在client例程里加了创建了流水灯任务,调试通过,烧写进去试了也可以,把原工程里创建一个连接主机IP收发数据的任务,调试通过,烧写进去还是启动不正常,但是在主函数加了流水灯操作,流水灯能启动,TCP连接主机IP的任务没有启动。有3个疑问,1:client里的StackTest任务是怎么执行的?2:在这个client例程里加IP连接该在哪里加?3:为什么调试的时候可以连接上本地设置的静态IP,烧写进去连接不上了?看到论坛里很多这个问题,没有能够解决问题的,等我这个问题解决了,会整理思路,贴出来。现在请您帮我分析下,非常感谢!
修改后的client.c 程序如下:
/*
* ======== client.c ========
*
* TCP/IP Network Client example ported to use BIOS6 OS.
*
* Copyright (C) 2007 Texas Instruments Incorporated - http://www.ti.com/
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <ti/ndk/inc/netmain.h>
#include <ti/ndk/inc/_stack.h>
#include <ti/ndk/inc/tools/console.h>
#include <ti/ndk/inc/tools/servers.h>
#include "client.h"
/* BIOS6 include */
#include <ti/sysbios/BIOS.h>
/* Platform utilities include */
#include <ti/platform/platform.h>
//++
#include <ti/sysbios/knl/Semaphore.h>
//++
// When USE_OLD_SERVERS set to zero, server daemon is used
#define USE_OLD_SERVERS 0
//---------------------------------------------------------------------------
// Title String
//
char *VerStr = "\nTCP/IP Stack Example Client\n";
// Our NETCTRL callback functions
static void NetworkOpen();
static void NetworkClose();
static void NetworkIPAddr( IPN IPAddr, uint IfIdx, uint fAdd );
// Fun reporting function
static void ServiceReport( uint Item, uint Status, uint Report, HANDLE hCfgEntry );
//---------------------------------------------------------------------------
// Configuration
//
char *HostName = "tidsp";
char *LocalIPAddr = "192.168.1.43"; // Set to "0.0.0.0" for DHCP
char *LocalIPMask = "255.255.254.0"; // Not used when using DHCP
char *GatewayIP = "0.0.0.0"; // Not used when using DHCP
char *DomainName = "demo.net"; // Not used when using DHCP
char *DNSServer = "0.0.0.0"; // Used when set to anything but zero
UINT8 DHCP_OPTIONS[] = { DHCPOPT_SERVER_IDENTIFIER, DHCPOPT_ROUTER };
#undef TEST_RAW_NC
#undef TEST_RAW_SEND
#undef TEST_RAW_RECV
#define PACKET_SIZE 1000
#define PACKET_COUNT 1
#ifdef TEST_RAW_SEND
static HANDLE hSendRaw = 0;
static void SendRawEth();
#endif
#ifdef TEST_RAW_RECV
static HANDLE hRecvRaw = 0;
static void RecvRawEth();
#endif
/*************************************************************************
* @b EVM_init()
*
* @n
*
* Initializes the platform hardware. This routine is configured to start in
* the evm.cfg configuration file. It is the first routine that BIOS
* calls and is executed before Main is called. If you are debugging within
* CCS the default option in your target configuration file may be to execute
* all code up until Main as the image loads. To debug this you should disable
* that option.
*
* @param[in] None
*
* @retval
* None
************************************************************************/
void EVM_init()
{
int i;
platform_init_flags sFlags;
platform_init_config sConfig;
/* Status of the call to initialize the platform */
Int32 pform_status;
/* Platform Information - we will read it form the Platform Library */
platform_info sPlatformInfo;
/*
* You can choose what to initialize on the platform by setting the following
* flags. We will initialize everything.
*/
memset( (void *) &sFlags, 0, sizeof(platform_init_flags));
memset( (void *) &sConfig, 0, sizeof(platform_init_config));
sFlags.pll = 0;
sFlags.ddr = 0;
sFlags.tcsl = 0; /* Time stamp counter */
sFlags.phy = 0; /* Ethernet */
sFlags.ecc = 0;
sConfig.pllm = 0;
pform_status = platform_init(&sFlags, &sConfig);
/* If we initialized the platform okay */
if (pform_status == Platform_EOK) {
/* Get information about the platform so we can use it in various places */
memset( (void *) &sPlatformInfo, 0, sizeof(platform_info));
(void) platform_get_info(&sPlatformInfo);
}
else {
/* Intiialization of the platform failed... die */
printf("Platform failed to initialize. Error code %d \n", pform_status);
printf("We will die in an infinite loop... \n");
while (1) {
(void) platform_led(1, PLATFORM_LED_ON, (LED_CLASS_E) PLATFORM_USER_LED_CLASS);
(void) platform_delay(50000);
(void) platform_led(1, PLATFORM_LED_OFF, (LED_CLASS_E) PLATFORM_USER_LED_CLASS);
(void) platform_delay(50000);
};
}
platform_write_configure(PLATFORM_WRITE_PRINTF);
platform_uart_init();
platform_uart_set_baudrate(19200);
/* Check to see that we are running on the Master Core */
if (platform_get_coreid() != 0) {
/* We are not on the Master Core... die */
printf("You must run this application on Core 0. \n");
printf("We will die in an infinite loop... \n");
while (1) {
(void) platform_led(1, PLATFORM_LED_ON, (LED_CLASS_E) PLATFORM_USER_LED_CLASS);
(void) platform_delay(50000);
(void) platform_led(1, PLATFORM_LED_OFF, (LED_CLASS_E) PLATFORM_USER_LED_CLASS);
(void) platform_delay(50000);
};
}
/* Clear the state of the LEDs to OFF */
for (i=0; i < sPlatformInfo.led[1].count; i++) {
platform_led(i, PLATFORM_LED_OFF, (LED_CLASS_E) PLATFORM_USER_LED_CLASS);
}
return;
}
//++
char *IPStr = "192.168.1.42";
unsigned int Port = 8000;
Semaphore_Handle sem;
void TcpTest(void)
{
sem = Semaphore_create(0, NULL, NULL);
// 等待初始化完成
Semaphore_pend(sem, BIOS_WAIT_FOREVER);
printf("Trying to connect 192.168.1.42:8000 ......\n");
SOCKET s;
struct sockaddr_in SinDst;
int i;
char Title[] = "Tronlong Tcp Client Application";
char *pBuf;
struct timeval timeout;
HANDLE hBuffer;
// 为任务分配文件描述符并打开一个会话
fdOpenSession(TaskSelf());
// 创建套接字
s = socket(AF_INET, SOCK_STREAMNC, IPPROTO_TCP);
if(s == INVALID_SOCKET)
{
printf("failed socket create (%d)\n", fdError());
goto error;
}
// IP 地址
mmZeroInit(&SinDst, sizeof(struct sockaddr_in));
IPN IPAddr;
if(!ConStrToIPN(IPStr, &IPAddr))
printf("Invalid address\n\n");
SinDst.sin_family = AF_INET;
SinDst.sin_addr.s_addr = IPAddr;
SinDst.sin_port = htons(Port);
// 超时时间 5秒
timeout.tv_sec = 5;
timeout.tv_usec = 0;
setsockopt(s, SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof( timeout ));
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof( timeout ));
// 建立连接
if(connect(s, (PSA) &SinDst, sizeof(SinDst)) < 0)
{
printf("failed connect (%d)\n", fdError());
goto error;
}
printf("Established the connection.\n");
// 发送一个固定字符串 长度 31
send(s, &Title, 31, 0);
// 测试
for(;;)
{
// 接收数据
i = (int)recvnc(s, (void **)&pBuf, 0, &hBuffer);
// 回传接收到的数据
if(i > 0)
{
if(send(s, pBuf, i, 0 ) < 0)
break;
recvncfree(hBuffer);
}
else
{
continue;
}
}
error:
if(s != INVALID_SOCKET)
fdClose(s);
// 关闭文件会话
fdCloseSession(TaskSelf());
}
HANDLE hTask;
void NetOpenHook()
{
hTask = TaskCreate(TcpTest, "TcpTest", OS_TASKPRINORM, OS_TASKSTKNORM, 0, 0, 0);
}
void NetCloseHook()
{
TaskDestroy(hTask);
}
//++
//++
int ledPlayTask (void) {
platform_info p_info;
uint32_t led_no = 0;
uint32_t ledloop=0;
/* Get information about the platform */
platform_get_info(&p_info);
platform_write("Lets twinkle some LED's\n");
/* Play forever */
for(ledloop=0;ledloop<50;ledloop++) {
platform_led(led_no, PLATFORM_LED_ON, PLATFORM_USER_LED_CLASS);
platform_delay(30000);
platform_led(led_no, PLATFORM_LED_OFF,PLATFORM_USER_LED_CLASS);
led_no = (++led_no) %
p_info.led[PLATFORM_USER_LED_CLASS].count;
}
return 0;
}
//++
//---------------------------------------------------------------------
// Main Entry Point
//---------------------------------------------------------------------
int main()
{
//++
ledPlayTask();
NetOpenHook();
//++
/* Start the BIOS 6 Scheduler */
BIOS_start ();
}
//
// Main Thread
//
//
int StackTest()
{
int rc;
HANDLE hCfg;
CI_SERVICE_TELNET telnet;
CI_SERVICE_HTTP http;
//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen( NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT );
if( rc )
{
printf("NC_SystemOpen Failed (%d)\n",rc);
for(;;);
}
// Print out our banner
printf(VerStr);
//
// Create and build the system configuration from scratch.
//
// Create a new configuration
hCfg = CfgNew();
if( !hCfg )
{
printf("Unable to create configuration\n");
goto main_exit;
}
// We better validate the length of the supplied names
if( strlen( DomainName ) >= CFG_DOMAIN_MAX ||
strlen( HostName ) >= CFG_HOSTNAME_MAX )
{
printf("Names too long\n");
goto main_exit;
}
// Add our global hostname to hCfg (to be claimed in all connected domains)
CfgAddEntry( hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, 0,
strlen(HostName), (UINT8 *)HostName, 0 );
// If the IP address is specified, manually configure IP and Gateway
if( inet_addr(LocalIPAddr) )
{
CI_IPNET NA;
CI_ROUTE RT;
IPN IPTmp;
// Setup manual IP address
bzero( &NA, sizeof(NA) );
NA.IPAddr = inet_addr(LocalIPAddr);
NA.IPMask = inet_addr(LocalIPMask);
strcpy( NA.Domain, DomainName );
NA.NetType = 0;
// Add the address to interface 1
CfgAddEntry( hCfg, CFGTAG_IPNET, 1, 0,
sizeof(CI_IPNET), (UINT8 *)&NA, 0 );
// Add the default gateway. Since it is the default, the
// destination address and mask are both zero (we go ahead
// and show the assignment for clarity).
bzero( &RT, sizeof(RT) );
RT.IPDestAddr = 0;
RT.IPDestMask = 0;
RT.IPGateAddr = inet_addr(GatewayIP);
// Add the route
CfgAddEntry( hCfg, CFGTAG_ROUTE, 0, 0,
sizeof(CI_ROUTE), (UINT8 *)&RT, 0 );
// Manually add the DNS server when specified
IPTmp = inet_addr(DNSServer);
if( IPTmp )
CfgAddEntry( hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,
0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0 );
}
// Else we specify DHCP
else
{
CI_SERVICE_DHCPC dhcpc;
// Specify DHCP Service on IF-1
bzero( &dhcpc, sizeof(dhcpc) );
dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcpc.cisargs.IfIdx = 1;
dhcpc.cisargs.pCbSrv = &ServiceReport;
dhcpc.param.pOptions = DHCP_OPTIONS;
dhcpc.param.len = 2;
CfgAddEntry( hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0,
sizeof(dhcpc), (UINT8 *)&dhcpc, 0 );
}
// Specify TELNET service for our Console example
bzero( &telnet, sizeof(telnet) );
telnet.cisargs.IPAddr = INADDR_ANY;
telnet.cisargs.pCbSrv = &ServiceReport;
telnet.param.MaxCon = 2;
telnet.param.Callback = &ConsoleOpen;
CfgAddEntry( hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_TELNET, 0,
sizeof(telnet), (UINT8 *)&telnet, 0 );
// Create RAM based WEB files for HTTP
AddWebFiles();
// HTTP Authentication
{
CI_ACCT CA;
// Name our authentication group for HTTP (Max size = 31)
// This is the authentication "realm" name returned by the HTTP
// server when authentication is required on group 1.
CfgAddEntry( hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALM1,
0, 30, (UINT8 *)"DSP_CLIENT_DEMO_AUTHENTICATE1", 0 );
// Create a sample user account who is a member of realm 1.
// The username and password are just "username" and "password"
strcpy( CA.Username, "username" );
strcpy( CA.Password, "password" );
CA.Flags = CFG_ACCTFLG_CH1; // Make a member of realm 1
rc = CfgAddEntry( hCfg, CFGTAG_ACCT, CFGITEM_ACCT_REALM,
0, sizeof(CI_ACCT), (UINT8 *)&CA, 0 );
}
// Specify HTTP service
bzero( &http, sizeof(http) );
http.cisargs.IPAddr = INADDR_ANY;
http.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry( hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_HTTP, 0,
sizeof(http), (UINT8 *)&http, 0 );
//
// Configure IPStack/OS Options
//
// We don't want to see debug messages less than WARNINGS
rc = DBG_INFO;
CfgAddEntry( hCfg, CFGTAG_OS, CFGITEM_OS_DBGPRINTLEVEL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
//
// This code sets up the TCP and UDP buffer sizes
// (Note 8192 is actually the default. This code is here to
// illustrate how the buffer and limit sizes are configured.)
//
// TCP Transmit buffer size
rc = 8192;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPTXBUF,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
// TCP Receive buffer size (copy mode)
rc = 8192;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPRXBUF,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
// TCP Receive limit (non-copy mode)
rc = 8192;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPRXLIMIT,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
// UDP Receive limit
rc = 8192;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_SOCKUDPRXLIMIT,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
#if 0
// TCP Keep Idle (10 seconds)
rc = 100;
// This is the time a connection is idle before TCP will probe
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_TCPKEEPIDLE,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
// TCP Keep Interval (1 second)
// This is the time between TCP KEEP probes
rc = 10;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_TCPKEEPINTVL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
// TCP Max Keep Idle (5 seconds)
// This is the TCP KEEP will probe before dropping the connection
rc = 50;
CfgAddEntry( hCfg, CFGTAG_IP, CFGITEM_IP_TCPKEEPMAXIDLE,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0 );
#endif
//
// Boot the system using this configuration
//
// We keep booting until the function returns 0. This allows
// us to have a "reboot" command.
//
do
{
rc = NC_NetStart( hCfg, NetworkOpen, NetworkClose, NetworkIPAddr );
} while( rc > 0 );
// Free the WEB files
RemoveWebFiles();
// Delete Configuration
CfgFree( hCfg );
// Close the OS
main_exit:
NC_SystemClose();
return(0);
}
#if USE_OLD_SERVERS
//
// System Task Code [ Traditional Servers ]
//
static HANDLE hEcho=0,hData=0,hNull=0,hOob=0;
#ifdef _INCLUDE_IPv6_CODE
static HANDLE hEcho6=0;
#endif
//
// NetworkOpen
//
// This function is called after the configuration has booted
//
static void NetworkOpen()
{
// Create our local servers
hEcho = TaskCreate( echosrv, "EchoSrv", OS_TASKPRINORM, 0x1400, 0, 0, 0 );
hData = TaskCreate( datasrv, "DataSrv", OS_TASKPRINORM, 0x1400, 0, 0, 0 );
hNull = TaskCreate( nullsrv, "NullSrv", OS_TASKPRINORM, 0x1400, 0, 0, 0 );
hOob = TaskCreate( oobsrv, "OobSrv", OS_TASKPRINORM, 0x1000, 0, 0, 0 );
#ifdef _INCLUDE_IPv6_CODE
hEcho6 = TaskCreate( v6echosrv, "V6EchoSrv", OS_TASKPRINORM, 0x1400, 0, 0, 0 );
#endif
}
//
// NetworkClose
//
// This function is called when the network is shutting down,
// or when it no longer has any IP addresses assigned to it.
//
static void NetworkClose()
{
fdCloseSession( hOob );
fdCloseSession( hNull );
fdCloseSession( hData );
fdCloseSession( hEcho );
#ifdef _INCLUDE_IPv6_CODE
fdCloseSession (hEcho6);
#endif
#ifdef TEST_RAW_SEND
TaskDestroy (hSendRaw);
#endif
#ifdef TEST_RAW_RECV
TaskDestroy (hRecvRaw);
#endif
// Kill any active console
ConsoleClose();
// If we opened NETCTRL as NC_PRIORITY_HIGH, we can't
// kill our task threads until we've given them the
// opportunity to shutdown. We do this by manually
// setting our task priority to NC_PRIORITY_LOW.
TaskSetPri( TaskSelf(), NC_PRIORITY_LOW );
TaskDestroy( hOob );
TaskDestroy( hNull );
TaskDestroy( hData );
TaskDestroy( hEcho );
}
#else
//
// System Task Code [ Server Daemon Servers ]
//
static HANDLE hEcho=0,hEchoUdp=0,hData=0,hNull=0,hOob=0;
#ifdef _INCLUDE_IPv6_CODE
static HANDLE hEcho6=0, hEchoUdp6=0, hTelnet6=0, hOob6=0, hWeb6=0;
#endif
//
// NetworkOpen
//
// This function is called after the configuration has booted
//
static void NetworkOpen()
{
// Create our local servers
hEcho = DaemonNew( SOCK_STREAMNC, 0, 7, dtask_tcp_echo,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
hEchoUdp = DaemonNew( SOCK_DGRAM, 0, 7, dtask_udp_echo,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 1 );
hData = DaemonNew( SOCK_STREAM, 0, 1000, dtask_tcp_datasrv,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
hNull = DaemonNew( SOCK_STREAMNC, 0, 1001, dtask_tcp_nullsrv,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
hOob = DaemonNew( SOCK_STREAMNC, 0, 999, dtask_tcp_oobsrv,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
// Create the IPv6 Local Servers.
#ifdef _INCLUDE_IPv6_CODE
hEcho6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS, 7, dtask_tcp_echo6,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
hEchoUdp6 = Daemon6New (SOCK_DGRAM, IPV6_UNSPECIFIED_ADDRESS, 7, dtask_udp_echo6,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 1 );
hTelnet6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS, 23,
(int(*)(SOCKET,UINT32))telnetClientProcess, OS_TASKPRINORM, OS_TASKSTKLOW,
(UINT32)ConsoleOpen, 2 );
hOob6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS, 999, dtask_tcp_oobsrv,
OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3 );
hWeb6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS, HTTPPORT, httpClientProcess,
OS_TASKPRINORM, OS_TASKSTKHIGH, 0, 4);
#endif
}
//
// NetworkClose
//
// This function is called when the network is shutting down,
// or when it no longer has any IP addresses assigned to it.
//
static void NetworkClose()
{
DaemonFree( hOob );
DaemonFree( hNull );
DaemonFree( hData );
DaemonFree( hEchoUdp );
DaemonFree( hEcho );
#ifdef _INCLUDE_IPv6_CODE
Daemon6Free (hEcho6);
Daemon6Free (hEchoUdp6);
Daemon6Free (hTelnet6);
Daemon6Free (hOob6);
Daemon6Free (hWeb6);
#endif
#ifdef TEST_RAW_SEND
TaskDestroy (hSendRaw);
#endif
#ifdef TEST_RAW_RECV
TaskDestroy (hRecvRaw);
#endif
// Kill any active console
ConsoleClose();
}
#endif
//
// NetworkIPAddr
//
// This function is called whenever an IP address binding is
// added or removed from the system.
//
static void NetworkIPAddr( IPN IPAddr, uint IfIdx, uint fAdd )
{
static uint fAddGroups = 0;
IPN IPTmp;
//++
Semaphore_post(sem);
//++
if( fAdd )
printf("Network Added: ");
else
printf("Network Removed: ");
// Print a message
IPTmp = ntohl( IPAddr );
printf("If-%d:%d.%d.%d.%d\n", IfIdx,
(UINT8)(IPTmp>>24)&0xFF, (UINT8)(IPTmp>>16)&0xFF,
(UINT8)(IPTmp>>8)&0xFF, (UINT8)IPTmp&0xFF );
// This is a good time to join any multicast group we require
if( fAdd && !fAddGroups )
{
fAddGroups = 1;
// IGMPJoinHostGroup( inet_addr("224.1.2.3"), IfIdx );
}
/* Create a Task to send/receive Raw ethernet traffic */
#ifdef TEST_RAW_SEND
hSendRaw = TaskCreate( SendRawEth, "TxRawEthTsk", OS_TASKPRINORM, 0x1400, 0, 0, 0 );
#endif
#ifdef TEST_RAW_RECV
hRecvRaw = TaskCreate( RecvRawEth, "PerformRawRX", OS_TASKPRIHIGH, 0x1400, 0, 0, 0 );
#endif
}
//
// DHCP_reset()
//
// Code to reset DHCP client by removing it from the active config,
// and then reinstalling it.
//
// Called with:
// IfIdx set to the interface (1-n) that is using DHCP.
// fOwnTask set when called on a new task thread (via TaskCreate()).
//
void DHCP_reset( uint IfIdx, uint fOwnTask )
{
CI_SERVICE_DHCPC dhcpc;
HANDLE h;
int rc,tmp;
uint idx;
// If we were called from a newly created task thread, allow
// the entity that created us to complete
if( fOwnTask )
TaskSleep(500);
// Find DHCP on the supplied interface
for(idx=1; ; idx++)
{
// Find a DHCP entry
rc = CfgGetEntry( 0, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT,
idx, &h );
if( rc != 1 )
goto RESET_EXIT;
// Get DHCP entry data
tmp = sizeof(dhcpc);
rc = CfgEntryGetData( h, &tmp, (UINT8 *)&dhcpc );
// If not the right entry, continue
if( (rc<=0) || dhcpc.cisargs.IfIdx != IfIdx )
{
CfgEntryDeRef(h);
h = 0;
continue;
}
// This is the entry we want!
// Remove the current DHCP service
CfgRemoveEntry( 0, h );
// Specify DHCP Service on specified IF
bzero( &dhcpc, sizeof(dhcpc) );
dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcpc.cisargs.IfIdx = IfIdx;
dhcpc.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry( 0, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0,
sizeof(dhcpc), (UINT8 *)&dhcpc, 0 );
break;
}
RESET_EXIT:
// If we are a function, return, otherwise, call TaskExit()
if( fOwnTask )
TaskExit();
}
void CheckDHCPOptions();
//
// Service Status Reports
//
// Here's a quick example of using service status updates
//
static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" };
static char *ReportStr[] = { "","Running","Updated","Complete","Fault" };
static char *StatusStr[] = { "Disabled","Waiting","IPTerm","Failed","Enabled" };
static void ServiceReport( uint Item, uint Status, uint Report, HANDLE h )
{
printf( "Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status],
ReportStr[Report/256], Report&0xFF );
//
// Example of adding to the DHCP configuration space
//
// When using the DHCP client, the client has full control over access
// to the first 256 entries in the CFGTAG_SYSINFO space.
//
// Note that the DHCP client will erase all CFGTAG_SYSINFO tags except
// CFGITEM_DHCP_HOSTNAME. If the application needs to keep manual
// entries in the DHCP tag range, then the code to maintain them should
// be placed here.
//
// Here, we want to manually add a DNS server to the configuration, but
// we can only do it once DHCP has finished its programming.
//
if( Item == CFGITEM_SERVICE_DHCPCLIENT &&
Status == CIS_SRV_STATUS_ENABLED &&
(Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPADD) ||
Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPRENEW)) )
{
IPN IPTmp;
// Manually add the DNS server when specified
IPTmp = inet_addr(DNSServer);
if( IPTmp )
CfgAddEntry( 0, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,
0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0 );
#if 0
// We can now check on what the DHCP server supplied in
// response to our DHCP option tags.
CheckDHCPOptions();
#endif
}
// Reset DHCP client service on failure
if( Item==CFGITEM_SERVICE_DHCPCLIENT && (Report&~0xFF)==NETTOOLS_STAT_FAULT )
{
CI_SERVICE_DHCPC dhcpc;
int tmp;
// Get DHCP entry data (for index to pass to DHCP_reset).
tmp = sizeof(dhcpc);
CfgEntryGetData( h, &tmp, (UINT8 *)&dhcpc );
// Create the task to reset DHCP on its designated IF
// We must use TaskCreate instead of just calling the function as
// we are in a callback function.
TaskCreate( DHCP_reset, "DHCPreset", OS_TASKPRINORM, 0x1000,
dhcpc.cisargs.IfIdx, 1, 0 );
}
}
void CheckDHCPOptions()
{
char IPString[16];
IPN IPAddr;
int i, rc;
// Now scan for DHCPOPT_SERVER_IDENTIFIER via configuration
printf("\nDHCP Server ID:\n");
for(i=1;;i++)
{
// Try and get a DNS server
rc = CfgGetImmediate( 0, CFGTAG_SYSINFO, DHCPOPT_SERVER_IDENTIFIER,
i, 4, (UINT8 *)&IPAddr );
if( rc != 4 )
break;
// We got something
// Convert IP to a string:
NtIPN2Str( IPAddr, IPString );
printf("DHCP Server %d = '%s'\n", i, IPString);
}
if( i==1 )
printf("None\n\n");
else
printf("\n");
// Now scan for DHCPOPT_ROUTER via the configuration
printf("Router Information:\n");
for(i=1;;i++)
{
// Try and get a DNS server
rc = CfgGetImmediate( 0, CFGTAG_SYSINFO, DHCPOPT_ROUTER,
i, 4, (UINT8 *)&IPAddr );
if( rc != 4 )
break;
// We got something
// Convert IP to a string:
NtIPN2Str( IPAddr, IPString );
printf("Router %d = '%s'\n", i, IPString);
}
if( i==1 )
printf("None\n\n");
else
printf("\n");
}
#ifdef TEST_RAW_SEND
/* Routine to demonstrate sending raw ethernet packets using
* send() / sendnc() APIs and AF_RAWETH family socket.
*/
static void SendRawEth()
{
char* pBuffer = NULL;
ETHHDR* ptr_eth_header;
UINT32 rawether_type = 0x300, rawchannel_num = 0;
UINT8 src_mac[6], dst_mac[6], bData[20];
int i, j, val, bytes, retVal;
SOCKET sraw = INVALID_SOCKET;
#ifdef TEST_RAW_NC
PBM_Handle hPkt = NULL;
#endif
/* Allocate the file environment for this task */
fdOpenSession( TaskSelf() );
/* wait for the ethernet link to come up. */
TaskSleep(20000);
printf("Raw Eth Task Started ... \n");
/* Demonstrating use of SO_PRIORITY to configure
* custom properties for all packets travelling
* using this socket.
*
* Here, in this example we will use it for
* configuring a distinct EMAC channel number for each
* of the raw ethernet sockets.
*
* For example, Channel Assignment:
* Chan 0 - IP
* Chan 3 - Raw
*/
rawchannel_num = 3;
/* Create the raw ethernet socket */
sraw = socket(AF_RAWETH, SOCK_RAWETH, rawether_type);
if( sraw == INVALID_SOCKET )
{
printf("Fail socket, %d\n", fdError());
fdCloseSession (TaskSelf());
return;
}
/* Configure the transmit device */
val = 1;
retVal = setsockopt(sraw, SOL_SOCKET, SO_IFDEVICE, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");
/* Configure the EMAC channel number */
val = rawchannel_num;
retVal = setsockopt(sraw, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");
/* Send the RAW eth packets out */
for(j = 0; j < PACKET_COUNT; j++)
{
#ifndef TEST_RAW_NC
if ((pBuffer = mmAlloc (sizeof(char) * PACKET_SIZE)) == NULL)
{
printf("OOM ?? \n");
TaskExit();
}
#else
if(getsendncbuff(sraw, PACKET_SIZE, (void **) &pBuffer, &hPkt))
{
printf("Error: Raw Eth getsendncbuff failed Error:%d\n", fdError());
fdCloseSession( TaskSelf() );
fdClose(sraw);
TaskExit();
}
#endif
/* Configure the Source MAC, Destination MAC, Protocol and Payload */
for (i = 0; i < 6; i++)
{
src_mac[i] = 0x10 + i;
}
for (i = 0; i < 6; i++)
dst_mac[i] = 0x20 + i + 2;
for (i = 0; i < 20; i++)
bData[i] = 0x60 + i;
ptr_eth_header = (ETHHDR*)pBuffer;
/* Copy the source MAC address as is. */
mmCopy (ptr_eth_header->SrcMac, src_mac, 6);
/* Copy the destination MAC address as is. */
mmCopy (ptr_eth_header->DstMac, dst_mac, 6);
/* Configure the type in network order. */
ptr_eth_header->Type = HNC16(rawether_type);
/* Copy over the payload to the buffer */
mmCopy(pBuffer + ETHHDR_SIZE, bData, 20);
#ifndef TEST_RAW_NC
/* Send the packet using the copy version of send() API. */
bytes = send(sraw, (char *)pBuffer, PACKET_SIZE, 0);
#else
/* Use the no-copy version of send, sendnc() to send out the data */
bytes = sendnc(sraw, (char *)pBuffer, PACKET_SIZE, hPkt, 0);
#endif
#ifndef TEST_RAW_NC
/* If we allocated the buffer, free it up. If we used up the sendnc()
* API, the buffer will be freed up by the stack.
*/
mmFree(pBuffer);
#endif
if( bytes < 0 )
{
printf("Error: Raw Eth Send failed Error:%d\n", fdError());
#ifdef TEST_RAW_NC
sendncfree(hPkt);
#endif
fdCloseSession( TaskSelf() );
fdClose(sraw);
TaskExit();
}
}
printf("Raw Eth Task Ended ... \n");
fdClose(sraw);
/* Close the session & kill the task */
fdCloseSession( TaskSelf() );
TaskExit();
}
#endif
#ifdef TEST_RAW_RECV
/* Routine to demonstrate packet receive using recvnc() API
* and AF_RAWETH family sockets.
*/
static void RecvRawEth()
{
SOCKET sraw;
INT32 val,retVal, count = 0, bytes;
char* pBuf;
HANDLE hBuffer;
UINT32 rawchannel_num;
ETHHDR* ptr_eth_header;
printf ("Raw Eth Rx Task has been started\n");
/* Allocate the file environment for this task */
fdOpenSession( TaskSelf() );
/* Demonstrating use of SO_PRIORITY to configure
* custom properties for all packets travelling
* using this socket.
*
* Here, in this example we will use it for
* configuring a distinct EMAC channel number for each
* of the raw ethernet sockets.
*
* For example, Channel Assignment:
* Chan 0 - IP
* Chan 3 - Raw
*/
rawchannel_num = 3;
/* Create the main UDP listen socket */
sraw = socket(AF_RAWETH, SOCK_RAWETH, 0x300);
if( sraw == INVALID_SOCKET )
return;
/* Configure the transmit device */
val = 1;
retVal = setsockopt(sraw, SOL_SOCKET, SO_IFDEVICE, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");
/* Configure the EMAC channel number as the priority tag for packets */
val = rawchannel_num;
retVal = setsockopt(sraw, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");
/* Configure the Receive buffer size */
val = 1000;
retVal = setsockopt(sraw, SOL_SOCKET, SO_RCVBUF, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");
while (count < PACKET_COUNT)
{
bytes = (int)recvnc( sraw, (void **)&pBuf, 0, &hBuffer );
if (bytes < 0)
{
/* Receive failed: Close the session & kill the task */
printf("Receive failed after packets Error:%d\n",fdError());
fdCloseSession( TaskSelf() );
TaskExit();
}
else
{
ptr_eth_header = (ETHHDR*)pBuf;
printf("Received RAW ETH packet, len: %d \n", PBM_getValidLen((PBM_Handle)hBuffer));
printf("Dst MAC Address = %02x-%02x-%02x-%02x-%02x-%02x Src MAC Address = %02x-%02x-%02x-%02x-%02x-%02x Eth Type = %d Data = %s \n",
ptr_eth_header->DstMac[0],ptr_eth_header->DstMac[1],ptr_eth_header->DstMac[2],
ptr_eth_header->DstMac[3],ptr_eth_header->DstMac[4],ptr_eth_header->DstMac[5],
ptr_eth_header->SrcMac[0],ptr_eth_header->SrcMac[1],ptr_eth_header->SrcMac[2],
ptr_eth_header->SrcMac[3],ptr_eth_header->SrcMac[4],ptr_eth_header->SrcMac[5],
ntohs(ptr_eth_header->Type), (pBuf + ETHHDR_SIZE));
}
count++;
/* Clean out the buffer */
recvncfree( hBuffer );
}
/* Close the session & kill the task */
fdCloseSession( TaskSelf() );
TaskExit();
return;
}
#endif