• 利用电量计芯片实现双节串联锂电池的快速智能充电

    Other Parts Discussed in Post: BQ24725A, BQ28Z610

    作者:Harson Zhang   模拟现场应用工程师

    目前的快速充电方案,在手机市场中有广泛的应用。主流方案有基于处理器厂家高通平台的QC2.0/3.0,和即将应用的4.0标准,MTKPump Express标准,国产手机厂商的闪充。QC快充方案使用了高压输入的提高功率,可以在提高输入功率的同时使用低电流的线缆。闪充技术需要定制大电流的线缆配合,共同点都是应用在单节锂电池的产品上并不能应用在双节串联锂电池的快速充电场合。双节串联的锂电池的典型满充电压达到8.4-8.8V,应用在对讲机、 POS机等终端产品上。 TI针对多节电池的充电方案产品十分丰富,BQ24725A就是一款支持大电流的支持SMBus通信的充电控制器。BQ24725A输出电压支持到最高19.2V,充电电流最大支持到8A以上,输出电压精度控制达到0.5%

    使用类似BQ4725A这类集成的充电管理芯片方案对锂电池充电其实十分简单…

  • BQ40Z50-R2安全模式介绍及密码修改方法

    Other Parts Discussed in Post: BQ40Z50-R2, BQSTUDIO

    作者: 朱明武(Mingmo)

    电量计有三层安全模式:SEALED(加锁), UNSEALED(解锁), FULL ACCESS(全访问)。在不同安全模式下切换需要不同的安全密码。下面以BQ40Z50-R2为例(BQ40Z50-R1/R2/R3均适用)介绍三层安全模式的区别、模式切换方法、如何读取密码及如何修改密码。

    1、三层安全模式的区别

    不同安全模式下电量计的信息访问权限不同。

    SEALED(加锁)模式下,标准SBS命令(Command)可以访问、部分扩展命令(Extended Command)不能使用、不能读写Data Memory参数(不能导出导入GG文件)、不可以烧录CHEM ID、不能烧录或导出固件(FW)。具体SBS命令访问权限请参考电量计技术参考手册(Technical Reference Manual…

  • 减小EMI,提高密度和集成隔离是2019年电源发展的三大趋势

    作者:德州仪器Kilby实验室电源管理总监Jeff Morroni

    毫无疑问,电源在调节、传输和功耗等各个方面都成为日益重要的话题。人们期望产品功能日趋多样、性能更强大、更智能、外观更加酷炫,业界看到了关注电源相关问题的重要意义。展望2019年,三大广泛的问题最受关注,即:密度、EMI和隔离(信号和电源)。

     

    实现更高的密度:将更多电源管理放入更小的空间

    由于IC光刻工艺和每个功能运行功率的大幅缩减,使得芯片上可集成更多功能和栅极,对成品的总体功率需求迅速增长,如图1所示。一些处理器现在可以消耗几百安培电流,并且可以在不到一微秒的时间内从低电流状态上升到完全激活状态。通过降低损耗和提高热性能实现在硬币大小的面积上达到千瓦级功率的密度目标并非一句玩笑话。

    1:从1992年到2010年的产品热密度发展趋势。

     

    问题不仅在于管理功率和因此产生的功耗。由于存在基本的I2R损耗,即使在电源负载路径中明显

  • LDO基础知识:噪声 - 第1部分

    Other Parts Discussed in Post: TPS7A91, TPS7A85

    作者:德州仪器Aaron Paxton

    在一篇LDO基础知识博文中,我讨论了使用低压差稳压器(LDO)过滤因开关模式电源导致的纹波电压。然而,这不是获得净化直流电源唯一要考虑的事情。因为LDO是电子设备,它们自身也会生成一定数量的噪声。选择使用低噪声LDO和采取步骤减少内部噪声,都可以在不损害系统性能的同时形成净化电源轨的不可分割的措施。

    识别噪声

    理想的LDO具备没有交流元件的电压轨。但缺点在于LDO会和其他电子设备一样生成本体噪声。图 1 显示了这种噪声在时间域中的表现。

     图 1:有噪声电源的输出噪声快照

    在时间域中进行分析是困难的。因此,有两个主要方法来检验噪声:跨越整个频谱,和作为综合值。 您可以使用频谱分析工具来识别LDO输出线路中的各种交流元件。(应用报告,“如何测量LDO噪声,”介绍了丰富的噪声测量知识。) 图 2 绘制了1A低噪声LDO…

  • LDO基础知识:噪声 - 第2部分

    Other Parts Discussed in Post: TPS7A91, TPS7A8300

    作者:德州仪器Aaron Paxton

    在我的上一篇博文LDO基础知识:噪声 – 第1部分中,我探讨了如何减少输出噪声和控制压摆率,方法是为参考电压(CNR/SS)并联一个电容器。在本篇博文中,我将讨论降低输出噪声的另一种方法:使用前馈电容(CFF)。

    什么是前馈电容?

    前馈电容是一个可选的顶容器,与电阻分压器的上半部电阻并联,如图 1 所示。

    图 1:使用前馈电容的NMOS低压差稳压器(LDO)

    与降噪电容(CNR/SS)相似,添加前馈电容具有多种效果。最主要的是降噪,还包括改进稳定性、负荷响应和电源抑制比(PSRR)。(应用报告“使用前馈电容的低压差稳压器的优缺点,”详尽讨论了这些益处。)值得注意的是只有使用可调节LDO时才能使用前馈电容,因为此时电阻网络在外部。

    降噪

    LDO进行调节时会使用误差放大器…

  • 增强性能的100符栅极驱动器提升先进通信电源模块的效率

    Other Parts Discussed in Post: UCC27282, UCC27201A

    摘要

    通讯应用使用基于半桥、全桥或同步降压功率拓扑的电源模块。这些拓扑使用高性能半桥驱动器实现高频操作和高效率。半桥栅极驱动器采用的技术已在业界成功应用了数十年,UCC27282 120-V 2.5A/3.5A半桥驱动器是最新发展成果。

    结合新功能与改进的工作范围,UCC27282具有全新水平的性能表现,以提高电源模块的稳健性,并在优化功率级设计方面提供更大的灵活性。

    本应用指南将概述UCC27282相对于上一代驱动器的优势,优化设计并增强稳健性。

     

    前言 

    随着对给定尺寸,甚至缩小尺寸内更高处理能力的需求,电信和数据通信设备性能也在不断增加。增加的设备性能导致电源需求增加。必须从空间利用率和效率角度优化这些系统中的电源。电信和数据通信系统的复杂性也在增加,这使得它们更容易受到噪声和瞬态的影响。数据中心的功耗越来越受到关注。出于这个原因…

  • 在离线应用中采用UCC28056来优化效率和待机功耗

    Other Parts Discussed in Post: UCC28056, UCC256301, UCC256304, UCC28056EVM-296

    摘要

    现代产品法规要求更低的待机功耗和更高的效率。满足这些要求的策略可能是使用复杂的电源时序控制关闭部分电源系统以提高轻载效率。此外,关闭如PFC等电源系统的部分需要将下游功率转换器设计用于宽输入电压范围。UCC28056架构和突发模式等功能使设计能够满足这些现代电源要求,使PFC级在所有电源模式下保持开启状态。

    商标

    所有商标均为其各自所有者的财产。

    前言

    随着产品法规持续要求在这些关键领域提高性能,效率和待机功耗已成为离线应用中关注的重点。这种关注需要采用复杂的功率策略以满足这些要求,例如在低功耗模式下关闭PFC。这种策略虽然有效,但极大地增加了系统设计的复杂性,也增加了PFC下游的DC/DC转换器设计的负担,使其无法处理更宽的输入电压范围。UCC28056器件专为解决此问题而设计…

  • 关键隔离式栅极驱动器规格

    Other Parts Discussed in Post: ISO5852S

    您好,欢迎观看第三个讨论隔离式栅极驱动器的 TI 高精度实验室讲座。 在本视频中,我们将探讨可以作为隔离式栅极驱动器技术的基准核心参数。 我们将会检查这些参数的数据表定义, 讨论在隔离式和非隔离式驱动器中决定这些参数的机制, 并举例说明这些参数将如何叠加影响系统性能。

     

    在本讲座中,我们关注的四个参数分别是传播延迟、 脉冲持续时间失真、 部件对部件或通道对通道偏斜以及共模瞬态抗扰度。在上一节课中,这些参数是常见隔离式栅极驱动器应用中最新出现的许多改进的核心。

    传播延迟是指, 根据预期的行为, 从输入超过上升或下降阈值到输出达到上升值的 10% 或下降值的 90% 的总持续时间。 例如,输出可能会直接对应于输入。 在这种情况下, 从低电平到高电平的传播延迟即从输入电压超过上升阈值到输出电压达到最大值的 10% 的时间。而从高电平到低电平的传播延迟则是从输入电压超过下降阈值到输出电压达到最大值…

  • 使用UCC24624同步整流器控制器提高LLC谐振转换器的效率

    Other Parts Discussed in Post: UCC24624

    LLC转换器凭借简单、高效的优点而成为广泛用于PC、服务器和电视电源的拓扑结构。其谐振操作可实现全负载范围的软开关,从而成为高频和高功率密度设计的理想选择。此外,LLC转换器采用电容滤波器,无需输出滤波电感。有了电容滤波器,LLC转换器还可以使用额定电压较低的整流器,从而降低系统成本。此外,次级侧整流器可实现零电流转换,大大减少了反向恢复损耗。利用LLC拓扑结构的各项优势,可进一步提高效率,降低输出整流器的损耗。

    用于LLC谐振转换器的同步整流器

    使用二极管整流器时,如图1所示,全部输出电流流过输出二极管。对于低电压或高输出电流应用,这些二极管整流器中存在显著的效率损失和热应力。

    图1.带二极管整流器的LLC转换器

    如果二极管用固定的正向电压降VF建模,则可以基于等式1估计每个整流二极管的损耗。,采取这样的方式计算,对于具有0.5V正向压降的12…

  • 电机控制:终端应用需要考虑的具体注意事项

    作者:德州仪器 Brett Barr

    本文主要讨论特定终端应用需要考虑的具体注意事项,首先从终端应用中将用于驱动电机的FET着手。电机控制是30V-100V分立式MOSFET的一个庞大且快速增长的市场,特别是对于许多驱动直流电机的拓扑结构来说。在此,我们将专注于讨论如何选择正确的FET来驱动有刷、无刷和步进电机。尽管很少有硬性规定,且可能有无数种方法,但希望本文能让您基于终端应用了解从何处着手。

    要做的首个也许是最简单的选择是你需要何种类型的击穿电压。由于电机控制往往频率较低,因此与电源应用相比会产生较低的振铃,因此输入电源轨与FET击穿之间的裕度会更积极(通常以牺牲使用缓冲器为代价),以获得电阻更低的FET。但一般来讲,BVDSS与最大输入电压VIN之间保留40%的缓冲并非一个糟糕的规则——具体视你预期的振铃次数以及你愿意用外部无源元件抑制所述振铃的数量而定,一般会多10%或少10%。

    选择封装类型可能是最关键的决策…

  • 从零开始快速让电量计工作起来

    Other Parts Discussed in Post: BQ40Z50, BQ27Z561, BQ40Z50-R2, BQ27542EVM

    作者:Mingmo Zhu

    如果你第一次使用电量计不知道从何入手,如果你看到那么多寄存器参数不知道配置哪个,如果你面对电量计技术参考手册一两百页有点迷茫,那么这个文档或许可以帮到你。下面让我们一起从零开始,以最小配置快速让电量计正常工作起来。

    第一步,准备好电量计硬件板子,对电量计供电。

    可以用TI 提供的EVM评估板,也可以用自己项目带有电量计的板子。根据电池组串联节数不同,下面以最典型的单串电量计BQ27542EVM和多串电量计BQ40Z50EVM为例。一串多并的电池组按单串来对待,多串多并的电池组按多串来对待。

    单串电量计供电,用单节电芯按正负极性连接到BQ27542EVMCell+, Cell-即可,或者用直流电压源设置输出电压3.6V来代替电芯,如图1所示。EVMCell+…

  • 如何在锂离子电池设计中实现运输节电模式

    作者:德州仪器Gautham

    您是否有印象,许多电池供电的电子玩具在电池上有一个小型塑料拉片(如图1),将其拉下后这些玩具才开始动起来?这是关闭电池至产品有源电路的连接的一种方式,且是最早的一种“运输节电模式”。 

    本文将介绍什么是运输节电模式,以及如何在产品中使用此功能来提供最佳用户体验。虽然本文主要将使用德州仪器电池充电管理集成电路作为示例,但您可将这些概念应用于正在开发的任何低功耗系统。

    1:拉动电池供电产品上的拉片

    什么是运输节电模式,为何需要它?

    运输节电模式是产品消耗最低电池电流的状态。消费者希望在购买电池供电产品后能够立即使用它们。这意味着电池在运输期间和保质期内必须保持一定容量,这可能需要几个月甚至更长时间。 

    锂离子电池已成为设计师的热门选择,因为它们可充电、支持高功率要求且极其轻便。但是,与非充电电池不同,您不能在使用锂离子电池的产品上放置塑料拉片。因此出于安全考虑,您希望避免使用这些电池…

  • 支持瓦特到千瓦级应用的氮化镓技术

    作者:德州仪器Arianna Rajabi

    两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级尽可能提高(和降低)。

    氮化镓在任何功率级别都很关键。工程师正努力提高切换速度、效率和可靠性,同时减小尺寸、重量和元件数量。从历来经验来看,您必须至少对其中的部分因素进行权衡,但德州仪器正通过所有这些优势实现设计,同时通过在一个封装中进行复杂集成来节省系统级成本,并减少电路板元件数量。从将PC适配器的尺寸减半,到为并网应用创建高效、紧凑的10kW转换,德州仪器为您的设计提供了氮化镓解决方案。LMG3410和LMG3411系列产品的额定电压为600 V,提供从低功率适配器到超过2 kW设计的各类解决方案。

    通过导通电阻选择器件

    内部氮化镓场效应晶体管(FET)的额定值为RDS(on) - 漏极-源极或导通电阻…

  • 如何获得简易的非磁性交流/直流电源

    在创建工业电源时,最常见的一个挑战是将交流电压电源转换为直流电压电源。几乎所有应用都需要将交流电压改为直流电压,从为手机充电到为微波炉的微控制器供电都是如此。通常来讲,通过使用变压器和整流器进行这种转换,如图1所示。在该电路中,通过变压器降压(一倍于变压器初级和次级线圈匝数比)。

    1:使用变压器和LDO简化ACDC转换

    磁解决方案有几个缺点。您可能知道变压器通过将磁通量转换为电流来工作。由于这种转换,变压器会产生大量电磁干扰(EMI)。变压器的输出电压也极其嘈杂,需要大电容来滤除噪声。对于低功率应用,可使用更简单且成本有效的方法来消除磁性元件。如同两个电阻器如何形成一个分压器一样,您可使用电容器来产生交流阻抗(电抗),其在电压到达电源之前降低电压。这种配置通常称为电容压降解决方案。


    当负载未接通时,基本的电容器压降解决方案需要稳压二极管吸收应用所需的电流。该稳压二极管是必需项,因此线性稳压器(LDO)的输入电压不会超过绝对最大额定值…

  • 更换老化的栅极驱动光电耦合器

     电机用于电梯、食品加工设备、工厂自动化、机器人、起重机……这样的例子不胜枚举。交流感应电机在这种应用中很常见,且总是通过用于电源级的绝缘栅双极晶体管(IGBT)来实现驱动。典型的总线电压为200 VDC至1,000 VDC。IGBT采用电子换向,以实现交流感应电机所需的正弦电流。

    在设计电机驱动器时,保护操作重型机械的人员免受电击是首要考虑因素,其次应考虑效率、尺寸和成本因素。虽然IGBT可处理驱动电机所需的高电压和电流,但它们不提供防止电击的安全隔离。在系统中提供安全隔离的重要任务由驱动IGBT的栅极驱动器完成。

    光电隔离栅极驱动器已成功用于驱动IGBT,并提供电流安全隔离。光电隔离栅极驱动器的输入级包含单个铝镓砷(AlGaAs)LED。输出级包括一个光电探测器和放大器,然后是驱动输出的上拉和下拉晶体管。最终封装中厚层透明硅树脂将输入和输出级分开,并提供了安全隔离。电流驱动输入级的简易性、良好的抗噪性和安全隔离是电机驱动器制造商几乎在所有设计中都采用光电隔离栅极驱动器的主要原因…

  • 德州仪器 CEDV 电量计算法介绍

    作者:Eason Yuan

      

    1.     传统电量计介绍

    随着市场清洁能源的需求以及应用市场的需要,锂电池在日常生活中有着越来越广泛的运用。为了实现对电芯电量的检测,在以往很多的应用场景下,通常采用电压测试法来预估锂离子电芯的电芯容量。但是随着对电量预估的精度要求的提高,加之电芯在不同温度和负载等应用情况下电压存在跳变,单纯地利用电压测量法来预估电量,已经不能满足精准测量电路的需求。

     

    2.     什么是CEDV?   

    CEDV是基于库仑积分的一种电量计量算法。比如BQ4050, BQ34110这些电量计都基于CEDV算法。CEDV是EDV的补偿,在了解CEDV之前,有必要介绍一下EDV。

    I.  什么是EDV

    EDV(end discharge voltage )如下图所示的电压和RM(电芯剩余容量)的对应曲线,是电芯快要耗尽的时候的电压值。之所以如此关注EDV,是因为在之前的对应电容量中电压值相对平坦不利于判断,故选择了低电量情况下,变化率较大的点作为EDV点…

  • 升降压超级电容充电方案

    Other Parts Discussed in Post: BQ25703A

    作者:TI 工程师 Eric Xiong

    超级电容由于其充电次数,更好的瞬态性能,更简单的充电管理以及更少的环境污染,在很多应用中越来越受欢迎。多个电容单体(2.7V)串联往往需要buck-boost充电拓扑来实现电源的充电管理。BQ25703A是一种集快速充电、电源路径管理、保护功能于一体的单芯片方案。本文讨论了在实际应用中的一些注意事项。

    1. 典型充电电路和充电曲线:

    1 典型应用电路

    2 典型的充电曲线

    3 配置和软件设置

    2. 加速充电过程

    与锂电池的预充电过程不同,超级电容可以直接快速充电,从而减少充电时间,可以采取如下两种方式来减小芯片自带的预充过程,

     

    • 使用更低的检流电阻Rsr=2mOhm.

    默认是10 mOhm,相当于提升5倍的预充电流。

    4   20s 快速充电充满

    • 2去使能LDO 模式

    为了保证芯片的最小工作电压…

  • 德州仪器针对扫地机器人系统的解决方案

    作者:TI 华南区现场应用工程师吴杨、曾繁宸

     

    摘要

    近年来,扫地机器人市场快速崛起,越来越多用户和厂商在关注这个领域。 TI在该应用下提供种类丰富的模拟以及嵌入式解决方案…

  • 一种应用于NVR/DVR系统的备电方案

    Other Parts Discussed in Post: TPS40210, BQ24610, LM5122, LM5050-1

    图一是简单的安防系统框图,主要分为前端产品和后端产品。其中后端产品NVR (Network Video Record) 和前端IP camera对接,一般情况下一个NVR可对接4个,8个,16个IPC。在某些特定情况下,NVR系统需要短时掉电备份以保证数据非丢失。因此NVR的电池的备电系统成为安防行业一个研究方向。 DVR (Digital Video Recorder) 与 CVI/TVI/AHD模拟相机对接,虽然传输信号是模拟信号,但是对备电系统的需求与NVR一致。

    安防系统框图

    备电系统的主要需求:

    1. 多节电池系统≥72.8Ah
    2. 充电电流大于4A
    3. 输入12V, 系统电压12V
    4. 当移除adapter时,系统电压变化不大

    根据上面的需求分析,本文提出一种简单的备电方案如下:配置电池为两节串联…

  • 电源管理设计小贴士:回到未来,电力电子产品如何变化

    作者:Robert Taylor

     

    Robert Taylor 是德州仪器的应用经理。

     

    我于2002年开始在德州仪器(TI)工作;从那时起,电力电子市场整体增长了四倍多,复合年增长率达到了8%左右。这种巨大的增长得益于电源领域的一些惊人的进步。

     

    我将在本文中回顾在2002年看起来几乎不可能实现的话题。例如,我的首批项目之一是用于低压大电流处理器应用的两相转换器:输入电压为12 V,输出为1 V,电流为40 A,功率级均为250 kHz,输出纹波为500 kHz。我记得,由于电压过低,无法用传统的电子负载测试电源。为了快速完成一些测试,我使用了一个1米长的铜带来达到加载电源的等效电阻。而当我打开电源时,由于电场的原因,铜环实际上已扭曲。

     

    我们团队为此类电源提供的最新规格是:550 A时为1 V!该设计采用12相电源,具有先进的电流共享和瞬态响应技术。我们现在拥有一整套实验台,内装专门的测试设备。随着消费者对互联网和云的需求增加…

  • TL431反馈回路的分析和设计

    Other Parts Discussed in Post: TL431, UC3843, LM3481, LM5022, ATL431

    TL431(如图一)是最常用的三端可调电流基准源之一,热稳定性能好,性价比高,被广泛应用于运放电路,比较器电路,ADC基准源,可调压电源,开关电源等。在隔离开关电源电路中尤为常见,TL431常被用做运放配合线性光耦来完成电压环的补偿。如图二所示(图中L是为了降低输出电压纹波加的小电感)。

    图一

    图二

    简要介绍反激电源闭环反馈回路原理:线性光耦只适合传输低频信号且在传输过程中会产生较大的传输误差,为了消除光耦的传输误差将TL431设计的误差放大器放在光耦输入侧。一旦输出电压偏高,TL431的reference pin 电压升高,相当于运放反向输入端的电压上升,TL431阴极相当于运放的输出端,其电压会有所下降,流过线性光耦二极管的电流变大,线性光耦三极管电流同时变大,RFB电压降变大,Vre…

  • TPS61046在光通信中双输出的应用

    Other Parts Discussed in Post: TPS61046

    作者: TI 工程师 Wanda Wang

      

    Abstract

    光通信应用经常需要从+3.3V的输入电源升压得到一组正负电压,比如+/-20V,常见的做法是用两颗芯片分别去产生+20V和-20V输出,这种方案体积会比较大,对面积敏感的应用无法满足要求。本文在TI升压芯片TPS61046的基础上,引入负压Charge pump电路,实现单芯片同时输出+/-20V,整个方案体积非常小,并就关键器件选型进行了分析,最后给出实测结果。

     

    1. 引 言

    光模块的外部供电电压一般是+3.3V,而光器件的驱动经常需要非常高的可调电压,但驱动电流非常小(mA级别),因此采用数模转换器加运算放大器来实现调压是可行的。本文将通过讲解TI的boost芯片TPS61046,结合charge pump方式来实现+/-20V的输出,以此作为运放的供电。

     

    2. TPS61046简介

  • 使用RGBW LED驱动提升LED人机界面设计

    作者:Allie Zhang

    现在的产品变得非常智能且彼此相互连接。扬声器、电视、冰箱、机顶盒和烟雾探测器等器件不再只是处在某一位置的工具 - 用户可远程或通过语音唤醒控制它们。这些器件比以前更加智能,这意味着它们还需要更加智慧的人机交互界面。

    人机交互的界面可以多种多样,由发光二极管(LED)的各种创造性的组合而形成的LED环、LED矩阵或红绿蓝(RGB)LED照明等是现在炙手可热的人机交互方式,特别是通过改变诸如追逐或闪烁等模式更是增加了使用LED 作为人机交互界面的灵活性和美观程度。图1所示为一些模式示例。

    1:用于人机界面的LED的示例

    要拥有一个极其友好的人机界面,这些元素很重要:

    • 完美的色彩混合,颜色随用户要求而变化。
    • 适合的LED亮度:白天不要太暗,夜晚不要太亮。
    • 美观的动态变化效果,如追逐或闪烁。
    • 电源来自电池时,也同样能实现一致的亮度显示和高效率。

    虽然乍看这一列表令人从无下手,但其实只需要一款出色的LED驱动器就可以轻松实现…

  • 轻松延长TWS真无线蓝牙耳机的充电盒的电池寿命

    作者: TI 工程师 Eileen Zhang

    自从iPhone7取消3.5mm插孔后,蓝牙耳机市场得到迅猛发展,蓝牙耳机种类也层出不穷。相比普通蓝牙耳机,TWS (True Wireless Stereo) 真无线蓝牙耳机具有如下优点:左右单元无物理连接,完全摒弃有线烦恼,运动更自由;使用方式多样,既可独享,又可分享。

    由于TWS耳机左右单元无物理连接的特性,一般情况下耳机无法通过microUSB接口充电。为了解决这个问题,几乎所有的TWS耳机都配备了兼具充电和收纳功能的便携盒,没电的时候只要把耳机放入盒内,便自动开始充电,十分方便。

    1. TWS真无线蓝牙耳机

    耳机充电盒内需要升压变换器,将锂电池电压升至5V给耳机充电。由于体积的限制,充电盒的电池容量一般在500mAH以内,可以支持两个50mAH无线耳机充电3~4次左右。为了延长充电盒子的电池使用寿命,需要选择超低功耗的升压变换器。

    德州仪器的TPS61099X系列升压变换器的输入电压范围是0…

  • 基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

    Other Parts Discussed in Post: LMR14030-Q1

    作者:德州仪器Gavin Wang 

    电源设计工程师通常在汽车系统中使用一些DC/DC降压变换器来为多个电源轨提供支持。然而,在选择这些类型的降压转换器时需要考虑几个因素。例如,一方面需要为汽车信息娱乐系统/主机单元选择高开关频率DC/DC变换器(工作频率高于2 MHz),以避免干扰无线电AM频段;另一方面,还需要通过选择相对较小的电感器来减小解决方案尺寸。此外,高开关频率DC/DC降压变换器还可以帮助减少输入电流纹波,从而优化输入电磁干扰(EMI)滤波器的尺寸。

     

    然而,对于正在尝试创建最新汽车系统的大型汽车原始设计制造商(ODM)来说,符合所要求的EMI标准至关重要。这些要求非常严格,制造商必须遵守诸多标准,如国际无线电干扰特别委员会(CISPR) 25标准。在很多情况下,如果制造商不符合标准,汽车制造商就无法接受相应的设计。

     

    因此,对于DC…