• 2019-5-24

    减小EMI,提高密度和集成隔离是2019年电源发展的三大趋势

    作者:德州仪器Kilby实验室电源管理总监Jeff Morroni 毫无疑问,电源在调节、传输和功耗等各个方面都成为日益重要的话题。人们期望产品功能日趋多样、性能更强大、更智能、外观更加酷炫,业界看到了关注电源相关问题的重要意义。展望2019年,三大广泛的问题最受关注,即:密度、EMI和隔离(信号和电源)。 实现更高的密度:将更多电源管理放入更小的空间 由于IC光刻工艺和每个功能运行功率的大幅缩减,使得芯片上可集成更多功能和栅极,对成品的总体功率需求迅速增长,如图1所示。一些处理器...
    • 2019-5-23

    LDO基础知识:噪声 - 第1部分

    作者:德州仪器Aaron Paxton 在一篇LDO基础知识博文中,我讨论了使用低压差稳压器(LDO)过滤因开关模式电源导致的纹波电压。然而,这不是获得净化直流电源唯一要考虑的事情。因为LDO是电子设备,它们自身也会生成一定数量的噪声。选择使用低噪声LDO和采取步骤减少内部噪声,都可以在不损害系统性能的同时形成净化电源轨的不可分割的措施。 识别噪声 理想的LDO具备没有交流元件的电压轨。但缺点在于LDO会和其他电子设备一样生成本体噪声。图 1 显示了这种噪声在时间域中的表现。 图 1:有噪声电源...
    • 2019-5-23

    LDO基础知识:噪声 - 第2部分

    作者:德州仪器Aaron Paxton 在我的上一篇博文LDO基础知识:噪声 – 第1部分中,我探讨了如何减少输出噪声和控制压摆率,方法是为参考电压(CNR/SS)并联一个电容器。在本篇博文中,我将讨论降低输出噪声的另一种方法:使用前馈电容(CFF)。 什么是前馈电容? 前馈电容是一个可选的顶容器,与电阻分压器的上半部电阻并联,如图 1 所示。 图 1:使用前馈电容的NMOS低压差稳压器(LDO) 与降噪电容(CNR/SS)相似,添加前馈电容具有多种效果。最主要的是降噪,还包括改进...
    • 2019-5-15

    增强性能的100符栅极驱动器提升先进通信电源模块的效率

    摘要 通讯应用使用基于半桥、全桥或同步降压功率拓扑的电源模块。这些拓扑使用高性能半桥驱动器实现高频操作和高效率。半桥栅极驱动器采用的技术已在业界成功应用了数十年, UCC27282 120-V 2.5A/3.5A半桥驱动器是最新发展成果。 结合新功能与改进的工作范围, UCC27282 具有全新水平的性能表现,以提高电源模块的稳健性,并在优化功率级设计方面提供更大的灵活性。 本应用指南将概述 UCC27282 相对于上一代驱动器的优势,优化设计并增强稳健性。 前言 随着对给定尺寸...
    • 2019-5-15

    在离线应用中采用UCC28056来优化效率和待机功耗

    摘要 现代产品法规要求更低的待机功耗和更高的效率。满足这些要求的策略可能是使用复杂的电源时序控制关闭部分电源系统以提高轻载效率。此外,关闭如PFC等电源系统的部分需要将下游功率转换器设计用于宽输入电压范围。 UCC28056 架构和突发模式等功能使设计能够满足这些现代电源要求,使PFC级在所有电源模式下保持开启状态。 商标 所有商标均为其各自所有者的财产。 前言 随着产品法规持续要求在这些关键领域提高性能,效率和待机功耗已成为离线应用中关注的重点。这种关注需要采用复杂的功率策略以满足这些要求,例如在...
    • 2019-5-15

    关键隔离式栅极驱动器规格

    您好,欢迎观看第三个讨论隔离式栅极驱动器的 TI 高精度实验室讲座。 在本视频中,我们将探讨可以作为隔离式栅极驱动器技术的基准核心参数。 我们将会检查这些参数的数据表定义, 讨论在隔离式和非隔离式驱动器中决定这些参数的机制, 并举例说明这些参数将如何叠加影响系统性能。 在本讲座中,我们关注的四个参数分别是传播延迟、 脉冲持续时间失真、 部件对部件或通道对通道偏斜以及共模瞬态抗扰度。在上一节课中,这些参数...
    • 2019-5-15

    使用UCC24624同步整流器控制器提高LLC谐振转换器的效率

    LLC转换器凭借简单、高效的优点而成为广泛用于PC、服务器和电视电源的拓扑结构。其谐振操作可实现全负载范围的软开关,从而成为高频和高功率密度设计的理想选择。此外,LLC转换器采用电容滤波器,无需输出滤波电感。有了电容滤波器,LLC转换器还可以使用额定电压较低的整流器,从而降低系统成本。此外,次级侧整流器可实现零电流转换,大大减少了反向恢复损耗。利用LLC拓扑结构的各项优势,可进一步提高效率,降低输出整流器的损耗。 用于LLC谐振转换器的同步整流器 使用二极管整流器时,如图1所示,全部输出电流流过...
    • 2019-5-7

    电机控制:终端应用需要考虑的具体注意事项

    作者:德州仪器 Brett Barr 本文主要讨论特定终端应用需要考虑的具体注意事项,首先从终端应用中将用于驱动电机的FET着手。电机控制是30V-100V分立式MOSFET的一个庞大且快速增长的市场,特别是对于许多驱动直流电机的拓扑结构来说。在此,我们将专注于讨论如何选择正确的FET来驱动有刷、无刷和步进电机。尽管很少有硬性规定,且可能有无数种方法,但希望本文能让您基于终端应用了解从何处着手。 要做的首个也许是最简单的选择是你需要何种类型的击穿电压。由于电机控制往往频率较低,因此与电源应用相比...
    • 2019-4-24

    如何在锂离子电池设计中实现运输节电模式

    作者:德州仪器Gautham 您是否有印象,许多电池供电的电子玩具在电池上有一个小型塑料拉片(如图1),将其拉下后这些玩具才开始动起来?这是关闭电池至产品有源电路的连接的一种方式,且是最早的一种“运输节电模式”。 本文将介绍什么是运输节电模式,以及如何在产品中使用此功能来提供最佳用户体验。虽然本文主要将使用德州仪器电池充电管理集成电路作为示例,但您可将这些概念应用于正在开发的任何低功耗系统。 图 1:拉动电池供电产品上的拉片 什么是运输节电模式,为何需要它...
    • 2019-4-24

    支持瓦特到千瓦级应用的氮化镓技术

    作者:德州仪器Arianna Rajabi 两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级尽可能提高(和降低)。 氮化镓在任何功率级别都很关键。工程师正努力提高切换速度、效率和可靠性,同时减小尺寸、重量和元件数量。从历来经验来看,您必须至少对其中的部分因素进行权衡,但德州仪器正通过所有这些优势实现设计,同时通过在一个封装中进行复杂集成来节省系统级成本...