ADS1299: 要怎麼檢測SPI通訊是正常的呢

Part Number: ADS1299

使用ADS199FE-PDK 透過SPI連接到 STM32F4052的開發版,mcu spi baud rate設置為2M,CPOL=LOW,CPHA=2 Edge,我開啟八通道的test signal輸入,使用邏輯分析儀發現每個通道的值差異不大,如圖1,但在每個SPI傳輸後,使用UART讓藍芽傳輸,SPI的值就會變得很奇怪,如圖二,請問是正常的嗎?
以及我該如何檢驗SPI的結果是正確的呢,謝謝

圖1邏輯分析儀結果

圖1 : 
圖2邏輯分析儀結果
圖2:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stdio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  HAL_Init();


  SystemClock_Config();


  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();

  /* USER CODE BEGIN 2 */
  //int received_byte; // 定義接收字節變量

  HAL_GPIO_WritePin(GPIOC, reset_Pin, GPIO_PIN_SET);

  uint8_t RESET = 0x06; // 復位ADS1299命令
  HAL_Delay(1000);
  HAL_SPI_Transmit(&hspi1, (uint8_t*)&RESET, 1, 0x1000);
  HAL_Delay(1000);

  uint8_t ID = 0x00;
    //uint8_t為一個char
  uint8_t SDATAC = 0x11; // stop read data
  uint8_t RDATAC = 0x10; // 讀取連續數據



  uint8_t START = 0x08; // 啟動命令
    // uint8_t STOP = 0x0a; // 停止命令(未使用)
    // uint8_t WAKEUP = 0x02; // 喚醒命令(未使用)
    // uint8_t STANDBY = 0X04; // 待機命令(未使用)

  uint8_t test = 0x00; // 測試變量


    uint8_t CONFIG1 = 0x01; // 配置寄存器1
    uint8_t CONFIG2 = 0x02; // 配置寄存器2
    uint8_t CONFIG3 = 0x03; // 配置寄存器3

    uint8_t CH1SET = 0x05; // 設置通道1
    uint8_t CH2SET = 0x06; // 設置通道2
    uint8_t CH3SET = 0x07; // 設置通道3
    uint8_t CH4SET = 0x08; // 設置通道4
    uint8_t CH5SET = 0x09; // 設置通道5
    uint8_t CH6SET = 0x0A; // 設置通道6
    uint8_t CH7SET = 0x0B; // 設置通道7
    uint8_t CH8SET = 0x0C; // 設置通道8

//    uint8_t BIAS_SENSP = 0x0D; // 設置Bias Drive Positive Derivation Register
//    uint8_t BIAS_SENSN = 0x0E; // 設置Bias Drive Negative Derivation Register
//    uint8_t LOFF_SENSP = 0x0F; // 設置Positive Signal Lead-Off Detection Register
//    uint8_t LOFF_SENSN = 0x10; // 設置Negative Signal Lead-Off Detection Register
//    uint8_t LOFF_FLIP	 = 0x11; // 設置Lead-Off Flip Register
//    uint8_t LOFF_STATP = 0x12;
//    uint8_t LOFF_STATN = 0X13;
//
//    uint8_t GPIO	= 0x14; // 設置GPIO
//    uint8_t MISC1 = 0x15; // 設置MISC1
//    uint8_t MISC2 = 0x16; // 設置MISC2
//    uint8_t CONFIG4 = 0x17; // 設置寄存器4

    uint8_t received_Byte; // 定義接收字節變量
    uint32_t dataPacket = 0;
    uint32_t output[9] = {0};
    int counter = 0;
    int length;

    uint32_t data_test = 0x7FFFFF; // 測試數據
    uint32_t data_check = 0xFFFFFF; // 檢查數據

    uint32_t result[4]={0}; // 定義結果變量
    uint32_t result_before; // 定義先前結果變量
//    int average_result_massiv[10] = {0}; // 定義平均結果數組
//    int average_result; // 定義平均結果變量
//
//    uint32_t noise_massive[100] = {0}; // 定義噪聲數組
//    uint32_t final_noise_massive[100] = {0}; // 定義最終噪聲數組
//    uint32_t summa_noise; // 定義噪聲總和變量
    int zad = 8; // 定義任務變量
//    int i_count = 0; // 定義計數器變量
//    int average_count = 0; // 定義平均計數器變量
//    int pcktcnter = 0;

    uint8_t out1 = 0;

    uint8_t new_data_flag = 0;
    // 發送命令函數
     void send_command(uint8_t cmd)
     {

     		 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳選擇芯片
     		 HAL_SPI_Transmit(&hspi1, (uint8_t*)&cmd,1, 0x1000);// 通過SPI發送命令,HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
     		 HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片
     }

     void send_data_by_uart(uint32_t outputdata)
     {

    	 	 	 //HAL_UART_Transmit(&huart1, &outputdata, sizeof(outputdata), 10); // Transmit the entire buffer
    	 	 	 //outputdata is a (4x24bit) array with 4 corresponding to 4 channels

    	 	 	// step 1 - convert dataset
    	 	 	char buffer = {0};
    	     	char buffer1[6] = {0};

    	 	 	sprintf(buffer1, "%06x",  outputdata);

    	 	 	for (int i=0;i<6;i++)
    	 	 	{
    	 	 		if (buffer1[i]!= '\0')
    	 	 		{
    	 	 			   buffer = buffer1[i];
    	 	 			   HAL_UART_Transmit(&huart1, &buffer, 1, 10); //original timeout = 1000
    	 	 		}
    	 	 		else
    	 	 		{
    	 	 			continue;
    	 	 		}
    	 	 	}//end of for (int i=0;i<6;i++)

    	 	 	if (counter == 7) // if send_data_by_uart has run 4 times then it means all data channels have been transmitted
    	 	 	{
					buffer = '\n'; //send "\n" after all channels have been sent to BLE
					HAL_UART_Transmit(&huart1, &buffer, 1, 10);
					counter = 0;

    	 	 	}// end of if(counter == 3)

				else
				{
					counter += 1;
				}



     }// end of send_data_by_uart


 	// 寫入字節函數
 void write_byte(uint8_t reg_addr, uint8_t val_hex)
 {
 		HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作
 		uint8_t adress = 0x40|reg_addr; // 定義寄存器地址
 		HAL_SPI_Transmit(&hspi1, (uint8_t*)&adress, 1, 0x1000);// 發送寄存器地址
 		HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據
 		HAL_SPI_Transmit(&hspi1, (uint8_t*)&val_hex, 1, 0x1000);// 發送要寫入的數據
 		HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);
 }

 	// 讀取字節函數
 uint8_t read_byte(uint8_t reg_addr)
 {
 		uint8_t out; // 定義輸出字節變量
 		HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);// 拉低CS引腳電壓,選擇芯片使其動作
 		uint8_t adress = 0x20 | reg_addr ;  // 定義寄存器地址
 		HAL_SPI_Transmit(&hspi1, (uint8_t*) &adress, 1 ,0x1000);// 發送寄存器地址
// 		HAL_SPI_Transmit(&hspi1, (uint8_t*)&test, 1, 0x1000);// 發送測試數據
// 		HAL_SPI_Receive(&hspi1, (uint8_t*)&out,1, 0x1000);
 		HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&adress,(uint8_t*)&out,1,0x1000); // 讀取寄存器數據
 		HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);// 拉高CS引腳釋放芯片
 		return(out);
 }

 	// 指示燈功能函數
 void live_bits ()
 {
 		HAL_Delay(100); // 延遲100毫秒
 		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);// 翻轉PB0引腳電平
 		HAL_Delay(100);// 延遲100毫秒
 }

 int measure_impedance()
 {
   	    write_byte(CH1SET, 0x00); // 將值0x00寫入通道1
   	    write_byte(0x0D, 0x00);   // 設置BIAS_SENSP寄存器,Disabled INxP to bias
   	    write_byte(0x0E, 0x00);   // 設置BIAS_SENSN寄存器,Disabled INxN to BIAS
   	    write_byte(0x0F, 0xFF);   // 設置LOFF_SENSP寄存器,Enabled INxP lead off, positive side from each channel for lead-off detection
 }



   HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);

   send_command(SDATAC);
   HAL_Delay(1000);



   write_byte(ID, 0x3E);
   out1 = read_byte(0x00);

   write_byte(0x01, 0x95);
   //B5(1011 0110),Oscillator clock output enabled,fs=500Hz
   // 95 (1001 0110),fs=500Hz

   out1 = read_byte(0x01);

   write_byte(CONFIG2, 0xD0); //ti 板子設置test singal 由外部驅動
//   write_byte(CONFIG2, 0xD4);
   //D4 (1101 0100),test singal 內部生成
   //test singal=2 X (-(Vrefp-Vrefn)/2400)
   //plused at fclk/(2^21)

   write_byte(CONFIG3, 0xF0); //ti 板子設置
//    write_byte(CONFIG3, 0xEC);
   // EC (1111 1100),use internal ref_buffer
   //BIAS_IN connent MUX=010 的通道,BIASREF=(AVDD+AVSS)/2,bias connect

   write_byte(0x04, 0x00);  ////ti 板子設置
//   write_byte(0x04, 0x04);  //Lead-Off Control Register, not all

   write_byte(0x0D, 0x00); //ti 板子設置
//   write_byte(0x0D, 0x01); // 0F  BIAS_SENSP: Bias Drive Positive Derivation Register,這邊指使用通道1參與BIAS的回饋

   write_byte(0x0E, 0x00); // 0F  BIAS_SENSN: Bias Drive Negative Derivation Register

   write_byte(0x0F, 0x00);  // LOFF_SENSP: Positive Signal Lead-Off Detection Register

   write_byte(0x10, 0x00);  // LOFF_SENSN: Negative Signal Lead-Off Detection Register
   write_byte(0x11, 0x00);  // LOFF_FLIP: Lead-Off Flip Register
   write_byte(0x12, 0x00);  // (Read-Only) LOFF_STATP: Lead-Off Positive Signal Status Register
   write_byte(0x13, 0x00);  // (Read-Only)LOFF_STATN: Lead-Off Negative Signal Status Register

   write_byte(0x14, 0x0F); //ti 板子設置
//   write_byte(0x14, 0x3F);  // GPIO 用於輸出

   write_byte(0x15, 0x00); //ti 板子設置
//   write_byte(0x15, 0x20);  // MISC1, 第5bit決定SRB1引道到各通道,SRB1接至反向輸入端

   write_byte(0x16, 0x00); // RESERVED
//   write_byte(0x17, 0x00);  // CONFIG4

   write_byte(CH1SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input


   write_byte(CH2SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input


   write_byte(CH3SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input


   write_byte(CH4SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input


   write_byte(CH5SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
////   HAL_Delay(10);
////
   write_byte(CH6SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
////   HAL_Delay(10);
////
   write_byte(CH7SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
////   HAL_Delay(10);
////
   write_byte(CH8SET, 0x05); // (0110 1000)normal operation, gain=24, use srb1, normal input
//   HAL_Delay(10);

//  send_command(SDATAC);
//  uint8_t read_reg = read_byte(CH1SET);
//  send_data_by_uart(read_reg);
  HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);

//  HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_);

  HAL_Delay(1000);

//  send_command(START);

  HAL_GPIO_WritePin(GPIOB, Start_Pin, GPIO_PIN_SET);
  HAL_Delay(10);

  send_command(RDATAC);


  HAL_Delay(10); //tsettle = 16393*500ns. 500ns = tclk, 16393 see datasheet pg 35


// int only_1_times=0;

 while (1)
 {
//	 	HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET);
//	  	write_byte(CH1SET, 0x65);// 通道1: Input shorted
//	  	write_byte(CH2SET, 0x65);// 通道2: Input shorted
//	  	write_byte(CH3SET, 0x65);// 通道3: Input shorted
//	  	write_byte(CH4SET, 0x65);// 通道4: Input shorted
//	  	HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_SET);
//	  	HAL_Delay(2);

//	  	  measure_noise();
//		 if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_SET)
//		 {
//			zad = 5;
//		 }
	/* The code here separates channel data one-by-one, and then it packages the data by channels (8 packets, one per channel) and combines them into
	one array to send out 8 packets at once. We need to change this. */
		 if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET ) //
//		 if (HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5)
		 { //
			//HAL_Delay(2);
//			zad=0;

				//CS_Pin 低電位開始寫入資料
				HAL_GPIO_WritePin(GPIOA, CS_Pin, GPIO_PIN_RESET); //CS low //CS_Pin 低電位開始寫入資料

				//Read SPI and convert data
				for(int i = 0; i<9; i++) //4 channels
				{
					//dataPacket = 0;
					for(int j = 0; j<3; j++) //3 bytes per channel
					{
						// byte dataByte = SPI.transfer(0x00);
						HAL_SPI_TransmitReceive(&hspi1,(uint8_t*)&test,&received_Byte,1,0x1000);
//						HAL_SPI_Receive(&hspi1,&received_Byte,1,100); //transmit & receive occur at the same time
						dataPacket = (dataPacket<<8)|received_Byte;
					} // end of for(int j = 0; j<3; j++)

					output[i] = dataPacket;
					//send_data_by_uart(output);
					dataPacket = 0;


				} //end of for(int i = 0; i<4; i++)

//				HAL_Delay(20);

				//uint32_t size = sizeof(output)/sizeof(output[0]);

				for(int i = 1; i<9; i++)
				{
					send_data_by_uart(output[i]);
				}

				//Send data over UART
	//			send_data_by_uart(result);
	//			HAL_Delay(20);



		 } // end of if(HAL_GPIO_ReadPin(DRDY_GPIO_Port, DRDY_Pin) == GPIO_PIN_RESET && zad==5)
		 //HAL_Delay(2);
   } // end of while(1)
}//end of main

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(reset_GPIO_Port, reset_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(Start_GPIO_Port, Start_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : DRDY_Pin */
  GPIO_InitStruct.Pin = DRDY_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(DRDY_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : CS_Pin */
  GPIO_InitStruct.Pin = CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(CS_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : reset_Pin */
  GPIO_InitStruct.Pin = reset_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(reset_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pins : LED_Pin Start_Pin */
  GPIO_InitStruct.Pin = LED_Pin|Start_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */