请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。
部件号:MSP430FR5994 主题中讨论的其他部件:MSP-EXP430FR5994
您好,我昨天发布了一个类似的问题,但情况略有更新。 我正在 使用MSP-EXP430FR5994开发板上基本ADC的MSP430Ware示例代码。 在官方代码上,它使用MEM0和支持基础设施(如标志0)进行转换。 下面是我的修改;我使用了MEM2和标志2进行转换。
/* --COPYRIGHT--,BSD_EX * Copyright (c) 2015, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * MSP430 CODE EXAMPLE DISCLAIMER * * MSP430 code examples are self-contained low-level programs that typically * demonstrate a single peripheral function or device feature in a highly * concise manner. For this the code may rely on the device's power-on default * register values and settings such as the clock configuration and care must * be taken when combining code from several examples to avoid potential side * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware * for an API functional library-approach to peripheral configuration. * * --/COPYRIGHT--*/ //****************************************************************************** // MSP430FR5x9x Demo - ADC12, Sample A1, AVcc Ref, Set P1.0 if A1 > 0.5*AVcc // // Description: A single sample is made on A1 with reference to AVcc. // Software sets ADC12SC to start sample and conversion - ADC12SC // automatically cleared at End of Conversion. ADC12 internal oscillator times sample (16x) // and conversion. In Mainloop MSP430 waits in LPM0 to save power until ADC12 // conversion complete, ADC12_ISR will force exit from LPM0 in Mainloop on // reti. If A1 > 0.5*AVcc, P1.0 set, else reset. The full, correct handling of // and ADC12 interrupt is shown as well. // // // MSP430FR5994 // ----------------- // /|\| XIN|- // | | | // --|RST XOUT|- // | | // >---|P1.1/A1 P1.0|-->LED // // William Goh // Texas Instruments Inc. // October 2015 // Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1 //****************************************************************************** #include <msp430.h> #include <stdio.h> int main(void) { WDTCTL = WDTPW | WDTHOLD; // Stop WDT // GPIO Setup P1OUT &= ~BIT0; // Clear LED to start P1DIR |= BIT0; // Set P1.0/LED to output P1SEL1 |= BIT2; // Configure P1.2 for ADC input (See p369, p88 of specific for pin config details.) P1SEL0 |= BIT2; // There are two Pin Select bits (p88 of specifics, we are given that P1.2 corresponds to A2.) // Disable the GPIO power-on default high-impedance mode to activate // previously configured port settings (p92) PM5CTL0 &= ~LOCKLPM5; /* // Configure Clocks CSCTL0_H = CSKEY_H; // Unlock CS registers (p96, p104) CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz (p105) CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK; // Set ACLK = LFXTCLK (p106, LFXTCLK = Low-f oscillator, 32.8k (p94)) CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers (p107) */ // Configure ADC12 ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Sampling time, S&H=16, ADC12 on [p893, CTL0 = control 0, SHT0_2 = sample & hold time, knowledge of register value from p88_s] ADC12CTL1 = ADC12SHP; // Use sampling timer [p895, Sampler uses sampling timer (not sure what that is yet)] ADC12CTL2 |= ADC12RES_2; // 12-bit conversion results [p897, RES means resolution, _2 means 12 bits] ADC12CTL3 |= ADC12CSTARTADD_2; // Use MEM2/MCTL2 //ADC12MCTL0 |= ADC12INCH_2; ADC12MCTL2 |= ADC12INCH_2; // A2 ADC input select; Vref=AVCC [MCTL2 = Memory Control 2 (p900), INCH = input channel, 2 means channel A2] ADC12IER0 |= ADC12IE2; // Enable ADC conv complete interrupt [p903, means "interrupt enable register 0". Enables or disables the interrupt request for ADC12IFG2 bit] printf("Got here.\n"); while (1) { printf("Got there.\n"); __delay_cycles(5000); ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion [p893, ENC = enable conversion, SC = start conversion. difference between the two = idfk, but remember to have both set] __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit // printf("Got nowhere.\n"); __no_operation(); // For debugger } } #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__) #pragma vector = ADC12_B_VECTOR __interrupt void ADC12_ISR(void) #elif defined(__GNUC__) void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void) #else #error Compiler not supported! #endif { switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG)) { case ADC12IV__NONE: break; // Vector 0: No interrupt case ADC12IV__ADC12OVIFG: break; // Vector 2: ADC12MEMx Overflow case ADC12IV__ADC12TOVIFG: break; // Vector 4: Conversion time overflow case ADC12IV__ADC12HIIFG: break; // Vector 6: ADC12BHI case ADC12IV__ADC12LOIFG: break; // Vector 8: ADC12BLO case ADC12IV__ADC12INIFG: break; // Vector 10: ADC12BIN /*case ADC12IV__ADC12IFG0: // Vector 12: ADC12MEM0 Interrupt if (ADC12MEM0 >= 0x7ff){ // ADC12MEM0 = A1 > 0.5AVcc? P1OUT |= BIT0; // P1.0 = 1 } else{ P1OUT &= ~BIT0; // P1.0 = 0 } printf("In MEM0."); ///int memval = ADC12MEM0; // Memory stored in MEM0, because it was set from above. ///printf("%d\n", memval); // Exit from LPM0 and continue executing main __bic_SR_register_on_exit(LPM0_bits); break;*/ case ADC12IV__ADC12IFG1: break; // Vector 14: ADC12MEM1 case ADC12IV__ADC12IFG2: break; // Vector 16: ADC12MEM2 if (ADC12MEM2 >= 0x7ff) { // ADC12MEM2 = A1 > 0.5AVcc? P1OUT |= BIT0; } // P1.0 = 1 else{ P1OUT &= ~BIT0; } // P1.0 = 0 printf("In MEM2."); int memval = ADC12MEM2; // Memory stored in MEM0, because it was set from above. printf("%d\n", memval); // Exit from LPM0 and continue executing main __bic_SR_register_on_exit(LPM0_bits); break; case ADC12IV__ADC12IFG3: break; // Vector 18: ADC12MEM3 case ADC12IV__ADC12IFG4: break; // Vector 20: ADC12MEM4 case ADC12IV__ADC12IFG5: break; // Vector 22: ADC12MEM5 case ADC12IV__ADC12IFG6: break; // Vector 24: ADC12MEM6 case ADC12IV__ADC12IFG7: break; // Vector 26: ADC12MEM7 case ADC12IV__ADC12IFG8: break; // Vector 28: ADC12MEM8 case ADC12IV__ADC12IFG9: break; // Vector 30: ADC12MEM9 case ADC12IV__ADC12IFG10: break; // Vector 32: ADC12MEM10 case ADC12IV__ADC12IFG11: break; // Vector 34: ADC12MEM11 case ADC12IV__ADC12IFG12: break; // Vector 36: ADC12MEM12 case ADC12IV__ADC12IFG13: break; // Vector 38: ADC12MEM13 case ADC12IV__ADC12IFG14: break; // Vector 40: ADC12MEM14 case ADC12IV__ADC12IFG15: break; // Vector 42: ADC12MEM15 case ADC12IV__ADC12IFG16: break; // Vector 44: ADC12MEM16 case ADC12IV__ADC12IFG17: break; // Vector 46: ADC12MEM17 case ADC12IV__ADC12IFG18: break; // Vector 48: ADC12MEM18 case ADC12IV__ADC12IFG19: break; // Vector 50: ADC12MEM19 case ADC12IV__ADC12IFG20: break; // Vector 52: ADC12MEM20 case ADC12IV__ADC12IFG21: break; // Vector 54: ADC12MEM21 case ADC12IV__ADC12IFG22: break; // Vector 56: ADC12MEM22 case ADC12IV__ADC12IFG23: break; // Vector 58: ADC12MEM23 case ADC12IV__ADC12IFG24: break; // Vector 60: ADC12MEM24 case ADC12IV__ADC12IFG25: break; // Vector 62: ADC12MEM25 case ADC12IV__ADC12IFG26: break; // Vector 64: ADC12MEM26 case ADC12IV__ADC12IFG27: break; // Vector 66: ADC12MEM27 case ADC12IV__ADC12IFG28: break; // Vector 68: ADC12MEM28 case ADC12IV__ADC12IFG29: break; // Vector 70: ADC12MEM29 case ADC12IV__ADC12IFG30: break; // Vector 72: ADC12MEM30 case ADC12IV__ADC12IFG31: break; // Vector 74: ADC12MEM31 case ADC12IV__ADC12RDYIFG: break; // Vector 76: ADC12RDY default: break; } }
代码未超过第109行。 在第150行(带有MEM2中断指令的行),我收到了一条警告,指出该语句不可访问。 我不确定该怎么做,如果需要更多信息来解决此问题,请告诉我。