

当在 UART Rx管脚上检测到一个边沿时，则要调用此函数以保存这个边沿的时刻。迟
些要用到这些时刻来确定处理器时钟速率的 UART波特率的比率。

此函数包含在 bl_autobaud.c中。

返回：

无。

29.2.2.9 I2CFlush
等待直至I2C端口发送完全部数据。

函数原型：

void

I2CFlush(void)

描述：

此函数等侍直至所有写入 I2C端口的数据已被主机读取。

此函数包含在 bl_i2c.c中。

返回：

无。

29.2.2.10 I2CReceive
通过 I2C端口接收数据。

函数原型：

void

I2CReceive(unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是从I2C端口读进数据的缓冲区。

ulSize是 pucData缓冲区所提供的字节数，此缓冲区中的数据由 I2C端口写入。

描述：

此函数将 I2C端口的数据的 ulSize个字节读回到 pucData指向的缓冲区中。函数不会返
回，直至 ulSize个字节数已被接收到。这个函数将等待直到从机端口已被 I2C主机恰当地寻
址，然后才读取 I2C端口数据的第一个字节。

此函数包含在 bl_i2c.c中。

返回：

无。

29.2.2.11 I2CSend

通过 I2C端口发送数据。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

314

 广州周立功单片机发展有限公司 第29章 引导加载程序

void

I2CSend(const unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是包含通过 I2C端口发送的数据的缓冲区。

ulSize是 pucData缓冲区所提供的字节数，此缓冲区中的数据由 I2C端口发送出去。

描述：

此函数通过 I2C端口将 pucData所指向的缓冲区中的 ulSize个数据字节发送出去。这个
函数将等待直到从机端口已被 I2C主机恰当地寻址，然后才发送第一个字节。

此函数包含在 bl_i2c.c中。

返回：

无。

29.2.2.12 NakPacket
发送一个无应答（no-acknowledge）包。

函数原型：

void

NakPacket(void)

描述：

当微控制器接收到一个无效的包时，调用此函数，以表明应该要重新发送这个包。

此函数包含在 bl_packet.c中。

返回：

无。

29.2.2.13 ReceivePacket
接收一个数据包。

函数原型：

int

ReceivePacket(unsigned char *pucData,

unsigned long *pulSize)

参数：

pucData是用来存放被发送到引导加载程序的数据的单元。

pulSize是在所提供的 pucData缓冲区中返回的字节数。

描述：

此函数从特定的传输函数接收一个数据包。

此函数包含在 bl_packet.c中。

返回：

返回 0表示接收成功，而返回任何一个非 0的值表示接收失败。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

315

 广州周立功单片机发展有限公司 第29章 引导加载程序

29.2.2.14 SendPacket
发送一个数据包。

函数原型：

int

SendPacket(unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是数据要被发送的数据单元。

ulSize是要被发送的字节数。

描述：

此函数发送由引导加载程序使用的包格式的 pucData参数所提供的数据。调用者只需要
指定数据要被传输的缓冲区。该函数寻址所有其它的数据包发布格式。

此函数包含在 bl_packet.c中。

返回：

返回 0表示发送成功，而返回一个非零的值表示发送失败。

29.2.2.15 SSIFlush
等待直到 SSI端口发送完全部数据。

函数原型：

void

SSIFlush(void)

描述：

此函数等待，直至全部写入 SSI端口的数据已被主机读取。

此函数包含在 bl_ssi.c中。

返回：

无。

29.2.2.16 SSIReceive
在从机模式中接收来自 SSI端口的数据。

函数原型：

void

SSIReceive(unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是用来存放从 SSI端口接收到的数据的单元。

ulSize是接收到的字节数。

描述：

此函数在从机模式中接收来自 SSI 端口的数据。函数将不会返回，直至接收完 ulSize
个字节。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

316

 广州周立功单片机发展有限公司 第29章 引导加载程序

此函数包含在 bl_ssi.c中。

返回：

无。

29.2.2.17 SSISend
在从机模式下通过 SSI端口发送数据。

函数原型：

void

SSISend(const unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是通过 SSI端口来发送的数据的单元。

ulSize是要发送的数据的字节数。

描述：

此函数在从机模式下通过 SSI端口来发送数据。函数将不会返回，直至发送完全部字节。

此函数包含在 bl_ssi.c中。

返回：

无。

29.2.2.18 SysTickIntHandler

处理 SysTick中断。

函数原型：

void

SysTickIntHandler(void)

描述：

当 SysTick中断发生时，调用此函数。它简单地对中断保持运行计数，用作 BOOTP和
TFTP协议的时基。

此函数包含在 bl_enet.c中。

返回：

无。

29.2.2.19 UARTAutoBaud
在 UART端口执行自动波特率。

函数原型：

int

UARTAutoBaud(unsigned long *pulRatio)

参数：

pulRatio是正被用于通信的 UART端口使用的波特率的处理器的晶体频率的比率。

描述：

该函数试图同步引导加载程序通信的更新程序。使用中断监视 UART 端口的边沿。一

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

317

 广州周立功单片机发展有限公司 第29章 引导加载程序

旦检测到足够的边沿，引导加载程序就确定波特率的比率和编程 UART 所需要用到晶体频
率。

此函数包含在 bl_autobaund.c中。

返回：

返回一个 0 值表示此次调用成功地与其他通过 UART 进行通信的器件同步，返回一个
负值则表示此次调用并没有成功地与其他 UART器件同步。

29.2.2.20 UARTFlush
等待直至 UART端口发送完全部数据。

函数原型：

void

UARTFlush(void)

描述：

此函数等待直至写入 UART端口的全部数据已被发送完。

此函数包含在 bl_uart.c中。

返回：

无。

29.2.2.21 UARTReceive
通过 UART端口接收数据。

函数原型：

void

UARTReceive(unsigned char *pucData,

unsigned long ulSize)

参数：

pucData是从 UART端口读进数据的缓冲区。

ulSize是 pucData缓冲区所提供的字节数，此缓冲区中的数据是从 UART端口写入。

描述：

此函数把 UART端口的 ulSize个数据字节读回到 pucData所指向的缓冲区中。此函数将
不会返回，直至接收完 ulSize个字节数。

此函数包含在 bl_uart.c中。

返回：

无。

29.2.2.22 UARTSend
通过 UART端口发送数据。

函数原型：

void

UARTSend(const unsigned char *pucData,

unsigned long ulSize)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

318

 广州周立功单片机发展有限公司 第29章 引导加载程序

参数：

pucData是包含通过 UART端口发送的数据的缓冲区。

ulSize是 pucData缓冲区所提供的字节数，此缓冲区中的数据将从UART端口发送出去。

描述：

此函数通过 UART端口把 pucData指向的缓冲区中的 ulSize个字节发送出去。

此函数包含在 bl_uart.c中。

返回：

无。

29.2.2.23 UpdateBOOTP
通过 BOOTP启动更新处理。

函数原型：

void

UpdateBOOTP(void)

描述：

此函数启动以太网固件更新处理。BOOTP（由http://tools.ietf.org/html/rfc951的RFC951
定义）和TFTP（由http://tools.ietf.org/html/rfc1350的RFC1350 定义)协议通过以太网来传输固件
镜像。

此函数包含在 bl_enet.c中。

返回：

从不返回。

29.2.2.24 Updater
此函数在被选的端口上执行更新。

函数原型：

void

Updater(void)

描述：

引导加载程序直接调用此函数，或当应用请求进行更新时调用此函数。

此函数包含在 bl_main.c中。

返回：

从不返回。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

319

 广州周立功单片机发展有限公司 第30章 工具链

第30章 工具链

30.1 简介

库与支持的工具链的相互作用有两个方面；编译器如何对库进行编译和库如何与调试器

相互作用。通过用这种方法将两方面分开，就有可能用一个工具链编译代码，而用另一个工

具链的调试器来调试代码。或者，与调试器相互作用的机制可以用使用一个 UART来代替，
消除了（对于大多数器件）对调试器（不仅对于调试而言）的需求。

下面将对每个方面单独进行讨论。

30.2 编译器

不同的工具链之间有 4个方面需要特别处理。

 编译器如何被调用；
 编译器特定的结构；
 汇编器特定的结构；
 如何链接代码。

这个讨论只适用从命令行编译的情况；编译一个工程文件使用的是所讨论的 GUI 的通
用机制。

30.2.1 调用编译器

makedefs 文件包含一系列编译 C 源文件、编译汇编源文件、创建对象库和链接应用的
规则。这些规则使用传统变量来调用工具，例如 CC、CFLAGS等。这些变量的默认值根据
正在使用的工具链来给定；建议包含可执行体名的变量保持原样，只扩充包含标志的变量（例

如 CFLAGS）。

所有规则都将目标放置到一个工具链特定的目录中。例如，用 RealView 微控制器开发
工具编译一个 C源文件将把目标文件放置到 rvmdk目录；链接的应用和/或对象库也可以进
入相同的目录。通过这样做，多个工具链的对象可以同时在源树（source tree）中存在，但
却不会混合在一起。

规则还可以使用自动产生的依赖。大多数现代的编译器都支持-MD 或使编译器在编译
时写出一个依赖文件（dependency file）的类似选项。这样，当文件第一次被编译时自动产
生依赖，只要文件被重新编译（在任何依赖被更改时出现，这可能会导致新的依赖），依赖

就再次产生。因此，依赖总是被更新。与目标文件类似，依赖文件被放置到工具链目录下，

依赖文件的文件扩展名是.d。

Makefile规则有一组特殊变量，它们控制应用是如何被编译。这就要考虑将被用来对应
用进行编译的工具和目标应用名，从而使 Makefile 能对超过一个以上的应用进行编译，并
得到一个相同的 makefile。链接规则也有一组特殊变量，它们允许为每个应用特别调用链接
器。在所有的变量中都是应用的基本名；例如，如果目标是 foobar.axf，那么特殊变量就
是…_foobar。变量是：

PART 这是 Stellaris微控制器，它的应用程序正在被编译。

ROOT 这指定 Stellaris外设驱动程序库安装的基本目录的相关位置。同时用
来通知编译处理其余的外设驱动程序库编译工具的所在位置。

VPATH 这个变量给编译进程提供一个搜索路径去查找并不存在于该目录下
的源文件。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

320

 广州周立功单片机发展有限公司 第30章 工具链

IPATH 这个变量给编译进程提供一个搜索路径去查找并不存在于该目录
下的头文件。

ENTRY-target 这是应用程序的入口点。通常它是 ResetISR。

ROBASE_target 这是应用程序只读区的基地址。如果它未被定义，那么默认值为

0x0000.0000。如果被指定，那么它就是应用程序的首字节地址。
这对于将应用的起始地址移到 Flash 的一个地址而非 Flash 的起
始处，或在如果需要链接应用程序使其在 SRAM 中运行时将地
址移到 SRAM 中是很有利的。当其他工具链支持能够提供这个
功能的链接器脚本时，这个地址值只被 Keil 工具使用。当
Makefile 指 定 了 该 值 时 ， 那 么 就 不 应 该 指 定

SCATTERtools_target，因为这会导致链接器命令出现冲突，并使
编译失败。

LDFLAGStools_target 它包含工具链特定的链接器标志，该标志是这个应用特有的。其
中的 tools 被标志应用到的工具链替换；因此，例如，要将附加
的 链 接 器 标 志 提 供 给 RealView 链 接 器 ， 就 使 用

LDFLAGSrvmdk_target。

SCATTERtools_target 这是用来连接应用的工具链特定链接器脚本的名称。通常它
是../../../${COMPILER}/standalone.ld。

CFLAGStools： 这指定任何工具链持定编译器选项，这些选项是要编译（project）
工程时必须特有的。

由于这些规则，makefiles 变成了要编译的目标的一个简单列表（应用程序或库，或者
两者兼而有之），目标文件包含目标和一系列目标特定的变量（在应用中）。

对于外设驱动库本身（包含在 src 目录中），一些特别的标志被传递到编译器中，以便
将每个全局符号（是一个变量或一个函数）放置到它自己独立的区间中。这就可能会将使用

驱动程序的影响降至最少；例如，在一个仅为输出的模式下使用 UART，且只有
UARTConfigSetExpClk()和 UARTCharPut() API被使用，读数据、获取配置等所有 API都不
连接到应用（如果所有的全局符号构建到单区间中，它们会连接到应用程序）。

30.2.2 理解链接器脚本

这一部分描述了默认链接器脚本，它被提供为外设驱动程序库发行的一部分。此部分描

述了外设驱动程序库所支持的全部工具链中的每一个链接器脚本的不同的基本设置，从而可

以帮助我们更好地理解要如何使用所提供的链接器脚本。要注意的是，Keil工具的评估版本
并不允许使用链接器脚本。由于这个缘故，Keil编译从不使用链接器脚本。相反，编译过程
产生一个恰当的链接器命令行选项，以便对应用的地址映射进行修改。

30.2.2.1 CodeSourcery GCC

此工具链的默认链接器脚本位于 gcc/standalone.ld文件中。这个文件分成二个部分，第
一部分描述了器件中可用的内存；第二部分描述了放置应用程序代码和数据的地方。

注：当使用 CodeSourcery Sourcery G++工具链时，您也可使用 CodeSourcery的方法来安装中断处理程

序和指定链接器脚本。发布的 CodeSourcery所提供的“Getting Started”文件描述了如何使用它们的工具来

安装中断处理程序和如何使用与它们的工具提供的链接器脚本。

这部分的其余部分将描述外设驱动程序发布所提供的链接器脚本。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

321

 广州周立功单片机发展有限公司 第30章 工具链

MEMORY

{

FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x00010000

SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00002000

}

SECTIONS

{

.text :

{

_text = .;

KEEP(*(.isr_vector))

(.text)

(.rodata)

_etext = .;
} > FLASH

.data : AT (ADDR(.text) + SIZEOF(.text))

{

_data = .;

*(vtable)

(.data)

_edata = .;

} > SRAM

.bss :

{

_bss = .;

(.bss)

*(COMMON)

_ebss = .;

} > SRAM}

MEMORY部分描述了 Flash的数量和工程可用的 SRAM。每个行都有一个 ORIGIN值
和一个 LENGTH值，这二个值设置 Flash的数量或可用的 SRAM。在这个情况中，Flash被
设为在 0x0000.0000地址开始，具有 64K字节可用空间。SRAM被设为在 0x20000.0000这
个地址开始，具有 8字节可用空间。

文件的另一部分，标签为 SECTION，详细描述了将放置应用的代码和数据的地点。为
了使应用能正确地工作，默认链接器脚本具有被放置到特定位置的区间。

KEEP(_(.isr_vector))--这个声明将只读中断向量放置在此部分的起始处，在这种情况中，
此区的起始处就是 Flash 的起始处，这是由此部分的未尾定义的 FLASH 决定的。此部分应
要位于 Flash的起始端，这样应用就能从 Flash中正确引导程序。外设驱动程序库提供的 gcc
的默认启动文件的起始处具有以下的代码片段（code snippet），它把固定的中断处理程序放
置到恰当的区中。

__attribute__ ((section(".isr_vector")))

void (* const g_pfnVectors[])(void) =

{

...

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

322

 广州周立功单片机发展有限公司 第30章 工具链

}

(.text)—由于.text 是应用到所有“C”代码的默认标签，因此这个声明将这个只读代
码放置到紧接着中断向量的区中。

(.rodatat)—这个区保持任何连续的只读数据或代码中的任何已被初始化的变量值。这
个区通常是立即紧接着.text只读代码区。这一点是很重要的，因为启动（startup）代码必须
把任何已被初始化的变量值从 Flash中复制到 SRAM中。

_text = .; _etext = .;--这些标签被嵌入，以便允许应用代码确定只读区的大小和位置。可
通过下列的全局变量可加深对它们的理解：

extern unsigned long _text;

extern unsigned long _etext;

*(vtable)—如果应用使用了 IntRegister()或 IntUnregister() API，则这个入口将向量表放
置到 SRAM 的起始处，从而使 API 能对向量表进行修改。vtable 标签放在代码中，或这种
情况下的数据，是通过以下序列（位于 DriverLib/src/interrupt.c）来把 vtable标签连接到代码中：

static __attribute__((section("vtable")))

void (*g_pfnRAMVectors[NUM_INTERRUPTS])(void);

(.data)—这个区在基于 SRAM 的向量表后放置所有被初始化的读/写数据。AT (addr
(.text) + SIZEOF (.text))实际上修改代码区末端的装载地址。变量的实际初始化值就是从这装
载的。变量的实际运行时地址位于 SRAM 中。这就允许启动代码在执行主应用程序前把原
始数据值从 Flash中复制到 SRAM的恰当位置中。

_data = .; _edata = .;--这些标签被嵌入，以便允许应用代码确定初始化读/写数据区的大
小和位置。可通过下列的全局变量加深对它们的理解：

extern unsigned long _data;

extern unsigned long _edata;

(.bss)—这个区包含工程的所有未被初始化的数据。这通常包含堆栈和默认时没有赋
予任何值的其他变量。

_bss = .; _ebss = .;-- 这些标签被嵌入，以便允许应用代码确定未被初始化的读/写数据区
的大小和位置。可通过下列的全局变量加深对它们的理解：

extern unsigned long _bss;

extern unsigned long _ebss;

*(COMMON)—在某些环境下，gcc 将会把一些全局变量放置以这个区中。这就要求这
个区被包括起来，以确保这些变量能正确地位于 SRAM中。

30.2.2.2 Keil RV-MDK

默认链接器脚本文位于 rvmdk/standalone.sct中。此文件不能与评估版本的工具链一起使
用。类似于之前的文件格式，在下列示例子，这个文件被分解成每一个值：

LR_IROM 0x00000000 0x00010000

{

;

; 指定代码和大小的执行体地址

;

ER_IROM 0x00000000 0x00010000

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

323

 广州周立功单片机发展有限公司 第30章 工具链

{

*.o (RESET, +First)

* (+RO)

}

;

; 指定数据区的执行体地址

;

RW_IRAM 0x20000000 0x00002000

{

* (+RW)

* (+ZI)

}

}

*.o (RESET, +First)—这个 RESET的用法允许把固定向量存放在 Flash的起始处。下面
的代码示例出自于外设驱动库提供的示例代码所使用的默认的 rvmdk/Startup.s。

AREA RESET, CODE, READONLY

THUMB

Vectors

DCD StackMem + Stack ; 堆栈顶部

DCD Reset_Handler ; 复位处理程序

...

* (+RO)—这个区把所有的代码和只读数据放置在 Flash的起始处。这个区将也将保留任
何连续（constant）的只读数据和代码中的任何变量的初值，且它将会立即紧接着 RESET代
码区。这个区必须位于 Flash 中，因为启动代码必须把任何已被初始化的变量值从 Flash 中
复制到 SRAM中。

* (+RW)—这个区把所有初始化的读/写数据放置到可改写的向量表之后。Keil “C”启动
代码负责把常量的初始化软件从 Flash中复制到 SRAM的这个区位置中。

* (+ZI)—这个区包含工程的所用未初始化的数据。这通常包括堆栈和默认时没有被赋予
任何值的其它变量。

30.2.2.3 IAR EW-ARM

这个默认链接器的脚本位于 ewarm/standalone.xcl 文件中。不同于其它工具链的是，这
个链接器脚本是被写入的，因此它能作为一个命令行选项被传递到链接器中，而不是以正式

链接器脚本的格式传递到链接器中。然而，每一个被外设驱动程序库和示例代码使用的区标

签都在这一部分中描述。

//

// 设置 ARM的 CPU类型

//

-carm

//

// 定义 Flash和 SRAM的大小

//

-DROMSTART=00000000

-DROMEND=0000FFFF

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

324

 广州周立功单片机发展有限公司 第30章 工具链

-DRAMSTART=20000000

-DRAMEND=20001FFF

//

// 定义放置到 Flash

//

-Z(CODE)INTVEC=ROMSTART-ROMEND

-Z(CODE)ICODE,DIFUNCT=ROMSTART-ROMEND

-Z(CODE)CODE=ROMSTART-ROMEND

-Z(CONST)CODE_ID=ROMSTART-ROMEND

-Z(CONST)INITTAB,DATA_ID,DATA_C=ROMSTART-ROMEND

-Z(CONST)CHECKSUM=ROMSTART-ROMEND

INTVEC—这个区保留应用的向量表，且应该位于 FLASH 的起始端。下面的示例代码
显了外设驱动程序库所提供的默认启动文件是如何把向量表标记为属于此区的向量表。

__root const uVectorEntry g_pfnVectors[] @ "INTVEC" =

{

{ .ulPtr = (unsigned long)pulStack + sizeof(pulStack) },

// The initial stack pointer
ResetISR, // The reset handler

...

ICODE—这个区保留启动代码或任何例外的处理程序。

CODE—这个区保留将被用到的应用代码的遗留部分，任何已被标记为直接从 SRAM中
运行的代码除外。

CODE_ID—这个区保留任何被指定从 SRAM 中直接运行的代码。通过使用“C”代码
的__ramfunc来标记这些区。外设驱动程序库或外设驱动程序库提供的示例并不用到这类型的区。

INITTAB、DATA_ID、DATA_C—这些区保留常量（constant）或全局数据，全局数据
是从 Flash中复制过来的。

CHECKSUM—外设驱动程序库或任何所提供的示例并不用到这一区。

30.2.2.4 默认存储器映射

下面是一个外设驱动程序库应用的默认存储器映射，无论是否使用工具链。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

325

 广州周立功单片机发展有限公司 第30章 工具链

30.2.3 编译器结构

有时需要在 C 源文件中使用编译器特定的结构。当出现这样的需要时，可以使用下面
两个选项：

 为每个工具链提供独立版本的源文件。这已经用引导代码处理了；除了用来标识放
置在 Flash起始处的向量表的结构和创建“code”、“data”和“bss”区时链接器创
建的符号的名称外，从一个工具链到另一个工具链的源文件都基本相同。

 在每个工具链特有的结构周围使用#ifdef/#endif。

当提供独立的文件时，文件的路径名在它的某处应该包含${COMPILER}的值；作为一
个路径名或文件名的一部分。这样，Makefile 内的依赖可以利用${COMPILER}的值来使正
确版本的文件被使用。在提供的例子中，这可以在引导代码中看到；为支持的每个工具链提

供了独立的版本。在Makefile中通过${COMPILER}为引导代码文件名找到正确版本的引导
代码。

当使用#ifdef/#endif时，${COMPILER}的值再次开始起作用。每个源文件通过传递给编
译器的-D${COMPILER}来编译，所以${COMPILER}变量的值可以用在#ifdef中来包含编译
器特定的代码。这并不是首选的方法，因为非常容易出错；如果${COMPILER}的值被用来
包含一个函数内的一小段代码（例如），操作起来太容易了，以致于忘记了是何时移植到另

一个工具链中的，这样会导致这一小段代码不会出现在新的工具链产生的目标中。在第一种

方法中，文件不存在，会出现一个编译错误。

30.2.4 汇编器结构

asmdefs.h 中的宏隐藏了不同工具链汇编器之间的语法和指令差异。通过使用这些宏，
汇编文件没有#ifdef toolchain结构，这使得它们更容易理解和维护。下面提供的宏用来编写
汇编器无关的源文件：

ALIGN 它用来将下一项放置到存储器的一个四字节对准的边界。

BSS 这用来指示跟随的项应该被放置到可执行体的“bss”区。这些
项有保留的存储空间，但不在可执行体中提供初始化程序

（initializer），而是根据引导代码来零填充存储空间。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

326

 广州周立功单片机发展有限公司 第30章 工具链

DATA 这用来指示跟随的项应该被放置到可执行体的“data”区。这
些项在 SRAM 中有保留的存储空间，初始化程序放置在 Flash
中，初始化程序由引导代码从 SRAM复制到 Flash中。

END 这用来指示已经到达汇编源文件的末尾。

EXPORT 这用来指示一个标号应当可供当前源文件之外的目标文件使用。

IMPORT 这用来指示在这个源文件中引用另一个目标文件的标号。

LABEL 这提供了当前位置的一个符号名称。标号可以用作一个跳转目标
或用来装载/存储数据。注意：标号不能在当前的源文件之外被
访问，除非用_EXPORT_导出。

STR 这用来声明一串数据（即，一个以零终止的字节序列）。

TEXT 这用来指示跟随的项应该被放置到可执行体的“text”区。这必
须在所有代码之前使用，以便能准确定位。

_THUMB_LABEL_ 这用来指示下个标号（必须紧跟其后）是一个 Thumb 标号。所
有标号都必须标注为 Thumb 标号，否则，它们将不能作为跳转
目标正确工作。

WORD 这用来声明一个字的数据（32位）。

asmdefs.h 必须在汇编语言源文件的开头被包含，因为它包括一些公共的设置伪操作，
需要这些操作来使汇编器进入正确的模式；操作失败会导致汇编器无法正确工作。

30.2.5 链接应用

当链接应用时，每个全局实体需要被放置到内存的合适空间以便应用正确工作。某些内

容必须放置在特殊的地方（例如默认的向量表，它必须位于 0x0000.0000）。其它内容必须放
置在正确的内存空间（所有的代码需要放置在 Flash中，所有的读/写数据放置在 SRAM中）。

链接器脚本被用来执行这个任务。链接器脚本不能在工具链之间移植，因此为每个工具

链提供了独立的版本；它们位于<toolchain>/standalone.ld 文件中（在 IAR Embedded
Workbench的情况下它们在 standalone.xcl文件中）。这些链接器脚本非常简单；它们把全部
代码放置在 Flash中（“code”区），所有的读/写放置到 SRAM中（“data”区和“bss”区），
“data”区初始化程序放置到“code”区末尾的 Flash中，只读向量表放置到 Flash的起始处，
中断驱动（如果使用）的读/写向量表放置到 SRAM 的起始处。<toolchain>/startup.c内的引
导代码取决于内存的布局；如果内存的布局改变了，文件可能也需要改变（或替换）。

30.3 调试器

通常，调试器有方法使运行在目标上的代码与调试器相互作用：读/写主机文件、在调
试器控制台打印消息等等。这些方法已经抽象成一系列函数，应用可以调用它们，不用理会

正在使用的调试器。这些函数在第 27章中讨论；它们都是 Diag…函数。

调试器接口代码位于称为 utils/${DEBUGGER}.S 的文件中（或.c 的文件中，如果用 C
语言实现）。makefile 的规则在${DEBUGGER}.O 上指定一个依赖；因此，通过改变

${DEBUGGER}的值来改变调试器接口代码。这就允许来自一个工具链的编译器和来自另一
个工具链的调试器共同使用（当然是在假设它们都支持相同的可执行文件格式的前提下）；

${COMPILER}指定用来编译代码的工具，${DEBUGGER}指定使用的调试器接口。

可以用这个接口做几件有趣的事：

 可以创建一个串行版本，在该版本中不支持文件，但支持标准输入输出（stdio）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

327

 广州周立功单片机发展有限公司 第30章 工具链

所有的标准输入输出（stdio）操作都可以通过 UART执行；
 可以创建一个串行存储器版本。接着应用可以通过调试器使用主机文件来开发（在
这里文件内容更容易检查），然后，在合适的时候切换为使用一个串行存储器版本；

 可以创建一个 stub版本，在该版本中每个函数都是一个 NOP（空操作）。这会消除
所有调试器与应用的交互；

 可以创建一个调试版本，在该版本中它通常充当 NOP的作用，但是如果通过一个
特殊标志被开启，它将会启动输出 stdio（标准输入输出）到一个定义好的地方（例
如一个未使用的 UART）。这就允许跟踪功能被留在生成代码中；它通常不做任何
事（不给用户任何提示它正在做什么/它正在如何处理），但是现场支持人员可以将
其使能来帮助确定当前故障出现的原因。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

328

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

第31章 DK-LM3S101示例应用

31.1 简介

DK-LM3S101示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s101.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s101-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s101.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，使用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s101子目录下。

31.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED);
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

31.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

31.2.2 函数文件

31.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

329

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

31.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

31.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

330

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从输出管脚
驱动输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

31.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

331

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

31.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

332

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

31.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

333

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

31.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

334

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

无。

31.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

31.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

31.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-banding写操作效率更高；这个示例简单演示了（bit-banding的操作）。

LED闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

335

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按钮被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm-class Stellaris微控
制器中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这
个错误在 C2版本的 Sandstorm-class Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

336

 广州周立功单片机发展有限公司 第 31 章 DK-LM3S101 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

DK-LM3S101快速入门应用（qs_dk-lm3s101）

这个例子使用开发板上的光电池来创建一个盖革计数器，用来计数可见光。在强光下点

击率（即计数）增加；在弱光下点击率减少。光读数也显示在 LCD上，读数的日志在 UART
上输出，UART设置：波特率为 115,200、模式为 8-n-1。按键可以用来开关点击噪声；当按
键断开时，LCD和 UART仍然提供光读数。

在开发板默认的跳线器配置下，这个示例实际对电位器进行采样，而按键不工作。为了

使这个示例能完全工作，跳线器的线连接必须设置成：JP3 pin1连接到 JP5 pin2（要求断开
JP5跳线），JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

这个例子应用使用 SSI 主机与开发板上的 Atmel AT25F1024A EEPROM 进行通信。

EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115,200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

337

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

第32章 DK-LM3S102示例应用

32.1 简介

DK-LM3S102示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s102.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s102-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s102.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s102子目录下。

32.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

32.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

32.2.2 函数文件

32.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

338

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

32.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

32.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

339

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从输出管脚
驱动输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

32.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

340

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

32.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

341

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

32.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

342

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

32.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

343

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

无。

32.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

32.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

32.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的非 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

344

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm-class Stellaris微控
制器中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这
个错误在 C2版本的 Sandstorm-class Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

345

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

I2C（i2c_atmel）

这个示范应用使用了I2C主机来与开发板上的Atmel AT24C08A EEPROM进行通信。
EEPROM的前 16个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否正
确。传输由响应I2C中断的一个中断处理程序来管理；由于在 100KHz的I2C总线速率下读取
16 字节需要大约 2ms的时间，这就允许在传输过程中执行一些其他处理（尽管这个例子中
并未对这段时间加以利用）。

为了使这个示例正常工作，板上的I2C_SCL(JP14)、I2C_SDA(JP13)和I2CM_A2(JP11)跳
线必须接上，必须断开I2CM_WP(JP12)跳线。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

DK-LM3S102快速入门应用（qs_dk-lm3s102）

这个例子使用开发板上的光电池来创建一个盖革计数器，用来计数可见光。在强光下点

击率（即计数）增加；在弱光下点击率减少。光读数也显示在 LCD上，读数的日志在 UART
上输出，UART设置：波特率为 115200、模式为 8-n-1。按键可以用来开关点击噪声；当按
键断开时，LCD和 UART仍然提供光读数。

在开发板默认的跳线器配置下，这个示例实际对电位器进行采样，而按键不工作。为了

使这个示例能完全工作，跳线器的线连接必须设置成：JP3 pin1连接到 JP5 pin2（要求断开
JP5跳线），JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

346

 广州周立功单片机发展有限公司 第 32 章 DK-LM3S102 示例应用

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

347

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

第33章 DK-LM3S301示例应用

33.1 简介

DK-LM3S301示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s301.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s301-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s301.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s301子目录下。

33.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

33.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

33.2.2 函数文件

33.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

348

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

33.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

33.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

349

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

33.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

350

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

33.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

351

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

33.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

352

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

33.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

353

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

无。

33.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

33.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

voi

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

33.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

354

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
就可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
就可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm-class Stellaris微控
制器中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这
个错误在 C2版本的 Sandstorm-class Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

355

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区免受访问，并且在有一个访问违
犯情况时，MPU是如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S301快速入门应用（qs_dk-lm3s301）

这个例子使用开发板上的光电池来创建一个盖革计数器，用来计数可见光。在强光下点

击率（即计数）增加；在弱光下点击率减少。光读数也显示在 LCD上，读数的日志在 UART
上输出，UART设置：波特率为 115200、模式为 8-n-1。按键可以用来开关点击噪声；当按
键断开时，LCD和 UART仍然提供光读数。

在开发板默认的跳线器配置下，这个示例实际对电位器进行采样，而按键不工作。为了

使这个示例能完全工作，跳线器的线连接必须设置成：JP3 pin1连接到 JP5 pin2（要求断开
JP5跳线），JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

这个例子应用使用 SSI 主机与开发板上的 Atmel AT25F1024A EEPROM 进行通信。

EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

356

 广州周立功单片机发展有限公司 第 33 章 DK-LM3S301 示例应用

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

357

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

第34章 DK-LM3S801示例应用

34.1 简介

DK-LM3S801示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s801.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s801-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s801.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s801子目录下。

34.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

34.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

34.2.2 函数文件

34.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

358

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

34.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

34.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

359

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

34.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

360

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

34.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

361

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

34.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

362

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

34.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

363

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

无。

34.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

34.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

34.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

364

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
就可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
就可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm-class Stellaris微控
制器中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这
个错误在 C2版本的 Sandstorm Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

365

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

I2C（i2c_atmel）

这个示范应用使用了I2C主机来与开发板上的Atmel AT24C08A EEPROM进行通信。
EEPROM的前 16个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否正
确。传输由响应I2C中断的一个中断处理程序来管理；由于在 100KHz的I2C总线速率下读取
16 字节需要大约 2ms的时间，这就允许在传输过程中执行一些其他处理（尽管这个例子中
并未对这段时间加以利用）。

为了使这个示例正常工作，板上的 I2C_SCL(JP14)、I2C_SDA(JP13)和 I2CM_A2(JP11)
跳线必须接上，必须断开 I2CM_WP(JP12)跳线。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区不被访问和在有一个访问违规情
况时，MPU如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S801快速入门应用（qs_dk-lm3s801）

这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）重复鸣叫的速率和
频率。将旋钮向一个方向调节会使蜂鸣器以较低的频率缓慢鸣叫，而将旋钮向另一个方向调

节时蜂鸣器会以较高的频率快速鸣叫。电位器设置以及音调“note”都在 LCD上显示出来，
读数的日志在 UART上输出，UART设置：波特率为 115,200、模式为 8-n-1。按键可以用来
开关蜂鸣噪声；当按键断开时，LCD和 UART仍然显示设置。

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

366

 广州周立功单片机发展有限公司 第 34 章 DK-LM3S801 示例应用

取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗，对系统进行监控。如果没有对看门狗进行周期性

地喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗
就能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

367

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

第35章 DK-LM3S811示例应用

35.1 简介

DK-LM3S811示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s811.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s811-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s811.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s811子目录下。

35.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)；

35.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

35.2.2 函数文件

35.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

368

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

35.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

35.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

369

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

35.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

370

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

35.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

371

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

35.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

372

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

35.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

373

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

无。

35.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

35.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

35.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

374

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代这
个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstrom Stellaris微控制器
中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这个错
误在 C2版本的 Sandstrom Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

375

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

I2C（i2c_atmel）

这个示范应用使用了I2C主机来与开发板上的Atmel AT24C08A EEPROM进行通信。
EEPROM的前 16个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否正
确。传输由响应I2C中断的一个中断处理程序来管理；由于在 100KHz的I2C总线速率下读取
16 字节需要大约 2ms的时间，这就允许在传输过程中执行一些其他处理（尽管这个例子中
并未对这段时间加以利用）。

为了使这个示例正常工作，板上的 I2C_SCL(JP14)、I2C_SDA(JP13)和 I2CM_A2(JP11)
跳线必须接上，必须断开 I2CM_WP(JP12)跳线。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区不被访问，并且在有一个访问违
规情况时，MPU如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S811快速入门应用（qs_dk-lm3s811）

这这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）重复鸣叫的速率，
而光传感器（light sensor）将改变蜂鸣的频率。将旋钮向一个方向调节会使蜂鸣器更慢地鸣
叫，而将旋钮向另一个方向调节时蜂鸣器会更快地鸣叫。落在光传感器上的光数量会影响蜂

鸣的频率。落在传感器上的光的数量越多，蜂鸣的音高就越高。电位器设置以及代表蜂鸣音

高的“音调”都会在 LCD上显示出来，读数的日志在 UART上输出，UART设置：波特率
为 115,200、模式为 8-n-1。按键可以用来开关蜂鸣噪声；当按键断开时，LCD 和 UART 仍
然显示设置。

在开发板默认的跳线器配置下，按键实际上并不会减弱蜂鸣的声音。为了使这个示例能

完全工作，跳线的连接必须设置成：JP19 pin2连接到 J6 pin6。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

376

 广州周立功单片机发展有限公司 第 35 章 DK-LM3S811 示例应用

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

377

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

第36章 DK-LM3S815示例应用

36.1 简介

DK-LM3S815示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s815.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s815-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s815.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s815子目录下。

36.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

36.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

36.2.2 函数文件

36.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

378

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

36.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

36.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

379

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

36.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

380

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

36.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

381

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

36.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

382

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

36.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

383

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

无。

36.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

36.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

36.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

384

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回到引导加载程序，等待着启动更新。UART总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm Stellaris微控制器
中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这个错
误在 C2版本的 Sandstorm Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

385

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

I2C（i2c_atmel）

这个示范应用使用了I2C主机来与开发板上的Atmel AT24C08A EEPROM进行通信。
EEPROM的前 16个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否正
确。传输由响应I2C中断的一个中断处理程序来管理；由于在 100KHz的I2C总线速率下读取
16 字节需要大约 2ms的时间，这就允许在传输过程中执行一些其他处理（尽管这个例子中
并未对这段时间加以利用）。

为了使这个示例正常工作，板上的 I2C_SCL(JP14)、I2C_SDA(JP13)和 I2CM_A2(JP11)
跳线必须接上，必须断开 I2CM_WP(JP12)跳线。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区免受访问，并且在有访问专违规
情况时，MPU是如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S815快速入门应用（qs_dk-lm3s815）

这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）重复鸣叫的速率，
而光传感器（light sensor）将改变蜂鸣的频率。将旋钮向一个方向调节会使蜂鸣器更慢地鸣
叫，而将旋钮向另一个方向调节时蜂鸣器会更快地鸣叫。落在光传感器上的光数量会影响蜂

鸣的频率。落在传感器上的光的数量越多，蜂鸣的音高就越高。电位器设置以及代表蜂鸣音

高的“音调”都会在 LCD上显示出来，读数的日志在 UART上输出，UART设置：115,200、
模式为 8-n-1。按键可以用来开关蜂鸣噪声；当按键断开时，LCD和 UART仍然提供设置。

在开发板默认的跳线器配置下，按键实际上并不会减弱蜂鸣的声音。为了使这个示例能

完全工作，跳线的连接必须设置成：JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

386

 广州周立功单片机发展有限公司 第 36 章 DK-LM3S815 示例应用

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗，对系统进行监控。如果没有对看门狗进行周期性

地喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗
就能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

387

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

第37章 DK-LM3S817示例应用

37.1 简介

DK-LM3S817示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s817.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s817-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s817.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s817子目录下。

37.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

37.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

37.2.2 函数文件

37.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

388

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

37.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

37.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

389

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

37.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

390

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

37.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

391

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

37.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

392

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

37.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

393

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

无。

37.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

37.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

37.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

394

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后分支回到引导加载程序，等待着开始更新引
导加载程序。UART 总是将会被配置成 115200 波特，且不需要使用自动波特率
（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代这
个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm Stellaris微控制器
中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这个错
误在 C2版本的 Sandstorm Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

395

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区不被访问，并且在有一个访问违
犯情况时，MPU是如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S817快速入门应用（qs_dk-lm3s817）

这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）重复鸣叫的速率，
而光传感器（light sensor）将改变蜂鸣的频率。将旋钮向一个方向调节会使蜂鸣器更慢地鸣
叫，而将旋钮向另一个方向调节时蜂鸣器会更快地鸣叫。落在光传感器上的光数量会影响蜂

鸣的频率。落在传感器上的光的数量越多，蜂鸣的音高就越高。电位器设置以及代表蜂鸣音

高的“音调”都会在 LCD上显示出来，读数的日志在 UART上输出，UART设置：115,200、
模式为 8-n-1。按键可以用来开关蜂鸣噪声；当按键断开时，LCD和 UART仍然提供设置。

在开发板默认的跳线器配置下，按键实际上并不会减弱蜂鸣的声音。为了使这个示例能

完全工作，跳线的连接必须设置成：JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

396

 广州周立功单片机发展有限公司 第 37 章 DK-LM3S817 示例应用

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗，对系统进行监控。如果没有对看门狗进行周期性

地喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗
就能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

397

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

第38章 DK-LM3S818示例应用

38.1 简介

DK-LM3S818示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s818.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s818-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s818.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s818子目录下。

38.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

38.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

38.2.2 函数文件

38.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

398

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

38.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

38.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

399

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

38.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

400

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

38.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

401

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

38.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

402

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

38.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

403

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

无。

38.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

38.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

38.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

404

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

比较器（comparator）

这个示范应用演示了模拟比较器的操作。比较器 0（在有模拟比较器的所有器件中出现）
配置成将它的反相输入与一个内部产生的 1.65V的参考电压相比较，并根据比较器输出改变
中断来翻转端口 B0上 LED的状态。检测到比较器输出的上升沿时中断处理程序点亮 LED，
检测到比较器的下降沿时中断处理程序熄灭 LED。

为了使这个示例能正常工作，板上的 ULED0（JP22）跳线必须接上。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm Stellaris微控制器
中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这个错
误在 C2版本的 Sandstorm Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

405

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区不被访问，并且在有一个访问违
犯情况时，MPU是如何产生一个内存管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 50kHz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

DK-LM3S818快速入门应用（qs_dk-lm3s818）

这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）重复鸣叫的速率，
而光传感器（light sensor）将改变蜂鸣的频率。将旋钮向一个方向调节会使蜂鸣器更慢地鸣
叫，而将旋钮向另一个方向调节时蜂鸣器会更快地鸣叫。落在光传感器上的光数量会影响蜂

鸣的频率。落在传感器上的光的数量越多，蜂鸣的音高就越高。电位器设置以及代表蜂鸣音

高的“音调”都会在 LCD上显示出来，读数的日志在 UART上输出，UART设置：115200、
模式为 8-n-1。按键可以用来开关蜂鸣噪声；当按键断开时，LCD和 UART仍然提供设置。

在开发板默认的跳线器配置下，按键实际上并不会减弱蜂鸣的声音。为了使这个示例能

完全工作，跳线的连接必须设置成：JP19 pin2连接到 J6 pin6。

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

406

 广州周立功单片机发展有限公司 第 38 章 DK-LM3S818 示例应用

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

407

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

第39章 DK-LM3S828示例应用

39.1 简介

DK-LM3S828示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个 Stellaris系列开发板外设控制器的板特定驱动程序。PDC用来访问字符 LCD、8
个用户 LED、8个用户 DIP开关和 24个 GPIO。

有一个 IAR工作空间文件（dk-lm3s828.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（dk-lm3s828-ewarm4.eww）。

有一个 Keil多项目工作空间文件（dk-lm3s828.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/dk-lm3s828子目录下。

39.2 API函数

函数
 unsigned char PDCDIPRead (void)；
 unsigned char PDCGPIODirRead (unsigned char ucIdx)；
 void PDCGPIODirWrite (unsigned char ucIdx, unsigned char ucValue)；
 unsigned char PDCGPIORead (unsigned char ucIdx)；
 void PDCGPIOWrite (unsigned char ucIdx, unsigned char ucValue)；
 void PDCInit (void)；
 void PDCLCDBacklightOff (void)；
 void PDCLCDBacklightOn (void)；
 void PDCLCDClear (void)；
 void PDCLCDCreateChar (unsigned char ucChar, unsigned char *pucData)；
 void PDCLCDInit (void)；
 void PDCLCDSetPos (unsigned char ucX, unsigned char ucY)；
 void PDCLCDWrite (const char *pcStr, unsigned long ulCount)；
 unsigned char PDCLEDRead (void)；
 void PDCLEDWrite (unsigned char ucLED)；
 unsigned char PDCRead (unsigned char ucAddr)；
 void PDCWrite (unsigned char ucAddr, unsigned char ucData)。

39.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

39.2.2 函数文件

39.2.2.1 PDCDIPRead
读取 PDC DIP开关的当前值。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

408

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

unsigned char

PDCDIPRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 DIP开关的当前值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回 DIP开关的当前状态。

39.2.2.2 PDCGPIODirRead
读取一个 GPIO方向寄存器。

函数原型：

unsigned char

PDCGPIODirRead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 方向寄存器。输出管脚的方向位置位，输入管脚的方
向位清零。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

方向寄存器的内容。

39.2.2.3 PDCGPIODirWrite
写一个 GPIO方向寄存器。

函数原型：

void

PDCGPIODirWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO方向寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO方向寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 方向寄存器。应该置位用作输出的管脚的方向位，清零
用作输入的管脚的方向位。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.4 PDCGPIORead
读取一个 GPIO数据寄存器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

409

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

函数原型：

unsigned char

PDCGPIORead(unsigned char ucIdx)

参数：

ucIdx是读取的 GPIO方向寄存器的索引；有效值是 0、1和 2。

描述：

这个函数读取 PDC 的一个 GPIO 数据寄存器的值。一个管脚的返回值是正从管脚驱动
输出的值或正在读取的从管脚输入的值。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

数据寄存器的内容。

39.2.2.5 PDCGPIOWrite
写一个 GPIO数据寄存器。

函数原型：

void

PDCGPIOWrite(unsigned char ucIdx,

unsigned char ucValue)

参数：

ucIdx是写入的 GPIO数据寄存器的索引；有效值是 0、1和 2。

ucValue是写入 GPIO数据寄存器的值。

描述：

这个函数写 PDC 的一个 GPIO 数据寄存器。写入的值从输出管脚驱动输出，输入管脚
将其忽略。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.6 PDCInit
初始化到 PDC的连接。

函数原型：

void

PDCInit(void)

描述：

这个函数使能 SSI和 GPIO A模块的计时，配置 GPIO管脚用作一个 SSI接口，并将 SSI
配置做为一个 1Mbps的主机设备，工作在MOTO模式。函数还将使能 SSI模块，使能 Stellaris
开发板上 PDC的片选。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

410

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

39.2.2.7 PDCLCDBacklightOff
关闭背光。

函数原型：

void

PDCLCDBacklightOff(void)

描述：

这个函数关闭 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.8 PDCLCDBacklightOn
打开背光。

函数原型：

void

PDCLCDBacklightOn(void)

描述：

这个函数打开 LCD的背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.9 PDCLCDClear
清除显示屏。

函数原型：

void

PDCLCDClear(void)

描述：

这个函数清除 LCD显示屏的内容。光标返回到左上角。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.10 PDCLCDCreateChar
写一个字符样式到 LCD。

函数原型：

void

PDCLCDCreateChar(unsigned char ucChar,

unsigned char *pucData)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

411

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

ucChar是创建的字符索引。有效值从 0到 7。

pucData是字符样式的数据。它包含 8个字节，第一个字节位于样式的顶行。在每个字
节中，LSB是样式的右边像素。

描述：

这个函数写一个字符样式到 LCD，用作一个字符来显示。在写入样式后，样式可以通
过写入要显示的相应字符用在 LCD上。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.11 PDCLCDInit
初始化 LCD显示。

函数原型：

void

PDCLCDInit(void)

描述：

这个函数设置写入的 LCD显示。它设置数据总线为 8位、设置显示 2行、字体大小为
5×10。它也关闭显示、清除显示、重新开启显示和使能背光。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

注：在调用这个函数之前，PDC必须用 PDCInit()函数初始化。而且，为了辨别 LCD显示的所有输出，

可能有必要调节对比度电位计（contrast potentionmeter）。

返回：

无。

39.2.2.12 PDCLCDSetPos
设置光标的位置。

函数原型：

void

PDCLCDSetPos(unsigned char ucX,

unsigned char ucY)

参数：

ucX是水平位置。有效值为 0到 15。

ucY是垂直位置。有效值是 0和 1。

描述：

这个函数把光标移到指定位置。写入 LCD的所有字符都被放置到当前的光标位置，光
标是自动前移的。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.13 PDCLCDWrite

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

412

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

写一个字符串到 LCD显示。

函数原型：

void

PDCLCDWrite(const char *pcStr,

unsigned long ulCount)

参数：

pcStr是指向要显示的字符串的指针。

ulCount是要显示的字符数。

描述：

这个函数使一个字符串在 LCD的当前光标位置上显示。由调用者负责定位光标，将其
放置到字符串应当显示的位置（用 PDCLCDSetPos()来直接指定，或者间接地从前面一次调
用 PDCLCDWrite()后留下的光标的位置开始），使其刚好占据 LCD的边界（不能自动换行）。
空字符不会被特殊对待，它们被写入 LCD，LCD将其解释成一个特殊的可编程字符符号（见
PDCLCDCreateChar()）。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.2.2.14 PDCLEDRead
读取 PDC LED的当前状态。

函数原型：

unsigned char

PDCLEDRead(void)

描述：

这个函数读取与 Stellaris开发板的 PDC相连的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

LED当前显示的值。

39.2.2.15 PDCLEDWrite
写 PDC LED。

函数原型：

void

PDCLEDWrite(unsigned char ucLED)

参数：

ucLED是写入 LED的值。

描述：

这个函数设置与 Stellaris开发板相连的 PDC的 LED的状态。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

413

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

无。

39.2.2.16 PDCRead
读取一个 PDC寄存器。

函数原型：

unsigned char

PDCRead(unsigned char ucAddr)

参数：

ucAddr指定读取的 PDC寄存器。

描述：

这个函数将执行读取 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

返回从 PDC读取的值。

39.2.2.17 PDCWrite
写一个 PDC寄存器。

函数原型：

void

PDCWrite(unsigned char ucAddr,

unsigned char ucData)

参数：

ucAddr指定要写的 PDC寄存器。

ucData指定写入的数据。

描述：

这个函数将执行写 Stellaris开发板的 PDC的一个寄存器所需的 SSI传输。

这个函数包含在 pdc.c中，pdc.h包含应用使用的 API定义。

返回：

无。

39.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味着可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作。

闪烁（blinky）

这是一个使板上的 LED闪烁的非常简单的示例。

引导加载程序演示 1（boot_demo1）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

414

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm Stellaris微控制器
中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这个错
误在 C2版本的 Sandstorm Stellaris微控制器中修改过来。

GPIO（gpio_led）

这个示范应用利用连接到 GPIO管脚的一系列 LED来创建一个“流水灯”（roving eye）
显示。端口 B0-B3被连续驱动来呈现一个灯来回显示的现象。

为了使这个示例能正常工作，板上的 ULED0(JP22)、ULED1(JP23)、ULED2(JP24)和
ULED3(JP25)跳线必须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

I2C（i2c_atmel）

这个示范应用使用了I2C主机来与开发板上的Atmel AT24C08A EEPROM进行通信。
EEPROM的前 16个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否正

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

415

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

确。传输由响应I2C中断的一个中断处理程序来管理；由于在 100KHz的I2C总线速率下读取
16 字节需要大约 2ms的时间，这就允许在传输过程中执行一些其他处理（尽管这个例子中
并未对这段时间加以利用）。

为了使这个示例正常工作，板上的 I2C_SCL(JP14)、I2C_SDA(JP13)和 I2CM_A2(JP11)
跳线必须接上，必须断开 I2CM_WP(JP12)跳线。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；当执行中断服务程序时，B0-B2 将点亮各自独立的 LED；在退出中断处理程
序之前 LED 熄灭。这样就可以通过示波器观测到开关时间，或者用逻辑分析仪来观察末尾
连锁的速度（这针对的是出现末尾连锁的两种情况）。

为了使这个示例正常工作，板上的 ULED0(JP22)、ULED1(JP23)和 ULED2(JP24)跳线必
须接上，子板上的 PB1(JP1)跳线必须设置为连接管脚 2&3。

MPU（mpu_fault）

这个示例应用演示了如何使用MPU来保护一个内存区不被访问，并且在有一个访问违
规情况时，MPU是如何产生一个内存管理错误。

DK-LM3S828快速入门应用（qs_dk-lm3s828）

这个例子使用开发板上的电位器来改变压电蜂鸣器（piezo buzzer）的滴答声的速度。
将旋钮向一个方向调节会导致较慢的滴答声，而将旋钮向另一个方向调节时滴答声会更快。

电位器设置在 LCD上显示出来，读数的日志在UART上输出，UART设置：波特率为 115200、
模式为 8-n-1。按键可以用来开关滴答声的噪声；当按键断开时，LCD和 UART仍然提供设
置。

SSI（ssi_atmel）

这个例子应用使用了 SSI主机来与开发板上的 Atmel AT25F1024A EEPROM进行通信。
EEPROM 的前 256 个字节先被擦除，然后逐个进行编程。数据可以被读回来验证编程是否
正确。传输由响应 SSI中断的一个中断处理程序来管理；由于在 1MHz的 SSI总线速率下读
取 256 字节需要大约 2ms 的时间，这就允许在传输过程中执行一些其它处理（尽管这个例
子中并未对这段时间加以利用）。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器在每一次中断时都翻

转一次自身的 GPIO（B0和 B1端口）；同时，LED指示灯会指示每次中断以及中断的速率。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（Stellaris开发板上的 SER0连接
器）配置成 115200的波特率、8-n-1的模式，所有在 UART接收到的字符都被发送回 UART。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

416

 广州周立功单片机发展有限公司 第 39 章 DK-LM3S828 示例应用

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，连接到 port B0的 LED就取反，这样喂狗就
能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

417

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

第40章 EK-LM3S1968示例应用

40.1 简介

EK-LM3S1968 开发板举了一些应用示例演示了如何使用 Cortex-M3 微处理器内核、
Stellaris微控制器的外设以及提供的基于外设驱动库的驱动程序等特性。这些应用主要进行
演示，并作为新的应用的一个起点。

在 Stellaris LM3S1968评估 Kit板上，有一个板上专用的驱动电路支持 RiTdisplay128×
96点阵 4位灰度色标（gray-scale）OLED图形显示器。

在板上，另有一个专门的驱动电路支持 D 类声频放大器和扬声器。为了能够使用该驱
动，系统时钟必须尽可能高，其至少频率必须为 256KHz；系统时钟频率越高，得到的音质
就越好。该驱动程都能播放 8位 PCM数据和 4位 ADPCM数据；转换应用程序（converter.c
是源代码，converter.exe是预编译二进制（pre-built binary））将会得到原始的 16位有符号的
PCM数据，并将其转换成一个 C数组，该数组能够被包含进一个应用程序里用作回放功能。
例如：用 ADPCM来对 voice.pcm进行编码，产生的 C数组称为 g_pucVoice的：

converter -a -n g_pucVoice -o voice.h voice.pcm

按同样的操作，而对 8位 PCM数据进行编码：

converter -p -n g_pucVoice -o voice.h voice.pcm

由于 D 类音频驱动程序将仅能播放 8KHz 的单声道，且转换应用程序只会处理原始的
PCM 输入，因此，将会要求用应用程序如 sox 来把任意波形的文件转换成要求的格式。把
voice.wav转换成所要求的格式如下：

sox voice.wav -t raw -r 8000 -c 1 -s -w voice.pcm polyphase

最后，polyphase选择一个更高质量的采样速率转换算法。为了增加波形的音量（volume）,
在调用 polyphase前先调用 vol {factor}，可能会有帮助（和/或有必要的）。如果 sox出现了
波形失真，则需要减少波形的音量。

在这里sox：http://sox.sourceforge..net能够找到sox。同时，这个网站里有着不计其数的
其他音频应用代码（开放源代码和商业源代码），它们能替代sox。

有一个 IAR 工作空间文件（ek-lm3s1968.eww），它包含外设驱动库项目和所有板示例
项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s1968-ewarm4.eww）。

有一个 Keil 多项目工作空间文件（ek-lm3s1968.mpw），它包含外设驱动库项目和所有
板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s1968子目录下。

40.2 API函数

函数

 tBoolean ClassDBusy (void)；
 void ClassDInit (unsigned long ulPWMClock)；
 void ClassDPlayADPCM (const unsigned char *pucBuffer, unsigned long ulLength)；
 void ClassDPlayPCM (const unsigned char *pucBuffer, unsigned long ulLength)；
 void ClassDPWMHandler (void)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

418

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

 void ClassDStop (void)；
 void ClassDVolumeDown (unsigned long ulVolume)；
 void ClassDVolumeSet (unsigned long ulVolume)；
 void ClassDVolumeUp (unsigned long ulVolume)；
 void RIT128x96x4Clear (void)；
 void RIT128x96x4Disable (void)；
 void RIT128x96x4DisplayOff (void)；
 void RIT128x96x4DisplayOn (void)；
 void RIT128x96x4Enable (unsigned long ulFrequency)；
 void RIT128x96x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void RIT128x96x4Init (unsigned long ulFrequency)；
 void RIT128x96x4StringDraw (const char *pcStr, unsigned long ulX,

unsigned long ulY, unsigned char ucLevel)。

40.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

40.2.2 函数文件

40.2.2.1 ClassDBusy

确定 Class-D音频驱动程序是否忙碌。

函数原型：

tBoolean

ClassDBusy(void)

描述：

此函数确定 D 类音频驱动程序是否忙碌，以此来执行逐渐打开或关闭扬声器，或者来
播放一个音频流。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

如果 Class-D音频驱动程序忙碌，返回 True，否则返回 False。

40.2.2.2 ClassDInit
初始化 Class-D音频驱动程序。

函数原型：

void

ClassDInit(unsigned long ulPWMClock)

参数：

ulPWMClock是提供给 PWM模块的时钟速率。

描述：

这个函数初始化 Class-D音频驱动程序，使其准备把音频数据输出到扬声器。

PWM模块时钟应尽可能高；较低的时钟速率会降低产生的音频的音质。为了得到最好
音质的音频，PWM模块的时钟速率应设置在 50MHz。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

419

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

注：为了使 Class-D音频驱动程序能正常工作，必须把 Class-D音频驱动中断处理程序

（ClassDPWMHandler）安装到PWM1中断向量表中。

返回：

无。

40.2.2.3 ClassDPlayADPCM
播放缓冲区中的 8KHz的 IMA ADPCM数据。

函数原型：

void

ClassDPlayADPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

参数：

pucBuffer是指针，指向包含 IMA ADPCM编译数据的缓冲区。

ulLength是缓冲区中的字节数。

描述：

该函数启动 IMA ADPCM 编译数据流的回放功能。由于数据是根据需要编码的，因此
在 SRAM 里不需要一个很大的缓冲区。相对于原始 8 位 PCM，该函数可以提供一个 2：1
的压缩率而不会损失音质。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.4 ClassDPlayPCM
播放缓冲区中的 8KHz、8位、无符号 PCM数据。

函数原型：

void

ClassDPlayPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

参数：

pucBuffer是指针，指向包含 8位、无符号 PCM数据的缓冲区。

ulLength是在缓冲区中的字节数。

描述：

该函数启动对 8位无符号 PCM数据流的回放功能。由于数据是无符号，因此数值 128
代表着扬声器播放的中点（即符合无直流偏置）。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.5 ClassDPWMHandler
处理 PWM1中断。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

420

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

函数原型：

void

ClassDPWMHandler(void)

描述：

该函数会对 PWM1 中断作出响应，通过更新输出波形的占空比来产生声音。由应用负
责确保该函数的调用已对 PWM1 中断作出响应，通常是把音频驱动中断处理程序
（ClassDPWMHandler）安装到向量表中，作为 PWM1中断处理程序。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.6 ClassDStop
停止重放当前音频流。

函数原型：

void

ClassDStop(void)

描述：

该函数立即停止当前音频流的回放。结果，输出直接变到中点（mid-point），这可能会
导致音频发出砰的一声或咔嗒声。之后减弱至无输出，从而消除 D 类放大器和扬声器的电
流消耗。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.7 ClassDVolumeDown
减少音频回放的音量。

函数原型：

void

ClassDVolumeDown(unsigned long ulVolume)

参数：

ulVolume是要减少的音频回放的音量数，它的值指定在 0（相对于无调节时）和最大值
为 256（相对于有调节时）之间。

描述：

该函数用来减少相对于当前音量的音频回放音量。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.8 ClassDVolumeSet
设置音频回放的音量。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

421

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

void

ClassDVolumeSet(unsigned long ulVolume)

参数：

ulVolume是音频回放的音量，它的值指定在 0（相对于静音来说）和 256（相对最大音
量来说）之间。

描述：

该函数设置音频回放的音量，设置音量为 0时将使输出静音，而设置音量为 256时将无
任何音量调整地播放音频流（即满音量）

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

40.2.2.9 ClassDVolumeUp
增大音频回放的音量。

函数原型：

void
ClassDVolumeUp(unsigned long ulVolume)

参数：

ulVolume是要增大的音频回放的音量数，它的值指定在 0（相对于无调节时）到最大值
为 256（相对于有调节时）之间。

描述：

该函数增大相对于当前音量的音频回放音量。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。
返回：

无。

40.2.2.10 RIT128x96x4Clear
清除 OLED显示。

函数原型：

void
RIT128x96x4Clear(void)

描述：

这个函数将清除 RAM显示。显示屏的所有像素将被关闭。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.11 RIT128x96x4Disable
使能 OLED显示驱动程序的 SSI组成部分。

函数原型：

void

RIT128x96x4Disable(void)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

422

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

描述：

这个函数初始化到 OLED显示器的 SSI接口。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.12 RIT128x96x4DisplayOff
关闭 OLED显示器。

函数原型：

void

RIT128x96x4DisplayOff(void)

描述：

这个函数将关闭 OLED显示。这将会停止扫描面板，并关闭片内 DC-DC转换器，以防
止由于老化（burn-in）而对面板造成损坏（在这一点上，它有与 CRT类似的特性）。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.13 RIT128x96x4DisplayOn
开启 OLED显示器。

函数原型：

void

RIT128x96x4DisplayOn(void)

描述：

这个函数将开启 OLED显示器，以显示自身内部帧缓冲区的内容。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.14 RIT128x96x4Enable
使能 OLED显示器驱动程序的 SSI组成部分。

函数原型：

void

RIT128x96x4Enable(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

这个函数初始化到 OLED显示器的 SSI接口。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

423

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

无。

40.2.2.15 RIT128x96x4ImageDraw
在 OLED显示器上显示一个图象。

函数原型：

void

RIT128x96x4ImageDraw(const unsigned char *pucImage,
unsigned long ulX,
unsigned long ulY,
unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏左边沿起，以列数来指定。

ulY是图象显示的垂直位置，从显示屏的顶部起，以行数来指定。

ulWidth是图象的宽度，以列数来指定。

ulHeight是图象的高度，以行数来指定。

描述：

该函数将在显示屏上显示出一个位图。由于显示 RAM 格式的原因，起始列（ulX）和
列数（ulWidth）必须是以 2为数倍的整数。

图象数据组织过程如下：图象数据的第 1行从左到右显现，紧接着第 2行数据。每一个
字节都包含有当前行里的两个列数据，最左边的列将包含在位 7:4里，而最右边的列则将包
含在位 3:0里。

例如，一个 6列宽和 7个扫描行高的图象显示安排如下（展现了图象的 21个字节是如
何显现在显示屏上）：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

424

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.16 RIT128x96x4Init
初始化 OLED显示屏。

函数原型：

void

RIT128x96x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定使用的 SSI时钟频率。

描述：

这个函数初始化到 OLED显示屏的 SSI接口，并配置面板上的 SSD1329控制器。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

40.2.2.17 RIT128x96x4StringDraw
在 OLED显示屏上显示一个串。

函数原型：

void

RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

参数：

pcStr是指向要显示的字符串的指针。

ulX是显示字符串的水平位置，从显示屏的左边沿起，以列数来指定。

ulY是显示字符串的垂直位置，从显示屏的顶边沿起，以行数来指定。

ucLevel是用于显示文本的 4位灰度值（gray scale value），。

描述：

该函数将在显示屏上绘制一个字符串。只支持 32（空格（space））至 126（~（tilde））
的 ASCII 字符；其它字符将会导致在显示屏上绘制出随机数据（无论是基于出现在字型存
储器之前/之后的哪一种）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处
要比类似“m”或“w”字符的多。

如果绘制的字符串到达了显示屏的右边沿，就不能再绘制字符了。因此，不再需要特别

注意避免提供过长的字符串而导致无法显示的情况。

这个函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

注：因为 OLED显示屏在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶列数（如 0、2、

4等）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

425

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

返回：

无。

40.3 示例

音频回放（audio）

这个示范应用通过 Class-D 放大器和扬声器来播放音频。PCM 和 ADPCM 格式都提供
了同样的音频素材源（audio chip），因此可以比较一下它们之间的音频质量。

Bit-Banding（bitband）

这个示范应用演示了如何使用 Cortex-M3 微处理器的 bit-banding 功能。所有的 SRAM
和外设都位于 bit-band区，这就意味者可以对它们应用 bit-banding操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取代
这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击用户按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

426

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

图例（graphics）

一个简单的应用，在 OLED显示屏的顶端行显示滚动文本和一个 4位亮度色标的图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 LCD上显示“hello word”，这是更复
杂的应用的一个起点。

冬眠范例（hibernate）

这是一个演示如何使用冬眠模块的例子。点击选择按钮，用户可以使微控制器进入冬眠

状态。微控制器 5秒后会自动苏醒，或者如果用户再次点击选择按钮，微控制器将立即苏醒。
程序不断地计

中断（interrupts）算微控制器冬眠的时间。为了可以使微控制器苏醒时恢复现场，计时结
果将保存在冬眠模块的有电池备份的存储器里。

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 OLED
上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之前变为
无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个违规
访问时，MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

EK-LM3S1968快速入门应用（qs_ek-Im3s1968）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并且必须要找到该迷宫的出口；游戏

不断地重复这过程。

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

427

 广州周立功单片机发展有限公司 第 40 章 EK-LM3S1968 示例应用

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的时间，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，处理器将进入冬眠模式，红色 LED 点亮。点击选择按钮，
退出冬眠模式。若要开始游戏，再次按下选择按钮即可。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在屏幕

上的指示器。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（连接到 Stellaris LM3S811评估
板的 FTDI虚拟串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符
被发送回 UART中。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地被观
察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

428

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

第41章 EK-LM3S2965示例应用

41.1 简介

EK-LM3S2965 开发板举了一些应用示例演示了如何使用 Cortex-M3 微处理器内核、
Stellaris微控制器的外设和驱动库提供的驱动程序等特性。这些应用主要进行演示，作为新
的应用的一个起点。

在 Stellaris LM3S2965评估 Kit板上，有一个板上专用的驱动电路支持 OSRAM 128×64
4位灰度（gray-scale）OLED图形显示器。

这些示例和显示屏驱动程序是针对 A 版本的 EK-LM3S2965 板，该板使用了 128×64
OSRAM显示屏。通过观看电路板的背面、在与 JTAG标题相对的地方，就可以确认该板是
否为 A版本板。因为板零件编号就位于那儿，且以“A”结尾。如果板零件编号以“C”结
尾，那么请参考 C版本 EK-LM3S2965示例应用中示例这一章。

有一个 IAR 工作空间文件（ek-lm3s2965.eww），它包含外设驱动库项目和所有板示例
项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s2965-ewarm4.eww）。

有一个 Keil 多项目工作空间文件（ek-lm3s2965.mpw），它包含外设驱动库项目和所有
板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s2965子目录下。

41.2 API函数

函数

 void OSRAM128x64x4Clear (void)；
 void OSRAM128x64x4Disable (void)；
 void OSRAM128x64x4DisplayOff (void)；
 void OSRAM128x64x4DisplayOn (void)；
 void OSRAM128x64x4Enable (unsigned long ulFrequency)；
 void OSRAM128x64x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void OSRAM128x64x4Init (unsigned long ulFrequency)；
 void OSRAM128x64x4StringDraw (const char *pcStr, unsigned long ulX, unsigned

long ulY,unsigned char ucLevel)。

41.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

41.2.2 函数文件

41.2.2.1 OSRAM128x64x4Clear
清除 OLED显示屏。

函数原型：

void

OSRAM128x64x4Clear(void)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

429

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

描述：

这个函数清除显示 RAM。显示屏的所有像素都关闭。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.2 OSRAM128x64x4Disable
使能 OLED显示屏驱动程序的 SSI组成部分。

函数原型：

void

OSRAM128x64x4Disable(void)

描述：

这个函数初始化 SSI接口进行 OLED显示。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.3 OSRAM128x64x4DisplayOff
关闭 OLED显示屏。

函数原型：

void

OSRAM128x64x4DisplayOff(void)

描述：

这个函数关闭 OLED显示屏。它将会停止面板的扫描，关闭片内 DC-DC转换器，防止
老化（burn-in）对面板造成损害（在这方面它有与 CRT类似的特性）。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.4 OSRAM128x64x4DisplayOn
开启 OLED显示屏。

函数原型：

void

OSRAM128x64x4DisplayOn(void)

描述：

这个函数开启 OLED显示屏，使它显示其内部帧缓冲区的内容。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.5 OSRAM128x64x4Enable

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

430

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

使能 OLED显示屏驱动程序的 SSI组成部分。

函数原型：

void

OSRAM128x64x4Enable(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

这个函数初始化 SSI接口进行 OLED显示。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.6 OSRAM128x64x4ImageDraw
在 OLED上显示一个图象。

函数原型：

void

OSRAM128x64x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列数来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以行数来指定。

ulWidth是图象的宽度，以列数来指定。

ulHeight是图象的高度，以行数来指定。

描述：

该函数在显示屏上显现一个位图。由于显示 RAM 格式的原因，起始列（ulX）和列数
（ulWidth）必须是以 2为数倍的整数。

图象数据组织过程如下：图象数据的第 1行从左到右显示，紧接着是第 2行数据。每一
个字节都包含有当前行里的两列数据，最左边的列将包含在位 7:4里，最右边的列则将包含
在位 3:0里。

例如，一个 6列宽和 7个扫描行高的图象显示安排如下（展现了图象的 21个字节是如
何显现在显示屏上）：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

431

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.7 OSRAM128x64x4Init
初始化 OLED显示屏。

函数原型：

void

OSRAM128x64x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

这个函数初始化 SSI接口进行 OLED显示，并配置面板上的 SSD0323控制器。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

41.2.2.8 OSRAM128x64x4StringDraw
在 OLED上显示一个字符串。

函数原型：

void

OSRAM128x64x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

432

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

参数：

pcStr是指向要显示的字符的串指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列数来指定。

ulY是字符串显示的垂直位置，从显示屏的顶边沿起，以行数来指定。

ucLevel是用来显示文本的 4灰度值。

描述：

该函数将在显示屏上绘制出一个字符串。只支持 32（空格（space））至 126（~（tilde））
的 ASCII 字符；其它字符将会导致在显示屏上绘制随机数据（无论是基于字型存储器之前/
之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要比类似“m”
或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不能再绘制字符了。因此，不再需要特别注

意避免提供过长的字符串而导致无法显示的情况。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

注：因为 OLED显示在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶数列（如 0、2、4

等）。

返回：

无。

41.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味者可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 not-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

433

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用来取
代这个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

CAN设备板 LED应用（can_device_led）

这个示例演示了如何把板上的两个按键当作一个灯开关来使用。当按下“up”按键时，
状态 LED点亮。当按下“down”按键时，状态 LED熄灭。

CAN设备板快速入门应用(can_device_qs)

这个应用使用 CAN 控制器与正在运行示例游戏的评估板进行通信。应用通过 CAN 来
点亮、熄灭设备板上的 LED或通过 CAN来给设备板上的 LED送去一个脉冲，从而接收报
文。当用户按下“up”或“down”按键时，或释放按键时，应用发送 CAN报文。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

图例（graphics）

一个简单的应用，在 OLED显示屏的顶端行显示滚动文本和一个 4位亮度色标的图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 OLED
上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之前变为
无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个违规
访问时，应用演示了MPU是如何产生一个存储器管理错误。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

434

 广州周立功单片机发展有限公司 第 41 章 EK-LM3S2965 示例应用

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

EK-LM3S2965快速入门应用（qs_ek-Im3s2965）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并必须要找到该迷宫的出口；游戏不

断地重复这过程。

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的时间，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

如果 CAN 设备板连接上，并正在运行 can_device_qs 应用程序，那么音乐和声音

效果的音量能够以目标板上的两次按键来通过 CAN 调节。CAN 设备板上的 LED 通

过 CAN 报文来追踪主板上的 LED 状态。即使 CAN 器件板没有连接上，也不会影响

游戏的操作。

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，显示屏将关闭，且用户 LED 闪烁。按下选择按键，退出屏
幕保护程序（变幻线或空白显示）。若要开始游戏，再次按下选择按钮即可。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在屏幕

上的指示器。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（连接到 Stellaris LM3S811评估
板的 FTDI虚拟串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符
被发送回 UART中。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地被观
察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

435

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

第42章 C版本的 EK-LM3S2965示例应用

42.1 简介

C 版本 EK-LM3S2965 示例应用显示了如何使用 Cortex-M3 微处理器的特性、Stellaris
微控制器的外设和驱动库提供的驱动程序。这些应用主要进行演示，并作为新应用的一个起

点。

有一个供 Stellaris C 版本的 LM3S2965 评估 Kit 板 RiTdisplay 128×96 4 位亮度色标
（gray-scale）OLED图形显示屏使用的特定驱动程序。

这些示例和显示驱动程序是针对 C 版本的 EK-LM3S2965 板，该板使用 128×96
RiTdisplay显示屏。通过观看电路板的背面、在与 JTAG标题相对的地方，就可以确认该板
是否为 C版本板，因为板零件编号就位于那里，且以“C”结尾。如果板零件编号以“A”
结尾，那么请参考 EK-LM3S2965示例应用中示例这一章。

有一个 IAR 工作空间文件（ek-lm3s2965_revc.eww），它包含外设驱动库项目和所有板
示例项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s2965_revc-ewarm4.eww）。

Keil 多项目工作空间文件（ek-lm3s2965_revc.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s2965_revc子目录下。

42.2 API函数

函数

 void RIT128x96x4Clear (void)；
 void RIT128x96x4Disable (void)；
 void RIT128x96x4DisplayOff (void)；
 void RIT128x96x4DisplayOn (void)；
 void RIT128x96x4Enable (unsigned long ulFrequency)；
 void RIT128x96x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void RIT128x96x4Init (unsigned long ulFrequency)；
 void RIT128x96x4StringDraw (const char *pcStr, unsigned long ulX, unsigned long

ulY, unsigned char ucLevel)。

42.2.1 详细描述

每个 API指定了包含它的源文件并提供了应用所用的函数原型的头文件。

42.2.2 函数文件

42.2.2.1 RIT128x96x4Clear
清除 OLED显示屏。

函数原型：

void

RIT128x96x4Clear(void)

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

436

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

描述：

此函数清除显示 RAM。显示屏的所有像素都关闭。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用所用的 API定义。

返回：

无。

42.2.2.2 RIT128x96x4Disable
使能 OLED显示屏驱动程序的 SSI组成部分。

函数原型：

void

RIT128x96x4Disable(void)

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用所用的 API定义。

返回：

无。

42.2.2.3 RIT128x96x4DisplayOff
关闭 OLED显示屏。

函数原型：

void

RIT128x96x4DisplayOff(void)

描述：

此函数关闭 OLED显示屏。它将停止面板的扫描，关闭片内 DC-DC转换器，以防止老
化（burn-in）对面板造成损害（在这方面它有与 CRT类似的特性）。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用所用的 API定义。

返回：

无。

42.2.2.4 RIT128x96x4DisplayOn
开启 OLED显示屏。

函数原型：

void

RIT128x96x4DisplayOn(void)

描述：

此函数开启 OLED显示屏，使 OLED显示其内部帧缓冲区的内容。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用所用的 API定义。

返回：

无。

42.2.2.5 RIT128x96x4Enable

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

437

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

使能 OLED显示屏驱动程序的 SSI组成部分。

函数原型：

void

RIT128x96x4Enable(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用所用的 API定义。

返回：

无。

42.2.2.6 RIT128x96x4ImageDraw
在 OLED上显示一个图象。

函数原型：

void

RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ulWidth是图象的宽度，以列来指定。

ulHeight是图象的高度，以行来指定。

描述：

此函数在显示屏上显示一个位图图像。由于显示 RAM 格式的原因，起始列（ulX）和
列数（ulWidth）必须是 2的整数倍。

图象数据组织过程如下：第一行图象数据从左到右显示，后面紧接着第二行图象数据。

每个字节包含当前行中的两列数据，最左边的列将包含在位 7:4中，最右边的列则将包含在
位 3:0中。

例如，一个 6列宽和 7条扫描线高的图象显示安排如下（显示了图象的二十一个字节是
如何出现在显示屏上）：

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

438

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

42.2.2.7 RIT128x96x4Init
初始化 OLED显示屏。

函数原型：

void

RIT128x96x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示，并配置面板上的 SSD1329控制器。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

42.2.2.8 RIT128x96x4StringDraw
在 OLED上显示一个字符串。

函数原型：

void

RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

439

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

参数：

pcStr是要显示的字符的串指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是字符串显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ucLevel是 4位灰度值，用来显示文本。

描述：

此函数将在显示屏上绘制一个字符串。只支持 32（空格（space））至 126（~（tilde））
的 ASCII 字符；其它字符将会导致在显示屏上绘制随机数据（这取决于哪一个字符在字型
存储器之前/之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要
比类似“m”或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不再绘制字符了。因此，不再需要特别注意

避免提供过长的字符串而导致无法显示的情况。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

注：因为 OLED显示在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶数列（如 0、2、4

等）。

返回：

无。

42.3 示例

Bit-Banding（bitband）

这个示范应用演示了 Cortex-M3微处理器 bit-banding功能的使用。所有的 SRAM和外
设都位于 bit-band 区，这就意味者可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 not-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另外一个应用取
代这一个应用。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。由引导加载程序启动应用后，应
用将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

440

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

UART总是将会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，那么
也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另外一个应用取
代这一个应用。

把 boot_demo1应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

CAN设备板 LED应用（can_device_led）

这个示例演示了如何把板上的两个按键当作一个灯开关来使用。当按“up”键时，状态
LED点亮；当按“down”键时，状态 LED熄灭。

CAN设备板快速入门应用(can_device_qs)

此应用使用 CAN 控制器与正在运行示例游戏的评估板进行通信。应用通过 CAN 来点
亮、熄灭设备板上的 LED或通过 CAN来给设备板上的 LED送去一个脉冲，从而接收报文。
当用户按住“up”或“down”键时，或松开按键时，应用发送 CAN报文。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

图例（graphics）

一个简单的应用，在 OLED显示屏的顶端行显示滚动文本和一个 4位亮度色标的图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 OLED
上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之前变为
无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个违规
访问时，演示了MPU是如何产生一个存储器管理错误。

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

441

 广州周立功单片机发展有限公司 第 42 章 C 版本的 EK-LM3S2965 示例应用

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 25％的 PWM信号和一个占空比为 75
％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，不
执行任何操作，而 PWM外设持续输出信号。

C版本的 EK-LM3S2965快速入门应用（qs_ek-Im3s2965_revc）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并必须要找到该迷宫的出口；游戏不

断地重复这过程。

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的时间，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

如果 CAN 器件板连接上，并正在运行 can_device_qs 应用，那么可以使用含有目标板
(target board)上有二个按键的 CAN来调节音乐的音量和声音的效果。CAN设备板上的 LED
通过 CAN报文来追踪主板上的 LED状态。即使 CAN设备板没有连接上，也不会影响游戏
的操作。

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，显示屏将关闭，且用户 LED 闪烁。按下选择按键，将退出
屏幕保护程序（变幻线或空白显示）。若要开始游戏，再次按下选择按钮即可。

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在屏幕

上的指示器。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（连接到评估板的 FTDI虚拟串口）
配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符被发送回 UART中。

看门狗（watchdog）

该应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地喂狗，

将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地被观察到，
每隔一秒喂狗一次。

xxx用户手册 ©2008 Guangzhou ZLGMCU Development CO., LTD.

442

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

第43章 EK-LM3S3748示例应用

43.1 简介

EK-LM3S3748示例应用显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控制器
的外设和驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起点。

有一个供 Stellaris EK-LM3S3748评估Kit板上的 Formike Electronic128×128色彩CSTN
图象显示、Class-D音频放大器和扬声器使用的特定驱动程序。

有一个 IAR 工作空间文件（ek-lm3s3748.eww），它包含外设驱动库项目和所有板示例
项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s3748-ewarm4.eww）。

有一个 Keil 多项目工作空间文件（ek-lm3s3748.mpw），它包含外设驱动库项目和所有
板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s3748子目录下。

43.2 API函数

函数

 void ButtonsInit (void)；
 unsigned char ButtonsPoll (unsigned char *pucDelta, unsigned char *pucRepeat)；
 void ButtonsSetAutoRepeat (unsigned char ucButtonIDs, unsigned char ucInitialTicks,

unsigned char ucRepeatTicks)；
 tBoolean ClassDBusy (void)；
 void ClassDInit (unsigned long ulPWMClock)；
 void ClassDPlayADPCM (const unsigned char *pucBuffer, unsigned long ulLength)；
 void ClassDPlayPCM (const unsigned char *pucBuffer, unsigned long ulLength)；
 void ClassDPWMHandler (void)；
 void ClassDStop (void)；
 void ClassDVolumeDown (unsigned long ulVolume)；
 void ClassDVolumeSet (unsigned long ulVolume)；
 void ClassDVolumeUp (unsigned long ulVolume)；
 void Formike128x128x16BacklightOff (void)；
 void Formike128x128x16BacklightOn (void)；
 void Formike128x128x16Init (void)。

变量

 const tDisplay g_sFormike128x128x16。

43.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

43.2.2 函数文件

43.2.2.1 ButtonsInit
初始化被板按钮使用的 GPIO管脚。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

443

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

函数原型：

void

ButtonsInit(void)

描述：

在应用初始化过程中必须要调用此函数，以配置连接到按钮的 GPIO管脚。这个函数使
能按钮使用的端口，并把每个按钮 GPIO管脚配置成一个带弱上拉的输入端。

此函数包含在 buttons.c中，buttons.h包含应用使用的 API定义。

返回：

无。

43.2.2.2 ButtonsPoll
查询按钮的当前状态，确定哪些发生了变化。

函数原型：

unsigned char

ButtonsPoll(unsigned char *pucDelta,

unsigned char *pucRepeat)

参数：

pucDelta指向将被写入来指示在上一次调用这个函数后按钮的状态发生变化的字符。这
个数值可在按钮的去抖动状态（debounced state）中得到。

pucRepeat 指向一个字符，这个字符将被写入来指示哪个按钮由于调用了这个函数而正
在发出一个自动重复的信号。

描述：

应用要周期性地调用这个函数来查询按钮的状态。它可以确定在上一次调用该函数后哪

个按钮状态已发生变化，并且它也能在上一次按下按钮后根据按钮的状态和调用

ButtonsPoll()的次数来发出自动重复信号。

如果按键被限制的时间超过了初始的延时周期，那么就可以在应用特定的速率下发出自

动重复的信号。为了确保能在要求的速率下产生自动重复信号，应用应该要确保周期性地调

用此函数，因为是根据调用 ButtonsPoll()的次数来计算出自动重复时序。

此函数包含在 buttons.c中，buttons.h包含应用使用的 API定义。

返回：

返回按钮的当前去抖动状态，按钮 ID位置为 1时，表示松开按钮，为 0表示按下按钮。

43.2.2.3 ButtonsSetAutoRepeat
设置一个或多个按钮的自动重复参数。

函数原型：

void

ButtonsSetAutoRepeat(unsigned char ucButtonIDs,

unsigned char ucInitialTicks,

unsigned char ucRepeatTicks)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

444

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

ucButtonIDs是包含要设置自动重复参数的按钮的 ORed ID的位屏蔽。

ucInitialTicks是键如果被按下长达一个延长周期，那么在向键报告第一个自动重复信号
前键按的次数（ticks）（调用 ButtonsPoll()的次数）。

ucRepeatTicks是向键报告每个后续的自动重复信号之间的初始周期（ucInitialTicks）到
达后必须要执行的键按次数。

描述：

调用这个函数来改变一个或多个按键的自动重复延时和重复周期。如果任意按键被按下

长达一个延长周期时，自动重复允许应用周期性地发出信号。在最初的按键被按下的首个延

时时间后，一个重复信号标志在 ucPRpeatTicks 决定的周期和调用 ButtonsPoll()之间的间隔
中产生。

例如，要配置这样一个按钮：在最初按下按钮后，它启动自动重复信号 500mS，每 100mS
发出一个自动重复信号，直至它被松开，并假设每 50mS调用一次 ButtonsPoll()，那么应使
用以下参数：

ucInitialTicks = 10

ucRepeatTicks = 2

这个函数包含在 buttons.c中，buttons.h包含应用使用的 API定义。

返回：

无。

43.2.2.4 ClassDBusy

确定 Class-D音频驱动程序是否忙碌。

函数原型：

tBoolean

ClassDBusy(void)

描述：

这个函数确定Class-D音频驱动程序是否忙碌，即是否在启动或关闭扬声器的音量调节，
或是否在播放音频流。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

Class-D音频驱动程序忙碌时返回 True，否则返回 False。

43.2.2.5 ClassDInit

初始化 Class-D音频驱动程序。

函数原型：

void

ClassDInit(unsigned long ulPWMClock)

参数：

ulPWMClock是提供给 PWM模块的时钟速率。

描述：

这个函数初始化 Class-D音频驱动程序，使其把音频数据输出到扬声器。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

445

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

PWM模块时钟应尽可能高。较低的时钟速率会降低所产生音频的音质。为了得到最好的音
质，PWM模块的时钟设置在 50MHz。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

注：为了让 Class-D音频驱动程序能正常工作，必须把 Class-D音频驱动中断处理程序

（ClassDPWMHandler）的入口地址存放到向量表中 PWM1中断的位置。

返回：

无。

43.2.2.6 ClassDPlayADPCM

播放缓冲区中 8KHz的 IMA ADPCM数据。

函数原型：

void

ClassDPlayADPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

参数：

pucBuffer是指针，指向包含 IMA ADPCM编码数据的缓冲区。

ulLength是在缓冲区中的字节数。

描述：

这个函数启动对 IMA ADPCM 编码数据流的重放操作。由于按需要对数据进行解码，
因此不需要用到 SRAM中一个更大的缓冲区。相对于原始 8位 PCM数据，这个函数能提供
2：1的压缩率，但却不会降低音质。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义。

返回：

无。

43.2.2.7 ClassDPlayPCM

播放缓冲区中 8KHz、8位、无符号类型的 PCM数据。

函数原型：

void

ClassDPlayPCM(const unsigned char *pucBuffer,

unsigned long ulLength)

参数：

pucBuffer是指针，指向包含 8位、无符号类型的 PCM数据的缓冲区。

ulLength是缓冲区中的字节数。

描述：

这个函数启动对 8位、无符号类型的 PCM数据流的重放操作。因于数据是无符号类型
的，因此一个 128的值表示扬声器传播的中点值（即符合无 DC偏移量的标准）

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

446

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

43.2.2.8 ClassDPWMHandler

处理 PWM1中断。

函数原型：

void

ClassDPWMHandler(void)

描述：

这个函数对 PWM1 中断作出响应，更新输出波形的占空以产生声音。由应用负责来确
保调用这个函数来响应 PWM1 中断，通常是把 Class-D 音频驱动中断处理程序的入口地址
存放到向量表中 PWM1中断的位置。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

43.2.2.9 ClassDStop

停止重放当前音频流。

函数原型：

void

ClassDStop(void)

描述：

这个函数立即停止重放当前音频流。结果，输出直接改变到中点，可能会导致音频流发

出砰的一声或咔嗒声。然后音频渐变为无输出信号，这样就通过 Class-D放大器和扬声器来
消除了电流消耗。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

43.2.2.10 ClassDVolumeDown
减少音频重放的音量。

函数原型：

void

ClassDVolumeDown(unsigned long ulVolume)

参数：

ulVolume是要减少的音频重放音量数，它的值指定在 0（对无调节时）与最大值为 256
之间（对有调节时）。

描述：

这个函数减少相对于当前音频的音频重放音量。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

43.2.2.11 ClassDVolumeSet

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

447

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

设置音频重放的音量。

函数原型：

void

ClassDVolumeSet(unsigned long ulVolume)

参数：

ulVolume是音频重放音量数，它的值指定在 0（静音）与 256之间（最大音量）。

描述：

这个函数设置音频重放的音量，音量设置为 0将会减弱输出，而设置为 256时将在无须
调整音量上播放音频流（即最大音量）。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

43.2.2.12 ClassDVolumeUp

增加音频播放的音量。

函数原型：

void

ClassDVolumeUp(unsigned long ulVolume)

参数：

ulVolume 是要增加的音频重放音量数，它的值指定在 0（无调节时）与最大值为 256
之间（有调节时）。

描述：

这个函数增加相对于当前音频的音频重放音量。

这个函数包含在 class-d.c中，class-d.h包含应用使用的 API定义

返回：

无。

43.2.2.13 Formike128x128x16BacklightOff

关闭背光。

函数原型：

void

Formike128x128x16BacklightOff(void)

描述：

这个函数关闭显示屏的背光。

返回：

无。

43.2.2.14 Formike128x128x16BacklightOn

开启背光。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

448

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

void

Formike128x128x16BacklightOn(void)

描述：

这个函数开启显示屏的背光。

返回：

无。

43.2.2.15 Formike128x128x16Init

初始化显示屏驱动程序。

函数原型：

void

Formike128x128x16Init(void)

描述：

这个函数初始化面板上的 ST7637显示屏控制器，使它准备好显示数据。

返回：

无。

43.2.3 变量文件

43.2.3.1 g_sFormike128x128x16

定义：

const tDisplay g_sFormike128x128x16

描述：

显示屏结构描述了用于带有 ST7637 控制器的 Formike Electronic KWH015C04-F01
CSTN面板的驱动程序。

43.3 示例

音频重放（audio）

这个示例应用通过 Class-D 放大器和扬声器来播放音频。PCM 和 ADPCM 格式也提供
了相同的源音频芯片（audio chip），因此可以比较一下它们之间的音频质量。

Bit-Banding（bitband）

这个示范应用演示了如何使用 Cortex-M3微处理器 bit-banding功能。所有的 SRAM和
外设都位于 bit-band 区，这就意味者可以对它们应用 bit-banding 操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了如何使用基于 ROM的引导加载程序（boot loader）。在启动时，应用将

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

449

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

会配置 UART，并跳转回引导加载程序，等待着启动更新。UART总是将会被配置成 115200
波特，且不需要使用自动波特率（auto-bauding）。

把 boot_demo2应用与这个应用结合使用，就可以很容易证明引导加载程序实际上是在
更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示如何使用基于 ROM的引导加载程序（boot loader）。在启动时，应用将会
配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待启动更新。UART总是
会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

把 boot_demo1应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是更新片内 Flash。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，4个管脚（PC0、PC1、PC2和 PC3）都被切换。

图象库示范（grlib_demo）

这个应用演示了Stellaris图象库的功能。显示屏将被配置来演示可能被用到的简单绘图：
直线、圆形、长方形、字符串和图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在显示屏

上显示出来；GPIO管脚 D0-D2在执行中断服务程序时有效；在退出中断处理程序之前变为
无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个非法
访问时，演示了MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用使用 PWM外设输出一个占空比为 20％的 PWM信号和一个占空比为 80
％的 PWM 信号，两个信号的频率都为 8000Hz。一旦配置完成，应用就进入一个死循环，
不执行任何操作，而 PWM外设持续输出信号。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

450

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

示波器快速入门（qs-scope）

使用 Stellaris微控制器的模数转换器（ADC）对一个双通道的示波镜进行操作。示波镜
支持每秒高达 1M的采样速率，并在 CSTN显示屏上显示捕获的波形。用户可对屏上提供的
菜单：时基、通道电压量程和位置、触发类型、触发电平和触发位置进行控制。其他特性包

括把捕获的数据保存为逗号划分数值的文档（comma-separated-value files），使它能与电子数
据表应用（或 microSD 卡/USB Flash 驱动的位图图象）一起使用的功能。板也有可能与
WindowsXP或 Vista主机系统相连，且能通过使用一个Windows应用来对它进行远程控制。

示波镜用户接口

使用板上的导航控制来访问示波镜的所有控制和设置。在单个单元上，控制提供了上、

下、左、右和选择功能。在期望的方位摇动控制就把“上”、“下”、“左”或“右”的信息

发送到应用中，按下中间的按钮，则发送一个“选择”信息到应用中。

示波镜控制和设置按功能来分组：显示设置、触发设置、文件操作和设置选择。按“选择”

键显示主菜单，通过主菜单来访问这些组。当主菜单出现时，使用“上”和“下”键在可用的组

之间选择想要访问的组。当想要访问的组高亮显示出来时，再一次按“选择”键可消除菜单。

可通过应用显示屏的部分按键来控制当前所选的组。使用“上”和“下”铵键来循环地

选择组的控制，用“左”和“右”按键来改变与当前显示的控制相关的操作的值，或选择与

当前显示的控制相关的操作。

控制组和每个控制组所提供的单独控制如下所列：

组 控制 设置

通道 2 开或闭

时基 选择从 2µs到 50ms的每个分度值

Ch1量程 每次分割时从 100mV到 10V中选一个值

Ch2量程 每次分割时从 100mV到 10V中选一个值

Ch1偏移量 长按“左”或“右”键，以 100mV的增量来上下移动波形

显示

Ch2偏移量 长按“左”或“右”键，以 100mV的增量来上下移动波形

触发 触发类型为一直、上升、下降或水平

触发通道 用 1或 2来选择将要触发的通道

触发电平 长按“左”或“右”键，以 100mV的增量来改变触发电平

触发位置 长按“左”或“右”键，来移动屏幕上的触发位置

模式 运行或停止

触发

单象 如果当前模式为“停止”时，按“左”或“右”键开始捕获波形并显示单波形

说明 caption 选择 ON来显示时基和刻度说明，或 OFF来将它们从屏幕上移除

电压 选 ON来显示每个通道的测量电压，或 OFF来将它们从屏幕上移除

格子 选 ON来显示格子线，或 OFF来将他们从显示屏上移除

地 选 ON来显示每个通道对应地平的点状虚线，或 OFF来将它们从屏幕上移除

触发电平 选 ON来显示触发通道对应触发电平的实水平线，或 OFF来将它们从屏幕上移除

触发位置 选 ON来显示触发位置的实垂直线，或 OFF来将它从屏幕上移除

设置

按键音 选 ON来使能按键音，或 OFF来将其禁止

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

451

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

续上表
组 控制 设置

设置 USB模式
选择Host使示波镜处于USB主机模式，允许使用Flash记忆棒或器件作为一个USB

器件进行操作，并允许连接到主机 PC系统

CSV on SD 把当前波形数据保存为 microSD卡的文本文件

CSV on USB
把当前波形数据保存为 USB Flash棒的文本文件（如果处于 USB主机模式，请参

考上面的设置组）

BMP on SD 把当前波形数据保存为 microSD卡的位图
文件

BMP on USB
把当前波形数据保存为 USB Flash棒的位图（如果处于 USB主机模式，请参考上

面的设置组）

帮助 按“左”键连接到示波镜帮助界面，按“右”键隐藏帮助界面

通道 1 按“左”键或“右”键可设置通道 1波形的刻度和位置，使波形在屏幕上显示出来帮助

通道 2 按“左”键或“右”键可设置通道 2波形的刻度和位置，使波形在屏幕上显示出来

示波镜连接

CSTN显示屏面板上的 8个管脚为示波镜的二个通道提供连接，并在缺乏其他合适的信
号时这些管脚也能提供二个用来提供输入的测试信号。每个通道相对于板的接地的输入电压

范围为-16.5V~+16.5V，从而允许可以测量到高达 33V的不同电压。

连接如下所示，其中管脚 1为最左边的管脚，最靠近 microSD卡插槽（socket）：

1 测试 1 把测试信号连接到板上扬声器其中一边

2 通道 1+ 连接到示波镜通道 1的正极

3 通道 1- 连接到示波镜通道 1的负极

4 地 连接到板上的接地端

5 测试 2
把测试信号连接到由 PWM0驱动的板状态 LED上。

此信号被配置来提供一个 1KHz的方波

6 通道 2+ 连接到示波镜通道 2的正极

7 通道 2- 连接到示波镜通道 2的负极

8 地 连接到板上的接地端

触发和采样速率注意事项

示波镜进行采样的最大组合速率为每秒 1M。因此，当二个通道使能时，每个通道的最
大采样速率为每秒 500K。为了在最低时基时能得到最大的分辨率（最大采样速率），在无需
使用通道 2时要将其禁止。这些采样速率使得捕获到的信号的可用波形高达 100KHz。

在 ADC中断处理期间，软件将执行触发检测。在最高采样速率时，这个中断服务程序
在搜索触发条件时几乎占用全部可用的 CPU 周期。而在这些采样速率下，如果设置的触发
电平并不与触发通道信号中发现的电压相符合，那么用户接口响应将会变得缓慢。为了克服

这个问题，示波镜将会中止全部正在挂起的波形捕获操作，如果在捕获周期结束前按下按键。

这就可以防止用户接口被锁定，从而允许把触发电平值或触发类型值更改为更适合于正在测

量的信号。

文件操作

代表着最后一个波形的逗号分隔值（Comma-separated-value）文件和位图文件能被保存

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

452

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

到 microSD卡或一个 USB Flash驱动中。在每一种情况下，文件被写入到 microSD卡或一
个 Flash驱动引导目录中，写入时文件名形式为“scopeXXX.csv”或“scopeXXX.bmp”，这
里的“XXX”表示最低的、三位十进制数值，这个数值提供一个已不存在于器件的文件名。

伴随应用（Companion Application）

一个伴随应用，LMScope，它可以在WindowsXP和Vista PC上运行，并且所需的设备安
装 驱 动 程 序 可 通 过 软 件 CD 获 得 ， 或 可 通 过 在 Luminary Micro 网 站

http://www.luminarymicro.com/products/software_updates.html下载获得。这个应用提供了PC对示
波镜的全部控制，并提供波形显示，甚至把波形保存到本地硬盘中。

使用 FAT文件系统的 SD卡（sd_card）

这个示范应用演示了如何从一个 SD卡里读取一个文件系统。它使用了 FatFs，一个 FAT
文件系统驱动程序。它通过一个串行端口提供一个简单命令控制台来发布命令，以便观看和

控制 SD卡的文件系统。

第一个连接到 Stellaris LM3S3748评估板的 FTDI虚拟串行端口的 UART被配置成每秒
为 115200位，模式为 8-n-1。当程序启动时，报文将在终端打印。输入“帮助”可得到帮助
命令。

有关 FatF的其他详情，请参考以下网站：

http://elm-chan.org/fsw/ff/00index_e.html

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在屏幕

上的指示器。

UART（uart_echo）

这个示范应用使用 UART来显示文本。第一个 UART（连接到评估板的 FTDI虚拟串口）
配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符被发送回 UART中。

uDMA（udma_demo）

这个示范应用演示了如何使用 uDMA 控制器在存储器缓冲区之间进行数据传输，并演
示了如何使用 UART来接收和发送数据。

USB用 bulk设备(usb_dev_bulk)

这个示例演示了一个通用的 USB设备是如何通过主机来接收和发送简单 bulk数据。此
设备使用卖主特定的 class ID，并支持单个 bulk IN端点和单个 bulk OUT端点。在它的当前
形式下，从主机中接收到的任何数据会以逆序字节方式回送。

设备的Windows INF文件由安装CD提供。此文件可以在WindowsXP和Vista中安装
WinUSB子系统，从而允许用户模式应用在无须使用卖主特定的kernel模式驱动程序的情况
下也能访问USB设备。同时也可通过一个Windows命令行应用示例来阐明如何与bulk设备进
行连接和通信。使用VisualStudio 2005所提供的工程文件就可编译此应用示例。设备安装驱
动程序和应用源可从http://www.luminarymicro.com/products/software_updates.html下载，可执

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

453

 广州周立功单片机发展有限公司 第 43 章 EK-LM3S3748 示例应用

行包也可从此网站下载。

USB HID键盘设备（usb_dev_keyboard）

这个示范应用程序把评估板转换成支持人机接口设备（HID）类别的 USB键盘。CSTN
显示屏显示一个虚拟键盘，用户可通过板上的的方向控制键来操纵此虚拟键盘。按下按钮即

是按下突显的按键，把它的扫描代码和移位修改量（shit modifier）（如有需要）发送到 USB
主机。板状态 LED用来指示当前大写锁定键（Caps Lock）的状态，并且 LED被更新以便
对在虚拟键盘按下“Caps”键或按下任何其他连接到同一个 USB主机系统的键盘作出响应。
以下是要发送回主机的 HID报告结构定义。

USB HID鼠标设备（usb_dev_mouse）

这个示范应用程序把评估板转换成一个支持人机接口设备（HID）类别的 USB 鼠标。
对评估板上的操纵控制键进行控制即可转化为对鼠标移动的控制，发送到 USB主机的 HID
报告中的钮按信息将允许评估板在主机系统中控制鼠标指针。

USB串行设备（usb_dev_serial）

这个示范应用程序在连接到一个 USB 主机系统时把评估 kit 板转换成一个虚拟串行端
口。此应用程序支持 USB通信设备类别、重新改变 USB主机系统接收和发送的 UART0通
信量的抽象控制模式。在 Windows2000 系统中，可通过使用 File_usb_dev_serial_win2k.inf
来安装示例程序，从而把评估 kit板转换成虚拟 COM端口。对于WindowsXP或 Vista系统，
应使用 usb_dev_serial.inf。

USB 海量存储类主机 (usb_host_msc)

这个示范应用程序演示了如何把 USB海量存储类设备连接到评估 kit板。当检测到一个
设备时，应用程序显示文件系统的内容并允许使用按键来浏览内容。

看门狗（watchdog）

这个示范应用程序演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期

性地喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地
被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

454

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

第44章 EK-LM3S6965示例应用

44.1 简介

EK-LM3S6965示例应用程序显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控
制器的外设和外设驱动库提供的驱动程序。这些应用主要进行演示，作为新的应用的一个起

点。

有一个供 Stellaris EK-LM3S6965评估 Kit板上的 OSRAM 128×64 4位亮度色标 OLED
图象显示使用的特定驱动程序。

这些示例和显示驱动程序是针对A版本的EK-LM3S6965板，该板使用 128×64 OSRAM
显示屏。通过观看电路板的背面、在与 JTAG 标题相对的地方，就可以确认该板是否为 A
版本板，因为板零件编号就位于那里，且以“A”结尾。如果板零件编号以“C”结尾，那
么请参考 EK-LM3S6965 Rec C示例应用示例这一章。

有一个 IAR 工作空间文件（ek-lm3s6965.eww），它包含外设驱动库项目和所有板示例
项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s6965-ewarm4.eww）。

Keil多项目工作空间文件（ek-lm3s6965.mpw），它包含外设驱动库项目和所有板示例项
目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s6965子目录下。

44.2 API函数

函数

 void OSRAM128x64x4Clear (void)；
 void OSRAM128x64x4Disable (void；
 void OSRAM128x64x4DisplayOff (void)；
 void OSRAM128x64x4DisplayOn (void)；
 void OSRAM128x64x4Enable (unsigned long ulFrequency)；
 void OSRAM128x64x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void OSRAM128x64x4Init (unsigned long ulFrequency)；
 void OSRAM128x64x4StringDraw (const char *pcStr, unsigned long ulX, unsigned

long ulY,unsigned char ucLevel)。

44.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用程序使用的函数原型的头文件。

44.2.2 函数文件

44.2.2.1 OSRAM128x64x4Clear

清除 OLED显示屏。

函数原型：

void

OSRAM128x64x4Clear(void)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

455

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

描述：

此函数将清除显示 RAM。显示屏的所有像素关闭。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.2 OSRAM128x64x4Disable

使能 OLED显示驱动程序中的 SSI组成部分。

函数原型：

void

OSRAM128x64x4Disable(void)

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.3 OSRAM128x64x4DisplayOff

关闭 OLED显示屏。

函数原型：

void

OSRAM128x64x4DisplayOff(void)

描述：

此函数将关闭 OLED显示屏。这将会停止面板扫描，关闭片内 DC-DC转换器，防止老
化对面板造成损坏（在这方面它有与 CRT类似的特性）。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.4 OSRAM128x64x4DisplayOn

开启 OLED显示屏。

函数原型：

void

OSRAM128x64x4DisplayOn(void)

描述：

此函数将开启 OLED显示屏，显示其内部帧缓冲区的内容。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.5 OSRAM128x64x4Enable

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

456

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

使能 OLED显示驱动程序的 SSI组成部分。

函数原型：

void

OSRAM128x64x4Enable(unsigned long ulFrequency)

参数：

ulFrequency指定要用到的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.6 OSRAM128x64x4ImageDraw

在 OLED上显示一个图象。

函数原型：

void

OSRAM128x64x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ulWidth是图象的宽度，以列来指定。

ulHeight是图象的高度，以行来指定。

描述：

此函数在显示屏上显示一个位图图像。由于显示 RAM 格式的原因，起始列（ulX）和
列数（ulWidth）必须是 2的整数倍。

图象数据组织过程如下：第一行图象数据从左到右显示，后面紧接着第二行图象数据。

每个字节包含当前行中的两列数据，最左边的列将包含在位 7:4中，最右边的列则将包含在
位 3:0中。

例如，一个 6列宽和 7条扫描线高的图象显示安排如下（显示了图象的二十一个字节是
如何出现在显示屏上）：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

457

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.7 OSRAM128x64x4Init

初始化 OLED显示屏。

函数原型：

void

OSRAM128x64x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示，并配置面板上的 SSD0323控制器。

此函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

返回：

无。

44.2.2.8 OSRAM128x64x4StringDraw

在 OLED上显示一个字符串。

函数原型：

void

OSRAM128x64x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

458

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

参数：

pcStr是要显示的字符串的指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是字符串显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ucLevel：4位灰度值，用来显示文本。

描述：

此函数将在显示屏上绘制字符串。只支持 32（空格（space））至 126（~（tilde））的 ASCII
字符；其它字符将会导致在显示屏上绘制随机数据（这取决于哪一个字符在字型存储器之前

/之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要比类似“m”
或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不能再绘制字符了。因此，不再需要特别注

意避免提供过长的字符串而导致无法显示的情况。

这个函数包含在 osram128x64x4.c中，osram128x64x4.h包含应用使用的 API定义。

注：因为 OLED显示屏在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶数列（如 0、2、

4等）。

返回：

无。

44.3 范例

Bit-Banding（bitband）

这个示范应用程序演示了如何使用 Cortex-M3微处理器 bit-banding功能。所有的 SRAM
和外设都位于 bit-band区，这就意味者可以对它们应用 bit-banding操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的用法。由引导加载程序启动后，应用程
序将会配置 UART，并分跳转回引导加载程序，等待着启动更新。UART 总是会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用编程到 Flash中。然后，引导加载程序将用另一个应用
程序来取代这个应用程序。

把 boot_demo2应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是在更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了如何使用引导加载程序（boot loader）。由引导加载程序启动后，应用将
会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。UART

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

459

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

总是会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序来取代这个应用程序。

把 boot_demo1应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是更新片内 Flash。

具有 lwIP的以太网（enet_Iwip）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

文件系统代码首先将会查看 SD卡是否已插入 microSD插槽中。如果已插入，来自网站
服务器的全部文件请求将移入到 SD卡。否则，将使用由内部文件系统提供的一系列默认页。

有关 lwIP的其他详情，请在以下网址参考 lwIP的网页：

http://www.sics.se/_adam/lwip/

具有lwIP的以太网IEEE 1588（PTPd）（enet_ptpd）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

一系列默认页将由内部文件系统和 httpd服务器提供。

IEEE 1588（PTP）软件已在这个代码中被使能，以使其与网络主机时钟源的内部时钟
同步。

有关 lwIP的其他详情，请在以下网址参考 lwIP网页：

http://www.sics.se/_adam/lwip/

有关 PTPd软件的其他详情，请在以下网址参考 PTPd网页：

http://ptpd.sourceforge.net

具有 uIP的以太网（enet_uip）

此示例应用程序演示了如何使用 uIP TCP/IP 协议栈来对 Stellaris 以太网控制器进行操
作。可通过以太网端点来访问一个本地连接地址为 169.254.19.63的网站。如果网络节点已选
用了此本地连接地址，那么应用程序不会执行任何操作来选择另一个地址，因此将发生地址

冲突。网站显示几行文本，计数器在每次发送页时递增（加 1）。

有关 uIP的其他详情，请参考 uIP网页：http://www.sics.se/_adam/uip/

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

460

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

图例（graphics）

一个简单的应用，在 OLED显示屏的顶端行显示滚动文本和一个 4位亮度色标的图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用的一个起点。

中断（interrupts）

这个示范应用程序演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当
多个中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时

将出现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在

OLED上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之
前变为无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观

察末尾连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用程序演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个
非法访问时，演示了MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用程序使用PWM外设输出一个占空比为 25％的PWM信号和一个占空比为
75％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，
不执行任何操作，而 PWM外设持续输出信号。

EK-LM3S6965快速入门应用（qs_ek-Im3s6965）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并必须要找到该迷宫的出口；游戏不

断地重复这过程。

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的时间，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

游戏通过以太网端口提供一个小网站。DHCP 用来获取一个以太网地址。如果 DHCP
超时，且未获取到地址，那么将使用一个静态 IP地址。使用宏来配置 DHCP超时和默认静

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

461

 广州周立功单片机发展有限公司 第 44 章 EK-LM3S6965 示例应用

态 IP是很容易的。被选的地址将在游戏启动前被 OLED显示出来。网页允许观看到整个游
戏迷宫、字符和星星；显示由从游戏中下载到的 Java applet产生（因此要求 web浏览器安
装 Java）。游戏音乐的音量和音效是可调的。

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，显示屏将关闭，且用户 LED 闪烁。按下选择按键，退出屏
幕保护程序（变幻线或空白显示）。若要开始游戏，再次按下选择按钮即可。

使用 FAT文件系统的 SD卡（sd_card）

这个示范应用程序演示了如何从一个 SD 卡里读取一个文件系统。它使用了 FatFs，一
个 FAT 文件系统驱动程序。它通过一个串行端口提供一个简单命令控制台来发布命令，以
便观看和控制 SD卡的文件系统。

第一个连接到 Stellaris LM3S6965评估板的 FTDI虚拟串行端口的 UART被配置成每秒
为 115200位，模式为 8-n-1。当程序启动时，报文将在终端打印。输入“帮助”可得到帮助
命令。

有关 FatFs的其他详情，请参考以下网站：

http://elm-chan.org/fsw/ff/00index_e.html

定时器（timers）

这个示范应用演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每秒产

生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在屏幕

上的指示器。

UART（uart_echo）

这个示范应用程序使用 UART来显示文本。第一个 UART（连接到评估板的 FTDI虚拟
串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符被发送回 UART
中。

看门狗（watchdog）

这个示范应用演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期性地

喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地被观
察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

462

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

第45章 C版本 EK-LM3S6965示例应用

45.1 简介

C 版本 EK-LM3S6965 示例应用程序显示了如何使用 Cortex-M3 微处理器的特性、
Stellaris微控制器的外设和外设驱动库提供的驱动程序。这些应用程序主要进行演示，作为
新的应用程序的一个起点。

有一个供 Stellaris C版本的 EK-LM3S6965评估 Kit板上的 RiTdisplay128x96 4位亮度色
标 OLED图象显示屏使用的特定驱动程序。

这些示例和显示驱动程序是针对 C 版本的 EK-LM3S6965 板，该板使用 128×96
RiTdisplay显示屏。通过观看电路板的背面、在与 JTAG标题相对的地方，就可以确认该板
是否为 C版本板，因为板零件编号就位于那里，且以“C”结尾。如果板零件编号以“A”
结尾，那么请参考 EK-LM3S6965示例应用示例这一章。

有一个 IAR 工作空间文件（ek-lm3s6965_revc.eww），它包含外设驱动库项目和所有板
示例项目，简而言之，5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s6965_revc-ewarm4.eww）。

有一个 Keil 多项目工作空间文件（ek-lm3s6965_revc.mpw），它包含外设驱动库项目和
所有板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的范例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s6965_revc子目录下。

45.2 API函数

函数

 void RIT128x96x4Clear (void)；
 void RIT128x96x4Disable (void)；
 void RIT128x96x4DisplayOff (void)；
 void RIT128x96x4DisplayOn (void)；
 void RIT128x96x4Enable (unsigned long ulFrequency)；
 void RIT128x96x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void RIT128x96x4Init (unsigned long ulFrequency)；
 void RIT128x96x4StringDraw (const char *pcStr, unsigned long ulX, unsigned long

ulY, unsigned char ucLevel)。

45.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

45.2.2 函数文件

45.2.2.1 RIT128x96x4Clear

清除 OLED显示屏。

函数原型：

void

RIT128x96x4Clear(void)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

463

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

描述：

此函数将清除显示 RAM。显示屏的所有像素关闭。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.2 RIT128x96x4Disable

使能 OLED显示屏驱动程序中的 SSI组成部分。

函数原型：

void

RIT128x96x4Disable(void)

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.3 RIT128x96x4DisplayOff

关闭 OLED显示。

函数原型：

void

RIT128x96x4DisplayOff(void)

描述：

此函数将关闭 OLED显示。这将会停止面板扫描，关闭片内 DC-DC转换器，防止老化
对面板造成损坏（在这方面它有与 CRT类似的特性）。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.4 RIT128x96x4DisplayOn

开启 OLED显示。

函数原型：

void

RIT128x96x4DisplayOn(void)

描述：

此函数将开启 OLED显示，显示其内部帧缓冲区的内容。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.5 RIT128x96x4Enable

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

464

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

使能 OLED显示驱动程序的 SSI组成部分。

函数原型：

void

RIT128x96x4Enable(unsigned long ulFrequency)

参数：

ulFrequency指定要用到的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.6 RIT128x96x4ImageDraw

在 OLED上显示一个图象。

函数原型：

void

RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ulWidth是图象的宽度，以列来指定。

ulHeight是图象的高度，以行来指定。

描述：

此函数在显示屏上显示一个位图图像。由于显示 RAM 格式的原因，起始列（ulX）和
列数（ulWidth）必须是 2的整数倍。

图象数据组织过程如下：第一行图象数据从左到右显示，后面紧接着第二行图象数据。

每个字节包含当前行中的两列数据，最左边的列将包含在位 7:4中，最右边的列则将包含在
位 3:0中。

例如，一个 6列宽和 7条扫描线高的图象显示安排如下（显示了图象的二十一个字节是
如何出现在显示屏上）：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

465

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.7 RIT128x96x4Init

初始化 OLED显示屏。

函数原型：

void

RIT128x96x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示，并配置面板上的 SSD1329控制器。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

45.2.2.8 RIT128x96x4StringDraw

在 OLED上显示一个字符串。

函数原型：

void

RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

466

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

参数：

pcStr是要显示的字符串的指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是字符串显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ucLevel是 4位灰度值，用来显示文本。

描述：

此函数将在显示屏上绘制字符串。只支持 32（空格（space））至 126（~（tilde））的 ASCII
字符；其它字符将会导致在显示屏上绘制随机数据（这取决于哪一个字符在字型存储器之前

/之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要比类似“m”
或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不能再绘制字符了。因此，不再需要特别注

意避免提供过长的字符串而导致无法显示的情况。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用程序使用的 API定义。

注：因为 OLED显示屏在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶数列（如 0、2、

4等）。

返回：

无。

45.3 示例

Bit-Banding（bitband）

这个示范应用程序演示了如何使用 Cortex-M3 微处理器 bit-banding 功能操作。所有的
SRAM和外设都位于 bit-band区，这就意味者可以对它们应用 bit-banding操作。在这个例子
中，用 bit-banding操作将 SRAM中的一个变量设置成一个特定的值，一次设置一位（这比
执行一次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。通过引导加载程序启动后，应用
程序将会配置 UART，并跳转回引导加载程序，等待启动更新。UART 总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序来取代这个应用程序。

把 boot_demo2应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是在更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。通过引导加载程序启动后，应用
程序将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待启动更新。。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

467

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

UART总是会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序来取代这个应用程序。

把 boot_demo1应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是更新片内 Flash。

基于 lwIP的以太网（enet_Iwip）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

文件系统代码首先将会查看 SD卡是否已插入 microSD插槽中。如果已插入，来自网站
服务器的全部文件请求将移入到 SD卡。否则，将使用由内部文件系统提供的一系列默认页。

有关 lwIP的其他详情，请参考 lwIP网页：http://www.sics.se/_adam/lwip/

基于 lwIP的以太网 IEEE1588（PTPd）（enet_ptpd）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

一系列默认页将由内部文件系统和 httpd服务器提供。

IEEE 1588（PTP）软件已在这个代码中被使能，以使其与网络主机时钟源的内部时钟
同步。

有关 lwIP的其他详情，请参考 lwIP网页：http://www.sics.se/_adam/lwip/

有关 PTPd软件的其他详情，请参考 PTPd网页：http://ptpd.sourceforge.net

基于 uIP的以太网（enet_uip）

此示例应用程序演示如何使用 uIP TCP/IP协议栈来对 Stellaris以太网控制器进行操作。

通过一个本地连接地址为169.254.19.63的以太网端口来访问网站，如果网络的节点已选用了
此本地连接地址，那么应用不会执行任何操作来选择另一个地址，因此将发生地址冲突。网

站显示几行文本，计数器在每次发送页时递增（加1）。

有关 uIP的其他详情，请参考 uIP网页：http://www.sics.se/_adam/uip/

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

468

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

图例（graphics）

一个简单的应用程序，在 OLED 显示屏的顶端行显示滚动文本和一个 4 位亮度色标的
图象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用的一个起点。

中断（interrupts）

这个示范应用程序演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当
多个中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时

将出现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在

OLED上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之
前变为无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观

察末尾连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用程序演示了如何使用MPU来保护一个存储器区不被访问，并在存在一个
非法访问时，演示了MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用程序使用PWM外设输出一个占空比为 25％的PWM信号和一个占空比为
75％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，
不执行任何操作，而 PWM外设持续输出信号。

C版本 EK-LM3S6965快速入门应用（qs_ek-Im3s6965_revc）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并必须要找到该迷宫的出口；游戏不

断地重复这过程。

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的时间，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

游戏通过以太网端口来提供一个小网站。DHCP用来获取一个以太网地址。如果 DHCP
超时，且未获取到地址，那么将使用一个静态 IP地址。使用宏来配置 DHCP超时和默认静
态 IP是很容易的。被选的地址将在游戏启动前被 OLED显示出来。网页允许观看到整个游
戏的迷宫、字符和星星；显示内容由从游戏中下载到的 Java applet产生（因此要求 web浏
览器安装 Java）。游戏音乐的音量和音效是可调的。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

469

 广州周立功单片机发展有限公司 第 45 章 C 版本 EK-LM3S6965 示例应用

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，显示屏将关闭，且用户 LED 闪烁。按下选择按键，退出屏
幕保护程序（变幻线或空白显示）。若要开始游戏，再次按下选择按钮即可。

使用 FAT文件系统的 SD卡（sd_card）

这个示范应用程序演示了如何从一个 SD 卡里读取一个文件系统。它使用了 FatFs，一
个 FAT 文件系统驱动程序。它通过一个串行端口提供一个简单命令控制台来发布命令，以
便观看和控制 SD卡的文件系统。

第一个连接到 Stellaris LM3S6965评估板的 FTDI虚拟串行端口的 UART被配置成每秒
为 115200位，模式为 8-n-1。当程序启动时，报文将在终端打印。输入“帮助”可得到帮助
命令。

有关FatFs的其他详情，请参考此网站：http://elm-chan.org/fsw/ff/00index_e.html。

定时器（timers）

这个示范应用程序演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每

秒产生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在

屏幕上的指示器。

UART（uart_echo）

这个示范应用程序使用 UART来显示文本。第一个 UART（连接到评估板的 FTDI虚拟
串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符被发送回 UART
中。

看门狗（watchdog）

这个示范应用程序演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期

性地喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地
被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

470

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

第46章 EK-LM3S811示例应用

46.1 简介

EK-LM3S811示例应用程序显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控
制器的外设和外设驱动库提供的驱动程序。这些应用程序主要进行演示，作为新的应用程序

的一个起点。

有一个供 Stellaris LM3S811评估 Kit板上的 OSRAM 96x16 OLED图象显示使用的特定
驱动程序。

有一个 IAR工作空间文件（ek-lm3s811.eww），它包含外设驱动库项目和所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s811-ewarm4.eww）。

有一个 Keil多项目工作空间文件（ek-lm3s811.mpw），它包含外设驱动库项目和所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s811子目录下。

46.2 API函数

函数

 void OSRAM96x16x1Clear (void)；
 void OSRAM96x16x1DisplayOff (void)；
 void OSRAM96x16x1DisplayOn (void)；
 void OSRAM96x16x1ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void OSRAM96x16x1Init (tBoolean bFast)；
 void OSRAM96x16x1StringDraw (const char *pcStr, unsigned long ulX, unsigned long

ulY)。

46.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用程序使用的函数原型的头文件。

程序库提供宏来把 OSRMA 驱动程序的旧函数名映射到新函数名中（如把 OSRAMInit
映射到 OSRAM96x16x1Init）。这些新名字使所用的面板类型更具描述性。映射旧函数名的
宏具有向后兼容的功能。

46.2.2 函数文件

46.2.2.1 OSRAM96x16x1Clear

清除 OLED显示屏。

函数原型：

void

OSRAM96x16x1Clear(void)

描述：

此函数将清除显示 RAM。显示屏的所有像素关闭。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

471

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.2.2.2 OSRAM96x16x1DisplayOff

关闭 OLED显示。

函数原型：

void

OSRAM96x16x1DisplayOff(void)

描述：

此函数将关闭 OLED显示屏。这将会停止面板扫描，并关闭片内 DC-DC转换器，以防
止老化对面板造成损坏（在这方面它有与 CRT类似的特性）。

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.2.2.3 OSRAM96x16x1DisplayOn

开启 OLED显示屏。

函数原型：

void

OSRAM96x16x1DisplayOn(void)

描述：

此函数将开启 OLED显示，显示其内部帧缓冲区的内容。

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.2.2.4 OSRAM96x16x1ImageDraw

在 OLED上显示一个图象。

函数原型：

void

OSRAM96x16x1ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以 8个扫描线块来指定（即，只有

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

472

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

0和 1是有效的）。

ulWidth是图象的宽度，以列来指定。

ulHeight是图象的高度，以 8个行块（row block）来指定（即，只有 1和 2是有效的）。

描述：

此函数在显示屏上显示一个位图图像。要显示的图象必须是 8条扫描线高度（即 1行）
的整数倍，并将在 8条扫描线的整数倍的垂直位置上显示（即，与扫描线 0（或扫描线 8）
相对应的就是行 0（或行 1））。

图象数据组织过程如下：第一行图象数据从左到右显示，随后显示第二行图象数据。每

个字节包含列的 8条扫描线数据，最顶的扫描线位于字节的最低位，最低的扫描线位于字节
的最高位。

例如，一个 4列宽和 16条扫描线高的图象显示安排如下（显示了图象的 8个字节是如
何出现在显示屏上）：

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.2.2.5 OSRAM96x16x1Init

初始化 OLED显示。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

473

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

void

OSRAM96x16x1Init(tBoolean bFast)

参数：

bFast是逻辑值，如果I2C接口以 400Kbps速率运行，它的值为True；如果如果I2C接口以
100Kbps速率运行，则它的值为False。

描述：

此函数初始化I2C接口进行OLED显示，并配置面板上的SSD0303控制器。

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.2.2.6 OSRAM96x16x1StringDraw

在 OLED上显示一个字符串。

函数原型：

void

OSRAM96x16x1StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY)

参数：

pcStr是要显示的字符串的指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是字符串显示的垂直位置，从用显示屏的端边沿起，以 8个扫描线块来指定（即，
只有 0和 1是有效的）。

描述：

此函数将在显示屏上绘制字符串。只支持 32（空格（space））至 126（~（tilde））的 ASCII
字符；其它字符将会导致在显示屏上绘制随机数据（这取决于哪一个字符在字型存储器之前

/之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要比类似“m”
或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不能再绘制字符了。因此，不再需要特别注

意避免提供过长的字符串而导致无法显示的情况。

此函数包含在 osram96x16x1.c中，osram96x16x1.h包含应用使用的 API定义。

返回：

无。

46.3 示例

Bit-Banding（bitband）

这个示范应用程序演示了 Cortex-M3 微处理器 bit-banding 功能的使用。所有的 SRAM
和外设都位于 bit-band区，这就意味者可以对它们应用 bit-banding操作。在这个例子中，用
bit-banding 作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一次
简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

474

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。通过引导加载程序启动后，应用
程序将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序取代这一个应用程序。

把 boot_demo2应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是在更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了引导加载程序（boot loader）的使用。通过引导加载程序启动后，应用
程序将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待着启动更新。
UART总是会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序取代这一个应用程序。

把 boot_demo1应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是更新片内 Flash。

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。注意：由于 Bx版本和 C0版本的 Sandstorm-class Stellaris微控
制器中存在错误，因此，如果 PB7配置用作 GPIO，那么 JTAG和 SWD都将不能工作。这
个错误在 C2版本的 Sandstorm-class Stellaris微控制器中修改过来。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用程序的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 LCD
上显示出来；GPIO管脚 D0-D2在执行中断服务程序时有效；在退出中断处理程序之前变为

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

475

 广州周立功单片机发展有限公司 第 46 章 EK-LM3S811 示例应用

无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用程序演示了如何使用MPU来保护访问一个存储器区不被访问，并在存在
一个非法访问时，演示了MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用程序使用PWM外设输出一个占空比为 25％的PWM信号和一个占空比为
75％的 PWM信号，两个信号的频率都为 50KHz。一旦配置完成，应用就进入一个死循环，
不执行任何操作，而 PWM外设持续输出信号。

EK-LM3S811快速入门应用（qs_ek-Im3s811）

这是船在一个无尽的隧道中航行的游戏。电位器用来使船向前或向后移动，用户按键用

来发射炮弹摧毁隧道中的障碍物。对幸存者和摧毁的障碍物进行计分。游戏持续到只有一艘

船的情况；游戏进行过程中分数通过一个虚拟的 UART（波特率：115,200，模式：8-N-1）
来显示，游戏结束时在屏幕上显示出来。

由于评估板上的 OLED显示屏具有与 CRT类似的老化（burn-in）特性，因此这个应用
也含有屏保。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏过程

中，屏保不会出现）。运行 Game of Life时，也一并运行作为种子值（seed value）的一系列
随机数据。

屏保程序运行超过两分钟，处理器将进入冬眠模式，用户 LED 闪烁。任何一种屏保模
式（Game of Life或空白显示）都可以通过点击用户按键来退出。若要开始游戏，再次按下
用户按键即可。

定时器（timers）

这个示范应用程序演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每

秒产生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在

屏幕上的指示器。

UART（uart_echo）

这个示范应用程序使用 UART 来显示文本。第一个 UART（连接到 Stellaris LM3S811
评估板的 FTDI虚拟串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有
字符被发送回 UART中。

看门狗（watchdog）

这个示范应用程序演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期

性地喂狗，将会使系统复位。每当看门狗被喂狗时，连接到端口 C5 的 LED 就翻转，这样
喂狗就能很容易地被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

476

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

第47章 EK-LM3S8962示例应用

47.1 简介

EK-LM3S8962示例应用程序显示了如何使用 Cortex-M3微处理器的特性、Stellaris微控
制器的外设和外设驱动库提供的驱动程序。这些应用程序主要进行演示，作为新的应用程序

的一个起点。

有一个供 Stellaris LM3S8962评估 Kit板上的 RiTdisplay 128x96 4位亮度色标 OLED图象
显示使用的特定驱动程序。

有一个 IAR 工作空间文件（ek-lm3s8962.eww），它包含外设驱动库项目和所有板示例
项目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（ek-lm3s8962-ewarm4.eww）。

有一个 Keil 多项目工作空间文件（ek-lm3s8962.mpw），它包含外设驱动库项目和所有
板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

所有的示例都位于外设驱动库源文件(distribution)的 boards/ek-lm3s8962子目录下。

47.2 API函数

函数

 void RIT128x96x4Clear (void)；
 void RIT128x96x4Disable (void)；
 void RIT128x96x4DisplayOff (void)；
 void RIT128x96x4DisplayOn (void)；
 void RIT128x96x4Enable (unsigned long ulFrequency)；
 void RIT128x96x4ImageDraw (const unsigned char *pucImage, unsigned long ulX,

unsigned long ulY, unsigned long ulWidth, unsigned long ulHeight)；
 void RIT128x96x4Init (unsigned long ulFrequency)；
 void RIT128x96x4StringDraw (const char *pcStr, unsigned long ulX, unsigned long

ulY, unsigned char ucLevel)。

47.2.1 详细描述

每个 API指定了包含它的源文件和提供了应用使用的函数原型的头文件。

47.2.2 函数文件

47.2.2.1 RIT128x96x4Clear

清除 OLED显示。

函数原型：

void

RIT128x96x4Clear(void)

描述：

此函数将清除显示 RAM。显示屏的所有像素关闭。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用程序使用的 API定义。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

477

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

返回：

无。

47.2.2.2 RIT128x96x4Disable

使能 OLED显示驱动程序的 SSI组成部分

函数原型：

void

RIT128x96x4Disable(void)

描述：

这个函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.3 RIT128x96x4DisplayOff

关闭 OLED显示。

函数原型：

void

RIT128x96x4DisplayOff(void)

描述：

这个函数关闭 OLED显示屏。它将会停止面板的扫描，关闭片内 DC-DC转换器，防止
老化（burn-in）对面板造成损害（在这方面它有与 CRT类似的特性）。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.4 RIT128x96x4DisplayOn

开启 OLED显示。

函数原型：

void

RIT128x96x4DisplayOn(void)

描述：

这个函数开启 OLED显示，使 OLED显示其内部帧缓冲区的内容。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.5 RIT128x96x4Enable

使能 OLED显示驱动程序的 SSI组成部分。
函数原型：

void
RIT128x96x4Enable(unsigned long ulFrequency)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

478

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

这个函数初始化 SSI接口进行 OLED显示。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.6 RIT128x96x4ImageDraw

在 OLED上显示一个图象。

函数原型：

void

RIT128x96x4ImageDraw(const unsigned char *pucImage,

unsigned long ulX,

unsigned long ulY,

unsigned long ulWidth,

unsigned long ulHeight)

参数：

pucImage是指向图象数据的指针。

ulX是图象显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是图象显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ulWidth是图象的宽度，以列来指定。

ulHeight是图象的高度，以行来指定。

描述：

此函数在显示屏上显示一个位图图像。由于显示 RAM 格式的原因，起始列（ulX）和
列数（ulWidth）必须是 2的整数倍。

图象数据组织过程如下：第一行图象数据从左到右显示，随后显示第二行图象数据。每

个字节包含当前行中的两列数据，最左边的列将包含在位 7:4中，最右边的列则将包含在位
3:0中。

例如，一个 6列宽和 7条扫描线高的图象显示安排如下（显示了图象的二十一个字节是
如何出现在显示屏上）：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

479

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.7 RIT128x96x4Init
初始化 OLED显示。

函数原型：

Void

RIT128x96x4Init(unsigned long ulFrequency)

参数：

ulFrequency指定要使用的 SSI时钟频率。

描述：

此函数初始化 SSI接口进行 OLED显示，并配置面板上的 SSD1329控制器。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

返回：

无。

47.2.2.8 RIT128x96x4StringDraw
在 OLED上显示一个字符串。

函数原型：

Void

RIT128x96x4StringDraw(const char *pcStr,

unsigned long ulX,

unsigned long ulY,

unsigned char ucLevel)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

480

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

参数：

pcStr是要显示的字符串的指针。

ulX是字符串显示的水平位置，从显示屏的左边沿起，以列来指定。

ulY是字符串显示的垂直位置，从显示屏的顶边沿起，以行来指定。

ucLevel是 4位灰度值，用来显示文本。

描述：

此函数将在显示屏上绘制字符串。只支持 32（空格（space））至 126（~（tilde））的 ASCII
字符；其它字符将会导致在显示屏上绘制随机数据（这取决于哪一个字符在字型存储器之前

/之后出现）。由于字体是等宽字体，因此类似“i”和“I”字符周围的空白处要比类似“m”
或“w”字符的多。

如果绘制的字符串到达了显示屏的右边，就不能再绘制字符了。因此，不再需要特别注

意避免提供过长的字符串而导致无法显示的情况。

此函数包含在 rit128x96x4.c中，rit128x96x4.h包含应用使用的 API定义。

注：因为 OLED显示屏在单个字节中压缩 2个数据像素，所以参数 ulX必须是一个偶数列（如 0、2、

4等）。

返回：

无。

47.3 示例

Bit-Banding（bitband）

这个示范应用程序演示了如何使用 Cortex-M3微处理器 bit-banding功能。所有的 SRAM
和外设都位于 bit-band区，这就意味者可以对它们应用 bit-banding操作。在这个例子中，用
bit-banding 操作将 SRAM 中的一个变量设置成一个特定的值，一次设置一位（这比执行一
次简单的 non-bit-baned写操作效率更高；这个示例简单演示了 bit-banding的操作）。

闪烁（blinky）

一个使板上的 LED闪烁的非常简单的例子。

引导加载程序演示 1（boot_demo1）

这个示范演示了引导加载程序（boot loader）的使用。通过引导加载程序启动后，应用
程序将会配置 UART，并跳转回引导加载程序，等待着启动更新。UART总是将会被配置成
115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序来取代这一个应用程序。

把 boot_demo2应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是在更新片内 Flash。

引导加载程序演示 2（boot_demo2）

这个示范演示了基于 ROM的引导加载程序（boot loader）的使用。通过引导加载程序
启动后，应用程序将会配置 UART，等待选择按键被按下，然后跳转回引导加载程序，等待

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

481

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

着启动更新。UART总是会被配置成 115200波特，且不需要使用自动波特率（auto-bauding）。

引导加载程序和应用程序都必须被放置到 Flash 中。一旦引导加载程序处在 Flash 中，
那么也可以用引导加载程序来把应用程序编程到 Flash中。然后，引导加载程序将用另一个
应用程序来取代这一个应用程序。

把 boot_demo1应用程序与这个应用程序结合使用，就可以很容易证明引导加载程序实
际上是更新片内 Flash。

CAN设备板 LED应用（can_device_led）

这个范例演示了如何把板上的两个按键当作一个灯开关来使用。当按“up”键时，状态
LED点亮；当按“down”键时，状态 LED熄灭。

CAN设备板快速入门应用(can_device_qs)

此应用程序使用了 CAN控制器来与正在运行示例游戏的评估板进行通信。应用程序通
过 CAN 来点亮、熄灭设备板上的 LED 或通过 CAN 来给板上的 LED 送去一个脉冲，从而
接收报文。当用户按住“up”或“down”键时，或松开按键时，应用程序发送 CAN报文。

基于 lwIP的以太网（enet_Iwip）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

文件系统代码首先将会查看 SD卡是否已插入 microSD插槽中。如果已插入，来自网站
服务器的全部文件请求将移入到 SD卡。否则，将使用由内部文件系统提供一系列默认页。

有关 lwIP的其他详情，请参考 IwIP网页：http://www.sics.se/_adam/lwip/

基于 lwIP的以太网 IEEE1588（PTPd）（enet_ptpd）

这个示例应用程序演示了如何使用 lwIP TCP/IP协议栈来对 Stellaris以太网控制器进行
操作。DHCP 用来获取以太网地址。如果 DHCP 超时，且未获取到地址，那么将使用一个
静态 IP地址。使用宏来配置 DHCP超时和默认静态 IP是很容易的。被选的地址将在 OLED
上显示出来。

一系列默认页将由内部文件系统和 httpd服务器提供。

IEEE 1588（PTP）软件已在这个代码中被使能，以使其与网络主机时钟源的内部时钟
同步。

可以用二种方式来执行接收包时间戳（timestamping）。默认模式用 Stellaris 硬件时间戳
机制，它通过使用定时器 3B来捕获以太网包接收时间。如果器件不支持硬件时间戳或应用随着
评估 Kit板的“选择”键被按下而启动时，则使用软件时间戳。

有关 lwIP的其他详情，请参考 lwIP网页：http://www.sics.se/~adam/lwip/

有关 PTPd软件的其他详情，请参考 PTPd网页：http://ptpd.sourceforge.net

基于 uIP的以太网（enet_uip）

这个示例应用程序演示了如何使用uIP TCP/IP协议栈来对Stellaris以太网控制器进行操
作。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

482

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

通过本地连接地址为169.254.19.63的以太网端口来访问一个网站，如果网络节点已选用了此
本地连接地址，那么应用不会执行任何操作来选择另一个地址，因此将发生地址冲突。网站

显示几行文本，计数器在每次发送页时递增（加1）。

有关 uIP的其他详情，请参考 uIP网页：http://www.sics.se/~adam/uip/

GPIO JTAG恢复（gpio_jtag）

这个示例演示了将 JTAG脚变为 GPIO的操作和将 GPIO变回 JTAG管脚的方法。首次
运行时管脚保持在 JTAG模式。通过点击选择按键使管脚在 JTAG模式和 GPIO模式之间切
换。由于在硬件或软件上按键都没有去抖保护，所以一次按键的点击可能会造成多次模式的

改变。

在这个示例中，全部 5 个管脚（PB7、PC0、PC1、PC2 和 PC3）都被切换，虽然更常
用的是 PB7被切换成 GPIO。

图例（graphics）

一个简单的应用程序，它在 OLED 显示屏的顶行显示滚动文本和一个 4 位亮度色标图
象。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用程序的一个起点。

中断（interrupts）

这个示范应用演示了 Cortex-M3微处理器和 NVIC的中断抢占和末尾连锁功能。当多个
中断有相同的优先级、优先级递增和优先级递减时，嵌套中断被综合。在优先级递增时将出

现抢占；在另外两种情况下出现末尾连锁。当前挂起的中断和当前执行的中断都将在 OLED
上显示出来；GPIO管脚 B0-B2在执行中断服务程序时有效；在退出中断处理程序之前变为
无效。这样就可以通过示波器观测到管脚无效到有效的时间，或者用逻辑分析仪来观察末尾

连锁的速度（这针对的是出现末尾连锁的两种情况）。

MPU（mpu_fault）

这个示范应用程序演示了如何使用MPU来保一个存储器区不被访问，并在存在一个非
法访问时，演示了MPU是如何产生一个存储器管理错误。

PWM（pwmgen）

这个示范应用程序使用PWM外设输出一个占空比为 25％的PWM信号和一个占空比为
75％的 PWM信号，两个信号的频率都为 440Hz。一旦配置完成，应用就进入一个死循环，
不执行任何操作，而 PWM外设持续输出信号。

EK-LM3S8962快速入门应用（qs_ek-Im3s8962）

这是一个 blob-like 字符尝试在迷宫中寻找出口的游戏。字符在迷宫的中间开始出发，
而且必须要找到出口，而出口通常是位于迷宫的四个角落中的其中一个角落。一旦定位好迷

宫的出口，那么字符将会被放置到一个新迷宫的中间，并必须要找到该迷宫的出口；游戏不

断地重复这过程。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

483

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

点击板上右边的选择按钮，就可以开始游戏。在游戏过程中，点击选择按钮，就会朝字

符当前所在的方向发射一个子弹；点击板上左边的导航按钮，字符将按相应的方向前进。

在迷宫中有许多不停旋转的星星，它们无序地对字符进行攻击。如果字符与其中任一星

星相碰撞，则游戏结束，但是当子弹射击时，星星会自动避开。

对击中的星星数量和找到迷宫出口的数量进行计分。游戏持续到只有一个字符的情况，

游戏过程中得分在虚拟 UART（波特率为 115200、模式为 8-N-1）上显示，游戏结束时在屏
幕上显示出来。

游戏通过以太网端口来提供一个小网站。DHCP用来获取一个以太网地址。如果 DHCP
超时，且未获取到地址，那么将使用一个静态 IP地址。使用宏来配置 DHCP超时和默认静
态 IP是很容易的。被选的地址将在游戏启动前被 OLED显示出来。网页允许观看到整个游
戏的迷宫、字符和星星；显示内容由从游戏中下载到的 Java applet产生（因此要求 web浏
览器安装 Java）。游戏音乐的音量和音效是可调的。

如果 CAN 器件设备板是连上的，且正在运行 can_device_qs 应用程序，那以可以使用
CAN 与调节板上的二个按键来调节音乐的音量和声音效果。CAN 设备板上的 LED 将通过
CAN报文来追踪主板上的 LED状态。即使 CAN器件板没有连接上，也将不会影响对游戏
的操作。

由于评估板上的 OLED显示屏有类似于 CRT的老化特性，因此应用也含有一个屏幕保
护程序（屏保）。在等待游戏开始时，两分钟内没有点击按钮，则屏幕保护程序启动（游戏

过程中，屏保不会出现）。屏幕保护程序实际上是使屏幕上显示不断跳跃的 Qix线。

屏保程序运行超过两分钟，显示屏将关闭，且用户 LED 闪烁。按下选择按键，退出屏
幕保护程序模式（变幻线或空白显示）。若要开始游戏，再次按下选择按钮即可。

使用 FAT文件系统的 SD卡（sd_card）

这个示范应用程序演示了如何从一个 SD 卡里读取一个文件系统。它使用了 FatFs，一
个 FAT 文件系统驱动程序。它通过一个串行端口提供一个简单命令控制台来发布命令，以
便观看和控制 SD卡的文件系统。

第一个连接到 Stellaris LM3S6965评估板的 FTDI虚拟串行端口的 UART被配置成每秒
为 115200位，模式为 8-n-1。当程序启动时，报文将在终端打印。输入“帮助”可得到帮助
命令。

有关FatFs的其他详情，请参考此网站：http://elm-chan.org/fsw/ff/00index_e.html。

定时器（timers）

这个示范应用程序演示了如何使用定时器产生周期性中断。其中一个定时器被设置为每

秒产生一次中断，另一个定时器设置为每秒产生两次中断；每个中断处理器都会翻转自己在

屏幕上的指示器。

UART（uart_echo）

这个示范应用程序使用 UART来显示文本。第一个 UART（连接到评估板的 FTDI虚拟
串口）配置成 115200的波特率、8-n-1的模式。在 UART接收到的所有字符被发送回 UART
中。

看门狗（watchdog）

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

484

 广州周立功单片机发展有限公司 第 47 章 EK-LM3S8962 示例应用

这个示范应用程序演示了如何使用看门狗对系统进行监控。如果没有对看门狗进行周期

性地喂狗，将会使系统复位。每当看门狗被喂狗时，LED 就翻转，这样喂狗就能很容易地
被观察到，每隔一秒喂狗一次。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

485

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

第48章 RDK-IDM示例应用

48.1 简介

RDK-IDM示例应用程序演示了智能显示模块、外设驱动程序库和图象库的功能。这些
应用程序主要进行演示，作为新的应用程序的一个起点。

除了具有 TFT 显示屏的图象库显示驱动程序外，还有供模拟输入通道、延时输出、声
音输出和触摸屏幕使用的板特定驱动程序。当然也提供一个包装器（wrapper），以简化对 lwIP
TCP/IP协议栈所进行的初始化和操作。

有一个 IAR 工作空间文件（rdk-idm.eww），它包含外设驱动库项目、图象库示项目与
所有板示例项目，简而言之，用 5 版本的嵌入式 Workbench 来使用工作空间是很容易的一
件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（rdk-idm -ewarm4.eww）。

有一个 Keil 多项目工作空间文件（rdk-idm.mpw），它包含外设驱动库项目、图象库示
项目与所有板示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

48.1.1 模拟输入驱动程序

此驱动程序中有四个模拟输入通道，它们能以 1024个单独的，均匀的间隔步距来检测
0到 3V的电压。模拟输入驱动程序每隔一毫秒就采样这几个通道，并在检测到的电压值高
于或低于所设定的值时，和它在每个方位都达到设定值时（针对滞后），此驱动程序将调用应

用程序所提供的回调函数。每一个通道可以单独配置，并且具有每个事件的单独回调。

模拟输入驱动程序使用 ADC的采样序列 2和定时器 0子定时器 A（与触摸屏幕驱动程
序共用）

48.1.2 显示屏驱动程序

除了提供图像库所需的 tDisplay结构外，显示屏驱动程序也提供了用来初始化显示屏、
开启背光和关闭背光的 API。

显示屏驱动程序能被配置为四个不同的方向：

 画像，是显示屏驱动程序的默认方向（default orientation），显示屏的首选方向，并
且是全部示例应用使用的方向。画像模式提供了 240x320的显示屏，在编译显示屏
驱动程序时，是通过定义 PORTRAIT或不定义一个方向来选择画像模式；

 风景，是逆时钟旋转 90度的屏幕（这里的扁平电缆连接器位于显示屏的右边）。风
景模式提供了 320x240 的显示屏，在编译显示屏驱动程序时，是通过定义
LANDSCAPE来选择风景模式；

 画像倒转（Portrait flip），是旋转 180度的屏幕。（这里的扁平电缆连接器位于显示
屏的顶部），画像旋转模式提供了 240x320的显示屏，在编译显示屏驱动程序时，
是通过定义 PORTRAIT_FLIP来选择画像旋转模式；

 风景倒转（Lanscape flip），是旋转 90度的屏幕。（这里的扁平电缆连接器位于显示
屏的左边），风景旋转模式提供了 320x240的显示屏，在编译显示屏驱动程序时，
是通过定义 LANDSCAPE_FILP来选择风景倒转模式。

使用的方向由应用的要求和期望的显示观察角度决定。面板自身有一个 6点时钟方向的
观察角度，因此使用画像倒转模式下的方向时，它具有一个 12点时钟方向的观察角度。类

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

486

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

似地，在风景模式下面板自身有一个 3点时钟方向的观察角度，因此使用风景旋转模式下的
方向时，它具有一个 9点时钟方向的观察角度。从一个角度观察显示屏而不是观察角度将会
导致显示颜色失真。

48.1.3 lwIP驱动程序

lwIP“驱动程序”提供了一个围绕 lwIP TCP/IP 协议栈的便利包装器（convenience
wrapper），使得初始化协议栈和运行此协议栈所需的定时器变得更为容易。由应用程序负
责提供网络客户机或服务器，这取决于应用程序的要求。

48.1.4 继电器输出驱动程序

继电器输出有三个管脚：一个公共触点（common contact）、一个常闭触点、一个常开
触点。通过使能继电器输出，将打开常闭触点而关闭常开触点。当禁止继电器输出时，继电

器输出则返回到它的正常状态。

继电器驱动程序提供了使能和禁止继电器的方法。由应用程序负责调用函数的先后顺

序，如先使能继电器，接着再延时一秒，最后再禁止继电器。

48.1.5 声音输出驱动程序

声音输出驱动程序提提供了一种使用方波驱动来产生简单音调的方法。声音输出驱动程

序允许更改输出频率和声音的音量。同样它也提供了创建简单歌曲，或通过指定频率的序列

和何时应该输出歌曲的时间来调整声音效果的方法。

当 PWM输出为高时，扬声器将开始从其平衡位置传播到其完全偏离位置。因为这过程
需要一段时间（大约 50µs），所以有可能在扬声器到达其最大的传播距离前关闭 PWM输出。

这样做将会使被移动的扬声器纸盒（speaker cone）转播的传播更少，从而减少音量。这是
一个简单控制音量的方法。

由于一般是用一个定时器 PWM输出驱动扬声器，因此最大有效的分频值是 65535。当
处理器运行于 50MHz时，这就等同于得到最小的音频，大约为 762.95KHz。如果处理器时
钟速率越低，得到的音频就越低，尽管这样将会降低整个系统的性能（这是在更新显示屏的

速率时最为注意的一点）。

48.1.6 触摸屏幕驱动程序

触摸屏幕是显示屏表面的一对抵抗层（resistive layers）。其中一个层具有屏幕的顶部和
低部的连接点，另一个层具有屏幕的左边和右边的连接点。当触摸屏幕时，这二个层就连通，

并且它们之间通电。

通过向水平层（horizontal layer）的右边提供一个正极电压，向左边提供一个负极电压，
就可以发现一个触摸的水平位置。当不驱动垂直层的顶部和底部时，此层的潜在电压将与按

下屏幕的水平距离成比例，可用 ADC通道来测量此层的电压。反向连接，则可以测量到触
摸的垂直位置。不触摸屏幕时，非电源（non-powered）层没有电压。

当其它层被恰当地驱动时，通过监视每一层的电压，就可以检测到和报告触摸屏幕和释

放屏幕、以及触摸移动。

为了读取二个层的当前电压并把适合的电压驱动到这二个层中，把每一个层的每一面连

接到一个 GPIO和一个 ADC通道。GPIO是用来把节点驱动到一个特定的电压，当 GPIO被
配置用作一个输入时，那么可以用相应的 ADC通道读取层的电压。

每隔 1毫秒就采样触摸屏幕，要求采样 4次以便能正确读取 X和 Y的位置。因此每隔
1秒就可以捕获到 250个 X/Y采样对。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

487

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

与显示屏驱动程序相似，触摸屏幕驱动程序可以在相同的四个方向操作（用相同的方法

选择）。每一个方向的操作中使用触摸屏幕时都提供了默认校准（Default calibrations）；如果
必要，可以用校准应用程序来确定新的校准值。

触摸屏幕驱动程序使用了 ADC的采样序列 3和定时器 0子定时器 A（与模拟输入驱动
程序共用）。

48.2 模拟输入 API函数

函数

 void AnalogCallbackSetAbove (unsigned long ulChannel,
tAnalogCallback ∗pfnOnAbove)；

 void AnalogCallbackSetBelow (unsigned long ulChannel, tAnalogCallback ∗

pfnOnBelow)；
 void AnalogCallbackSetFallingEdge (unsigned long ulChannel, tAnalogCallback

∗pfnOnFallingEdge)；
 void AnalogCallbackSetRisingEdge (unsigned long ulChannel, tAnalogCallback

∗pfnOnRisingEdge)；
 void AnalogInit (void)；
 void AnalogIntHandler (void)；
 void AnalogLevelSet (unsigned long ulChannel, unsigned short usLevel, char

cHysteresis)。

48.2.1 详细描述

这些函数包含在 analog.c中，analog.h包含应用使用的 API定义。

48.2.2 函数文件

48.2.2.1 AnalogCallbackSetAbove
设置在模拟输入高于触发电平时调用的函数。

函数原型：

void

AnalogCallbackSetAbove(unsigned long ulChannel,

tAnalogCallback *pfnOnAbove)

参数：

ulChannel是要修改的通道。

pfnOnAbove是指针，指向当模拟输入高于触发电平时调用的函数。

描述：

此函数设置模拟输入高于触发电平时应该要调用的函数（换句话说，当模拟输入高于触

发电平时，每隔一毫秒将调用一次 callback 函数）。当指定一个函数的地址为 0 时，将会取
消之前的 callback函数（意味着当模拟输入高于触发电平时，将不调用任何函数）。

返回：

无。

48.2.2.2 AnalogCallbackSetBelow
设置在模拟输入低于触发电平时调用的函数。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

488

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

函数原型：

void

AnalogCallbackSetBelow(unsigned long ulChannel,

tAnalogCallback *pfnOnBelow)

参数：

ulChannel是要修改的通道。

pfnOnBelow是指针，指向当模拟输入低于触发电平时要调用的函数。

描述：

此函数设置模拟输入低于触发电平时应该要调用的函数（换句话说，当模拟输入低于触

发电平时，每隔一毫秒将调用一次 callback 函数）。当指定一个函数的地址为 0 时，将会取
消之前的 callback函数（意味着当模拟输入低于触发电平时，将不调用任何函数）。

返回：

无。

48.2.2.3 AnalogCallbackSetFallingEdge
设置当模拟输入从高于触发电平跳变到低于触发电平时调用的函数。

函数原型：

void

AnalogCallbackSetFallingEdge(unsigned long ulChannel,

tAnalogCallback *pfnOnFallingEdge)

参数：

ulChannel是要修改的通道。

pfnOnFallingEdge是指针，指向在模拟输入从高于触发电平跳变到低于触发电平时调用
的函数。

描述：

无论任何时候，只要模拟输入从高于触发电平跳变到低于触发电平时，此函数设置此时

应要调用的函数。指定一个函数的地址为 0将会取消之前的 callback函数（意味着当模拟输
入从高于触发电平跳变到低于触发电平时，将不调用任何函数）。

返回：

无。

48.2.2.4 AnalogCallbackSetRisingEdge

设置模拟输入从低于触发电平跳变到高于触发电平时要调用的函数。

函数原型：

void

AnalogCallbackSetRisingEdge(unsigned long ulChannel,

tAnalogCallback *pfnOnRisingEdge)

参数：

ulChannel是要修改的通道。

pfnOnRisingEdge 是指针，指向模拟输入从低于触发电平跳变到高于触发电平时调用的

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

489

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

函数。

描述：

无论任何时候，只要模拟输入从低于触发电平跳变到高于触发电平时，此函数设置此时

应要调用的函数。指定一个函数的地址为 0将会取消之前的 callback函数（意味着当模拟输
入从低于触发电平跳变到高于触发电平时，将不调用任何函数）。

返回：

无。

48.2.2.5 AnalogInit

初始化模拟输入驱动程序。

函数原型：

void

AnalogInit(void)

描述：

此函数初始化模拟输入驱动程序，启动采样进程，并禁止全部通道的回调函数

（callbacks）。一旦调用此函数，ADC2 中断将周期性有效；为了响应这个中断，应该要调
用 AnalogIntHandler()函数。由应用负责把 AnalogIntHandler()安装在应用程序的向量表中。

返回：

无。

48.2.2.6 AnalogIntHandler

处理 ADC采样序列二的中断。

函数原型：

void

AnalogIntHandler(void)

描述：

当 ADC采样序列二产生一个中断时，则调用此函数。它将读取新的 ADC读操作内容，
执行模拟输入的去抖操作，最后根据新的读操内容作调用适当的回调函数。

返回：

无。

48.2.2.7 AnalogLevelSet

设置一个模拟通道的触发电平。

函数原型：

void

AnalogLevelSet(unsigned long ulChannel,

unsigned short usLevel,

char cHysteresis)

参数：

ulChannel是要修改的通道。

usLevel是该通道的触发电平。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

490

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

cHysteresis是应用到该通道的触发电平的滞后电平。

描述：

此函数设置一个模拟输入通道的触发电平和滞后电平。滞后提供过滤模拟输入的噪音的

作用。从“低于”触发电平跳变到“高于”触发电平的真正电平是触发电平加上滞后电平。

同样地，从“高于”触发电平跳变到“低于”触发电平的真正电平是触发电平减去滞后电平。

返回：

无。

48.3 显示屏驱动程序的 API函数

函数
 void Formike240x320x16_ILI9320BacklightOff (void)；
 void Formike240x320x16_ILI9320BacklightOn (void)；
 void Formike240x320x16_ILI9320Init (void)。

变量
 const tDisplay g_sFormike240x320x16_ILI9320。

48.3.1 详细描述

这些函数包含在 formike240x320x16_ili9320.c 中，formike240x320x16_ili9320.h 包含应
用程序使用的 API定义。

48.3.2 函数文件

48.3.2.1 Formike240x320x16_ILI9320BacklightOff

关闭背光。

函数原型：

void

Formike240x320x16_ILI9320BacklightOff(void)

描述：

此函数关闭显示屏的背光。

返回：

无。

48.3.2.2 Formike240x320x16_ILI9320BacklightOn

开启背光。

函数原型：

void

Formike240x320x16_ILI9320BacklightOn(void)

描述：

此函数开启显示屏的背光。

返回：

无。

48.3.2.3 Formike240x320x16_ILI9320Init

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

491

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

初始化显示屏驱动程序。

函数原型：

void

Formike240x320x16_ILI9320Init(void)

描述：

此函数初始化面板上的 ILI9320显示控制器，使其准备好显示数据。

返回：

无。

48.3.3 变量文件

48.3.3.1 g_sFormike240x320x16_ILI9320
定义：

const tDisplay g_sFormike240x320x16_ILI9320

描述：

此显示屏结构描述了带有 ILI9320控制器的 Formike Electronic KWH028Q02-F03 TFT面
板的驱动程序。

48.4 lwIP 驱动程序 API函数

函数

 void lwIPEthernetIntHandler (void)；
 unsigned long lwIPGetIPAddr (void)；
 void lwIPInit (unsigned long bUseDHCP, const unsigned char *pucMACAddr)；
 void lwIPTimer (unsigned long ulTimeMS)。

48.4.1 详细描述

这些函函数包含在 lwip.c中，lwip.h包含应用程序使用的 API定义。

48.4.2 函数文件

48.4.2.1 lwIPEthernetIntHandler

处理 lwIP TCP/IP协议栈的以太网中断。

函数原型：

void

lwIPEthernetIntHandler(void)

描述：

此函数处理 lwIP TCP/IP协议栈的以太网中断，包括真中断和假中断。真中断由以太网
控制器自身产生，以便对发送或接收包作出响应。假中断由 lwIPTimer()产生，以表示有需
要对不同的 lwIP 定时器过行处理。假中断是必要的，因为 lwIP 协议栈是无法重新进入的
（re-entrant）；因此只能在此次中断处理程序内调用 lwIP函数。

返回：

无。

48.4.2.2 lwIPGetIPAddr

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

492

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

获取分配给以太网接口的 IP地址。

函数原型：

unsigned long

lwIPGetIPAddr(void)

描述：

此函数决定分配给以太网接口的 IP地址。如果 DHCP正被使用，且仍在获取 IP地址时，
返回值将是 0.0.0.0。否则，最高字节包含 IP地址的第一个数字（换句话说，127.0.0.1被编
码成 0x7f000001）

返回：

返回当前 IP地址。

48.4.2.3 lwIPInit

初始化 lwIP TCP/IP协议栈。

函数原型：

void

lwIPInit(unsigned long bUseDHCP,

const unsigned char *pucMACAddr)

参数：

bUseDHCP是逻辑值，如果应该使用 DHCP来获取以太网接口的 IP地址，那么它的值
为 True。

pucMACAddr是指针，指向一个包含用于以太网接口的MAC地址的六字节数组。

描述：

此函数初始化 lwIP TCP/IP协议栈，进行初始化和添加网络接口。

返回：

无。

48.4.2.4 lwIPTimer

处理 lwIP TCP/IP协议栈周期定时器事件。

函数原型：

void

lwIPTimer(unsigned long ulTimeMS)

参数：

ulTimeMS是从上一次定时器节拍计时开始已过去的毫秒数。

描述：

应在一个有秩序的周期性基础上调用此函数，以便处理在 lwIP TCP/IP协议栈所用的各
种定时器。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

493

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

48.5 继电器输出 API函数

函数

 void RelayDisable (void)；
 void RelayEnable (void)；
 void RelayInit (void)。

48.5.1 详细描述

这些函数包含在 relay.c中，relay.h包含应用程序使用的 API定义。

48.5.2 函数文件

48.5.2.1 RelayDisable

禁止继电器输出。

函数原型：

void

RelayDisable(void)

描述：

此函数禁止继电器输出。这就使继电器变为开路式，使它进入自身默认状态（换句话说，

常开触点是开的，常闭触点是闭合的）。

返回：

无。

48.5.2.2 RelayEnable

使能继电器输出。

函数原型：

void

RelayEnable(void)

描述：

此函数使能继电器输出。这就使继电器变为闭路式，使它进入非默认状态（换句话说，

常开触点是闭合的，常闭触点是打开的）。

返回：

无。

48.5.2.3 RelayInit

初始化继电器输出。

函数原型：

void

RelayInit(void)

描述：

此函数初始化继电器输出，使其准备好控制继电器。继电器在禁止状态中启动（即开路）。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

494

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

48.6 声音输出 API函数

函数

 void SoundDisable (void)；
 void SoundEnable (void)；
 void SoundFrequencySet (unsigned long ulFrequency)；
 void SoundInit (void)；
 void SoundIntHandler (void)；
 void SoundPlay (const unsigned short *pusSong, unsigned long ulLength)；
 void SoundVolumeDown (unsigned long ulPercent)；
 unsigned char SoundVolumeGet (void)；
 void SoundVolumeSet (unsigned long ulPercent)；
 void SoundVolumeUp (unsigned long ulPercent)。

48.6.1 详细描述

这些函数包含在 sound.c中，sound.h包含应用程序使用的 API定义。

48.6.2 函数文件

48.6.2.1 SoundDisable

禁止声音输出。

函数原型：

void

SoundDisable(void)

描述：

此函数禁止声音输出，减弱扬声器的声音，并取消任何可能正在执行的重放。

返回：

无。

48.6.2.2 SoundEnable

使能声音输出。

函数原型：

void

SoundEnable(void)

描述：

此函数使能声音输出，准备播放音乐或声音效果。

返回：

无。

48.6.2.3 SoundFrequencySet

设置声音输出频率。

函数原型：

void

SoundFrequencySet(unsigned long ulFrequency)

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

495

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

参数：

ulFrequency是要求的声音输出频率。

描述：

此函数设置声音输出频率。频率变化将会立即生效，并将保持有效直到频率再次发生变

化（由另一个调用直接造成，或由声音的重放间接造成）

返回：

无。

48.6.2.4 SoundInit

初始化声音输出。

函数原型：

void

SoundInit(void)

描述：

此函数准备初始化声音驱动程序来播放歌曲或察看声音效果。必须先调用此函数，才能

调用任何其他声音函数。声音驱动程序使用定时器 2 子定时器 A 来产生 PWM 输出，定时
器 2子定时器 B用作音效重放的时基。由应用负责确保在定时器 2子定时器 B中断出现时
调用 SoundIntHandler()（通常做法是此函数的指针放置到处理器的向量表的适当单元位置中）

返回：

无。

48.6.2.5 SoundIntHandler

处理声音定时器中断。

函数原型：

void

SoundIntHandler(void)

描述：

此函数提供对 PWM输出的周期性更新，以产生一个声音效果。当定时器 2子定时器 B
中断出现时，调节器用此函数。

返回：

无。

48.6.2.6 SoundPlay

启动一首歌曲的重放。

函数原型：

void

SoundPlay(const unsigned short *pusSong,

unsigned long ulLength)

参数：

pusSong是指向歌曲数据结构的指针。

ulLength是歌曲数据结构的字节长度。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

496

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

描述：

此函数启动一首歌曲或音效的重放。如果一首歌曲或音效正在播放当中，那么它的重放

被取消，然后函数启动新歌曲的重放。

返回：

无。

48.6.2.7 SoundVolumeDown

减少音量。

函数原型：

void

SoundVolumeDown(unsigned long ulPercent)

参数：

ulPercent 是要减少的音量数，用 0%（静音）到 100%（最大音量）之间的百分比来指
定（0%与 100%包括在内）。

描述：

此函数按指定的百分比来调节音频输出，使音量减少。调节的音量将不会少于 0%（静
音）。

返回：

无。

48.6.2.8 SoundVolumeGet

返回当前音量值。

函数原型：

unsigned char SoundVolumeGet(void)

描述：

此函数返回当前音量，用 0%（静音）到 100%（最大音量）之间的百分比来指定（0%
与 100%包括在内）。

返回：

返回当前音量。

48.6.2.9 SoundVolumeSet

设置音乐/音效重放的音量。

函数原型：

void

SoundVolumeSet(unsigned long ulPercent)

参数：

ulPercent是音量百分比，它的值必须处于 0%（静音）到 100%（最大音量）之间，0%
与 100%包括在内。

描述：

此函数在 0%（静音）到 100%（最大音量）之间设置声音输出的音量。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

497

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

无。

48.6.2.10 SoundVolumeUp

增加音量。

函数原型：

void

SoundVolumeUp(unsigned long ulPercent)

参数：

ulPercent 是要增加的音量总数，用 0%（静音）到 100%（最大音量）之间的百分比来
指定，0%与 100%包括在内。

描述：

此函数按指定的百分比来调节音频输出，使音量增加。调节的音量将不会高于 100%（静
音）。

返回：

无。

48.7 触摸屏幕 API函数

函数
 void TouchScreenCallbackSet (long (*pfnCallback)(unsigned long ulMessage, long lX,

long lY))；
 void TouchScreenInit (void)；
 void TouchScreenIntHandler (void)。

48.7.1 详细描述

这些函数包含在 touch.c中，touch.h包含应用程序使用的 API定义。

48.7.2 函数文件

48.7.2.1 TouchScreenCallbackSet

设置触摸屏幕事件的 callback函数。

函数原型：

void

TouchScreenCallbackSet(long (*long)(unsigned ulMessage, long lX,

long lY) pfnCallback)

参数：

pfnCallback是指针，指向触摸屏幕事件发生时要调用的函数。

描述：

此函数设置触摸屏幕事件发生时要调用的函数的地址。能被识别的触别事件是屏幕正在

被触摸（“pen down”）、当触摸屏幕时触摸位置正在移动（“pen move”）和不再触摸屏
幕（“pen up”）。

返回：

无。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

498

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

48.7.2.2 TouchScreenInit

初始化触摸屏幕的驱动程序。

函数原型：

void

TouchScreenInit(void)

描述：

此函数初始化触摸屏幕驱动程序，开始对触摸屏幕进行读操作处理。驱动程序使用如下

的硬件源：

 ADC采样序列 3；
 定时器 0子定时器 A。

返回：

无。

48.7.2.3 TouchScreenIntHandler

处理触摸屏幕的 ADC中断。

函数原型：

void

TouchScreenIntHandler(void)

描述：

当对触摸屏幕进行采样的 ADC序列完成它的操作时，调用此函数。触摸屏幕状态机器
是很先进的，因此能恰当地处理已获得的 ADC采样。

由应用程序负责使用触摸屏幕驱动程序来确保把此函数安装到中断向量表的 ADC3中
断的位置。

返回：

无。

48.8 范例

所有这些范例位于外设驱动程序库源文件的 boards/rdk-idm子目录下。

BLDC RDK 控制 (bldc_ctrl)

这个应用程序提供一个简单的 GUI，用于控制 BLDC RDK板。电机可动可停，可调节
目标速度（target speed），还可监视当前速度。

目标速度的“上”、“下”按键使用了按键窗件（widget）的自动重复功能。例如：按 “上”
键，目标速度将以 100rpm增加。如果长按此键超过 0.5秒，那么将会开始进入自动重复状
态，此时目标速度将以每 0.1秒 100rpm增加。按“下”键也会发生相同的情况。

启动后，应用程序将会尝试连接到 DHCP服务器以获取一个 IP地址。如果不能连接到
DHCP服务器，那么应用程序将改为使用 169.254.19.70这个 IP地址，且无须执行任何 APR
检测来查看此 IP地址是否正在使用当中。一旦确定 IP地址，应用程序将会在 169.254.89.71
这个 IP地址开始连接到 BLDC RDK板。在尝试连接到 DHCP服务器和 BLDC RDK板时，
目标速度将作为一组 bouncing dots显示出来。

除非建立完 BLDC RDK板的连接，否则按钮将不会工作。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

499

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

触摸屏幕的校正(calibrate)

触摸屏幕驱动程序的原始采样接口被用来对把原始采样数据转换成屏幕的 X/Y 位置所
需的校正矩阵进行计算。所产生的校正矩阵能插入到触摸屏幕驱动程序中，从而使原始的采

样数据被映射到屏幕坐标中。

按照Carlos E所描述的算法执行触摸屏幕校正。请参阅 2002年 6月发行的嵌入式系统设
计，可以在此网站找到该文档：http://www.embedded.com/story/OEG20020529S0046。

图象库示范（grlib_demo）

这个应用程序演示了 Stellaris图象库的功能。一系列面板显示了图象库的不同特性。对
于每一块面板，底部都提供了一个向前和向后的按键（在适当的时候），以及面板内容的简

短描述。

第一块面板提供了应用程序操作的一些介绍性文本和基本指令。

第二块面板显示了可用的绘图图元：线段、圆形、长方形、字符串和图象。

第三块面板显示了画布小工具（canvas widget），它可以提供一个阶层状小工具（widget）
内的通用绘图面。面板能显示文本、图象和应用绘图画布。

第四块面板显示了 check box widget，它提供了项目状态切换的方法。板提供 4个 check
boxes，每一个的右边都有一个红色的“LED”。LED的状态通过一个应用程序的 callback函
数来追踪 check box的状态。

第五块面板显示了 widget 容器，它提供了通常用于单选按钮的组构建。面板能显示容
器的标题、居中标题和无标题。

第六块面板显示了按钮 widget。它提供了两列按钮；每列的外形是相同的，但左列并不
使用自动重复功能，而右列则反之。每个按钮的左边都有一个红色的“LED”，每次按钮被
按时，LED通过应用程序 callback函数来进行切换。

最后一块面板显示了单选按钮 widget。面板显示两组单选按钮，对于选择值（selection
value）第一组使用文本显示，而第二组使用图象显示。每个单选按钮在它的右边有一个红
色的“LED”，它通过应用程序的 callback 来追踪单选按钮的选择状态。虽然每个组里面的
单选按钮是独立操作的，但是每次只可以从一个组选择一个单选按钮。

Hello World（hello）

一个非常简单的“hello world”例子。它简单地在 OLED上显示“hello word”，这是更
复杂的应用程序的一个起点。

快速入门安全键区（qs_keypad）
这个应用程序提供了一个安全键区以允许对门进行访问。继电器输出在输入访问密码激

活电子门锁（electric door strike）后立即翻转，然后门打开。

屏幕被分成三部分；Luminary Micro标语位于最顶部分，提示（hint）位于最低部分，
主要应用区域就位于中间部分（如果此应用是用于一个真实的门禁访问系统，那么屏幕只显

示这一部分）。提示能提供一个屏幕上的指南，通过它我们可以观察到应用在任何一个指定

的时间里正在期待着什么。

在启动后，屏幕一片空白，然后屏幕提示说请触摸屏幕。点击屏幕后将会出现一个键区，

作为一个增加的安全措拖，这个键区是随机排列的（因此观察者就不能靠简单地察看键按下

的相关位置来“偷取”访问密码）。当前访问密码显示于屏幕底部的提示中（这无疑是不安

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

500

 广州周立功单片机发展有限公司 第 48 章 RDK-IDM 示例应用

全的）。

如果输入一个不正确的访问密码（用“#”结束输入密码），那么屏幕将会变为空白，并
等待着尝试被输入另一个访问密码。如果输入正确的访问密码，那么继电器将在几秒内翻转

（处于屏幕底部的提示显示门已打开），然后屏幕将会变为空白。一旦门再次关闭，则可再

次触摸屏幕来重复以上操作步骤。

UART用来输出事件的日志。日志中的每个事件都是具有印时戳，且在应用程序运行时，
以 14：00UT（格林尼治时间）2008年 2月 26号的 arbitrary date为启动时间。日志包含以下
事件：

 应用程序启动；
 改变的访问密码；
 允许访问（输入正确访问密码）；
 拒绝访问（输入不正确的访问密码）；
 门将在已允许访问后重新关闭。

一个简单的 web服务器被提供，以允许改变访问密码。以太网接口将尝试连接到 DHCP
服务器，如果以太网接口未获取到一个 DHCP地址，那么它将改为使用 169.254.19.70这个
IP地址，且无须执行任何 ARP检测来查看此 IP地址是否正在使用当中。网页显示当前访问
密码并提供一个更新访问密码的表格（格式）。

如果存在 micro-SD 卡，访问密码将会存放在 root 目录下的“key.txt”文件中。无论什
么时候更改访问密码，此文件都会被写入，并在启动时被读取来初始化访问密码。如果没有

micro-SD卡，或不存在“key.txt”文件，那么访问密码默认值为 6918。

涂鸦板(scribble)

涂鸦板在屏幕上提供了一个绘图区域。通过对基础颜色进行选择，触摸屏幕将可以在绘

图区域中绘图（换句话说，七种颜色由三个颜色通道产生，通道可以全部开启或全部关闭）。

每一次都要触摸屏幕才能开始一个新的绘图，然后绘图区域被擦除，并可选择下一个颜色。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

501

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

第49章 RDK-S2E示例应用

49.1 简介

RDK-S2E 示例应用程序显示了串口转以太网模块和外设驱动程序库的功能。这些应用
程序主要进行演示，作为新的应用程序的一个起点。

有一个 IAR工作空间文件（rdk-s2e.eww），它包含外设驱动程序库项目与所有板示例项
目，简而言之，用 5版本的嵌入式Workbench来使用工作空间是很容易的一件事。

使用 4.42a 版本的嵌入式 Workbench 同样也可得到一个等效的 IAR 工作空间文件
（rdk-s2e -ewarm4.eww）。

有一个 Keil多项目工作空间文件（rdk-s2e.mpw），它包含外设驱动程序库项目与所有板
示例项目，简而言之，用 uVision来使用工作空间是很容易的一件事。

ser2ent.c文件包含主应用程序入口点（entry point）。许多模块被初始化，包括串行端口
驱动程序、远程登录（telnet）驱动程序、通用即插即用驱动程序以及网络服务器配置。

为了提供 lwIP要求的周期性处理，系统节拍定时器（system tick timer）被软件编程，且
这编程包含此定时器的中断服务程序。

lwIP 抽象库也提供了一个主机回调（callback）程序，它可以被配置成一个周期性回调
程序（callback0运行在 lwIP环境中，从而避免只有存在 lwIP才能重新进入程序的情况）。
这里所定义的主机回调（callback）程序提供远程登录和 upnp模块的支持。

49.2 配置 API函数

数据结构

 tStringMap。

定义

 DEFAULT_CGI_RESPONSE；
 FIRMWARE_UPDATE_RESPONSE；
 IP_UPDATE_RESPONSE；
 MAX_VARIABLE_NAME_LEN；
 MISC_PAGE_URI；
 NUM_CONFIG_CGI_URIS；
 NUM_CONFIG_SSI_TAGS；
 PARAM_ERROR_RESPONSE。

函数

 void ConfigInit (void)；
 void ConfigLoad (void)；
 void ConfigLoadFactory (void)；
 void ConfigSave (void)；
 void ConfigWebInit (void)。

变量

 tBoolean g_bChangeIPAddress；
 tBoolean g_bStartBootloader；
 const tConfigParameters * g_psDefaultParameters；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

502

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

 const tConfigParameters *const g_psFactoryParameters；
 tConfigParameters g_sParameters；
 const unsigned short g_usFirmwareVersion。

49.2.1 详细描述

配置模块定义并管理全局配置参数块，同时也为此参数块的非易失性存储提供一个提取

层（abstraction layer）。

这些函数包含在 config.c中，config.h包含应用使用的 API定义。

49.2.2 数据结构文件

49.2.2.1 tStringMap
定义：

typedef struct

{

const char *pcString;

unsigned char ucId;

}

tStringMap

成员：

pcString是人可读字符串，它涉及在 ucld域发现的标识符。

ucld是一个标识符值，它与保存在 pcString域的字符串联合。

描述：

把在映射数字 ID使用的结构转换成人可读取字符串。

49.2.3 定义文件

49.2.3.1 DEFAULT_CGI_RESPONSE
定义：

#define DEFAULT_CGI_RESPONSE

描述：

紧接着在完成全部 GGI处理程序后，文件被默认发送回浏览器。

49.2.3.2 FIRMWARE_UPDATE_RESPONSE
定义：

#define FIRMWARE_UPDATE_RESPONSE

描述：

文件被发送回浏览器以便发出将运行引导加载程序来执行软件更新的信号。

49.2.3.3 IP_UPDATE_RESPONSE
定义：

#define IP_UPDATE_RESPONSE

描述：

文件被发送回浏览器，以便发出器件的 IP地址将被更改和网络服务器不再工作的信号。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

503

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

49.2.3.4 MAX_VARIABLE_NAME_LEN
定义：

#define MAX_VARIABLE_NAME_LEN

描述：

在这个应用程序中使用的任何 HTML形式变量名的最大长度。

49.2.3.5 MISC_PAGE_URI

定义：

#define MISC_PAGE_URI

描述：

“多项设置”页的 URI由网络服务器提供。

49.2.3.6 NUM_CONFIG_CGI_URIS
定义：

#define NUM_CONFIG_CGI_URIS

描述：

我们配置网页所使用的单独 CGI URI数量。

49.2.3.7 NUM_CONFIG_SSI_TAGS
定义：

#define NUM_CONFIG_SSI_TAGS

描述：

HTTPD服务器期望在我们所配置的网页中找到单独 SSI标签的数量。

49.2.3.8 PARAM_ERROR_RESPONSE
定义：

#define PARAM_ERROR_RESPONSE

描述：

文件被发送回浏览器，以防一个 CGI 处理程序检测到一个参数错误。只有在用户想通
过浏览器命令行来直接访问 CGI且不输入位于 URI的所需参数时才会发生参数错误这种情
况。

49.2.4 函数文件

49.2.4.1 ConfigInit
初始化配置参数块。

函数原型：

void

ConfigInit(void)

描述：

此函数初始化配置参数块。如果存放在 Flash中的参数块的版本编号比前当版本的旧，
新参数将按需求被设置为默认值。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

504

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

无。

49.2.4.2 ConfigLoad

装载 Flash的 S2E参数块。

函数原型：

void

ConfigLoad(void)

描述：

调用此函数，以便装载 Flash中装载最新保存的参数块。

返回：

无。

49.2.4.3 ConfigLoadFactory

装载出厂默认表中的 S2E参数块。

函数原型：

void

ConfigLoadFactory(void)

描述：

调用此函数，以便装载出厂默认参数块。

返回：

无。

49.2.4.4 ConfigSave

把 S2E参数块保存到 Flash。

函数原型：

void

ConfigSave(void)

描述：

调用此函数，以便把当前 S2E配置参数块保存到 Flash存储器。

返回：

无。

49.2.4.5 ConfigWebInit

将 HTTPD服务器 SSI和 CGI性能配置成我们的配置形式。

Configures HTTPD server SSI and CGI capabilities for our configuration forms.

函数原型：

void

ConfigWebInit(void)

描述：

此函数通知服务器端包括标签（server-side-include tags）的 HTTPD服务器我们将要处
理，同时也通知基于网络的配置形式的被用于 CGI处理的特别的 URL。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

505

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

返回：

无。

49.2.5 变量文件

49.2.5.1 g_bChangeIPAddress
定义：

tBoolean g_bChangeIPAddress

描述：

主循环的标记表明应在短暂的延时后更新 IP 地址（以允许我们把一个合适页（suitable
page）发送回网络浏览器，从而可以告之 IP地址已更改）。

49.2.5.2 g_bStartBootloader
定义：

tBoolean g_bStartBootloader

描述：

主循环的标记表明应进入引导加载程序，并执行固件更新。

49.2.5.3 g_psDefaultParameters
定义：

const tConfigParameters *g_psDefaultParameters

描述：

此结构实例指向 Flash的最新保存的参数块。它被认为默认的参数集。

49.2.5.4 g_psFactoryParameters
定义：

const tConfigParameters *const g_psFactoryParameters

描述：

此结构实例指向 Flash存储器的出厂默认参数集。

49.2.5.5 g_sParameters
定义：

tConfigParameters g_sParameters

描述：

此结构实例包含 S2E 模块一系列运行时配置参数。这是有效的参数集，并可能包含没
有提交给 Flash的更改。

49.2.5.6 g_usFirmwareVersion
定义：

const unsigned short g_usFirmwareVersion

描述：

固件版本。在尝试提供协助时，改变此版本值将会使 Luminary Micro 支持人员更难以
确定使用中的固件；应在慎重考虑后才更改版本值。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

506

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

49.3 文件系统 API函数

函数

 void fs_close (struct fs_file *file)
 fs_file * fs_open (char *name)
 int fs_read (struct fs_file *file, char *buffer, int count)

49.3.1 详细描述

这一组函数提供了一个内置 Flash 文件系统的接口，此接口由基于 lwIP 的网络服务器
使用。除了提供基于 Flash的普通文件的句柄外，还可以用这种方式来处理“特别”文件，
以便给网络客户机（web client）提供动态内容。

这些函数包含在 fs_s2e.c中，fs_s2e.h包含应用程序使用的 API定义。

49.3.2 函数文件

49.3.2.1 fs_close
关闭一个已打开的文件，此文件由句柄指定。

函数原型：

void

fs_close(struct fs_file *file)

参数：

file是指向要关闭的文件句柄的指针。

描述：

此函数将会释放与文件句柄关联的存储器，并执行任何其他被需要用来关闭此句柄的操

作。

返回：

无。

49.3.2.2 fs_open
打开一个文件并返回文件的句柄。

函数原型：

struct fs_file *

fs_open(char *name)

参数：

name是包含文件名称的字符串的指针。

描述：

此函数将会检查文件名称，防止需要“特别”处理的文件列表。如果文件名称与这个列

表相匹配，那么为了产生动态文件内容，文件扩展名将会被使能。否则，将要对文件名进行

比较，防止内置 Flash 文件系统的文件列表。如果不能在内置 Flash 文件系统的文件名单找
到这个文件，那么将返回一个 NULL句柄。

返回：

如果在列表中找到此文件，则返回此文件句柄的指针；否则返回 NULL句柄。

49.3.2.3 fs_read

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

507

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

从打开的文件中读取数据。

函数原型：

int

fs_read(struct fs_file *file,

char *buffer,

int count)

参数：

file是指向要从文件句柄读取数据的指针。

buffer是指向要被填充的数据缓冲区的指针。

count是要读取的最大数据字节数。

描述：

此函数将会把多达“count”个的数据字节填充入缓冲区。如果要求进行动态内容的“特
别”处理，此函数也将会按需要来处理该进程。

返回：

返回读取的数据字节数值；或如果已达到了文件的末尾则返回-1。

49.4 循环缓冲区 API函数

函数

 tBoolean RingBufEmpty (tRingBufObject *ptRingBuf)；
 void RingBufFlush (tRingBufObject *ptRingBuf)；
 unsigned long RingBufFree (tRingBufObject *ptRingBuf)；
 tBoolean RingBufFull (tRingBufObject *ptRingBuf)；
 void RingBufInit (tRingBufObject *ptRingBuf, unsigned char *pucBuf, unsigned long

ulSize)；
 void RingBufRead (tRingBufObject *ptRingBuf, unsigned char *pucData, unsigned

long ulLength)；
 unsigned char RingBufReadOne (tRingBufObject *ptRingBuf)；
 unsigned long RingBufSize (tRingBufObject *ptRingBuf)；
 unsigned long RingBufUsed (tRingBufObject *ptRingBuf)；
 void RingBufWrite (tRingBufObject *ptRingBuf, unsigned char *pucData, unsigned

long ulLength)；
 void RingBufWriteOne (tRingBufObject *ptRingBuf, unsigned char ucData)。

49.4.1 详细描述

循环缓冲区模块提供循环缓冲区管理函数以支持串行口和远程登录端口间的数据流。

这些函包含在 ringbuf.c中，ringbuf.h包含应用程序使用的 API定义。

49.4.2 函数文件

49.4.2.1 RingBufEmpty
确定指针和大小都被提供的循环缓冲区是否为空。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

508

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

tBoolean

RingBufEmpty(tRingBufObject *ptRingBuf)

参数：

ptRingBuf是要清空的循环缓冲区目标。

描述：

此函数用来确定一个指定的循环缓冲区是否为空。结构明确地确保我们不能从涉及未定

义的可变（volatile）访问顺序的编译器中发现警告。

返回：

如果缓冲区为空，返回 True，否则返回 False。

49.4.2.2 RingBufFlush
使循环缓冲区为空。

函数原型：

void

RingBufFlush(tRingBufObject *ptRingBuf)

参数：

ptRingBuf是要清空的循环缓冲区目标。

描述：

舍弃循环缓冲区的全部数据。

返回：

无。

49.4.2.3 RingBufFree
返回循环缓冲区中可用的字节数值。

函数原型：

unsigned long

RingBufFree(tRingBufObject *ptRingBuf)

参数：

ptRingBuf是要检查的循环缓冲区目标。

描述：

此函数返回循环缓冲区中的可用字节数值。

返回：

返回循环缓冲区的可用字节数值。

49.4.2.4 RingBufFull
确定指针和大小都被提供的循环缓冲区是否为满。

函数原型：

tBoolean

RingBufFull(tRingBufObject *ptRingBuf)

参数：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

509

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

ptRingBuf是要被清空的循环缓冲区。

描述：

此函数用来确定一个指定的循环缓冲区是否为满。结构明确地确保我们不能从涉及未定

义的可变 volatile访问顺序的编译器查看到警告。

返回：

如果缓冲区为满，返回 True，否则返回 False。

49.4.2.5 RingBufInit
初始化一个循环缓冲区目标。

函数原型：

void

RingBufInit(tRingBufObject *ptRingBuf,

unsigned char *pucBuf,

unsigned long ulSize)

参数：

ptRingBuf是要初始化的循环缓冲区。

pucBuf指向用于循环缓冲区的数据缓冲区。

ulSizej 缓冲区的字节大小。

描述：

此函数初始化循环缓冲区目标，使其准备好存放数据。

返回：

无。

49.4.2.6 RingBufRead
读取循环缓冲区中的数据。

函数原型：

void

RingBufRead(tRingBufObject *ptRingBuf,

unsigned char *pucData,

unsigned long ulLength)

参数：

ptRingBuf指向要被读取的循环缓冲区。

pucData指向数据应被存放的位置。

ulLength是要读取的字节数值。

描述：

此函数读取循环缓冲区中的连续字节。

返回：

无。

49.4.2.7 RingBufReadOne

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

510

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

读取循环缓冲区中的单个数据字节。

函数原型：

unsigned char

RingBufReadOne(tRingBufObject *ptRingBuf)

参数：

ptRingBuf指向要被写入的循环缓冲区。

描述：

此函数读取循环缓冲区中的单个数据字节。

返回：

返回从循环缓冲区读取的字节。

49.4.2.8 RingBufSize
返回循环缓冲区的大小，大小以字节来计算。

函数原型：

unsigned long

RingBufSize(tRingBufObject *ptRingBuf)

参数：

ptRingBuf是要检查的缓冲区目标。

描述：

此函数返回循环缓冲区的大小。

返回：

返回循环缓冲区的大小，大小以字节来计算。

49.4.2.9 RingBufUsed
返回存放在循环缓冲区的字节数。

函数原型：

unsigned long

RingBufUsed(tRingBufObject *ptRingBuf)

参数：

ptRingBuf是要检查的缓冲区目标。

描述：

此函数返回存放在循环缓冲区的字节数。

返回：

返回存放在循环缓冲区的字节数。

49.4.2.10 RingBufWrite
写数据入循环缓冲区。

函数原型：

void

RingBufWrite(tRingBufObject *ptRingBuf,

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

511

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

unsigned char *pucData,

unsigned long ulLength)

参数：

ptRingBuf指向要被写入的缓冲区。

pucData指向被写入的数据。

ulLength是被写入的字节数。

描述：

此函数把连续的字节写入到循环缓冲区。

返回：

无。

49.4.2.11 RingBufWriteOne
写单个数据字节到循环缓冲区中。

函数原型：

void

RingBufWriteOne(tRingBufObject *ptRingBuf,

unsigned char ucData)

参数：

ptRingBuf指向要被写入的缓冲区。

pucData是被写入的字节。

描述：

此函数把单个数据字节写入到循环缓冲区。

返回：

无。

49.5 串行端口 API函数

函数

 unsigned long SerialGetBaudRate (unsigned long ulPort)；
 unsigned char SerialGetDataSize (unsigned long ulPort)；
 unsigned char SerialGetFlowControl (unsigned long ulPort)；
 unsigned char SerialGetFlowOut (unsigned long ulPort)；
 unsigned char SerialGetParity (unsigned long ulPort)；
 unsigned char SerialGetStopBits (unsigned long ulPort)；
 void SerialGPIOAIntHandler (void)；
 void SerialGPIOBIntHandler (void)；
 void SerialInit (void)；
 void SerialPurgeData (unsigned long ulPort, unsigned char ucPurgeCommand)；
 long SerialReceive (unsigned long ulPort)；
 void SerialSend (unsigned long ulPort, unsigned char ucChar)；
 tBoolean SerialSendFull (unsigned long ulPort)；
 void SerialSetBaudRate (unsigned long ulPort, unsigned long ulBaudRate)；

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

512

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

 void SerialSetCurrent (unsigned long ulPort)；
 void SerialSetDataSize (unsigned long ulPort, unsigned char ucDataSize)；
 void SerialSetDefault (unsigned long ulPort)；
 void SerialSetFactory (unsigned long ulPort)；
 void SerialSetFlowControl (unsigned long ulPort, unsigned char ucFlowControl)；
 void SerialSetFlowOut (unsigned long ulPort, unsigned char ucFlowValue)；
 void SerialSetParity (unsigned long ulPort, unsigned char ucParity)；
 void SerialSetStopBits (unsigned long ulPort, unsigned char ucStopBits)；
 void SerialUART0IntHandler (void)；
 void SerialUART1IntHandler (void)。

49.5.1 详细描述

串行驱动程序提供一个循环缓冲区，用作 UART 硬件和 UART 客户机（例如，远程登
录会话）之间的接口。一个简单的 API只要求能提供 UART端口编号（例如，0、1）

这些函数包含在 serial.c中，serial.h包含应用使用的 API定义。

49.5.2 函数文件

49.5.2.1 SerialGetBaudRate
询问串行端口波特率。

函数原型：

unsigned long

SerialGetBaudRate(unsigned long ulPort)

参数：

ulPort是要被访问的串行端口编号。

描述：

此函数将会读取被选端口的 uart配置，并返回被选端口的当前所配置的波特率。

返回：

串行端口的当前波特率。

49.5.2.2 SerialGetDataSize
询问串行端口的数据大小。

函数原型：

unsigned char

SerialGetDataSize(unsigned long ulPort)

参数：

ulPort是要被访问的串行端口编号。

描述：

此函数将会读取被选端口的 uart配置，并返回被选端口当前所配置的数据大小。

返回：

无。

49.5.2.3 SerialGetFlowControl

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

513

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

询问串行端口流控制。

函数原型：

unsigned char

SerialGetFlowControl(unsigned long ulPort)

参数：

ulPort是要被访问的串行端口编号。

描述：

此函数将返回被选端口的当前所配置的流控制。

返回：

无。

49.5.2.4 SerialGetFlowOut
获取串行端口流控制输出信号。

函数原型：

unsigned char

SerialGetFlowOut(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。

描述：

此函数将把流控制输出管脚设置为一个特定的值。

返回：

返回 SERIAL_FLOW_OUT_SET或 SERIAL_FLOW_OUT_CLEAR.

49.5.2.5 SerialGetParity
询问串行端口奇偶校验。

函数原型：

unsigned char

SerialGetParity(unsigned long ulPort)

参数：

ulPort是要被访问的串行端口编号。

描述：

此函数将读取 uart配置，并返回被选端口当前所配置的奇偶校验。

返回：

返回端口当前设置的奇偶校验值。它的值是/b SERIAL_PARITY_NONE、

/b SERIAL_PARITY_ODD、/b SERIAL_PARITY_EVEN、/b SERIAL_PARITY_MARK或

/b SERIAL_PARITY_SPACE中的一个。

49.5.2.6 SerialGetStopBits
询问串行端口停止位。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

514

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

unsigned char

SerialGetStopBits(unsigned long ulPort)

参数：

ulPort是要被访问的串行端口编号。

描述：

此函数将读取 uart配置，并返回被选端口当前所配置的停止位。

返回：

无。

49.5.2.7 SerialGPIOAIntHandler

处理流控制的 GPIO A中断（端口 1）。

函数原型：

void

SerialGPIOAIntHandler(void)

描述：

当 GPIO端口 A产生一个中断时，调用此函数。当 InBound流控制信号改变电平时（上
升/下降沿），将会产生一个中断。然后将调用一个通知函数，以便告知相应的远程登录会
话流控制信号已改变。

返回：

无。

49.5.2.8 SerialGPIOBIntHandler
处理流控制的 GPIO B中断（端口 0）。

函数原型：

void

SerialGPIOBIntHandler(void)

描述：

当 GPIO端口 B产生一个中断时，调用此函数。当 InBound流控制信号改变电平时（上
升/下降沿），将会产生一个中断。然后将调用一个通知函数，以便告知相应的远程登录会
话流控制信号已改变。

返回：

无。

49.5.2.9 SerialInit
初始化串行端口驱动程序。

函数原型：

void

SerialInit(void)

描述：

此函数初始化并配置串行端口驱动程序。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

515

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

无。

49.5.2.10 SerialPurgeData
清除串行端口数据队列。

函数原型：

void

SerialPurgeData(unsigned long ulPort,

unsigned char ucPurgeCommand)

参数：

ulPort是要被访问的串行端口编号。

ucPurgeCommand是指示清除哪一个队列的命令。

描述：

此函数将清除 tx、rx或二个串行端口队列中的数据。

返回：

无。

49.5.2.11 SerialReceive
接收一个 UART中的字符。

函数原型：

long

SerialReceive(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。

描述：

此函数把一个字符发送到 UART中。这字符将被直接写入 UART FIFO，或在适当的时
候被直接写入 UART发送缓冲区。

返回：

无。

49.5.2.12 SerialSend
把一个字符发送到 UART。

函数原型：

void

SerialSend(unsigned long ulPort,unsigned char ucChar)

参数：

ulPort是要被访问的 UART端口编号。

ucChar是要被发送的字符。

描述：

此函数把一个字符发送到 UART中。这字符将被直接写入 UART FIFO，或在适当的时
候被直接写入 UART发送缓冲区。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

516

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

返回：

无。

49.5.2.13 SerialSendFull
检查串行端口输出缓冲区的可用性。

函数原型：

tBoolean

SerialSendFull(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。

描述：

此函数查看 UART发送缓冲区是否有空间容纳额外的数据。

返回：

串行发送循环缓冲区中可用的字节数值。

49.5.2.14 SerialSetBaudRate
配置串行端口波特率。

函数原型：

void

SerialSetBaudRate(unsigned long ulPort,

unsigned long ulBaudRate)

参数：

ulPort是要被访问的 UART端口编号。

ulBaudRate是串行端口的新波特率。

描述：

此函数配置串行端口波特率。当前串行端口的配置将会被读取。波特率将会被修改，然

后端口将会被重新配置。

返回：

无。

49.5.2.15 SerialSetCurrent
依照当前工作的参数值配置串行端口。

函数原型：

void

SerialSetCurrent(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。有效值为 0和 1。

描述：

此函数依照 g_sParameters.s端口的当前工作参数值配置指定的串行端口。然后真实参数
集被读回并且 g_sParameters.s端口被更新，从而可确保结构能正确地与硬件同步。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

517

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

返回：

无。

49.5.2.16 SerialSetDataSize
配置串行端口数据大小。

函数原型：

void

SerialSetDataSize(unsigned long ulPort,

unsigned char ucDataSize)

参数：

ulPort要被访问的 UART端口编号。

ucDataSize是串行端口的新数据大小。

描述：

此函数配置串行端口数据大小。串行端口的当前配置将被读取。然后数据大小被修改，

端口重新配置。

返回：

无。

49.5.2.17 SerialSetDefault
将串行端口配置为默认设置。

函数原型：

void

SerialSetDefault(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。

描述：

此函数复位串行端口，使其变为默认配置。

返回：

无。

49.5.2.18 SerialSetFactory
将串行端口配置为出厂默认设置。

函数原型：

void

SerialSetFactory(unsigned long ulPort)

参数：

ulPort是要被访问的 UART端口编号。

描述：

此函数复位串行端口，使其变为默认配置。

返回：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

518

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

无。

49.5.2.19 SerialSetFlowControl
配置串行端口的流控制选项。

函数原型：

void

SerialSetFlowControl(unsigned long ulPort,

unsigned char ucFlowControl)

参数：

ulPort是要被访问的 UART端口编号。

ucFlowControl是串行端口的新流控制设置。

描述：

此函数配置串行端口的流控制选项。此函数将使能/禁止流控制中断和 uart 发送器，这
取决于流控制设置的值和/或流控制输入信号。

返回：

无。

49.5.2.20 SerialSetFlowOut
设置串行端口流控制输出信号。

函数原型：

void

SerialSetFlowOut(unsigned long ulPort,

unsigned char ucFlowValue)

参数：

ulPort是要被访问的 UART端口编号。

ucFlowValue是编程到流控制管脚的值。有效值是/b SERIAL_FLOW_OUT_SET和

/b SERIAL_FLOW_OUT_CLEAR。

描述：

此函数将流控制输出管脚设置为一个指定的值。

返回：

无。

49.5.2.21 SerialSetParity
配置串行端口奇偶校验。

函数原型：

void

SerialSetParity(unsigned long ulPort,

unsigned char ucParity)

参数：

ulPort是要被访问的串行端口编号。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

519

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

ucParity是串行端口的新奇偶校验。

描述：

此函数配置串行端口奇偶校验。串行端口的当前配置将被读取。奇偶性将被修改，然后

端口将重新配置。

返回：

无。

49.5.2.22 SerialSetStopBits
配置串行端口停止位。

函数原型：

void

SerialSetStopBits(unsigned long ulPort,

unsigned char ucStopBits)

参数：

ulPort是要被访问的串行端口编号。

ucStopBits是串行端口的新停止位。

描述：

此函数配置配置串行端口停止位。串行端口的当前配置将被读取。停止位将被修改，然

后端口重新配置。

返回：

无。

49.5.2.23 SerialUART0IntHandler
处理 UART0中断。

函数原型：

void

SerialUART0IntHandler(void)

描述：

当 UART产生一个中断时，调用此函数。当接收到数据或发送 FIFO为半满时，将产生
一个中断。在适当的时候对发送和接收 FIFO进行处理。

返回：

无。

49.5.2.24 SerialUART1IntHandler
处理 UART1中断。

函数原型：

void

SerialUART1IntHandler(void)

描述：

当 UART产生一个中断时，调用此函数。当接收到数据或发送 FIFO为半满时，将产生
一个中断。在适当的时候对发送和接收 FIFO进行处理。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

520

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

返回：

无。

49.6 远程登录端口 API函数

数据结构

 tTelnetSessionData。

定义

 OPT_FLAG_DO_SUPPRESS_GA；
 OPT_FLAG_SERVER；
 OPT_FLAG_WILL_SUPPRESS_GA。

枚举

 tRFC2217State；
 tTCPState；
 tTelnetState。

函数

 void TelnetClose (unsigned long ulSerialPort)；
 unsigned short TelnetGetLocalPort (unsigned long ulSerialPort)；
 unsigned short TelnetGetRemotePort (unsigned long ulSerialPort)；
 void TelnetHandler (void)；
 void TelnetInit (void)；
 void TelnetListen (unsigned short usTelnetPort, unsigned long ulSerialPort)；
 void TelnetNotifyModemState (unsigned long ulPort, unsigned char ucModemState)；
 void TelnetOpen (unsigned long ulIPAddr, unsigned short usTelnetRemotePort,

unsigned short usTelnetLocalPort, unsigned long ulSerialPort)。

49.6.1 详细描述

远程登录（telnet）协议（由 RFC854定义）用来与网络进行连接。在它的最简形式中，
一个远程登录客户机就是简单地把一个 TCP连接到适当的端口。远程登录将 0xff解释为一
个命令指示器（广为人知的是将其解释为命令、或 IAC、字节）。连续的 IAC 字符被用来
发送一个真实的 0xff 字节；因此，所要求的唯一特别处理就是：在发送时要将 0xff 转化为
0xff 0xff，在接收时要将 0xff 0xff转化为 0xff。

同样也可以执行WILL、WONT、DO、DONT选项协商（option negotiation）协议。这
是一种确定性能是否存在的简单方法，以及是使能或禁止不需要的配置的方法。透过此协商

协议的用法，我们可以知道远程登录客户机与服务器具有很容易就能进行匹配的性能，并能

避免尝试配置二者的连接终端不能共享的特性（因此这就会导致协商序列被当作真实数据发

送出去，而不是被客户机或服务器接收）。

在此次执行中，只支持 SUPPRESS_GA和 RFC 2217选项。对其他的所有选项不（消极
地）进行响应，以便阻止客户机尝试使用它们。

这些函数包含在 telnet.c中，telnet.h包含应用使用的 API定义。

49.6.2 数据结构文件

49.6.2.1 tTelnetSessionData
定义：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

521

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

typedef struct

{

tcp_pcb *pConnectPCB;

tcp_pcb *pListenPCB;

tTCPState eTCPState;

tTelnetState eTelnetState;

unsigned short usTelnetLocalPort;

unsigned short usTelnetRemotePort;

unsigned long ulTelnetRemoteIP;

unsigned char ucFlags;

unsigned long ulConnectionTimeout;

unsigned long ulMaxTimeout;

unsigned long ulSerialPort;

pbuf *pBufQ[PBUF_POOL_SIZE];

int iBufQRead;

int iBufQWrite;

pbuf *pBufHead;

pbuf *pBufCurrent;

unsigned long ulBufIndex;

}

tTelnetSessionData

成员：

pConnectPCB：此值保存指向与所连接的 telnet会话相关联的 TCP PCB的指针。

pListenPCB：此值保存指向与正在收听的 telnet会话相关联的 TCP PCB的指针。

eTCPState：TCP会话的当前状态。

eTelnetState：telnet选项剖析器的当前状态。

usTelnetLocalPort：telnet服务器的收听端口或 telnet客户机的本地端口。

usTelnetRemotePort：telnet客户机要连接上的远程端口。

ulTelnetRemoteIP：telnet客户机要连接上的远程地址。

ucFlags：与 telnet会话相关联的各种选项的标记。

ulConnectionTimeout：计算 TCP连接超时的计数器。

ulMaxTimeout：计算 TCP连接超时的计数器的最大计数时间。

ulSerialPort：此值保存此次 telnet会话的 UART端口编号。

pBufQ：此值保存 pbufs数组。

iBufQRead：此值保存 pbuf队列的读索引。

iBufQWrite：此值保存 pbuf队列的写索引。

pBufHead：此值保存当前正在被处理的 pbuf表头（head）（that has been popped from the

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

522

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

queue）。

pBufCurrent：此值保存由 pbuf表头所指向的 pbuf链内的正在被处理的实际 pbuf。

ulBufIndex：此值把偏移量保存到当前 pbuf的净荷（payload）部分。

描述：

此结构用来保存给定的 telnet会话的状态。

49.6.3 定义文件

49.6.3.1 OPT_FLAG_DO_SUPPRESS_GA
定义：

#define OPT_FLAG_DO_SUPPRESS_GA

描述：

当远程客户机已发送一个 SUPRESS_GA的 DO请求，且服务器已接受它时，设置标记
位。

49.6.3.2 OPT_FLAG_SERVER
定义：

#define OPT_FLAG_SERVER

描述：

当一个连接被作为一个 telnet服务器操作时，设置标记位。如果清零此位，这就暗示此
连接是一个 telnet客户机。

49.6.3.3 OPT_FLAG_WILL_SUPPRESS_GA
定义：

#define OPT_FLAG_WILL_SUPPRESS_GA

描述：

当远程客户机已发送一个 SUPRESS_GA的 WILL请求，且服务器已接受此请求时，设置
标记位。

49.6.4 枚举文件

49.6.4.1 tRFC2217State
描述：

telnet COM-PORT选项剖析器的可能状态。

计数机：

STATE_2217_GET_COMMAND：telnet COM-PORT选项剖析器准备处理数据的第一个
字节，它是要被处理的子选项。

STATE_2217_GET_DATA：telnet COM-PORT选项剖析器正在处理指定命令/子选项的
数据字节。

STATE_2217_GET_DATA_IAC：telnet COM-PORT选项剖析器已接收到数据流中的一
个 IAC。

49.6.4.2 tTCPState
描述：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

523

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

TCP会话的可能状态。

计数机：

STATE_TCP_IDLE：TCP 会话空闲。无连接尝试，或不被配置成在任意端口上进行收
听。

STATE_TCP_LISTEN：TCP会话正在收听（服务器模式）

STATE_TCP_CONNECTING：TCP会话正在连接（客户机模式）

STATE_TCP_CONNECTED：TCP会话已连接。

49.6.4.3 tTelnetState
描述：

telnet选项剖析器的可能状态。

计数机：

STATE_NORMAL：telnet 选项剖析器处于它的正常模式。字符被传递直至接收到一个
IAC字节。

STATE_IAC：telnet选项剖析器之前接到的字符是一个 IAC字节。

STATE_WILL：telnet选项剖析器之前接到的字符序列是 IAC WILL。

STATE_WONT：telnet选项剖析器之前接到的字符序列是 IAC WONT。

STATE_DO：telnet选项剖析器之前接到的字符序列是 IAC DO。

STATE_DONT：telnet选项剖析器之前接到的字符序列是 IAC DONT。

STATE_SB：telnet选项剖析器之前接到的字符序列是 IAC SB。

STATE_SB_IGNORE：telnet选项剖析器之前接到的字符序列是 IAC SB n，这里的 n是
一个未被支持的选项。

STATE_SB_RFC2217： telnet 选项剖析器之 前接到的 字符序列 是 IAC SB
COM-PORT-OPTION（即 RFC 2217）。

49.6.5 函数文件

49.6.5.1 TelnetClose
关闭一个现存的以太网连接。

函数原型：

void

TelnetClose(unsigned long ulSerialPort)

参数：

ulSerialPort是与此次 telnet会话相关联的串行端口。

描述：

当与指定的串行端口相关联的 Telnet/TCP会话将要被关闭时，调用此函数。

返回：

无。

49.6.5.2 TelnetGetLocalPort
获取一个当前连接的 telnet会话的本地端口。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

524

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

函数原型：

unsigned short

TelnetGetLocalPort(unsigned long ulSerialPort)

参数：

ulSerialPort是与此次 telnet会话相关联的串行端口。

描述：

此函数返回与给定的串行端口相关联的 telnet会话正在使用的本地端口。如果作为一个
telnet 服务器操作，那么此端口就是收听一个进入连接的端口。如果作为一个 telnet 客户机
操作，那么此端口就是连接远程服务器的本地端口。

返回：

无。

49.6.5.3 TelnetGetRemotePort
获取一个当前连接的 telnet会话的远程端口。

函数原型：

unsigned short

TelnetGetRemotePort(unsigned long ulSerialPort)

参数：

ulSerialPort是与此次 telnet会话相关联的串行端口。

描述：

此函数返回与给定的串行端口相关联的 telnet会话正在使用的远程端口。如果作为一个
telnet服务器操作，此函数将返回 0。如果作为一个 telnet客户机操作，那么此端口就是连接
正在使用的服务器端口。

返回：

无。

49.6.5.4 TelnetHandler
处理 telnet会话的周期性任务。

函数原型：

void

TelnetHandler(void)

描述：

从 lwIP定时器线程环境中周期性地调用此函数。该函数将处理 UART 与 telnet套接字
之间进行的数据传输。为了维持最佳的吞吐量，调用此函数的周期时间应调谐到 UART 循
环缓冲区的大小。

返回：

无。

49.6.5.5 TelnetInit
初始化串口转以太网模块的 telnet会话。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

525

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

void

TelnetInit(void)

描述：

此函数初始化 telnet会话数据参数块。

返回：

无。

49.6.5.6 TelnetListen
打开 telnet服务器会话（收听 listen）。

函数原型：

void

TelnetListen(unsigned short usTelnetPort,

unsigned long ulSerialPort)

参数：

usTelnetPort是要监听的 telnet端口编号。

ulSerialPort是与此次 telnet会话相关联的串行端口。

描述：

此函数在监听模式下建立一个 TCP会话，用作一个 telnet服务器。

返回：

无。

49.6.5.7 TelnetNotifyModemState
处理 RFC2217调制解调器（modem）的状态通知。

函数原型：

void

TelnetNotifyModemState(unsigned long ulPort,

unsigned char ucModemState)

参数：

ulPort是调制解调器状态改变的串行端口。

ulModemState是调制解调器的新状态。

描述：

当 modem状态改变时，应该要由串行端口代码调用此函数。如果 RFC2217使能，那么
将会发送出一个通知报文。

返回：

无。

49.6.5.8 TelnetOpen
打开一个 telnet服务器会话（客户机）。

函数原型：

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

526

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

void

TelnetOpen(unsigned long ulIPAddr,

unsigned short usTelnetRemotePort,

unsigned short usTelnetLocalPort,

unsigned long ulSerialPort)

参数：

ulIPAddr是 telnet服务器的 IP地址。

usTelnetRemotePort是 telnet服务器的端口编号。

usTelnetLocalPort是连接的本地端口编号。

ulSerialPort是与此 telnet会话相关联的串行端口。

描述：

此函数通过尝试连接到 telnet服务器来建立一个 TCP会话。

返回：

无。

49.7 通用即插即用 API函数

函数

 void UPnPHandler (unsigned long ulTimeMS)；
 void UPnPInit (void)；
 void UPnPStart (void)；
 void UPnPStop (void)。

49.7.1 详细描述 T

UPnP模块提供了必需要支持网络接口中的 UPnP的函数。

这些函数包含在 upnp.c中，upnp.h包含应用程序使用的 API定义。

49.7.2 函数文件

49.7.2.1 UPnPHandler
处理 UPnP会话的以太网中断。

函数原型：

void

UPnPHandler(unsigned long ulTimeMS)

参数：

ulTimeMS是以 ms为单位的绝对时间（由 lwip处理程序维持）

描述：

为了处理多个定时器和 UPnP会话的任何缓冲区，应该要周期性地调用此函数。

返回：

无。

49.7.2.2 UPnPInit

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

527

 广州周立功单片机发展有限公司 第 49 章 RDK-S2E 示例应用

初始化串口转以太网模块的 UPnP会话。

函数原型：

void

UPnPInit(void)

描述：

此函数对模块的 UPnP会话进行初始化和配置。

返回：

无。

49.7.2.3 UPnPStart
启动监听 UPnP请求。

函数原型：

void

UPnPStart(void)

描述：

此函数建立二个端口，这二个端口监听 UPnP的位置和发现请求。

返回：

无。

49.7.2.4 UPnPStop
广播一个 byebye报文，并停止 UPnP发现。

函数原型：

void

UPnPStop(void)

描述：

此函数广播一个 SSDP byebye报文，以表明不能使用 UPnP设备，然后释放与 UPnP发
现和位置相关联的资源。

返回：

无。

49.8 范例

所有这些范例位于外设驱动程序库源文件的 boards/rdk-s2e子目录下。

串口转以太网模块（Serial to Ethernet Module）（ser2enet）

串口转以太网转换器提供了如何通过网络连接来访问 Stellaris 器件的 UART 的方法。
UART能被连接到一个非网络器件的 UART，从而提供了通过网络来访问器件的功能。这对
于战胜 UART连接的电缆长度限制是很有用处的（实际上，电缆能变得无限长），并能在无
需修改器件的操作情况下为现存的器件提供网络功能。

转换器能被配置成使用一个静态 IP配置，或使用 DHCP来获取它的 IP配置。由于转换
器提供了一个 telnet 服务器，为了达到有效使用 DHCP 的目的，要求 DHCP 服务器中有一
个的保留地址，以便在每次连接到网络时，转换器都能获取到相同的 IP地址。

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

528

 广州周立功单片机发展有限公司 附录 A 修订历史

附录A 修订历史

版本号 日期 描述

Rev.2752 2008/07/03

stellaris®外设驱动库用户指南 ©2008 Guangzhou ZLGMCU Development CO., LTD.

529

