This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

[参考译文] MSP430FR5994:从ADC案例声明中获取值

Guru**** 2387080 points
请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

https://e2e.ti.com/support/microcontrollers/msp-low-power-microcontrollers-group/msp430/f/msp-low-power-microcontroller-forum/1090312/msp430fr5994-take-value-out-of-adc-case-statement

部件号:MSP430FR5994

我有一些基于 MSP430示例代码的代码 ,可与ADC配合使用。 ADC写入数据,如底部的开关功能所见。 为了对收集的数据进行算术运算,我将交换机内的数据传输到int中。

#include <msp430.h>
#include <stdio.h>

int main(void)
{
    WDTCTL = WDTPW | WDTHOLD;               // Stop WDT

    // GPIO Setup
    P1OUT &= ~BIT0;                         // Clear LED to start
    P1DIR |= BIT0 | BIT1 | BIT2;
    P1SEL1 |= BIT3;
    P1SEL0 |= BIT2 | BIT3 ;                 // Check p88-90_s for what the hell we're doing in the last 3 lines
                                            // 1.2 set to TA1.1, 1.3 set to ADC input (A3)

    PJSEL0 = BIT4 | BIT5;                   // For XT1? (p118_s)

    // Disable the GPIO power-on default high-impedance mode to activate
    // previously configured port settings
    PM5CTL0 &= ~LOCKLPM5;
    P1OUT |= BIT0;

    // Clock System Setup
    CSCTL0_H = CSKEY_H;                     // Unlock CS registers
    CSCTL1 = DCOFSEL_0;                     // Set DCO to 1MHz
    CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
    CSCTL3 = DIVA__1 | DIVS__8 | DIVM__1;   // Set all dividers
    CSCTL4 &= ~LFXTOFF;                     // Something related to the 32kHz oscillator, idfk

    do
    {
        CSCTL5 &= ~LFXTOFFG;                // Clear XT1 fault flag
        SFRIFG1 &= ~OFIFG;
    } while (SFRIFG1 & OFIFG);              // Test oscillator fault flag

    ADC12CTL0 = ADC12SHT0_0 | ADC12ON;      // Sampling time, S&H=4, ADC12 on [p893, CTL0 = control 0, SHT0_0 = sample & hold time, knowledge of register value from p88_s]

    ADC12CTL1 = ADC12SHP | ADC12SHS_4 | ADC12CONSEQ_2; // Use TA1.1 to trigger, (SHP means using sample timer (p897), SHS means "sample-and-hold source select" (p895, p84_s)
                                                       // which selects which source is used to activate sampling (4 being TA1.1 because of p84_s), CONSEQ_2 = Conversion sequence select,
                                                       // 2 means repeated-single-channel which means a single channel is converted and sampled, memory gets overriden everytime (p880)
    ADC12CTL2 |= ADC12RES_2;                // 12-bit conversion results, p897
    //ADC12CTL3 |= ADC12CSTARTADD_3;          // Use MEM3/MCTL3, p898

    ADC12MCTL0 = ADC12INCH_3 | ADC12EOS;    // A3 ADC input select from INCH (p901), output to MEM0, Vref+ = AVCC, EOS = end of sequence, bit is activated when sequence ends (p876)

    ADC12IER0 |= ADC12IE0;                  // Enable ADC interrupt [IER = interrupt enable, for IFG0 bit, which tells us when the sequence is complete]
    ADC12CTL0 |= ADC12ENC | ADC12SC;        // Start sampling/conversion
    P1OUT = 0x01;

    // Configure TimerA1.1 to periodically trigger the ADC12
    TA1CCR0 = 3906-1;                       // PWM Period for TA1, 3905/125000
    TA1CCTL1 = OUTMOD_3;                    // TACCR1 set/reset (Shape of set/reset in p652)

    TA1CCR1 = 1953;                         // TACCR1 PWM Duty Cycle
    TA1CTL = TASSEL__SMCLK | MC__UP;        // ACLK, up mode
    printf("122\n");
    __bis_SR_register(LPM0_bits | GIE);     // Enter LPM0, enable interrupts

    //int memval = ADC12MEM0;             // Memory stored in MEM0, because it was set from above.
    //printf("%d\n", memval);

}

// ADC12 interrupt service routine
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC12_B_VECTOR
__interrupt void ADC12ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12ISR (void)
#else
#error Compiler not supported!
#endif
{
    switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))
    {
        //Some flag conditions, more important than we might originally think
        case ADC12IV__NONE:        break;   // Vector  0:  No interrupt
        case ADC12IV__ADC12OVIFG:  break;   // Vector  2:  ADC12MEMx Overflow
        case ADC12IV__ADC12TOVIFG: break;   // Vector  4:  Conversion time overflow
        case ADC12IV__ADC12HIIFG:  break;   // Vector  6:  ADC12BHI
        case ADC12IV__ADC12LOIFG:  break;   // Vector  8:  ADC12BLO
        case ADC12IV__ADC12INIFG:  break;   // Vector 10:  ADC12BIN
        case ADC12IV__ADC12IFG0:            // Vector 12:  ADC12MEM0 Interrupt
            if (ADC12MEM0 >= 0x7ff){         // ADC12MEM0 = A1 > 0.5AVcc?
                P1OUT |= BIT0;              // P1.0 = 1
            }
            else
                P1OUT &= ~BIT0;{             // P1.0 = 0
            }
            int memval = ADC12MEM0;             // Memory stored in MEM0, because it was set from above.
            printf("Within flag 0.\n");
            printf("%d\n", memval);
            break;
        case ADC12IV__ADC12IFG1:   break;   // Vector 14:  ADC12MEM1
        case ADC12IV__ADC12IFG2:   break;   // Vector 16:  ADC12MEM2
        case ADC12IV__ADC12IFG3:   break;   // Vector 18:  ADC12MEM3
        case ADC12IV__ADC12IFG4:   break;   // Vector 20:  ADC12MEM4
        case ADC12IV__ADC12IFG5:   break;   // Vector 22:  ADC12MEM5
        case ADC12IV__ADC12IFG6:   break;   // Vector 24:  ADC12MEM6
        case ADC12IV__ADC12IFG7:   break;   // Vector 26:  ADC12MEM7
        case ADC12IV__ADC12IFG8:   break;   // Vector 28:  ADC12MEM8
        case ADC12IV__ADC12IFG9:   break;   // Vector 30:  ADC12MEM9
        case ADC12IV__ADC12IFG10:  break;   // Vector 32:  ADC12MEM10
        case ADC12IV__ADC12IFG11:  break;   // Vector 34:  ADC12MEM11
        case ADC12IV__ADC12IFG12:  break;   // Vector 36:  ADC12MEM12
        case ADC12IV__ADC12IFG13:  break;   // Vector 38:  ADC12MEM13
        case ADC12IV__ADC12IFG14:  break;   // Vector 40:  ADC12MEM14
        case ADC12IV__ADC12IFG15:  break;   // Vector 42:  ADC12MEM15
        case ADC12IV__ADC12IFG16:  break;   // Vector 44:  ADC12MEM16
        case ADC12IV__ADC12IFG17:  break;   // Vector 46:  ADC12MEM17
        case ADC12IV__ADC12IFG18:  break;   // Vector 48:  ADC12MEM18
        case ADC12IV__ADC12IFG19:  break;   // Vector 50:  ADC12MEM19
        case ADC12IV__ADC12IFG20:  break;   // Vector 52:  ADC12MEM20
        case ADC12IV__ADC12IFG21:  break;   // Vector 54:  ADC12MEM21
        case ADC12IV__ADC12IFG22:  break;   // Vector 56:  ADC12MEM22
        case ADC12IV__ADC12IFG23:  break;   // Vector 58:  ADC12MEM23
        case ADC12IV__ADC12IFG24:  break;   // Vector 60:  ADC12MEM24
        case ADC12IV__ADC12IFG25:  break;   // Vector 62:  ADC12MEM25
        case ADC12IV__ADC12IFG26:  break;   // Vector 64:  ADC12MEM26
        case ADC12IV__ADC12IFG27:  break;   // Vector 66:  ADC12MEM27
        case ADC12IV__ADC12IFG28:  break;   // Vector 68:  ADC12MEM28
        case ADC12IV__ADC12IFG29:  break;   // Vector 70:  ADC12MEM29
        case ADC12IV__ADC12IFG30:  break;   // Vector 72:  ADC12MEM30
        case ADC12IV__ADC12IFG31:  break;   // Vector 74:  ADC12MEM31
        case ADC12IV__ADC12RDYIFG: break;   // Vector 76:  ADC12RDY
        default: break;
    }
}

但是,我遇到的问题是值memval_2和memval_3不会离开switch函数。 在开关外壳外打印它们后,它们提供0或-2.366万的结果。 我希望能够保存它们的值,并将它们从开关功能转移到主功能。

我是作为解调的一部分来做这件事的,我有两个来自外部源的解调信号通过ADC进行转换,然后对这些值进行比较和减去。

如果需要更多信息,请告诉我。

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    你好,Oscar:

    我想我听从你的话。  如果尝试将ADC12MEMx寄存器之一的值分配给变量并在main循环中打印该变量,则需要将变量"memval"声明为global,在main()函数之外,而不是在ISR内。

  • 请注意,本文内容源自机器翻译,可能存在语法或其它翻译错误,仅供参考。如需获取准确内容,请参阅链接中的英语原文或自行翻译。

    距离我听到您的消息已有几天,所以我假设您的问题已得到回答。
    我会将此帖子标记为已解决。 如果不是这种情况,请单击"这不能解决我的问题"按钮,并回复此主题以了解更多信息。
    如果此线程锁定,请单击"提出相关问题"按钮,在新线程中描述您的问题的当前状态以及您可能需要帮助我们解决您的问题的任何其他详细信息。