• 2018-3-5

    TI Retimer产品电路设计与配置指导

    作者:Wanda Wang 华南区模拟工程师 在高速信号电路设计中,TI的信号调理产品被广泛使用。其中retimer类产品涉及到寄存器配置,因此相比较而言,它的使用最为复杂。本文将以 DS125DF1610 为例,具体讲解retimer类产品的电路设计与寄存器配置。 下图是 DS125DF1610 产品资料中的典型应用图。 &nbs...
    • 2018-3-5

    TI 高速信号调理产品选型指导

    作者:Wanda Wang 华南区模拟工程师 随着通信容量的提升,设备端口支持的速率越来越高,从4G时代常见的单口10Gbps和25Gbps*4,到5G时代即将会部署的单口25Gbps,甚至50Gbps,以及56Gbps*8的400G应用。这必将对电路的设计提出了更高的要求。为了补偿高速信号在PCB板上的损耗,提升信号的质量,通常会在链路中加入高速信号调理的芯片。 TI作为全球领先的模拟半导体解决方案厂商,一直以来在高速信号调理产品上不断的投入,从早期的2.5Gbps产品,到当前...
    • 2016-10-11

    眼图医生:反射以及如何在高速系统处理反射

    欢迎回到“眼图医生”系列!在 第一部分 中,我强调了过度均衡一个信号导致的问题。在本文中,我想探讨另一种常见的信号完整性问题:反射以及减轻反射的常见方式。 传输线理论告诉我们,源输出直至接收组件输入之间可能遇到的信号阻抗中的任何变化所产生的反射。本质上讲,当交流(AC)信号在传输线向下行进时遭遇阻抗变化时,一些信号被反射回发射机,而该信号的其余部分将继续射向接收器。信号经历的阻抗变化越大,反射越大,从而造成更多的信号失真。 阻抗变化受下列变化影响:导线宽度、相邻的导线和器件之间的间距,以及距参考平面的距离。然而,印刷电路板(PCB)发生这些阻抗的变化时,并不总是那么明显。一个非常有用的做法是检查PCB布局或系统图,以快速识别可能通过模拟需要多次分析的任何问题区域...
    • 2016-7-20

    眼图医生:均衡放大过度不利于串行连接的原因

    欢迎阅读“眼图医生”系列文章!本文将讨论信号集成和硬件工程师在设计或调试速度高达几个Gb每秒的连接时所面临的挑战。无论是进行下一代高分辨率视频显示、医学成像、数据存储或是在最新的高速以太网和电信协议中,我们都面临相同的信号集成挑战。本系列文章从过度均衡开始讨论。 现代专用集成电路(ASIC)中的串行器与解串器(SERDES)与现场可编程门阵列(FPGA)通常能够获得损耗最多30dB的优异的跨信道连接性能。更长或损耗更大的信道通常需要 重定时器 或 中继器 等信号调节器的帮助。这些器件能够补偿长信道的影响,为系统提供驱动额外距离的必要能力。 中继器或重定时器的一项主要功能是补偿信道的插入损耗。这一功能可以分解为接收均衡和发送均衡。接收均衡电路通常由连续时间线性均衡器...
    • 2016-2-25

    如何在 QFN 封装芯片的 PCB 设计上得到尽可能好的串扰性能(中文讲解视频 + PPT下载)

    TI 工程师在本视频中介绍了如何在 QFN 封装芯片的 PCB 设计上得到尽可能好的串扰性能。 主要分三章进行讲解: 第一、 QFN 封装简介; 第二、如何最小化 PCB 设计上的串扰; 第三、仿真结果总结与比较。 PPT内容下载: 点击观看中文视频讲解:
    • 2016-2-17

    设计一个25G系统:平衡功耗、性能与成本的5个窍门

    在为下一代服务器和交换机实现从10G到25G系统的转换时,硬件设计工程师们必须满足以下这些目标:尽可能降低数据延迟、保持或减小功耗、以及尽可能地降低成本。为了给数据中心用户提供世界一流的具有成本优势产品,从根本上来说,必须用小的成本来多做事。 以下是5个小窍门,它能使你在设计25G系统时做出很好的平衡: 1.确定系统中的哪条链路将会需要信号调节;这将取决于走线长度和印刷电路板 (PCB) 材质。低损耗材料需要较少的信号调节,不过它们的价格也比标准材料要贵。损耗大于专门用途集成电路 (ASIC) 的内在补偿功能的通道将需要某种形式的信号调节。例如,如果你的ASIC能够实现30dB的补偿,你就有可能希望为损耗达到27dB或以上的通道增加信号调节,而其中的3dB差异可以作为安全裕量。 ...
    • 2016-1-20

    差分对:均衡器如何能解决插入损耗所带来的问题

    T.K. Chin在他的博客文章 《差分对:你真正需要了解的内容》 里谈论了对于差分对的要求。在现实应用中,我们用印刷电路板(PCB)内的铜走线或线缆组装件内的铜质导线来实现差分对。较长的PCB走线或线缆会出现较高的传输损耗,该损耗会劣化信号质量。在本文中,笔者将说明插入损耗如何能影响差分对的信号质量,并解释均衡器如何能消除这种影响。 什么是插入损耗? 传输损耗包含两部分:低频率下的趋肤效应损耗(skin loss)和高频率下的介电损耗。趋肤效应损耗取决于互连部分的截面面积;例如,PCB走线的宽度和金属厚度,或线缆的导线直径。当频率在几百兆赫以下时,趋肤效应损耗是主要传输损耗,并与频率的平方根成比例。当频率较高时,介电损耗则成为主要传输损耗。介电损耗的量取决于电介质的材料属性,且与频率成正比...
    • 2015-12-15

    高速差分过孔之间的串扰分析

    在硬件系统设计中,通常我们关注的串扰主要发生在连接器、芯片封装和间距比较近的平行走线之间。但在某些设计中,高速差分过孔之间也会产生较大的串扰,本文对高速差分过孔之间的产生串扰的情况提供了实例仿真分析和解决方法。 高速差分过孔间的串扰 对于板厚较厚的PCB来说,板厚有可能达到2.4mm或者3mm。以3mm的单板为例,此时一个通孔在PCB上Z方向的长度可以达到将近118mil。如果PCB上有0.8mm pitch的BGA的话,BGA器件的扇出过孔间距只有大约31.5mil。 如图1所示,两对相邻差分过孔之间Z方向的并行长度H大于100mil,而两对差分过孔在水平方向的间距S=31.5mil。在过孔之间Z方向的并行距离远大于水平方向的间距时,就要考虑高速信号差分过孔之间的串扰问题...
    • 2015-8-27

    XFI 和 SFI 接口系统设计

    作者:刘 亮 应用工程师 XFI(Ziffy音)和SFI是两个常见的10Gbps高速串行接口,都是连接ASIC芯片和光模块的电气接口。在传统光通信,数据交换机和服务器等上都可以找到些接口。两者之间有什么相似的地方?区别在哪里?我设计的系统接口是否满足标准要求?本博客将一一尝试介绍。 XFI 和SFI 的来源 XFI来源于XFP光模块标准的一部分,指的是连接ASIC芯片和XFP光模块的电气接口。XFP光模块标准定义于2002年左右,其内部的收和发方向都带有CDR电路。因此XFP模块尺寸比较大,功耗也比较大,这个对于需要多端口高密度的系统,比如数通交换机会是一个问题。为了解决这两个问题,2006年左右,SFP+光模块标准出来了,其内部没有CDR电路,相对于XFP模块,SFP...
    • 2015-8-12

    通过WEBENCH接口设计工具使IBIS-AMI通道仿真易如反掌

    作者:Guilherme Borba 对信号完整性工程师而言,高速串行链路仿真是功能强大的工具。这些仿真可让设计人员大致了解系统性能预测,使他们在将设计交付耗资巨大的电路板生产之前更容易做出正确决定以达到设计目标。 TI的 WEBENCH®接口设计工具 可为串行链路仿真提供简单却功能强大的环境。这款基于Web的免费工具可作为快速且方便使用的高速通道分析仿真工具 —— 对传统上由已获授权的电子设计自动化(EDA)软件工具进行的分析(更严格更耗时)是一种补充。您可在 这篇博客文章 里读到更多关于WEBENCH接口设计工具的内容。 这一切听起来很棒,但该工具能给您带来可靠的结果吗?为了回答这个问题,笔者去了实验室,并进行了一些测量...