This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

[参考译文] MSP430FR5994:打印频率

Guru**** 2386620 points
Other Parts Discussed in Thread: MSP-EXP430FR5994
请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/1090431/msp430fr5994-frequency-of-printf

部件号:MSP430FR5994
主题中讨论的其他部件:MSP-EXP430FR5994

因此,我在MSP-EXP430FR5994上运行了一些代码,其中对ADC进行采样,并根据PWM以32Hz的速率闪烁光。 我还在使用printf函数的标志中有代码。 但是,我的代码每秒只打印大约2-3次,但PWM和指示灯仍以32Hz的速度闪烁。 我想知道这是否意味着PWM和ADC的操作不会因执行printf所需的计算能力而停止。 我还想知道FR5994上的打印频率是否有上限。

我使用的代码,以防任何人需要它:

#include <msp430.h>
#include <stdio.h>

int main(void)
{
    WDTCTL = WDTPW | WDTHOLD;               // Stop WDT

    // GPIO Setup
    P1OUT &= ~BIT0;                         // Clear LED to start
    P1DIR |= BIT0 | BIT1 | BIT2;
    P1SEL1 |= BIT3;
    P1SEL0 |= BIT2 | BIT3 ;                 // Check p88-90_s for what the hell we're doing in the last 3 lines
                                            // 1.2 set to TA1.1, 1.3 set to ADC input (A3)

    PJSEL0 = BIT4 | BIT5;                   // For XT1? (p118_s)

    // Disable the GPIO power-on default high-impedance mode to activate
    // previously configured port settings
    PM5CTL0 &= ~LOCKLPM5;
    P1OUT |= BIT0;

    // Clock System Setup
    CSCTL0_H = CSKEY_H;                     // Unlock CS registers
    CSCTL1 = DCOFSEL_0;                     // Set DCO to 1MHz
    CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
    CSCTL3 = DIVA__1 | DIVS__8 | DIVM__1;   // Set all dividers
    CSCTL4 &= ~LFXTOFF;                     // Something related to the 32kHz oscillator, idfk

    do
    {
        CSCTL5 &= ~LFXTOFFG;                // Clear XT1 fault flag
        SFRIFG1 &= ~OFIFG;
    } while (SFRIFG1 & OFIFG);              // Test oscillator fault flag

    ADC12CTL0 = ADC12SHT0_0 | ADC12ON;      // Sampling time, S&H=4, ADC12 on [p893, CTL0 = control 0, SHT0_0 = sample & hold time, knowledge of register value from p88_s]

    ADC12CTL1 = ADC12SHP | ADC12SHS_4 | ADC12CONSEQ_2; // Use TA1.1 to trigger, (SHP means using sample timer (p897), SHS means "sample-and-hold source select" (p895, p84_s)
                                                       // which selects which source is used to activate sampling (4 being TA1.1 because of p84_s), CONSEQ_2 = Conversion sequence select,
                                                       // 2 means repeated-single-channel which means a single channel is converted and sampled, memory gets overriden everytime (p880)
    ADC12CTL2 |= ADC12RES_2;                // 12-bit conversion results, p897
    //ADC12CTL3 |= ADC12CSTARTADD_3;          // Use MEM3/MCTL3, p898

    ADC12MCTL0 = ADC12INCH_3 | ADC12EOS;    // A3 ADC input select from INCH (p901), output to MEM0, Vref+ = AVCC, EOS = end of sequence, bit is activated when sequence ends (p876)

    ADC12IER0 |= ADC12IE0;                  // Enable ADC interrupt [IER = interrupt enable, for IFG0 bit, which tells us when the sequence is complete]
    ADC12CTL0 |= ADC12ENC | ADC12SC;        // Start sampling/conversion
    P1OUT = 0x01;

    // Configure TimerA1.1 to periodically trigger the ADC12
    TA1CCR0 = 3906-1;                       // PWM Period for TA1, 3905/125000
    TA1CCTL1 = OUTMOD_3;                    // TACCR1 set/reset (Shape of set/reset in p652)

    TA1CCR1 = 1953;                         // TACCR1 PWM Duty Cycle
    TA1CTL = TASSEL__SMCLK | MC__UP;        // ACLK, up mode
    printf("122\n");
    __bis_SR_register(LPM0_bits | GIE);     // Enter LPM0, enable interrupts

    //int memval = ADC12MEM0;             // Memory stored in MEM0, because it was set from above.
    //printf("%d\n", memval);

}

// ADC12 interrupt service routine
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC12_B_VECTOR
__interrupt void ADC12ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12ISR (void)
#else
#error Compiler not supported!
#endif
{
    switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
    {
        //Some flag conditions, more important than we might originally think
        case ADC12IV__NONE:        break;   // Vector  0:  No interrupt
        case ADC12IV__ADC12OVIFG:  break;   // Vector  2:  ADC12MEMx Overflow
        case ADC12IV__ADC12TOVIFG: break;   // Vector  4:  Conversion time overflow
        case ADC12IV__ADC12HIIFG:  break;   // Vector  6:  ADC12BHI
        case ADC12IV__ADC12LOIFG:  break;   // Vector  8:  ADC12BLO
        case ADC12IV__ADC12INIFG:  break;   // Vector 10:  ADC12BIN
        case ADC12IV__ADC12IFG0:            // Vector 12:  ADC12MEM0 Interrupt
            if (ADC12MEM0 >= 0x7ff){         // ADC12MEM0 = A1 > 0.5AVcc?
                P1OUT |= BIT0;              // P1.0 = 1
            }
            else
                P1OUT &= ~BIT0;{             // P1.0 = 0
            }
            int memval = ADC12MEM0;             // Memory stored in MEM0, because it was set from above.
            printf("Within flag 0.\n");
            printf("%d\n", memval);
            break;
        case ADC12IV__ADC12IFG1:   break;   // Vector 14:  ADC12MEM1
        case ADC12IV__ADC12IFG2:   break;   // Vector 16:  ADC12MEM2
        case ADC12IV__ADC12IFG3:   break;   // Vector 18:  ADC12MEM3
        case ADC12IV__ADC12IFG4:   break;   // Vector 20:  ADC12MEM4
        case ADC12IV__ADC12IFG5:   break;   // Vector 22:  ADC12MEM5
        case ADC12IV__ADC12IFG6:   break;   // Vector 24:  ADC12MEM6
        case ADC12IV__ADC12IFG7:   break;   // Vector 26:  ADC12MEM7
        case ADC12IV__ADC12IFG8:   break;   // Vector 28:  ADC12MEM8
        case ADC12IV__ADC12IFG9:   break;   // Vector 30:  ADC12MEM9
        case ADC12IV__ADC12IFG10:  break;   // Vector 32:  ADC12MEM10
        case ADC12IV__ADC12IFG11:  break;   // Vector 34:  ADC12MEM11
        case ADC12IV__ADC12IFG12:  break;   // Vector 36:  ADC12MEM12
        case ADC12IV__ADC12IFG13:  break;   // Vector 38:  ADC12MEM13
        case ADC12IV__ADC12IFG14:  break;   // Vector 40:  ADC12MEM14
        case ADC12IV__ADC12IFG15:  break;   // Vector 42:  ADC12MEM15
        case ADC12IV__ADC12IFG16:  break;   // Vector 44:  ADC12MEM16
        case ADC12IV__ADC12IFG17:  break;   // Vector 46:  ADC12MEM17
        case ADC12IV__ADC12IFG18:  break;   // Vector 48:  ADC12MEM18
        case ADC12IV__ADC12IFG19:  break;   // Vector 50:  ADC12MEM19
        case ADC12IV__ADC12IFG20:  break;   // Vector 52:  ADC12MEM20
        case ADC12IV__ADC12IFG21:  break;   // Vector 54:  ADC12MEM21
        case ADC12IV__ADC12IFG22:  break;   // Vector 56:  ADC12MEM22
        case ADC12IV__ADC12IFG23:  break;   // Vector 58:  ADC12MEM23
        case ADC12IV__ADC12IFG24:  break;   // Vector 60:  ADC12MEM24
        case ADC12IV__ADC12IFG25:  break;   // Vector 62:  ADC12MEM25
        case ADC12IV__ADC12IFG26:  break;   // Vector 64:  ADC12MEM26
        case ADC12IV__ADC12IFG27:  break;   // Vector 66:  ADC12MEM27
        case ADC12IV__ADC12IFG28:  break;   // Vector 68:  ADC12MEM28
        case ADC12IV__ADC12IFG29:  break;   // Vector 70:  ADC12MEM29
        case ADC12IV__ADC12IFG30:  break;   // Vector 72:  ADC12MEM30
        case ADC12IV__ADC12IFG31:  break;   // Vector 74:  ADC12MEM31
        case ADC12IV__ADC12RDYIFG: break;   // Vector 76:  ADC12RDY
        default: break;
    }
}

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    如果您在EXP板上使用EZ-FET作为UART/CDC桥接器,则在调试过程中,EZ-FET受(printf)限制。

    EZ-FET lite修订版1.10 用户指南中的功能...

    应用UART串行通信,高达1MBaud

    但我对此不是很确定。

    不管怎样,如果您想通过UART快速登录,请使用专用的UART/CDC桥接器,该桥接器可以在更高的比特率(超过1 Mbps)上正常工作,并且设备正在调试或免费运行。

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    是的,我正在使用USB连接器连接MSP430。 在这种情况下,代码的其余部分不受printf限制,对吗?

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    使用额外的UART/CDC桥接器(而不是EZ-FET的一部分)时,由于打印输出,代码仍会延迟,但在调试过程中不会影响EZ-FET主控。 正如我所提到的,波特率更高,对代码的影响更小。 我使用4 Mbps的速度记录日志。

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    你好,Oscar:

    不建议在ISR中使用printf,因为它可能会影响程序流。 我建议删除它并找到另一种方法来测量ADC采样频率。

    此致,

    Evan