工具与软件:
编译器:edgeai-tidl-tools (版本09_02_07_00)
步骤:
1.将模型放在$edgeai-tidl-tools$/models/public 文件夹中
修改$edgeai-tidl-tools$/examples/osrt_python/model_config.py
'yolov8n_20240715_best_test_sim' : { 'model_path' : os.path.join(models_base_path, 'best_sim.onnx'), 'mean': [0, 0, 0], 'scale' : [0.003921568627,0.003921568627,0.003921568627], 'num_images' : numImages, 'num_classes': 11, 'model_type': 'od', 'od_type' : 'YoloV5',//The relevant post-processing for yolov8 has not yet been written 'framework' : '', 'session_name' : 'onnxrt' , # 'meta_arch_type' :-1 },
修改$edgeai-tidl-tools$/examples/osrt_python/ort/onnxrt_ep.py
模型=["yolov8n_20240715_best_test_sim"]
4.启动 Docker 虚拟机并将其 CD 到/home/root
执行脚本:
CURDIR=`pwd` export SOC=am68pa export TIDL_TOOLS_PATH=$(pwd)/tidl_tools export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TIDL_TOOLS_PATH export ARM64_GCC_PATH=$(pwd)/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu cd $CURDIR/examples/osrt_python/ort python3 onnxrt_ep.py -c
onnx 模型的屏幕截图:
运行:的屏幕截图