This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

调了好久的串口DMA 网上例程看了很多 没懂串口是怎么给DMA发送请求的

串口DMA传输配置完以后在while主循环里面要怎么操作串口啊 我看官方例程里面是串口中断里面重新配置uDMAChannelTransferSet,主循环里面就计计次数

官方例程是乒乓模式的 但是我没有这么大的数据量 就写了个基本模式的代码 功能是发送字节0xaa 串口调试助手什么也收不到

下面放代码

void UART_init(void)
{
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART2);
 HWREG(GPIO_PORTD_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
  HWREG(GPIO_PORTD_BASE + GPIO_O_CR) = 0xFF;
 
  GPIOPinConfigure(GPIO_PD7_U2TX);
  GPIOPinConfigure(GPIO_PD6_U2RX);
  GPIOPinTypeUART(GPIO_PORTD_BASE,GPIO_PIN_7|GPIO_PIN_6);
  UARTConfigSetExpClk(UART2_BASE,SysCtlClockGet(),115200,
                     UART_CONFIG_WLEN_8|
                     UART_CONFIG_STOP_ONE|UART_CONFIG_PAR_NONE);
  UARTEnable(UART2_BASE); 
 UARTDMAEnable(UART2_BASE,UART_DMA_TX|UART_DMA_RX);
 uDMAChannelAttributeDisable(UDMA_CH0_UART2RX,
                              UDMA_ATTR_ALTSELECT |
                              UDMA_ATTR_HIGH_PRIORITY |
                              UDMA_ATTR_REQMASK);
 uDMAChannelControlSet(UDMA_CH0_UART2RX |
                       UDMA_PRI_SELECT,
                        UDMA_SIZE_8 |
                       UDMA_SRC_INC_NONE |
                        UDMA_DST_INC_NONE |
                        UDMA_ARB_1);
 uDMAChannelTransferSet(UDMA_CH0_UART2RX |
                        UDMA_PRI_SELECT,
                         UDMA_MODE_BASIC,
             (void *)(UART0_BASE + UART_O_DR),
             RxBuf,
                         sizeof(RxBuf));
  uDMAChannelAttributeDisable(UDMA_CH1_UART2TX,
                              UDMA_ATTR_ALTSELECT |
                              UDMA_ATTR_HIGH_PRIORITY |
                              UDMA_ATTR_REQMASK); 
  uDMAChannelControlSet(UDMA_CH1_UART2TX |
            UDMA_PRI_SELECT,
                        UDMA_SIZE_8 |
            UDMA_SRC_INC_NONE |
                        UDMA_DST_INC_NONE |
                        UDMA_ARB_1);
  uDMAChannelTransferSet(UDMA_CH1_UART2TX |
             UDMA_PRI_SELECT,
                         UDMA_MODE_BASIC,
             TxBuf,
                         (void *)(UART0_BASE + UART_O_DR),
                         sizeof(TxBuf));  
  uDMAChannelEnable(UDMA_CH0_UART2RX);
  uDMAChannelEnable(UDMA_CH1_UART2TX);
  uDMAChannelRequest(UDMA_CH0_UART2RX);
 uDMAChannelRequest(UDMA_CH1_UART2TX);          
  UARTIntEnable(UART2_BASE, UART_INT_DMARX);  
 UARTIntEnable(UART2_BASE, UART_INT_DMATX);
  IntEnable(INT_UART2);            
 
}
void UART2IntHandler(void)
{
  uint32_t ui32Status;
   uint32_t ui32Mode;
   ui32Status = UARTIntStatus(UART2_BASE, 1);
   UARTIntClear(UART2_BASE, ui32Status);
   ui32Mode = uDMAChannelModeGet(UDMA_CH1_UART2TX | UDMA_PRI_SELECT);
   if(ui32Mode == UDMA_MODE_STOP)
    {
     uDMAChannelTransferSet(UDMA_CH1_UART2TX | UDMA_PRI_SELECT,
                                        UDMA_MODE_BASIC, TxBuf,
                                        (void *)(UART2_BASE + UART_O_DR),
                                        sizeof(TxBuf));
     uDMAChannelEnable(UDMA_CH1_UART2TX);
   uDMAChannelRequest(UDMA_CH1_UART2TX);
    }
    if(!uDMAChannelIsEnabled(UDMA_CH0_UART2RX))
   {
      uDMAChannelTransferSet(UDMA_CH0_UART2RX | UDMA_PRI_SELECT,
                                   UDMA_MODE_BASIC,
                                   (void *)(UART2_BASE + UART_O_DR),RxBuf,
                                   sizeof(RxBuf));
      uDMAChannelEnable(UDMA_CH0_UART2RX);
   uDMAChannelRequest(UDMA_CH0_UART2RX);
    }
}
void UDMA_Init(void)
{
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
 IntEnable(INT_UDMAERR);
 uDMAEnable();
 uDMAControlBaseSet(pui8ControlTable);
 uDMAChannelAssign(UDMA_CH0_UART2RX);
 uDMAChannelAssign(UDMA_CH1_UART2TX);
}
uint8_t RxBuf[1];
uint8_t TxBuf[1]={0xaa};
int main()
{
 FPULazyStackingEnable();
 FPUEnable();
 SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);
 
 UDMA_Init();
 UART_init();
 
 while(1)
 {
 }
}
  • 主存和DMA接口之间有一条直接数据通路。DMA方式传送数据不需要经过CPU,所以你配置好,直接给目标地址放数据就好了。
  • 现在是我配置好了 能发送了 但是如果数据内容长了 发几次后数据内容就乱了 发一个字节要间隔几微秒才能保证发送顺序 或者拉低波特率 但是还是会乱 现在是没有给串口配置中断的 直接写了个发送的函数
  • 请您参考下下面的代码

    //*****************************************************************************
    //
    // udma_demo.c - uDMA example.
    //
    // Copyright (c) 2013-2017 Texas Instruments Incorporated.  All rights reserved.
    // Software License Agreement
    // 
    // Texas Instruments (TI) is supplying this software for use solely and
    // exclusively on TI's microcontroller products. The software is owned by
    // TI and/or its suppliers, and is protected under applicable copyright
    // laws. You may not combine this software with "viral" open-source
    // software in order to form a larger program.
    // 
    // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
    // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
    // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
    // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
    // DAMAGES, FOR ANY REASON WHATSOEVER.
    // 
    // This is part of revision 2.1.4.178 of the EK-TM4C1294XL Firmware Package.
    //
    //*****************************************************************************
    
    #include <stdint.h>
    #include <stdbool.h>
    #include <string.h>
    #include "inc/hw_ints.h"
    #include "inc/hw_memmap.h"
    #include "inc/hw_types.h"
    #include "inc/hw_uart.h"
    #include "driverlib/fpu.h"
    #include "driverlib/gpio.h"
    #include "driverlib/interrupt.h"
    #include "driverlib/pin_map.h"
    #include "driverlib/rom.h"
    #include "driverlib/rom_map.h"
    #include "driverlib/sysctl.h"
    #include "driverlib/systick.h"
    #include "driverlib/uart.h"
    #include "driverlib/udma.h"
    #include "utils/cpu_usage.h"
    #include "utils/uartstdio.h"
    #include "utils/ustdlib.h"
    
    //*****************************************************************************
    //
    //! \addtogroup example_list
    //! <h1>uDMA (udma_demo)</h1>
    //!
    //! This example application demonstrates the use of the uDMA controller to
    //! transfer data between memory buffers, and to transfer data to and from a
    //! UART.  The test runs for 10 seconds before exiting.
    //!
    //! UART0, connected to the ICDI virtual COM port and running at 115,200,
    //! 8-N-1, is used to display messages from this application.
    //
    //*****************************************************************************
    
    //****************************************************************************
    //
    // System clock rate in Hz.
    //
    //****************************************************************************
    uint32_t g_ui32SysClock;
    
    //*****************************************************************************
    //
    // The number of SysTick ticks per second used for the SysTick interrupt.
    //
    //*****************************************************************************
    #define SYSTICKS_PER_SECOND     100
    
    //*****************************************************************************
    //
    // The size of the memory transfer source and destination buffers (in words).
    //
    //*****************************************************************************
    #define MEM_BUFFER_SIZE         1024
    
    //*****************************************************************************
    //
    // The size of the UART transmit and receive buffers.  They do not need to be
    // the same size.
    //
    //*****************************************************************************
    #define UART_TXBUF_SIZE         10
    #define UART_RXBUF_SIZE         10
    
    //*****************************************************************************
    //
    // The source and destination buffers used for memory transfers.
    //
    //*****************************************************************************
    static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE];
    static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE];
    
    //*****************************************************************************
    //
    // The transmit and receive buffers used for the UART transfers.  There is one
    // transmit buffer and a pair of recieve ping-pong buffers.
    //
    //*****************************************************************************
    static uint8_t g_ui8TxBuf[UART_TXBUF_SIZE];
    static uint8_t g_ui8RxBufA[UART_RXBUF_SIZE];
    static uint8_t g_ui8RxBufB[UART_RXBUF_SIZE];
    
    //*****************************************************************************
    //
    // The count of uDMA errors.  This value is incremented by the uDMA error
    // handler.
    //
    //*****************************************************************************
    static uint32_t g_ui32uDMAErrCount = 0;
    
    //*****************************************************************************
    //
    // The count of times the uDMA interrupt occurred but the uDMA transfer was not
    // complete.  This should remain 0.
    //
    //*****************************************************************************
    static uint32_t g_ui32BadISR = 0;
    
    //*****************************************************************************
    //
    // The count of UART buffers filled, one for each ping-pong buffer.
    //
    //*****************************************************************************
    static uint32_t g_ui32RxBufACount = 0;
    static uint32_t g_ui32RxBufBCount = 0;
    
    //*****************************************************************************
    //
    // The count of memory uDMA transfer blocks.  This value is incremented by the
    // uDMA interrupt handler whenever a memory block transfer is completed.
    //
    //*****************************************************************************
    static uint32_t g_ui32MemXferCount = 0;
    
    
    //*****************************************************************************
    //
    // The number of seconds elapsed since the start of the program.  This value is
    // maintained by the SysTick interrupt handler.
    //
    //*****************************************************************************
    static uint32_t g_ui32Seconds = 0;
    
    //*****************************************************************************
    //
    // The control table used by the uDMA controller.  This table must be aligned
    // to a 1024 byte boundary.
    //
    //*****************************************************************************
    #if defined(ewarm)
    #pragma data_alignment=1024
    uint8_t pui8ControlTable[1024];
    #elif defined(ccs)
    #pragma DATA_ALIGN(pui8ControlTable, 1024)
    uint8_t pui8ControlTable[1024];
    #else
    uint8_t pui8ControlTable[1024] __attribute__ ((aligned(1024)));
    #endif
    
    //*****************************************************************************
    //
    // The error routine that is called if the driver library encounters an error.
    //
    //*****************************************************************************
    #ifdef DEBUG
    void
    __error__(char *pcFilename, uint32_t ui32Line)
    {
    }
    #endif
    
    //*****************************************************************************
    //
    // The interrupt handler for the SysTick timer.  This handler will increment a
    // seconds counter whenever the appropriate number of ticks has occurred.  It
    // will also call the CPU usage tick function to find the CPU usage percent.
    //
    //*****************************************************************************
    void
    SysTickHandler(void)
    {
        static uint32_t ui32TickCount = 0;
    
        //
        // Increment the tick counter.
        //
        ui32TickCount++;
    
        //
        // If the number of ticks per second has occurred, then increment the
        // seconds counter.
        //
    //    if(!(ui32TickCount % SYSTICKS_PER_SECOND))
    //    {
    //        g_ui32Seconds++;
    //    }
    
    }
    
    
    //*****************************************************************************
    //
    // The interrupt handler for uDMA errors.  This interrupt will occur if the
    // uDMA encounters a bus error while trying to perform a transfer.  This
    // handler just increments a counter if an error occurs.
    //
    //*****************************************************************************
    void
    uDMAErrorHandler(void)
    {
        uint32_t ui32Status;
    
        //
        // Check for uDMA error bit
        //
        ui32Status = ROM_uDMAErrorStatusGet();
    
        //
        // If there is a uDMA error, then clear the error and increment
        // the error counter.
        //
        if(ui32Status)
        {
            ROM_uDMAErrorStatusClear();
            g_ui32uDMAErrCount++;
        }
    }
    
    //*****************************************************************************
    //
    // The interrupt handler for uDMA interrupts from the memory channel.  This
    // interrupt will increment a counter, and then restart another memory
    // transfer.
    //
    //*****************************************************************************
    void
    uDMAIntHandler(void)
    {
        uint32_t ui32Mode,status;
        //
        // Check for the primary control structure to indicate complete.
        //
        status = ROM_uDMAIntStatus();
        uDMAIntClear(status);
        ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SW);
        if(ui32Mode == UDMA_MODE_STOP)
        {
    
            //
            // Configure it for another transfer.
            //
            ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
                                         g_ui32SrcBuf, g_ui32DstBuf,
                                         MEM_BUFFER_SIZE);
    
            //
            // Initiate another transfer.
            //
            ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
            ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);
        }
    
    }
    
    //*****************************************************************************
    //
    // The interrupt handler for UART1.  This interrupt will occur when a DMA
    // transfer is complete using the UART1 uDMA channel.  It will also be
    // triggered if the peripheral signals an error.  This interrupt handler will
    // switch between receive ping-pong buffers A and B.  It will also restart a TX
    // uDMA transfer if the prior transfer is complete.  This will keep the UART
    // running continuously (looping TX data back to RX).
    //
    //*****************************************************************************
    void
    UART3IntHandler(void)
    {
        uint32_t ui32Status;
        uint32_t ui32Mode;
    
        ui32Status = ROM_UARTIntStatus(UART3_BASE, 1);
    
    
        ROM_UARTIntClear(UART3_BASE, ui32Status);
        ui32Mode = ROM_uDMAChannelModeGet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT);
    
        if(ui32Mode == UDMA_MODE_STOP)
        {
            ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,
                                       UDMA_MODE_PINGPONG,
                                       (void *)(UART3_BASE + UART_O_DR),
                                       g_ui8RxBufA, sizeof(g_ui8RxBufA));
    
        }
           ui32Mode = ROM_uDMAChannelModeGet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT);
     if(ui32Mode == UDMA_MODE_STOP)
        {
    
            //
            // Set up the next transfer for the "B" buffer, using the alternate
            // control structure.  When the ongoing receive into the "A" buffer is
            // done, the uDMA controller will switch back to this one.  This
            // example re-uses buffer B, but a more sophisticated application could
            // use a rotating set of buffers to increase the amount of time that
            // the main thread has to process the data in the buffer before it is
            // reused.
            //
            ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT,
                                       UDMA_MODE_PINGPONG,
                                       (void *)(UART3_BASE + UART_O_DR),
                                       g_ui8RxBufA, sizeof(g_ui8RxBufB));////!!!!!!!!!!!!!!!!!!!!!!!
        }
            ui32Status = ROM_UARTIntStatus(UART3_BASE, 1);
        ROM_UARTIntClear(UART3_BASE, ui32Status);
    //           ROM_UARTIntClear(UART3_BASE, UART_INT_DMATX );
        if(!ROM_uDMAChannelIsEnabled(UDMA_CH17_UART3TX))
    //   if(ROM_UARTIntStatus(UART3_BASE, UART_INT_DMATX))
        {
            
            ROM_uDMAChannelTransferSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,
                                       UDMA_MODE_BASIC, g_ui8TxBuf,
                                       (void *)(UART3_BASE + UART_O_DR),
                                       sizeof(g_ui8TxBuf));
            ROM_uDMAChannelEnable(UDMA_CH17_UART3TX);
    //      ui32Status = ROM_UARTIntStatus(UART3_BASE, 1);
    //    ROM_UARTIntClear(UART3_BASE, ui32Status);
    ////             ROM_UARTIntClear(UART3_BASE, UART_INT_DMATX );
                                                                         
        }
    }
    void UART3Init(){
    
            ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOJ);
    
        ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART3);
        ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART3);
          GPIOPinConfigure(GPIO_PJ0_U3RX);  
          GPIOPinConfigure(GPIO_PJ1_U3TX);  
        ROM_GPIOPinTypeUART(GPIO_PORTJ_BASE,GPIO_PIN_0|GPIO_PIN_1);
       
        ROM_UARTConfigSetExpClk(UART3_BASE, g_ui32SysClock, 115200,
                                UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
                                UART_CONFIG_PAR_NONE);
    
        ROM_UARTFIFOLevelSet(UART3_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
    
        ROM_UARTEnable(UART3_BASE);
        ROM_UARTDMAEnable(UART3_BASE, UART_DMA_RX | UART_DMA_TX);
    //              HWREG(UART3_BASE + UART_O_CTL) |= UART_CTL_LBE;
    
        ROM_uDMAChannelAssign(UDMA_CH16_UART3RX);
        ROM_uDMAChannelAssign(UDMA_CH17_UART3TX);
        //
        // Enable the UART DMA TX/RX interrupts.
        //
        ROM_UARTIntEnable(UART3_BASE, UART_INT_DMATX | UART_INT_DMARX);
    
        //
        // Enable the UART peripheral interrupts.
        //
        ROM_IntEnable(INT_UART3);
    
    }
    void uDMA_U3Rx(){
        //
        // Put the attributes in a known state for the uDMA UART1RX channel.  These
        // should already be disabled by default.
        //
        ROM_uDMAChannelAttributeDisable(UDMA_CH16_UART3RX,
                                        UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
                                        UDMA_ATTR_HIGH_PRIORITY |
                                        UDMA_ATTR_REQMASK);
    
        //
        // Configure the control parameters for the primary control structure for
        // the UART RX channel.  The primary contol structure is used for the "A"
        // part of the ping-pong receive.  The transfer data size is 8 bits, the
        // source address does not increment since it will be reading from a
        // register.  The destination address increment is byte 8-bit bytes.  The
        // arbitration size is set to 4 to match the RX FIFO trigger threshold.
        // The uDMA controller will use a 4 byte burst transfer if possible.  This
        // will be somewhat more effecient that single byte transfers.
        //
        ROM_uDMAChannelControlSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,
                                  UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
                                  UDMA_ARB_4);
    
        //
        // Configure the control parameters for the alternate control structure for
        // the UART RX channel.  The alternate contol structure is used for the "B"
        // part of the ping-pong receive.  The configuration is identical to the
        // primary/A control structure.
        //
            ROM_uDMAChannelControlSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT,
                                                                UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
                                                                UDMA_ARB_4);
    
        //
        // Set up the transfer parameters for the UART RX primary control
        // structure.  The mode is set to ping-pong, the transfer source is the
        // UART data register, and the destination is the receive "A" buffer.  The
        // transfer size is set to match the size of the buffer.
        //
        ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,
                                   UDMA_MODE_PINGPONG,//UDMA_MODE_PINGPONG,UDMA_MODE_BASIC
                                   (void *)(UART3_BASE + UART_O_DR),
                                   g_ui8RxBufA, sizeof(g_ui8RxBufA));
    
        //
        // Set up the transfer parameters for the UART RX alternate control
        // structure.  The mode is set to ping-pong, the transfer source is the
        // UART data register, and the destination is the receive "B" buffer.  The
        // transfer size is set to match the size of the buffer.
        //
            ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT,
                                                         UDMA_MODE_PINGPONG,
                                                         (void *)(UART3_BASE + UART_O_DR),
                                                         g_ui8RxBufA, sizeof(g_ui8RxBufA));//!!!!!!!!!!!!!!!!!!!
        ROM_uDMAChannelEnable(UDMA_CH16_UART3RX);
    
    }
    void uDMA_U4Tx(uint32_t size, uint8_t *data){
         //
        // Put the attributes in a known state for the uDMA UART1TX channel.  These
        // should already be disabled by default.
        //
        ROM_uDMAChannelAttributeDisable(UDMA_CH17_UART3TX,
                                        UDMA_ATTR_ALTSELECT |
                                        UDMA_ATTR_HIGH_PRIORITY |
                                        UDMA_ATTR_REQMASK);
    
        //
        // Set the USEBURST attribute for the uDMA UART TX channel.  This will
        // force the controller to always use a burst when transferring data from
        // the TX buffer to the UART.  This is somewhat more effecient bus usage
        // than the default which allows single or burst transfers.
        //
        ROM_uDMAChannelAttributeEnable(UDMA_CH17_UART3TX, UDMA_ATTR_USEBURST);
    
        //
        // Configure the control parameters for the UART TX.  The uDMA UART TX
        // channel is used to transfer a block of data from a buffer to the UART.
        // The data size is 8 bits.  The source address increment is 8-bit bytes
        // since the data is coming from a buffer.  The destination increment is
        // none since the data is to be written to the UART data register.  The
        // arbitration size is set to 4, which matches the UART TX FIFO trigger
        // threshold.
        //
        ROM_uDMAChannelControlSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,
                                  UDMA_SIZE_8 | UDMA_SRC_INC_8 |
                                  UDMA_DST_INC_NONE |
                                  UDMA_ARB_4);
    
        //
        // Set up the transfer parameters for the uDMA UART TX channel.  This will
        // configure the transfer source and destination and the transfer size.
        // Basic mode is used because the peripheral is making the uDMA transfer
        // request.  The source is the TX buffer and the destination is the UART
        // data register.
        //
        ROM_uDMAChannelTransferSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,
                                   UDMA_MODE_BASIC, data,
                                   (void *)(UART3_BASE + UART_O_DR),
                                   size);
    
        //
        // Now both the uDMA UART TX and RX channels are primed to start a
        // transfer.  As soon as the channels are enabled, the peripheral will
        // issue a transfer request and the data transfers will begin.
        //
            ROM_uDMAChannelEnable(UDMA_CH17_UART3TX);
    
    }
    //*****************************************************************************
    //
    // Initializes the UART1 peripheral and sets up the TX and RX uDMA channels.
    // The UART is configured for loopback mode so that any data sent on TX will be
    // received on RX.  The uDMA channels are configured so that the TX channel
    // will copy data from a buffer to the UART TX output.  And the uDMA RX channel
    // will receive any incoming data into a pair of buffers in ping-pong mode.
    //
    //*****************************************************************************
    void
    InitUART4Transfer(void)
    {
        UART3Init();
        uDMA_U3Rx();
        uDMA_U4Tx(sizeof(g_ui8TxBuf),g_ui8TxBuf);
    
    
    }
    
    
    //*****************************************************************************
    //
    // Initializes the uDMA software channel to perform a memory to memory uDMA
    // transfer.
    //
    //*****************************************************************************
    void
    InitSWTransfer(void)
    {
    //    uint_fast16_t ui16Idx;
    
        //
        // Enable interrupts from the uDMA software channel.
        //
        ROM_IntEnable(INT_UDMA);
    
        //
        // Put the attributes in a known state for the uDMA software channel.
        // These should already be disabled by default.
        //
        ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_SW,
                                        UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
                                        (UDMA_ATTR_HIGH_PRIORITY |
                                        UDMA_ATTR_REQMASK));
    
        //
        // Configure the control parameters for the SW channel.  The SW channel
        // will be used to transfer between two memory buffers, 32 bits at a time.
        // Therefore the data size is 32 bits, and the address increment is 32 bits
        // for both source and destination.  The arbitration size will be set to 8,
        // which causes the uDMA controller to rearbitrate after 8 items are
        // transferred.  This keeps this channel from hogging the uDMA controller
        // once the transfer is started, and allows other channels cycles if they
        // are higher priority.
        //
        ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
                                  UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |
                                  UDMA_ARB_8);
    
        //
        // Set up the transfer parameters for the software channel.  This will
        // configure the transfer buffers and the transfer size.  Auto mode must be
        // used for software transfers.
        //
        ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
                                   UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf,
                                   MEM_BUFFER_SIZE);
    
        //
        // Now the software channel is primed to start a transfer.  The channel
        // must be enabled.  For software based transfers, a request must be
        // issued.  After this, the uDMA memory transfer begins.
        //
        ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
        ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);
    }
    
    
    void uDMA_Init(){
            //
        // Enable the uDMA controller at the system level.  Enable it to continue
        // to run while the processor is in sleep.
        //
        ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
        ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
    
        //
        // Enable the uDMA controller error interrupt.  This interrupt will occur
        // if there is a bus error during a transfer.
        //
        ROM_IntEnable(INT_UDMAERR);
    
        //
        // Enable the uDMA controller.
        //
        ROM_uDMAEnable();
    
        //
        // Point at the control table to use for channel control structures.
        //
        ROM_uDMAControlBaseSet(pui8ControlTable);
    
    
    }
    void delay_s(int s) {
    
        ROM_SysCtlDelay((g_ui32SysClock / (3 )) * s); // more accurate
    
    }
    //*****************************************************************************
    //
    // This example demonstrates how to use the uDMA controller to transfer data
    // between memory buffers and to and from a peripheral, in this case a UART.
    // The uDMA controller is configured to repeatedly transfer a block of data
    // from one memory buffer to another.  It is also set up to repeatedly copy a
    // block of data from a buffer to the UART output.  The UART data is looped
    // back so the same data is received, and the uDMA controlled is configured to
    // continuously receive the UART data using ping-pong buffers.
    //
    // The processor is put to sleep when it is not doing anything, and this allows
    // collection of CPU usage data to see how much CPU is being used while the
    // data transfers are ongoing.
    //
    //*****************************************************************************
    int
    main(void)
    {
    
        //
        // Set the clocking to run directly from the crystal at 120MHz.
        //
        g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_16MHZ |
                                                 SYSCTL_OSC_MAIN |
                                                 SYSCTL_USE_PLL |
                                                 SYSCTL_CFG_VCO_480), 120000000);
    
    
        uDMA_Init();
        //
        // Initialize the uDMA memory to memory transfers.
        //
        InitSWTransfer();
    
        //
        // Initialize the uDMA UART transfers.
        //
    //    InitUART4Transfer();
        UART3Init();
        uDMA_U3Rx();
        uDMA_U4Tx(sizeof(g_ui8TxBuf),g_ui8TxBuf);
    
        //
        // Loop until the button is pressed.  The processor is put to sleep
        // in this loop so that CPU utilization can be measured.
        //
        while(1)
        {
                    uint_fast16_t ui16Idx;
    
        //
        // Fill the TX buffer with a simple data pattern.
        //
        for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++)
        {
            g_ui8TxBuf[ui16Idx] = ui16Idx;
        }
      delay_s(10);
            
        for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++)
        {
            g_ui8TxBuf[ui16Idx] = 0x70;
        }
             delay_s(10);
            
        for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++)
        {
            g_ui8TxBuf[ui16Idx] = 0x71;
        }
            delay_s(10);
        }
    
    }
    

  • 请问startup_rvmdk.S怎么配置,我用的Keil写的程序
  • 直接点开.s文件,把自己写的中断函数替换默认的中断函数就好了。
  •  就是我直接替换会出现这种情况

  • 请问这些例程,你们是从哪里找到的,很多都说是官网,但哪个官网,是培训官网还是TI官网,我没找到
  • 我们一般说的官网,是指TI的官方TIVAWARE开发包中的例程。你官网下载离线的开发包安装就好了。下载链接如下所示:
    www.ti.com.cn/.../SW-TM4C
  • 您也可以在下面的链接找到

    dev.ti.com/.../node